Thèse soutenue

Modélisation basée sur la méthode des réseaux de perméances en vue de l’optimisation de machines synchrones à simple et à double excitation

FR  |  
EN
Auteur / Autrice : Boumedyen Nedjar
Direction : Mohamed Khémis Gabsi
Type : Thèse de doctorat
Discipline(s) : Génie électrique
Date : Soutenance le 07/12/2011
Etablissement(s) : Cachan, Ecole normale supérieure
Ecole(s) doctorale(s) : École doctorale Sciences pratiques (1998-2015 ; Cachan, Val-de-Marne)
Jury : Examinateurs / Examinatrices : Abdellatif Miraoui, Smaïl Mezani, Yacine Amara, Lionel Vido
Rapporteur / Rapporteuse : Michel Hecquet, Georges Barakat

Résumé

FR  |  
EN

La traction hybride et/ou électrique est un domaine d’application en pleine croissance présentant une forte restriction en termes d’encombrement. Cela a poussé les concepteurs à créer des structures de machine adaptées. Parmi ces topologies, nous trouvons les machines synchrones à double excitation (MSDE). Ces machines permettent de combiner les avantages d’une machine à aimants et ceux d’une machine à excitation bobinée. Le choix d’un modèle pour ces machines est un élément important dans les étapes d’analyse, d’optimisation et de pré-dimensionnement. Ce mémoire présente une contribution à la modélisation des machines synchrones à simple et à double excitation basée sur la méthode des réseaux de perméances. Trois parties sont ainsi proposées. La première partie de la thèse présente deux états de l’art- un sur les machines synchrones à double excitation et l’autre sur les méthodes de modélisation des machines électriques et principalement la modélisation par réseau de perméances. Dans la deuxième partie, nous abordons la modélisation 2D de la machine synchrone à aimants permanents à concentration de flux avec prise en compte de la rotation et de la saturation. Le but de cette partie est de trouver des méthodes permettant de combiner à la fois temps de calcul et précision. On commence par la modélisation par réseau de perméances en se basant sur un maillage de l’espace d'étude par des réluctances bidirectionnelles, ainsi qu’une comparaison entre calcul du couple par le tenseur de Maxwell et flux-FMM. La deuxième section présente un couplage entre réseaux de perméances et éléments finis. La méthode proposée consiste à résoudre les deux modèles (réluctant et éléments finis) simultanément avec un logiciel EF. Le couplage s’effectue par une équivalence entre les dimensions géométriques et les caractéristiques magnétiques des matériaux. La présentation des différents modèles dans le plan précision-temps de calcul montre l’efficacité de l’utilisation des réseaux de perméances et du couplage comparé au modèle éléments finis. La troisième partie porte sur la modélisation tridimensionnelle des machines synchrones à double excitation. Dans un premier temps, nous présentons une adaptation de la modélisation par réseau de perméances aux structures tridimensionnelles. Puis, nous appliquons ce modèle aux machines synchrones à double excitation. La machine à double excitation à concentration de flux est présentée avec une étude de l’influence du feuilletage sur la capacité de contrôle du flux. Pour améliorer le contrôle du flux d'excitation, une machine à aimants enterrés homopolaire est également étudiée avec l'approche développée. La validation du modèle est réalisée par des éléments finis et des mesures expérimentales. Dans la dernière partie, une comparaison entre configurations homopolaire et bipolaire de la structure à aimants enterrés est effectuée, puis le rotor à concentration de flux est optimisé afin de le comparer à la machine à aimants enterrés.