Thèse soutenue

Segmentation automatique et analyse de forme d'hippocampes humains dans l'étude de la maladie d'Alzheimer

FR  |  
EN
Auteur / Autrice : Kaikai Shen
Direction : Fabrice MériaudeauPierrick Bourgeat
Type : Thèse de doctorat
Discipline(s) : Instrumentation et informatique de l'image
Date : Soutenance le 30/09/2011
Etablissement(s) : Dijon
Ecole(s) doctorale(s) : École doctorale E2S Environnements, Santé, STIC (Dijon ; ....-2012)
Partenaire(s) de recherche : Laboratoire : Laboratoire Electronique, Informatique et Image (LE2i) (Dijon, Côte d'Or ; Auxerre, Yonne ; Chalon-sur-Saône, Saône-et-Loire ; Le Creusot, Saône-et-Loire ; 1996-2018)
Jury : Président / Présidente : Olivier Laligant
Examinateurs / Examinatrices : Jérôme Landre
Rapporteur / Rapporteuse : Su Ruan, Didier Vray

Résumé

FR  |  
EN

L’objectif de cette thèse est l’étude des changements de la forme de l’hippocampe due à l’atrophie causée par la maladie d’Alzheimer. Pour ce faire, des algorithmes et des méthodes ont été développés pour segmenter l’hippocampe à partir d’imagerie structurelle par résonance magnétique (IRM) et pour modéliser les variations dans sa forme. Nous avons utilisé une méthode de segmentation par propagation de multiple atlas pour la segmentation de l’hippocampe, méthode qui a été démontrée comme étant robuste dans la segmentation des structures cérébrales. Nous avons développé une méthode supervisée pour construire une base de données d’atlas spécifique à la population d’intérêt en propageant les parcellations d’une base de données génériques d’atlas. Les images correctement segmentées sont inspectées et ajoutées à la base de données d’atlas, de manière à améliorer sa capacité à segmenter de nouvelles images. Ces atlas sont évalués en termes de leur accord lors de la segmentation de nouvelles images. Comparé aux atlas génériques, les atlas spécifiques à la population d’intérêt obtiennent une plus grande concordance lors de la segmentation des des images provenant de cette population. La sélection d’atlas est utilisée pour améliorer la précision de la segmentation. La méthode classique de sélection basée sur la similarité des images est ici étendue pour prendre en compte la pertinence marginale maximale (MMR) et la régression des moindres angles (LAR). En prenant en considération la redondance parmi les atlas, des critères de diversité se montrent être plus efficace dans la sélection des atlas dans le cas où seul un nombre limité d’atlas peut-être fusionné. A partir des hippocampes segmentés, des modèles statistiques de la forme (SSM) sont construits afin de modéliser les variations de la forme de l’hippocampe dans la population. La correspondance entre les hippocampes est établie par une optimisation d’ensemble des surfaces paramétriques. Les paramétrages sphériques des surfaces sont aplatis pour faciliter la reparamétrisation et l’interpolation. Le reparamétrage est régularisé par une contrainte de type fluide visqueux, qui est effectué à l’aide d’une implémentation basée sur la transformées en sinus discrète. Afin d’utiliser le SSM pour décrire la forme d’une nouvelle surface hippocampique, nous avons développé un estimateur des paramètres du model de la forme basée sur l’espérance-maximisation de l’algorithme du plus proche voisin itéré (EM-ICP). Un terme de symétrie est inclus pour forcer une consistance entre la transformée directe et inverse entre le modèle et la forme, ce qui permet une reconstruction plus précise de la forme à partir du modèle. La connaissance a priori sur la forme modélisé par le SSM est utilisée dans l’estimation du maximum a posteriori des paramètres de forme. Cette méthode permet de forcer la continuité spatiale et éviter l’effet de sur-apprentissage. Dans l’étude de l’hippocampe dans la maladie d’Alzheimer, nous utilisons le SSM pour modéliser le changement de forme de l’hippocampe entre les sujets sains et des patients souffrant d’Alzheimer. Nous identifions les régions touchées par l’atrophie dans la maladie d’Alzheimer en évaluant la différence entre les groupes de contrôle et ceux d’Alzheimer sur chaque point correspondant sur la surface. L’analyse des changements de la forme est restreinte aux régions présentant des différences significatives entre les groupes, ce qui a pour effet d’améliorer la discrimination basée sur l’analyse en composantes principales (ACP) du SSM. Les composantes principales décrivant la variabilité de la forme à l’intérieur des régions discriminantes ont une corrélation plus fortes avec le déclin des scores de mémoire épisodique liée à la pathologie de l’hippocampe dans la maladie d’Alzheimer.