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Université Bordeaux 1
Les Sciences et les Technologies au service de l’Homme et de l’environnement



Table des matières

Chapitre 1.
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Conceptualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Chapitre 2.
Restauration d’images en utilisant des équations aux dérivées partielles 3
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Chapitre 1

Introduction

1.1 Motivation

Les objectifs de cette thèse sont principalement axés sur la définition de nouveaux
mécanismes de restauration et d’amélioration d’images s’appuyant sur une modélisation
mathématique basée sur des Equations aux Dérivées Partielles. La question a d’emblée
été abordée en évaluant la possibilité de définir des modèles unifiés, permettant la parallé-
lisation des deux types de traitement d’images. Une fois définis ces nouveaux mécanismes,
le but était d’en évaluer les performances et de les positionner parmi les méthodologies
existantes, sur la base d’une analyse expérimentale comparative.

La fusion des deux approches (restauration, amélioration) en un seul processus pa-
rallélisé a été principalement motivée par l’existence de travaux sur le sujet qui, même
en se situant à un stade préliminaire, ont montré un certain nombre d’avantages à gérer
les tâches de traitement de manière simultanée. De plus, du point de vue théorique, les
problèmes sont bien posés et peuvent aboutir à une solution unique.

Parmi les principaux arguments qui sont à la base du choix pour ces modèles combi-
nés, une importance particulière est représentée par leur capacité à traiter une information
corrélée. C’est notamment essentiel pour mener à bien des scénarios de fusion d’images
pour lesquels l’information d’entrée (liée aux sources S) présente un certain degré de
corrélation. Par suite, une approche parallèle permet l’utilisation de cette information
corrélée comme information utile et facteur de décision dans le processus de restauration
et amélioration d’images. Par ailleurs, dans les scénarios réels, les images ne sont jamais
affectées par une seule source de contamination, comme le bruit ou le flou ; un traitement
séquentiel conduisant à éliminer une source de contamination peut s’avérer désastreux
pour la méthode suivante de la châıne de traitement.

1.2 Conceptualisation

Pour approcher la solution générale proposée, la construction est fondée sur une
approche progressive allant des concepts simples aux plus complexes. La solution finale est
donc le résultat d’une analyse en étapes, le résultat intermédiaire de ce processus étant la
première méthode proposée, i.e., un nouveau modèle de filtre de choc pour simultanément
éliminer les flous gaussiens et filtrer le bruit. Ce modèle est pour nous l’occasion d’étudier
la faisabilité du concept de parallélisation des méthodes de restauration d’images, ouvrant
la voie à un nouveau paradigme d’une complexité et applicabilité supérieure. Par ailleurs,
une extension du modèle de filtre de choc proposé dans la première phase consiste à
introduire la notion d’amélioration de cohérence, notion qui permet d’étendre les domaines
d’application de la méthode.

Dans le même temps, le rajout de la caractéristique d’amélioration de cohérence
au modèle proposé pour simultanément éliminer les flous gaussiens et filtrer le bruit est
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une étape importante vers l’unification des concepts de restauration et d’amélioration des
images, objectif final de cette thèse.

La deuxième méthode proposée, la fusion des images avec élimination du bruit, vise
l’accomplissement d’un objectif double : (a) la validation, à la fois théorique et pratique,
du concept de la fusion des tâches de traitement d’image ; (b) le positionnement en tant
que méthode alternative dans le domaine de la fusion des images (au sens large) et dans le
domaine de la fusion des images bruitées (au sens restreint), avec des résultats comparables
ou supérieurs aux méthodes existantes.

1.3 Organisation

Pour des raisons de cohérence avec le manuscrit complet de la thèse, la structure
générale du document a été conservée, en mettant cependant l’accent sur les contributions
de la thèse, le fondement théorique étant largement disponible dans le manuscrit complet.
Par conséquent, la structure du résumé est la suivante :

Chapitre 1 (section courante) représente la partie introductive de ce résumé, composé
de trois parties : : (i) la présentation de l’objet de cette thèse, i.e., la formulation
du problème, (ii) la conceptualisation et l’approche pratique, et (iii) l’organisation
du résumé.

Chapitre 2 fournit une description des concepts théoriques fondamentaux concernant les
approches de traitement d’images fondées sur les équations aux dérivées partielles
et leur utilisation dans des formulations variationnelles.

Chapitre 3 présente le premier modèle proposé, i.e., un filtre de choc pour éliminer le
flou gaussien et filtrer le bruit simultanément, du point de vue de la formulation
théorique, de la validation expérimentale et de l’analyse comparative.

Chapitre 4 est une vue d’ensemble de la terminologie et des définitions liées à la fusion
d’images. Il permet de fixer les objectifs clés d’un processus de fusion et de mettre
en évidence les lacunes de la méthodologie actuelle d’évaluation qualitative de la
fusion dans des scénarios complexes, comme c’est le cas pour la fusion d’images
avec élimination du bruit.

Chapitre 5 est consacré à décrire en détail le modèle proposé de fusion d’images avec
élimination du bruit. Au-delà de la présentation théorique, une analyse expérimen-
tale est proposée ainsi qu’une courte illustration des applications potentielles de la
méthode.

Chapitre 6 permet de clore ce résumé en présentant les conclusions finales, les observa-
tions sur les modèles proposés ainsi que les perspectives offertes par ce travail de
thèse.



Chapitre 2

Restauration d’images en utilisant
des équations aux dérivées partielles

2.1 Définitions

Le sujet de cette thèse étant orienté vers des éléments spécifiques du traitement
d’images, i.e., la restauration et l’amélioration d’images, il est nécessaire de définir d’abord
ces termes et de classifier les principaux objectifs du traitement d’images 1.

Sous DEX, la restauration est définie comme l’action de « Réparer, pour rétablir
la forme originale d’un monument architectural, une peinture, etc. » . L’action d’amé-
lioration est elle définie comme « l’idée de réaliser une action pour augmenter la qualité
ou la valeur d’un objet » .

Même si ces définitions n’expriment pas spécifiquement les concepts dans le contexte
du traitement d’images, elles permettent de nous éclairer dans la détermination des diffé-
rences fonctionnelles entre les deux processus. Ainsi, le processus de restauration d’images
vise à ramener une image affectée par une contamination (par exemple : bruit, flou) à un
état antérieur à la contamination en supposant que l’image était a priori intacte, ne conte-
nant que l’information utile. D’autre part, le processus d’amélioration des images a comme
point de départ une image a priori inaltérée et vise à augmenter et intensifier les carac-
téristiques utiles de l’image originale. Dans cette thèse, nous considérons l’amélioration
d’images relativement à l’amélioration de cohérence d’une image d’une part et à la fusion
d’images d’autre part.

2.2 Le traitement d’images fondé sur les Équations

aux Dérivées Partielles

Dans la méthodologie actuelle, le formalisme EDP 2 ne représente qu’un des outils
mathématiques possibles pour le traitement d’images, selon la classification établie dans
[CS05] et au sein de laquelle nous retrouvons : les méthodes morphologiques ; l’ana-
lyse de Fourier et l’analyse spectrale ; l’analyse en ondelettes et les espaces
normalisés ; la modélisation stochastique ; les méthodes variationnelles et donc ;
les méthodes EDP.

Remarque En ce qui concerne la formulation mathématique, il faut noter que les mé-
thodes variationnelles sont normalement exprimées par des EDP, mais toutes les méthodes
fondées sur des EDP ne sont pas implicitement des méthodes variationnelles. Chan et

1. n.b. à travers cette thèse la notion de traitement d’images se réfère stricto sensu au traitement
d’images par ordinateur, les images étant représentées par un signal numérique bi- ou tridimensionnel

2. Équations aux Dérivées Partielles
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Shen ont montré cet aspect dans [CS05], en illustrant leurs propos à travers les équations
Navier-Stokes pour la dynamique des fluides et celles de Maxwell pour l’électromagné-
tisme.

L’utilisation des EDP pour le traitement d’images est une des conséquences de leur
utilisation en physique, où elles ont été utilisées pour modéliser certains phénomènes,
parmi lesquels un bon exemple est la propagation de la chaleur. Koenderink a été le
premier à établir dans [Koe84] l’équivalence entre la solution de l’équation de propagation
de la chaleur au moment t (modélisée par une EDP) et le processus de convolution avec
un noyau gaussien d’écart-type

√
2t. En traitement d’images, cette équation est connue

comme la diffusion isotrope et a été formalisée initialement sur la base de trois principes
[Koe84] : (i) causalité, (ii) homogénéité et (iii) isotropie.

2.3 Le filtrage linéaire dans la restauration d’images

Dans le domaine du traitement d’images, le bruit, facteur de contamination du signal
utile, est considéré comme un signal à haute fréquence. Une solution immédiate au filtrage
du bruit est donnée par la diffusion isotrope. Soit I0 : R2 → R la fonction luminance qui
décrit l’image originale, contaminée, définie sur l’ensemble Ω = [0, a] × [0, b]. L’image
filtrée, I(x, y, σ), est mathématiquement exprimée comme :

I(x, y, σ) = I0(x, y) ∗Gσ(x, y) =

∫
Ω

Gσ(x− u, y − v)I0(u, v)dudv (2.1)

où σ représente l’écart-type de G, qui dans la plupart des cas représente un noyau gaussien.
Basé sur l’équivalence établie par Koenderink dans [Koe84], le processus de filtrage peut
être exprimé alternativement comme une EDP (l’équation de diffusion isotrope) :I(x, y, 0) = I0(x, y)

∂I

∂t
= ∆I = Ixx(x, y, t) + Iyy(x, y, t)

(2.2)

Remarque Il faut souligner dès le départ que, à cause de son caractère isotrope, (2.2) a
une applicabilité limitée, en raison de la complexité des images réelles. Cette complexité
liée à la manière dont l’information utile est structurée dans les images numériques. Par
exemple, l’œil humain est sensible aux changements de contraste qui se traduisent par la
présence de contours et de bords, structures qui, au niveau du signal, représentent des
composantes haute fréquence. Un processus isotrope filtrera une image sans prendre en
compte sa structure et par conséquent filtrera sans discriminer à la fois le bruit et les
bords et contours.

A partir des observations précédentes, les raisons pour lesquelles un filtrage isotrope
ne peut être appliqué qu’aux images dotées d’une géométrie très simple sont faciles à
comprendre. Dans ce cas, le temps d’évolution du modèle EDP isotrope doit être très
limité pour empêcher le filtrage de l’information utile. Toutefois, l’équivalence établie par
Koenderink entre le phénomène de diffusion de la chaleur, comme processus physique, et
le processus de convolution, comme mécanisme de filtrage d’images, a été un précédent
motivant, moteur du développement de la méthodologie EDP permettant de développer
des méthodes plus en adéquation avec les besoins de l’analyse d’images.
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2.4 Filtrage non linéaire – diffusion anisotrope

Partant des limitations du modèle isotrope, Perona et Malik ont proposé dans [PM90]
le premier modèle de diffusion anisotrope, un modèle de diffusion sélective avec rehausse-
ment des contours, exprimé par l’EDP suivante :

∂I

∂t
= div [c(x, y, t)∇I(x, y, t)] (2.3)

où I(x, y, 0) = I0(x, y) est la condition initiale de (2.3), modèle qui peut être réécrit sous
la forme :

∂I

∂t
= c∆I +∇c · ∇I (2.4)

et, en considérant le cas particulier c(x, y, t) = const., l’équivalence de (2.4) et (2.2) est
immédiate.

La fonction c, appelée par les auteurs conductibilité, est définie de façon à favoriser
le filtrage intra-régions au détriment du filtrage inter-régions afin de donner au modèle
proposé le caractère anisotrope, l’attribut clé de (2.3). Le contrôle du caractère anisotrope
de (2.3), à travers de la fonction c, est obtenu en la rendant dépendante de la norme du
gradient de la fonction image I :

c(x, y, t) = g(|∇I|)

Pour la fonction conductivité, Perona et Malik [PM90] proposent des fonctions de
base (2.4) de la forme :

g(|∇I|) = exp

[
−
(
|∇I|
K

)2
]

(2.5)

et

g(|∇I|) =
1

1 +

(
|∇I|
K

)2 (2.6)

où K est un paramètre de seuil, appelé la barrière de diffusion.

Le modèle de diffusion anisotrope de Perona et Malik proposé dans [PM90] marque
le début de l’utilisation des EDP dans le traitement d’images et est le premier modèle
formalisé par EDP avec des fonctionnalités complètes et une utilité immédiate. Il va sans
dire que la diffusion anisotrope a représenté et représente toujours un point de départ
dans le développement de nouveaux modèles mathématiques formulés par EDP. Parmi
ces derniers, on peut mentionner ceux qui ont succédé au modèle de Perona et Malik,
en apportant des améliorations à ce dernier ou en redéfinissant le concept de diffusion
anisotrope : le modèle Catté et al. [CLMC92], le modèle Nitzberg et Shiota [NS92], le
modèle Whitaker et Pizer [WP93], le modèle unificateur EDP-variationnel Deriche et
Faugeras [DF95], les modèles tensoriels Weickert [Wei94], et d’autres.

Pour une description détaillée de la méthodologie EDP dans la restauration d’images,
le lecteur est invité à consulter le manuscrit complet de la thèse, qui comprend entre autres,
une section consacrée à la discrétisation des modèles mathématiques exprimées par EDP
pour leur utilisation dans le traitement numérique des images.



Chapitre 3

Restauration d’images par filtres de
choc hybrides

3.1 Introduction

Avant de détailler la première proposition de cette thèse (le filtre de choc mixte pour
l’élimination du flou gaussien avec filtrage de bruit, i.e., le filtre de choc hybride), il est né-
cessaire de lier les concepts abordés dans le chapitre précédent avec les aspects théoriques
caractéristiques des filtres de choc. Dans la problématique du filtrage du bruit, l’approche
classique consiste à utiliser un processus de convolution pour filtrer les composantes isolées
de haute fréquence du signal 2-D, réduisant ainsi l’entropie globale de l’image. La solution
élémentaire dans le cas de l’utilisation d’un formalisme EDP consiste à utiliser un filtre
décrit par l’équation de diffusion anisotrope proposée par Perona et Malik dans [PM90].

Dans le cas des filtres de choc, la contamination du signal utile est donnée par un
processus indésirable de convolution, aussi appelé défocalisation. En tant que manifesta-
tion physique, la défocalisation est un effet commun dans la photographie et peut être
causée par divers facteurs tels que les mouvements du sujet ou du dispositif d’acquisition
des images, les conditions atmosphériques ou la focalisation incorrecte. Dans ce cas, la
restauration de l’image défocalisée se traduit par l’application d’un processus inverse ap-
pelé déconvolution. L’inversion du processus de diffusion anisotrope peut être considéré
comme une solution apparemment simple, le résultat étant une déconvolution en tant que
processus de filtrage, au lieu de la convolution classique (diffusion). Mais du point de vue
mathématique, une telle formulation est « mal posé » , car elle représente un problème
sans solution unique, qui, numériquement, se comporte de manière divergente.

Pour répondre de manière efficace à ce problème, Osher et Rudin ont proposé dans
[OR90] une formulation mathématique basée sur une EDP, qui décrit un processus de dé-
convolution à solution unique, surmontant les problèmes posés par l’approche directe, celle
de la diffusion inverse. Par exemple, considérons le cas particulier d’un signal unidimen-
sionnel initialement décrit par la fonction − sin(x), le problème de traitement étant défini
comme le processus de déconvolution décrit par une EDP à solution initiale − sin(x) :

∂I

∂t
= −|Ix| sgn(Ixx)

I(x, 0) = I0(x) = − sin(x)
(3.1)

La méthode décrite dans (3.1), connue dans la littérature comme le filtre de choc,
représente une solution directe et relativement simple du problème de la convolution (flou)
comme élément perturbateur dans le traitement d’images.

Remarque Il nous faut préciser que la validité de (3.1) n’est assurée que dans le domaine
discret à travers d’une discrétisation explicite, proposée par les auteurs afin de s’assurer
de la convergence et de l’unicité de la solution.
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Figure 3.1 – Exemple d’un processus de déconvolution pour un signal 1-D pour I0(x) =
− sin(x) défini sur l’intervalle [−π, π]. La ligne pointillée bleue représente le signal original,
alors que la ligne continue illustre l’évolution temporelle de la fonction I. Les flèches
indiquent la direction de propagation de l’effet de déconvolution.

Le principe de fonctionnement d’un filtre de choc classique, pour un signal initial
1-D donné par la fonction I0(x) = − sin(x), est illustré par Fig. 3.1. Dans ce cas, le signal
d’origine I0 est considéré comme affecté par une convolution gaussienne et le résultat du
filtrage avec un filtre de choc est idéalement représenté par un signal échelon unité.

3.2 Le filtre de choc hybride

Les éléments présentés jusqu’à présent ont montré la manière dont on peut attaquer
deux problèmes majeurs dans la restauration d’images, i.e., le filtrage du bruit et la décon-
volution. Du point de vue théorique, les deux processus sont modélisés par des procédés de
caractéristique et effet inverses, par conséquent, leur résolution est obtenue à travers des
méthodes d’effet contraire. Plus précisément, le filtrage du bruit nécessite un processus de
convolution, alors que l’élimination des défocalisations exige un processus de déconvolu-
tion. Il est facile à comprendre que la définition d’un paradigme de restauration d’images
qui puisse gérer les deux types de traitement (filtrage du bruit et déconvolution), impli-
quera un degré élevé de complexité devant gérer avec succès le caractère contradictoire de
ces deux opérations.

Le filtre de choc hybride représente la première approche pour une problématique liée
à la combinaison filtrage-déconvolution pour la restauration d’images. Les fondements de
ce filtre se trouvent dans le filtre de choc complexe proposé par Gilboa et al. dans [GSZ02],
qui propose une redéfinition radicale de la notion de filtre de choc par extension dans le
domaine complexe. Ainsi, la fonction image I est considérée comme une fonction complexe,
dont la partie réelle décrit la vraie image et la partie imaginaire se comporte comme un
détecteur robuste de contours, détecteur qui permet la détection correcte des contours
même en présence du bruit, performance qui manque au filtre de choc classique.

Bien que le filtre choc complexe proposé par Gilboa et al. possède plusieurs avan-
tages qui lui permettent de gérer avec succès des scénarios complexes de restauration,
tels que le bruit avec flou gaussien superposé, les résultats expérimentaux ont montré sa
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divergence lorsque l’image d’entrée nécessite un degré de filtrage élevé. Lorsque le degré
de contamination varie d’une image à une autre, il est difficile de fixer a priori le temps
nécessaire pour un filtrage suffisant de chaque image.

Considérant les deux grandes classes de filtres de choc, c’est à dire, classique et com-
plexe, et les avantages et inconvénients respectifs, le modèle hybride de filtre de choc a
pour but de combiner les avantages des deux filtres, mais sans en conserver les inconvé-
nients. Ainsi, le filtre de choc hybride possède la robustesse au bruit du filtre complexe et
le caractère stable-convergent du filtre de choc classique.

3.2.1 Le modèle mathématique

Du point de vue mathématique, le filtre de choc hybride est défini sur un domaine
complexe, de la même manière que le filtre de choc complexe, mais avec la différence qu’une
de ses composantes est définie exclusivement de manière réelle en étant très similaire du
point de vue fonctionnel au filtre de choc classique. Ainsi, soit I : Ω → C, avec Ω ⊂ R2

dans le cas où l’espace de l’image est considéré continu, et Ω ⊂ N2 quand l’espace de
l’image est un domaine discret.

Les conditions initiales pour l’EDP qui décrit le modèle du filtre de choc hybride sont
exprimées pour l’image I(x, y, t) avec (x, y) ∈ Ω comme : I(x, y, 0) = I0(x, y), I0(x, y) ∈ R
et ∂I

∂n
= 0, où n représente la direction orthogonale aux bords de l’image, exprimant ainsi

des conditions au limite du type Neumann. Le modèle mathématique est exprimé comme
suit : 

Re

(
∂I

∂t

)
=− 2

π
arctan

(
a · Im(I)

θ

)
f1(t)|∇I| − sgn

(
Re(Iηη)

)
f2(t)|∇I|

+ f1(t)
(

Re(λ) Re(Iηη)− Im(λ) Im(Iηη) + λ̃Re(Iξξ)
)

Im

(
∂I

∂t

)
= Im(λ) Re(Iηη)− Re(λ) Im(Iηη) + λ̃ Im(Iξξ)

(3.2)

Etant donné que le modèle du filtre de choc hybride est partiellement dérivé du filtre
de choc complexe, les deux filtres partagent un certain nombre de paramètres d’entrée,
lorsque le reste des paramètres sont spécifiques au filtre de choc hybride :

– a – le paramètre qui pilote la pente de la fonction signe arctan, permettant de
gérer le fonctionnement du détecteur des contours.

– θ – l’argument complexe qui sert à calculer le paramètre complexe λ, où θ ∈
(−π/2, π/2). Quand θ → 0,

Im(I)

θ
rapproche un laplacien lissé de la fonction

image I, approximation mathématiquement démontrée en [GZS01], qui confère à
la fonction un caractère de « détecteur de contour naturellement régularisé » .

– |∇I| – la norme du gradient de la fonction I, approchée numériquement en utilisant
la fonction minmod, de la manière dont elle a été initialement définie par Osher et
Rudin dans [OR90].

– λ = r · eiθ – paramètre scalaire complexe, calculé en utilisant le paramètre θ.
– λ̃ – paramètre scalaire réel.
– f1(t) et f2(t) – les deux fonctions complémentaires de contrôle, propres au filtre

de choc hybride. Leur rôle est de contrôler le comportement du filtre de choc hy-
bride aux différents instants de son évolution temporelle. A travers ces fonctions de
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contrôle, la transition d’un comportement exclusivement complexe à un compor-
tement exclusivement réel est réalisée progressivement, les deux comportements
coexistant pendant un nombre d’itérations paramétré.

L’ensemble des fonctions de contrôle est défini de la forme :

f1(T1i, T1s) =


1, n < T1i

1− n− T1i

T1s − T1i
, T1i 6 n < T1s

0, n > T1s

f2(T2i, T2s) =


0, n < T2i

n− T2i

T2s − T2i
, T2i 6 n < T2s

1, n > T2s

(3.3)

avec n = 0 . . . Nn − 1 et T1i, T1s, T2i, T2s ∈ [0, Nn − 1], ou comme définition alternative :{
f1(ω) = cos(ω)

f2(ω) = sin(ω)
ω =

π

2
· n

Nn − 1
, n = 0 . . . Nn − 1 (3.4)

3.2.2 L’extension du modèle pour l’amélioration de cohérence

Le rajout de la caractéristique d’amélioration de cohérence au filtre de choc hybride
conduit à la combinaison de deux méthodes de traitement d’images, i.e., le filtrage du bruit
et l’élimination du flou, et par la même à la corrélation de deux domaines du traitement
d’images, plus précisément, la restauration et le rehaussement d’images. De ce fait, le
premier pas est fait vers la définition d’une méthode composée incluant la restauration et
le rehaussement d’images dans un seul processus parallèle et indépendant. Le pas final afin
d’atteindre cet objectif est représenté par la méthode de fusion d’images avec élimination
simultanée du bruit, décrite dans le Chapitre 5.

Le modèle du filtre de choc hybride est donc reformulé pour inclure une composante
d’amélioration de cohérence, de la façon dont elle est définie par Weickert [Wei03] :

Re

(
∂I

∂t

)
=− 2

π
arctan

(
a · Im(I)

θ

)
f1(t)|∇I| − sgn

(
Re(Iσww)

)
f2(t)|∇I|

+ f1(t)
(

Re(λ) Re(Iηη)− Im(λ) Im(Iηη) + λ̃Re(Iξξ)
)

Im

(
∂I

∂t

)
= Im(λ) Re(Iηη)− Re(λ) Im(Iηη) + λ̃ Im(Iξξ)

(3.5)

où Iσww = (Gσ ∗ I)ww, et w est le vecteur propre normalisé associé à la plus grande valeur
propre du tenseur Jρ, valeur propre qui décrit la direction le long de laquelle le changement
de contraste est maximum. Le tenseur Jρ représente la version lissé du tenseur de structure
calculé pout chaque pixel de l’image I :

Jρ(∇I) = Gρ ∗
(
∇I · ∇IT

)
(3.6)

3.2.3 Analyse expérimentale

Dans l’analyse expérimentale, les modèles de filtres de choc existantes, proposés dans
[OR90, AM94, KDA97, GSZ02, RC03, BCM05, BCM06], vont être utilisés comme étalon.
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Par ailleurs, une vaste gamme des métriques objectives pour l’évaluation qualitative des
résultats est employée, par exemple RMSE (Root Mean Square Error - Erreur Quadratique
Moyenne), PSNR (Peak Signal-to-Noise Ratio), SCC (Sample Correlation Coefficient), MI
(Mutual Information - Information Mutuelle), SSIM (Structural SIMilarity index) proposé
par Wang et al. dans [WBSS04], MSSIM (Multiscale Structural SIMilarity index), proposé
aussi par Wang et al. et détaillé en [WSB03] et, sans oublier, VSNR (Visual Signal-to-Noise
Ration) [CH07] et VIF (Visual Information Fidelity) [SB06].

Pour assurer l’objectivité de l’évaluation et pour éliminer toute dépendance d’implan-
tation des métriques de qualité, ces dernières ont été utilisees dans la forme incluse dans
le paquet MeTriX MuX Visual Quality Assessment Package, disponible dans [Gau11].

La partie expérimentale est brièvement décrite dans ce résumé, l’analyse complète
étant disponible dans le manuscrit de la thèse. L’image réelle Bateau de pêche, disponible
dans la base d’images [Uni11], représente une scène réelle, en format numérique de 8
bits/pixel (en niveaux de gris) de dimension 512 × 512 pixels et va être utilisée pour
illustrer les méthodes.

Le cadre expérimentale consiste à contaminer l’image de référence avec un flou gaus-
sien d’écart-type σf = 3 et ensuite avec un bruit blanc gaussien additif d’écart-type
σb = 10. L’image contaminée de cette façon va être considérée l’image I0 à l’instant t = 0
et va représenter l’image d’entrée pour les filtres de choc testés dans la suite (Fig. 3.2 et
Tableau 3.1).

L’analyse expérimentale du filtre de choc hybride est complétée par le test du modèle
étendu, décrit par (3.6). En ce sens, le traitement des empreintes digitales est un scéna-

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.2 – Filtres de choc - analyse comparative : (a) Image de référence ; (b) Image
initiale contaminée I0 - flou gaussien (σf = 3) + bruit blanc gaussien additif (σb =
10) ; (c) Résultat du filtre Osher–Rudin ; (d) Résultat du filtre Alvarez–Mazorra [AM94] ;
(e) Résultat du filtre Kornprobst et al. [KDA97] ; (f) Résultat du filtre Remaki–Cheriet
[RC03] ; (g) Résultat du filtre Gilboa et al. ; (h) Résultat du filtre de choc hybride.
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Table 3.1 – Résultats de l’analyse qualitative – cadre expérimental Fig. 3.2

Type de filtre de choc Métriques de qualité
RMSE PSNR SCC MI SSIM MSSIM VSNR VIF

Image initiale I0 16,74 23,655 0,93 1,199 0,401 0,806 13,097 0,122
Osher–Rudin 19,96 22,127 0,901 1,041 0,292 0,764 12,901 0,1
Alvarez–Mazorra 15,072 24,567 0,944 1,38 0,653 0,82 11,455 0,101
Kornprobst et al. 14.669 24.802 0.948 1.453 0.678 0.831 11.473 0.128
Remaki–Cheriet 14,326 25,007 0,952 1,507 0,666 0,848 11,943 0,136
Gilboa et al. 14,812 24,718 0,946 1,425 0,671 0,824 11,62 0,104
Filtre de choc hybride 12,668 26,076 0,961 1,6 0,727 0,879 13,082 0,183

rio adapté pour souligner la caractéristique d’amélioration de cohérence. Le test repose,
comme le précédent, sur une image de référence, soumise à une dégradation avec un flou
gaussien, suivie par une contamination avec un bruit blanc, gaussien aditif. L’image ré-
sultante va représenter l’image initiale I0. En tant que méthodes comparatives, seuls deux
filtres vont être utilisés : le filtre CESF proposé par Weickert, spécialement conçu pour ce
type d’images, et le filtre de choc complexe. Ces deux filtres sont les plus représentatifs
pour ce scénario de test, illustré à la Fig. 3.3 et qualitativement exprimé au Tableau 3.2.

(a) (b) (c)

(d) (e)

Figure 3.3 – Filtres de choc hybride avec amélioration de cohérence – analyse compara-
tive : (a) Image de référence ; (b) Image initiale contaminée I0 flou gaussien (σf = 10)
+ bruit blanc gaussien additif (σb = 25) ; (c) Résultat du filtre Gilboa et al. ; (d) Résultat
du filtre CESF de Weickert ; (e) Résultat du filtre de choc hybride avec amélioration de
cohérence + détail.
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Table 3.2 – Résultats de l’analyse qualitative – cadre expérimental Fig. 3.3

Type de filtre de choc Métriques de qualité
RMSE PSNR MI SSIM MSSIM VSNR VIF

Image initiale I0 63,217 12,114 1,032 0,372 0,572 5,014 0,08
Gilboa et al. 65,471 11,809 0,84 0,519 0,561 5,167 0,04
Weickert CESF 62,394 12,227 0,935 0,289 0,577 5,857 0,059
Hybride avec amélioration de cohérence 61,203 12,395 0,995 0,486 0,627 5,576 0,059

3.3 Conclusions

Le modèle du filtre de choc est, comme précisé dans le Chapitre 1, une étape inter-
médiaire dans la démarche conduisant à définir un modèle EDP complexe, combinant la
restauration et le rehaussement d’images. Néanmoins, il faut souligner le caractère original
de cette méthode et son potentiel pour des applications concrètes en tant que méthode de
restauration d’images. Par ailleurs, en rajoutant l’amélioration de cohérence au modèle
initial, un paradigme de restauration-rehaussement d’images est obtenu, paradigme qui
représente le pas intermédiaire dans la réalisation de l’objectif final : la définition d’un
modèle pour la restauration et le rehaussement d’images.

Les résultats expérimentaux présentés en §3.2.3 ont démontré que le modèle proposé
a atteint ses objectifs principaux : (i) gérer correctement les images bruitées et enlever
le bruit de manière satisfaisante (spécificité du filtre de choc complexe) ; (ii) gérer le flou
gaussien de façon adaptée tant du point de vue qualitatif que du point de vue de la
stabilité et de la convergence (spécificité du filtre de choc classique) ; (iii) combiner avec
succès des caractéristiques des filtres de choc classique et complexe et obtenir ainsi un
nouveau modèle dont les caractéristiques combinent les avantages des deux filtres, sans
en garder les inconvénients.

Les perspectives potentielles peuvent inclure les actions suivantes :
– définir des nouvelles fonctions de contrôle, directement dépendantes de la géométrie

de l’image, pour mieux distinguer entre les zones homogènes et non-homogènes,
– redéfinir le détecteur de contours, afin de renforcer son caractère anisotrope,
– etudier la possibilité de rajouter un indicateur d’orientation, locale ou semi-locale,

pour contrôler l’intensité du filtrage comme paramètre des fonctions de contrôle
et

– utiliser des méthodes de discrétisation plus élaborées et une approche tensorielle
afin d’augmenter la qualité du résultat filtré.



Chapitre 4

La fusion d’images comme un
processus d’amélioration d’images

4.1 Introduction

En conformité avec [Mit10], les principaux avantages de la fusion d’images sont :
(i) une confiance accrue dans le résultat final, (ii) la réduction des incertitudes,
(iii) la robustesse des performances, (iv) la représentation compacte de l’infor-
mation, (v) le domaine étendu de l’applicabilité, et (vi) la couverture spatiale
et temporelle étendue.

4.2 Définitions et classifications

La fusion peut être définie dans beaucoup de domaines comme la combinaison d’in-
formations ou de données multiples permettant d’en retirer l’essentiel en consolidant l’in-
formation utile. La fusion d’images exige une définition plus précise, adaptée aux rigueurs
et aux réalités du traitement d’images. Par conséquent, au fil du temps, la fusion d’images
a été définie dans divers contextes, comme partie de la fusion de données ou de la fusion
d’informations. Parmi les définitions les plus pertinentes, on retrouve :

Abidi et Gonzalez [AG92] – « La fusion de données concerne la combinaison synergique
de l’information mise à la disposition par diverses sources de connaissances, par
exemple les capteurs, afin de mieux comprendre une scène réelle donnée. »

Hall [Hal92] – « La fusion de données multi-sensoriale cherche à combiner l’information
issue de plusieurs capteurs pour formuler des déductions autrement impossible à
formuler en s’appuyant sur un seul capteur. »

Bloch et Mâıtre [BM08] – « La fusion d’information consiste à combiner l’information
issue de sources multiples afin d’améliorer le processus de prise de décision. »

En ce qui concerne la classification des processus de fusion, plusieurs critères peuvent
être employés. Parmi les plus utilisés, nous retrouvons celui de la nature et de la compléxité
de l’information fusionnée, plus précisément la complexité d’intégration de l’information
pendant la fusion. Ainsi, quatre niveaux de complexité peuvent être distingués :

– niveau du signal
– niveau de l’image, aussi appelé niveau de pixel
– niveau de la caractéristique ou autrement dit niveau de symbole
– niveau de décision
Une autre classification assez souvent rencontrée dans la littérature, répartit les mé-

thodes de fusion en : (a) des méthodes basées sur des décompositions multi-échelle et
(b) des méthodes basées sur des décompositions non-multi-échelle.



Chapitre 5

La fusion d’images avec élimination
du bruit

5.1 Motivation

L’idée de réunir plusieurs processus dans un seul prend sa source dans la nécessité
de réaliser le traitement d’images d’une manière réaliste, les cas réels de perturbation
d’image n’étant jamais causés par un seul facteur perturbateur. Le modèle proposé et
analysé dans ce chapitre est basé sur la remise en cause de l’a priori que les images sont
« parfaites » ; en réalité, les images sont affectées par diverses sources perturbantes, une
des plus communes étant le bruit.

Par conséquent, en considérant un scénario proche de la réalité (les images à fusionner
ne sont pas idéales), la nécessité de la formulation d’un modèle qui puisse combiner la
fusion d’images avec des éléments de restauration d’images est évidente. Etant donné que
parmi les facteurs perturbateurs les plus souvent rencontrés il y a le bruit, le modèle
proposé est représenté par un paradigme de fusion d’images avec filtrage simultané du
bruit, défini en utilisant un formalisme variationnel, exprimé théoriquement par des EDP.
La méthode s’inscrit ainsi dans la catégorie d’autres propositions, relativement récentes,
[Pha01, PLTB07, PTB+07, MS08, Pop08, WSF08], qui abordent également le processus
de fusion d’images d’une manière complexe, tenant compte de la réalité des problèmes
posés.

Une des questions posées dans le cas de ce scénario est « quels sont les avantages
d’un traitement parallèle par rapport à un traitement séquentiel ? » . La réponse est en
partie donnée par la complexité et la corrélation de l’information dans les processus de
fusion d’images. Dans le cas d’un scénario réel de fusion pour lequel les images d’entrée
sont contaminées par du bruit, le traitement séquentiel éliminerait une partie de la cor-
rélation préexistante entre les sources à travers le préfiltrage du bruit. Le filtrage réalisé
pour chaque image de manière indépendante ne permettrait pas la prise en compte des
connexions au niveau informationnel entre l’image courante et le reste des images d’entrée
(voir le chapitre 5 de la thèse pour plusieurs détails et des approches expérimentales).

En opérant simultanément les deux processus, i.e., fusion et élimination du bruit,
nous proposons une méthode qui non seulement filtre le bruit d’une manière plus efficace
(par la corrélation et le traitement simultané des images d’entrée), mais aussi conduit à
un résultat final de qualité équivalente ou supérieure aux processus séquentiels.

5.2 Formulation mathématique

Le modèle mathématique de la méthode de fusion d’images avec élimination simulta-
née du bruit a ses racines dans le modèle variationnel de fusion d’images proposé par John
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et Vorontsov dans [JV05]. Ce modèle est basé sur la théorie de l’estimation de l’erreur,
théorie qui suppose l’existence d’une image dégradée observée I : Ω→ R et de sa version
restaurée Ir(x, y), où (x, y) représente les coordonnées du pixel dans l’espace de l’image
Ω ⊂ R2.

L’image restaurée Ir(x, y) peut être estimée en utilisant la théorie de l’estimation de
l’erreur, à travers une fonctionnelle d’erreur E(Ir) cqui exprime la différence entre l’image
originale, observée, et l’image estimée, comme fonction de Ir :

E(Ir) =

∫
Ω

ρ
(
(x, y), Ir(x, y), |∇Ir(x, y)|

)
dxdy (5.1)

où Ω est le support de l’image et ∇Ir(x, y) est le vecteur gradient de l’image au pixel
(x, y).

La norme de l’erreur ρ est définie en concordance avec les exigences de l’application
mais également avec le type de contamination à filtrer. Par exemple, dans le cas de l’éli-
mination de bruit sur une image dégradée, un choix possible pour ρ est le minimum de la
norme de l’erreur quadratique moyenne, exprimé par :

ρ
(
(x, y), |∇Ir(x, y)|

)
=

1

2
|∇Ir(x, y)|2 (5.2)

Il faut préciser qu’un tel choix n’est pas adapté pour des applications pratiques, parce
que du point de vue du filtrage son comportement est isotrope ce qui conduit à des effets
indésirables dans le cas du traitement d’images (fait déjà commenté dans le Chapitre 2).
Pour les détails concernant la théorie de l’estimation de l’erreur, le lecteur est invité à
consulter le manuscrit complet de la thèse.

L’alternative utilisée dans les méthodes variationelles de fusion basées sur cette for-
malisation, e.g., [JV05, WSF08, MS08], est une norme d’erreur avec une composante de
diffusion isotrope et rehaussement des contours, définie comme suit :

ρ
(
(x, y), Ir(x, y, t), |∇Ir(x, y, t)|

)
=
α

2
|∇Ir(x, y, t)|2

+
β

2
JI(x, y)

[
Ir(x, y, t)− I(x, y)

]2 (5.3)

où α et β sont les paramètres utilisés pour le contrôle du niveau de filtrage du bruit et du
rehaussement des contours, tandis que JI est une carte de contours avec un pre-filtrage
gaussien de la forme :

JI(x, y) =

∫
|∇I(x′, y′)|2G(x− x′, y − y′, σ)dx′dy′ (5.4)

où G est une fonction gaussienne de moyenne nulle et d’écart-type σ.

L’inconvénient de (5.3) est le fait que, même s’il permet d’ajouter une composante
de rehaussement de contours contenant également un mécanisme d’attache aux données
initiales (différence entre l’image estimée et l’image dégradée), le filtrage du bruit est
toujours réalisé de manière isotrope. Ainsi définie, la méthode de fusion ne peut être ap-
pelée méthode combinée de restauration–rehaussement, étant du point de vue fonctionnel
exclusivement une méthode de fusion d’images.

En conséquence, pour définir une méthode complexe de restauration et rehaussement
d’images, plus précisément de fusion d’images avec élimination simultanée du bruit, il est
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nécessaire de définir une norme d’erreur appropriée, permettant un filtrage anisotrope
efficace du bruit, de la forme :

ρ
(
(x, y), Ir(x, y, t), |∇Ir(x, y, t)|

)
=− α

2

|∇Ir(x, y, t)|2

∇Ir(x, y, t)
∇−1

[
Da

(
Ir(x, y, t)

)]
− β

2
J(x, y, t)

[
Ir(x, y, t)− I(x, y)

]2 (5.5)

où ∇−1 est l’inverse de l’opérateur ∇ et J(x, y, t) = JI(x, y) − JIr(x, y, t) la fonction de
control du rehaussement des contours, initialement définie dans [JV05], et redéfinie pour
le modèle proposé comme suit :

J(x, y, t) =

∫
|∇̇I(x′, y′)|G(x− x′, y − y′, σem)dx′dy′

−
∫
|∇̇Ir(x′, y′, t)|G(x− x′, y − y′, σem)dx′dy′

(5.6)

avec ∇̇ représentant le vecteur gradient calculé exclusivement sur la direction η, ~η =
∇Ir/|∇Ir|.

En remplaçant la norme d’erreur proposée, i.e., (5.6), dans la solution (5.1) pour
plusieurs détails, voir la version intégrale de la thèse), l’expression suivante est obtenue
pour l’image restaurée Ir :

∂Ir(x, y, t)

∂t
= −αDa

(
Ir(x, y, t)

)
+ βΘ

(
J(x, y, t)

)
J(x, y, t)

[
Ir(x, y, t)− I(x, y)

]
(5.7)

où
Da(Ir) = cξIrξξ + cηIrηη (5.8)

représente un opérateur différentiel de diffusion anisotrope, initialement définie dans [TLBB02,
TBB+04], tandis que Θ(J) est définie de façon à permettre seulement le transfert d’infor-
mation pertinente dans Ir :

Θ(J) =

{
1, si J > 0

0, si J < 0
(5.9)

Ayant ainsi défini le cadre théorique de l’estimation de l’erreur, la transposition du
modèle mathématique en formalisme de fusion d’images avec filtrage simultané du bruit
est immédiate. En utilisant l’interprétation de [MS08], où le processus de fusion est vu
comme une combinaison pondérée linéaire de ses entrées Is, et l’évolution temporelle de ce
processus peut être translatée à l’évolution des poids de chaque entrée ws(x, y, t), l’image
fusionnée Ĩ est ainsi exprimée :

Ĩ(x, y, t) =
S∑
s=1

ws(x, y, t) · Is(x, y) (5.10)

Dans ce cas, l’image fusionnée représente l’image restaurée Ir de la théorie de l’es-
timation de l’erreur, tandis que les images d’entrée Is représentent les images dégradées,
à la base desquelles l’estimation Ir est faite. Chaque fonction de poids est itérativement
estimée d’après la règle :

ws(x, y, t+ 1)← ws(x, y, t)− τ
∂ws(x, y, t)

∂t
(5.11)
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où
∂ws(x, y, t)

∂t
=

1

Is(x, y)

{
− αDa

(
Ĩ(x, y, t)

)
+ βΘ

(
Js(x, y, t)

)
Js(x, y, t)

[
Ĩ(x, y, t)− Is(x, y)

]} (5.12)

Pour chaque itération, à la fin du processus d’estimation des poids, l’image fusionnée
Ĩ est obtenue par la réintégration des poids ws(x, y, t) en (5.10). Une composante impor-
tante de la méthode proposée est l’approximation numérique, basée sur l’estimation de
l’orientation par L’Analyse en Composantes Principales (ACP) [Don99], afin de calculer
le système relatif des coordonnées (ξ, η), nécessaire pour le schéma d’interpolation de pré-
cision sub-pixel, utilisée parmi d’autres dans le calcul de Da par Terebes [Ter04]. Tous
ces détails concernant la manière dont le modèle mathématique est transposé en pratique
sont décrits dans le manuscrit complet de la thèse.

5.3 Analyse expérimentale

Etant donné le caractère de ce document, et implicitement les limites imposées
concernant sa taille, l’analyse expérimentale va être réduite à un seul exemple de fu-
sion d’images bruitées, les méthodes comparatives étant préalablement optimisées afin de
permettre une évaluation qualitative le plus pertinente. L’optimisation du choix des pa-
ramètres a été largement traitée dans [Pop08] pour l’ensemble des images utilisées et un

(a) (b) (c)

(d) (e) (f)

Figure 5.1 – Analyse comparative – résultats sélectives : (a) Image de référence I1 ; (b)
Image de référence I2 ; (c) Résultat de la méthode MED ; (d) Résultat de la méthode
SIDWT-hard ; (e) Résultat de la méthode Pop-2 ; (f) Résultat de la méthode méthode
proposée.
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Table 5.1 – Analyse comparative – bruit blanc, gaussien additif - σb = 13

Méthode de fusion Ensemble de paramètres Métriques de qualité dédié Métriques de qualité classiques
optimaux QW rSFe QAB/F RMSE PSNR SSIM MSSIM VSNR VIF MI

MED 0,833 0,726 0,295 10,913 27,371 0,557 0,904 21,485 0,354 1,981
DWT L=7 H=max 0,79 2,103 0,257 17,427 23,305 0,358 0,823 19,276 0,336 1,502
SIDWT L=5 H=max 0,821 1,854 0,292 15,461 24,345 0,395 0,861 21,852 0,383 1,618
DWT-soft L=7 Ln=1 H=max 0,885 0,439 0,335 10,112 28,033 0,637 0,89 19,568 0,352 2,209
DWT-hard L=7 Ln=2 H=max 0,877 0,503 0,356 9,948 28,175 0,674 0,892 19,853 0,333 2,284
SIDWT-soft L=5 Ln=1 H=max 0,929 0,021 0,425 6,837 31,433 0,798 0,932 21,448 0,432 2,726
SIDWT-hard L=5 Ln=2 H=max 0,931 -0,082 0,477 5,771 32,905 0,911 0,965 23,275 0,455 3,055
JoV IT=339 dt=0,0001

σ=5 α=2500 β=0,9
0,855 1,197 0,328 11,585 26,852 0,524 0,906 24,569 0,418 1,961

Pop-1 IT=35 dt=0,1 α=0,7
β=0,3 γ=1,5 Kξ=5
Kη=2

0,864 -0,250 0,424 9,557 28,523 0,878 0,94 18,489 0,391 2,657

Pop-2 0,925 -0,161 0,485 7,904 30,173 0,902 0,959 21,517 0,436 2,976
Modèle proposé-QW IT=18 dt=0,1 α=1,6

β=0,3 WPCA=5×5
Kξ=15 Kη=1,5 σem=5

0,936 -0,046 0,524 5,162 33,874 0,879 0,965 26,029 0,482 3,027

Modèle proposé IT=16 dt=0,1 α=1,7
β=0,4 WPCA=5×5
Kξ=10 Kη=5 σem=5

0,932 -0,048 0,478 5,219 33,777 0,885 0,965 25,993 0,48 3,04

bruit blanc gaussien, additif d’écart-type σb = 13. Pour plus de détails concernant les pa-
ramètres de chaque modèle analysé et concernant l’optimisation de la méthode proposée,
voir le manuscrit complet de la thèse.

Le scénario expérimentale présenté est construit pour le set Réveils [Ima11], qui
contient deux images d’entrée (le scenario minimal de fusion) avec des focalisations dif-
férentes (Fig. 5.1a et Fig. 5.1b). Il faut aussi préciser que, même si les deux images sont
considérées comme références et, implicitement idéales du point de vue du bruit, le bruit
estimé pour les deux entrées est de σb1 = 0, 53 et σb2 = 0, 51, représentant en fait un cas
réel avec du bruit. L’analyse expérimentale comparative est construite en rajoutant du
bruit blanc, gaussien additif d’écart-type σb = 13.

Les modèles comparés dans ce cas sont les suivantes : MED représente la moyenne
arithmétique des deux entrées et, au même temps, le plus simple mécanisme de fusion ;
il est présenté dans le Tableau 5.1 avec rôle d’approche étalon ; DWT et SIDWT sont
deux modèles de fusion basés sur des ondelettes [Roc97, RF98], leurs versions hard et soft
étant adaptées au filtrage du bruit (voir la thèse) ; les méthodes JoV et Pop représentent
des modèles de fusion EDP, le premier étant le modèle proposé par John et Vorontsov
dans [JV05] et le deuxième étant un modèle de fusion d’images avec du filtrage de bruit,
amplement décrit dans [Pop08].

Dans le cadre de l’analyse comparative, l’évaluation qualitative (Tableau 5.1) a été
réalisée en utilisant à la fois des métriques de qualité dédiées à la fusion d’images, i.e.,
QAB/F [XP00, Pet01], QW [Pie04] et rSFe [ZEHH07], et les métriques classiques, mention-
nées dans le Chapitre 3. Afin de ne pas influencer l’évaluation, dans le cas des métriques
classiques avec image de référence unique, le résultat de la fusion des images de référence
sans bruit a été choisi. Ce résultat a été obtenu en utilisant la méthode de la pyramide
laplacienne, méthode non-adaptée au filtrage du bruit, et, par conséquent, non-incluse
dans le scénario illustré dans la Fig. 5.1.

Les résultats expérimentaux décrits dans le Tableau 5.1 indiquent, à travers des mé-
triques de qualité, les performances supérieures du modèle proposé. Les valeurs des mé-
triques classiques, e.g., RMSE, PSNR, VSNR, confirment la capacité de la méthode de
fusion proposée à filtrer le bruit de manière efficace simultanément avec le processus de
fusion. La qualité du processus de fusion a été de son coté confirmée à la fois par les
métriques de qualité dédiées, et par celles classiques, i.e., SSIM, MSSIM, VIF.

La méthode proposée conduit à de bonnes performances y compris dans les scénarios
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simples, de fusion, ou un filtrage explicite du bruit n’est pas nécessaire. Dans ces cas,
comme démontré par l’analyse expérimentale décrite en détail dans le chapitre 5 de la
thèse, les résultats obtenus sont comparables ou supérieurs aux meilleurs résultats des
méthodes existantes.

Pour illustrer les applications potentielles, deux scénarios réels de fusion d’images
sont décrits, plus précisément, la fusion multi-luminance et la fusion d’images médicales.
Dans les deux cas, les images d’entrée, disponibles à [ECE11], sont fusionnées en l’état,
sans altération artificielle.

(a) (b) (c)

(d) (e) (f)

Figure 5.2 – Scénario de fusion multi-luminance – modèle proposé : (a) I1 et détail (d) ;
(b) I2 et détail (e) ; (c) Ĩ résultat de la fusion et détail (f).

(a) (b) (c)

(d) (e) (f)

Figure 5.3 – Scénario de fusion d’images médicales – modèle proposé : (a) I1 image CT
et détail (d) ; (b) I2 image RMN et détail (e) ; (c) Ĩ résultat de la fusion et détail (f).



Chapitre 6

Conclusions, remarques, perspectives

La problématique traitée dans cette thèse se positionne autour de l’étude et de la
définition d’un cadre théorique permettant d’unir des concepts de restauration et rehaus-
sement d’images. Dès le début, les objectifs sont poursuivis à travers un formalisme EDP
du fait de sa flexibilité, sa polyvalence et, bien entendu, son efficacité en tant qu’outil
mathématique dans le traitement d’images.

Ce cadre théorique permet au final d’unifier de manière naturelle une série de mé-
thodes essentielles pour le traitement d’images comme le filtrage du bruit, l’élimination
du flou gaussien, le rehaussement de cohérence et de contours ou la fusion d’images. Les
aspects de restauration et de rehaussement d’images sont étudiés progressivement pour
mieux évaluer les résultats et pour analyser plus facilement la façon dont les divers pro-
cessus interagissent lorsqu’ils sont utilisés simultanément.

La première contribution de la thèse est le filtre de choc hybride, à propos duquel les
remarques suivantes peuvent être faites :

– Ce modèle est tout à la fois l’occasion de réaliser une étude de faisabilité de la com-
binaison de deux processus en restauration d’images et une approche indépendante
et finalisée ayant des applications potentiels en traitement d’images.

– A travers son extension (l’amélioration de cohérence), il représente la première liai-
son entre restauration et rehaussement d’images, à travers un mécanisme parallèle
qui unifie les deux processus.

– Même si les performances obtenues sont satisfaisantes, étant comparables ou su-
périeures aux méthodes alternatives existantes, la formulation actuelle peut être
encore améliorée.

Concernant le deuxième modèle proposé, i.e., la fusion d’images avec élimination
simultanée du bruit, il faut préciser que :

– Dans la forme courante, le modèle est limité par la manière dont est faite l’initia-
lisation de la fonction image fusionné Ĩ à l’instant t = 0, plus spécifiquement, par
un processus de fusion élémentaire (MED).

– Bien que les résultats obtenus positionnent la méthode proposée en haut du clas-
sement des procédées de fusion comparés dans Chapitre 5 la caractéristique ani-
sotrope du modèle pourrait être encore améliorée aussi bien du point de vue du
filtrage du bruit que du point de vue du rehaussement des contours.

– Sachant que la méthode dans sa forme courante peut être appliquée de manière
assez générique, une amélioration des performances est possible pour des applica-
tions spécifiques, par une adaptation préalable de la méthode aux caractéristiques
des images traitées.
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Abstract

This thesis addresses key issues of current image restoration and enhancement methodol-
ogy, and through a progressive approach introduces two new image processing paradigms,
i.e., concurrent image deblurring and denoising with coherence enhancement, and joint
image fusion and denoising, defined within a Partial Differential Equation – variational
theoretical setting.

The first image processing paradigm represents an intermediary step in validating and
testing the concept of compound image restoration and enhancement, while the second
proposition, i.e., the joint fusion-denoising model fully illustrates the advantages of using
concurrent image processing as opposed to sequential approaches.

Both propositions are theoretically formalized and experimentally analyzed and com-
pared with the similar existing methodology, proving thus their validity and emphasizing
their characteristics and advantages when considered an alternative to a sequential image
processing chain.

Résumé

Cette thèse aborde les principaux aspects applicatifs en matière de restauration et amélio-
ration d’images. A travers une approche progressive, deux nouveaux paradigmes sont
introduits : la mise en place d’une déconvolution et d’un débruitage simultanés avec une
amélioration de cohérence, et la fusion avec débruitage. Ces paradigmes sont définis dans
un cadre théorique d’approches EDP – variationnelles.

Le premier paradigme représente une étape intermédiaire dans la validation et l’analyse
du concept de restauration et d’amélioration combinées, tandis que la deuxième propo-
sition traitant du modèle conjoint fusion-débruitage illustre les avantages de l’utilisation
d’une approche parallèle en traitement d’images, par opposition aux approches séquen-
tielles.

Ces deux propositions sont théoriquement et expérimentalement formalisées, analysées
et comparées avec les approches les plus classiques, démontrant ainsi leur validité et soulig-
nant leurs caractéristiques et avantages.



Rezumat

Prezenta teză abordează aspecte cheie ale metodologiei actuale ı̂n restaurarea s, i ı̂mbunătăt, irea
de imagini, tratând aceste aspecte de o manieră progresivă prin propunerea a două noi
paradigme de procesare de imagini. Cele două modele, i.e., deconvolut,ie cu eliminare
simultană de zgomot s, i ameliorare de coerent,ă s, i fuziune de imagini cu eliminare con-
comitentă de zgomot, fiind formalizate ı̂ntr-un cadru teoretic comun, s, i anume Ecuat,ii cu
Derivate Part,iale.

Din punct de vedere funct, ional, cel dintâi model de procesare de imagini propus
reprezintă un pas intermediar ı̂n validarea s, i testarea conceptului de restaurare s, i ı̂mbunătăt,ire
simultană de imagini, ı̂n timp ce al doilea model, i.e., fuziune de imagini cu eliminare con-
comitentă de zgomot, ilustrează pe deplin avantajele unei abordări simultane (paralelizate)
ı̂n procesarea de imagini, comparativ cu abordarea oarecum clasică a procesării secvent, iale
de imagini ı̂n vederea restaurării t, i ı̂mbunătăt, irii acestora.

În ceea ce prives,te metodologia de lucru, cele două modele propuse sunt formalizate
atât din punct de vedere teoretic precum s, i experimental, fiind analizate s, i comparate
cu modelele similare existente, ı̂n conformitate cu rigorile s,tiint, ifice actuale. Analiza ex-
perimentală evident, iază caracteristicile s, i particularităt, ile celor două modele propuse, ı̂n
timp ce studiul comparativ reiterează avantajele ce derivă din paralelizarea, s, i implicit co-
masarea, celor două procese (restaurare s, i ı̂mbunătăt, ire de imagini) ı̂n raport cu abordarea
standard, secvent, ială.
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detail (d); (b) I2 and detail (e); (c) Ĩ fused result and detail (f). . . . . . . 144

5.20 Multifocus image fusion application example: Pepsi image set – (a) I1; (b)
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1.3. Contents layout 3

Fig. 1.1 – Covered research areas.

the next and final step was to define, analyze and experimentally validate the proposed
concurrent image fusion and denoising model. The proposed fusion–denoising model ful-
fills the initial desideratum of defining a PDE-based model that synergistically combines
elements from image restoration (i.e., denoising) with elements from image enhancement
(i.e., image fusion).

Since this thesis is about image processing, and consequently about images, and
since“a picture is worth a thousand words”, the previous discussion about how the general
problem statement of the thesis was progressively addressed can be eloquently synthesized
by a single “picture” (Fig. 1.1).

1.3 Contents layout

In terms of manuscript contents, it is only logical to follow the same progressive approach
in order to ensure a required descriptive consistency and also to provide the reader with
a clear picture of how the worked described within was carried out. In its general layout
the manuscript is divided into six chapters and three appendices that provide additional
information, where needed, in order to clarify, supplement or reinforce the existing notions
already addressed within a given chapter.

Each of the six chapters can be briefly described as follows:

Chapter 1 , also the current chapter, provides an overall description of the thesis from
three different perspectives: (i) general problem statement and initial desiderata,
(ii) practical approach or conceptualization, and (iii) thesis layout.

Chapter 2 establishes a preliminary foothold in the image restoration realm by providing
a comprehensive analysis of the fundamental variational and PDE-based models for
image restoration, more specifically image denoising. Moreover, the beginning of
the chapter also provides a brief incursion into image processing as a whole, in



4 Chapter 1. Introduction

generic terms, with emphasis on variational and PDE-based techniques in image
processing. As already mentioned, this manuscript follows a functional layout rather
than a traditional one, being organized so as to best describe the progressive line
of reasoning behind defining the new concurrent image processing paradigms, thus
being able to provide an intrinsic walk-through of the thesis in its entirety.

Chapter 3 addresses the other core image restoration concept, i.e., image deblurring.
Due to its importance and to the fact that the first major proposition, i.e., joint
image deblurring and denoising, is at its core a deblurring model, the issue of im-
age deblurring as an image restoration process is analyzed separately from image
denoising. The proposed joint image deblurring and denoising model is in essence
a shock filter with added denoising capabilities and, as a further additional feature,
coherence-enhancing characteristics. The proposed joint image deblurring and de-
noising model is defined using two counteracting filtering paradigms, image sharp-
ening (deblurring) and image denoising. The filtering process is divided between
the filter’s two main components, i.e., complex and real, which leads to a robust
noise filtering with edge preservation and enhancement. Thus, the proposed model
possesses increased filtering capabilities, especially in high Gaussian Blur+Additive
White Gaussian Noise scenarios, while exhibiting a stable-convergent time behavior.
The experimental results unequivocally show that the proposed model can be suc-
cessfully employed for sharpening as well as for denoising tasks, and that through its
complex framework allows tackling with high contamination values, while yielding
superior results to the existing shock filter models.

Chapter 4 provides a preliminary analytical incursion into the area of image enhance-
ment, more precisely image fusion. Since this thesis covers multiple topics, albeit
interconnected, it was necessary to provide a theoretical background for each stand-
alone concept in order to ensure a proper understanding of the area of research on
the one hand and of the proposed models on the other. Once again, this layout fol-
lows the practical progressive manner in which each part of the problem statement
has been addressed in terms of preliminary study, analysis and solution. That is
why, the first part of the chapter covers fundamental notions of data fusion in gen-
eral and image fusion in particular, from definitions to classifications and a quick
overview of existing methodology in image fusion, without loss of generality. In
order to establish a proper starting point for the joint image restoration and en-
hancement model, this chapter also analyzes the most relevant existing3 variational
and PDE-based approaches to image fusion, since these methods provide a direct
comparison reference base. The chapter concludes by addressing yet another cru-
cial issue in image fusion, especially in compound scenarios such as joint fusion and
denoising, i.e., quality assessment. The topic is subjected both to theoretical and
experimental analysis, with emphasis on the differences between using the existing
dedicated quality metrics in simple image fusion scenarios as opposed to employ-
ing the same quality metrics in compound scenarios. By providing this analysis
and underlining the inherent shortcomings of quality assessment in the special case
of joint restoration and enhancement, two important objectives are reached, i.e.,
(1) it is shown that the current methodology in image fusion quality assessment is

3to date
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incomplete and in some cases detrimental to the objective evaluation, since it under-
evaluates the quality of the output results, and (2) it establishes the initial quality
evaluation framework for the proposed joint fusion–denoising model, by showing
that the assessed results may in some cases be under-evaluated.

Chapter 5 defines, experimentally validates and compares the proposed concurrent fu-
sion and denoising model. The proposed model is methodologically established on
robust error estimation theory and expressed as a Total Variation minimization
problem, i.e., representing a variational model with PDE-expressed functional com-
ponents. The proposed joint fusion–denoising model, although based on an existing
formalism, is fundamentally different from the original formalism in the following
ways:

� it employs an “intelligent” diffusion component in the form of geometry-driven
anisotropic diffusion as opposed to a Total Variation-based isotropic diffusion
that was not explicitly designed for denoising (the original model has limited
denoising capabilities),

� its edge-enhancing component is also defined anisotropically, as opposed to the
original formalism that is based on a classic Gaussian-smoothed gradient map.

These key aspects of the proposed joint fusion-denoising model allow for a truly
anisotropic fusion with concurrent denoising, an image processing paradigm with
numerous advantages both in terms of computational effort and complexity as well
as in terms of quality of the processed result. The first part of the chapter deals
with the necessary theoretical prerequisites, from continuous domain definition to
numerical approximation and the discrete interpolation scheme for approximating
the first and second order partial derivatives with sub-pixel accuracy. The second
part of the chapter experimentally underlines the difference between a sequential
approach to the combined fusion–denoising problem and a concurrent one, and fur-
ther continues with experimentally validating the proposed model as functional and
efficient joint image restoration and enhancement processing tool. The final part of
this chapter provides a required comparative analysis using a wide range of existing
fusion models as well as an extensive set of quality metrics, in order to provide an
objective and thorough qualitative assessment, Appendix A detailing the optimiza-
tion of the proposed fusion–denoising model. After thoroughly proving the validity
and the advantages of the proposed model, in multifocus and multi-exposure fusion
scenarios, the chapter concludes by providing a short glimpse into the potential prac-
tical application areas and the immediate benefits of using a joint fusion–denoising
model instead of a standard fusion approach.

Chapter 6 closes this manuscript by providing the necessary overall conclusions con-
cerning the initial problem statement and how each point of the thesis requirements
has been addressed and solved. Furthermore, it provides a series of remarks that
point out the advantages and disadvantages, if any, of the proposed methods and
the overall approach towards the development of this thesis and implicitly towards
writing and organizing the corresponding manuscript. The concluding part of this
chapter consists of a list of perspectives, in specific terms of future work and possible
improvements of the proposed models, while in more general terms further work us-
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Fig. 1.2 – Thesis contents.

ing the variational and PDE frameworks, potential new image processing paradigms
and their advantages over the other existing methodologies.

As before, the contents layout of this manuscript can be easily and eloquently syn-
thesized by a single “picture”, as illustrated in Fig. 1.2.

Final remarks

1. Given the intricate nature of this thesis, in terms of approached topics (i.e., im-
age denoising, deblurring and fusion), a challenge in itself was also to find the best
way of writing it. Since the discussed topics range from PDE-based denoising and
deblurring to variational image fusion, it was difficult to construct the manuscript
in the classic fashion, that is, by providing a first chapter of theoretical prerequi-
sites, with all subsequent chapters describing the original contribution of the thesis.
Although, image restoration and image enhancement share a considerable common
framework they also differ in just as many ways. Therefore, accommodating the nec-
essary theoretical prerequisites for each topic was considered best handled through
a functional approach, rather than a classic one. In this way, the manuscript is
effectively organized both in terms of functionality and logic, as well as in terms of
facilitating its reading and understanding.

2. On a related note, given the functional construction of the manuscript, at the end of
each chapter a“Contents to Context” (C 2 C) section is provided in order to properly
explain the relevance of each section and of the topics within.
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2.1 Motivation

The purpose of this chapter is divided between providing a basic understanding of notions
such as image restoration, image enhancement, diffusion, denoising, etc., and establishing
the general framework not only for the theoretical concepts discussed in this chapter but
also for all the topics covered throughout this thesis.

The general layout of the chapter comprises a short introduction that deals with basic
image processing notions and definitions, followed by a brief presentation of the current
trends in image processing, methodology-wise, continues with an overview of PDE1 and
variational-based image processing techniques and their evolution since their emergence
as mathematical frameworks for image (signal) processing. The chapter concludes by an-
alyzing the proper means of approximating continuous domain models and thus adapting
them for numerical use.

From a functional point of view Chapter 2 serves both as theoretical background
and as the first building block of the image restoration–image enhancement paradigm, pro-
viding the starting point for the following chapters. The understanding of the fundamental
principles behind image restoration and its evolution from basic approaches to complex,
more sophisticated ones is of paramount importance in defining, implementing and vali-
dating new models, such as the ones described in Chapter 3 and Chapter 5. The study
and understanding of the basic principles associated with PDE- and variational-based im-
age restoration is a prerequisite in further defining new concepts both from a theoretical
standpoint as well as a practical, experimental one required for validating newly proposed
image processing paradigms.

1Partial Differential Equation
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2.2 A short introduction to image processing

Image processing transforms visual information in order to:

� improve it – e.g., restoration, enhancement;
� extract pertinent features – e.g., analysis, recognition;

or
� change its structure – e.g., composition, editing.

Although images can be processed either by optical, photographic or electronic
means, this thesis focuses on digital image processing since it is the method of choice
for visual information analysis, being fast, flexible and precise.

Visual information improvement plays a crucial role in image processing, since all
subsequent processing tasks rely on the quality of the input images. The aim of im-
age improvement is to deliver the best possible result given an initial, degraded image.
Although image restoration and image enhancement are both visual information improve-
ment tasks, their definitions are not equivalent, at most, they partially overlap. According
to the Oxford dictionary, restoration is defined as “the process of restoring a building,
work of art, etc. to its original condition”, while the Merriam-Webster dictionary de-
fines it as “something that is restored; especially: a representation or reconstruction of the
original form (as of a fossil or a building)”. Similarly, enhancement is defined by the
Oxford dictionary as “an increase or improvement in quality, value, or extent”.

In a narrower sense, the purpose of image restoration is to compensate for or undo
defects which degrade an image, e.g., motion blur, noise, camera misfocus. Image en-
hancement, on the other hand, aims to improve the interpretability or perception of
visual information in images for human viewers, or to provide “better” input for other
automated image processing techniques.

Historically, the first image processing techniques were derived from 1-D signal pro-
cessing and relied on filter theory (linear or nonlinear), spectral analysis, or on some basic
concepts of probability and statistics, as noted by Aubert and Kornprobst [AK06].

Nowadays, more sophisticated, more evolved tools have been developed to tackle
the complex task of digital image processing. The current major approaches in image
processing can be classified, according to Chan and Shen [CS05], into:

� Morphological

� Fourier and Spectral Analysis

� Wavelet and Scale-Space Analysis

� Stochastic Modeling

� Variational

� PDE-based

Since not all existing approaches directly relate to the topics addressed by this thesis,
only the relevant ones, i.e., variational methods and PDE-based techniques, are detailed
in the following.
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2.2.1 Variational methods

According to Chan and Shen [CS05], a variational approach can be viewed as the deter-
ministic reflection of the Bayesian framework in the mirror of Gibbs’ equation in statistical
mechanics [Gib02, Cha87]:

p(F ) =
1

Z
e−βE[F ]

with β = 1/(kT ) being the reciprocal of temperature T multiplied by the Boltzmann
constant k, and Z = Zβ representing the partition function for probability normalization.

Thus, p(F ) expresses the likelihood of a feature configuration F in terms of its
energy E[F ] [CS05]. For the sake of example, the following additive noise model can be
considered:

I0(x) = I(x) + n(x), x ∈ Ω

The following assumptions are made [CS05]:

� n is a homogeneous field of Gaussian white noise of zero mean, and
� ∇I is a homogeneous random field of isotropic Gaussian white vectors with zero

means.

Using a variational formulation, the estimation of F = I from I0 is achieved by:

Î = argminE[I|I0] = argmin
α

2

∫
Ω

|∇I|2dx+
λ

2

∫
Ω

(I − I0)2dx (2.1)

with the two weights being inversely proportional to the variances [CS05].

2.2.2 Partial Differential Equations

The effective use of PDEs in image processing can be credited to the following factors
[CS05]:

� first, many variational problems or their regularized approximations can be effec-
tively computed from their Euler–Lagrange equations, and

� second, PDEs belong to one of the most important parts of mathematical analysis
and are closely related to the physical world.

Moreover, PDEs are powerful tools to describe, model, and simulate many dynamic as
well as equilibrium phenomena, including diffusion, advection or transport, reaction, etc.
[CS05].

The use of PDEs in applied sciences was initially limited to physics, describing phe-
nomena like heat and sound propagation (the heat equation) or modeling physical pro-
cesses in electromagnetics or fluid dynamics (the wave equation). The most recognizable
names associated with the notion of PDEs are the ones of great mathematicians such as
Isaac Newton, Gottfried Leibniz, Leonhard Euler, Pierre-Simon Laplace or John Forbes
Nash, Jr., and although PDEs were initially used in physics and mechanics, nowadays
they can be encountered more and more in other fields such as biology, finance, artificial
intelligence, engineering and last but not least, image analysis.

The ease of use of PDEs in image analysis, since this is the field of interest in this
case, is mainly given by their well-established status in mathematical theory. Hence,
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the rigorous mathematical way do define PDEs is in a continuous setting, and once the
existence and uniqueness of the solution is proven, the functional algorithm is obtained
by means of discretization, thus arriving at a numerical solution [AK06].

Revisiting the denoising model (2.1) and using calculus of variations, this can be
alternatively described within a PDE framework, and its solution amounts to solving an
elliptic boundary value problem [CS05]:

− α∆I + λI = λI0, x ∈ Ω; ∂I/∂ν = 0 along ∂Ω (2.2)

An alternative way of solving (2.1) is dynamically, via gradient descent marching [CS05]:

It = α∆I + λ(I0 − I), x ∈ Ω; ∂I/∂ν = 0 along ∂Ω (2.3)

with a suitable initial condition I(x, t = 0).

Remark As noted by [CS05], PDE modeling in image processing is not necessarily linked
to expressing variational models, such being the case in physics, e.g., the Navier-Stokes
equations in fluid dynamics, Schrödinger equations in quantum mechanics or the Maxwell
equations in electromagnetics.

Image restoration and image enhancement form the setting and represent the main top-
ics of this thesis, while the PDE-based approach employed in accomplishing these tasks
constitutes the chosen mathematical tool.

Special emphasis will be placed throughout this thesis on PDE-based methods in
conjunction with variational approaches, since these two main image processing techniques
coexist from a mathematical point of view.

In image processing, an image is usually a digital representation of a scene, hence
its definition domain is represented by a discrete plane of points, called pixels2 in 2-D or
voxels3 in 3-D. Therefore, a gray-level digital image will be equivalent to a function of
spatial coordinates (x, y) and time t, and value the luminance in each of the points belong-
ing to the 2-D lattice Z2. Obtaining a restored or enhanced image via PDE modeling is
achieved by means of a PDE function which has as arguments the luminance function and
its partial derivatives; the solution of this PDE at any given instant of time t represents
the restored (enhanced) image.

Let I0 : R2 → R be the initial gray-level image that requires processing, with I0(x, y)
the luminance level associated to a pixel of coordinates (x, y). The general image evolution
model can be expressed as follows [CMST98]:

∂I

∂t
= F

(
I(x, y, t)

)
I(x, y, 0) = I0(x, y)

(2.4)

where F represents a given image processing algorithm, being a function of the original
image I0 and its first and second order spatial derivatives.

The solution of (2.4) at a given time t is none other than the processed image at a
scale t, that is why certain PDE techniques are used, and are consequently considered, as
multiscale analysis tools. The following section of this chapter will detail this connection.

2or pel (picture element) is a single point in a raster image, or the smallest addressable screen element
in a display device.

3volumetric pixel or, more correctly, volumetric picture element is a volume element, representing a
value on a regular grid in three dimensional space.
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2.3 Multiscale image processing and PDEs

The notion of scale, and implicitly that of multiscale, is widely employed in image process-
ing and computer vision, the scale parameter being used to express and define a wide range
of processes. The notion of scale is particularly important when talking about objects or
details that exist as significant entities only at certain observation scales. A complete
visual system should allow for the analysis, extraction and characterization of objects of
different sizes by controlling the observation scale through an independent parameter: the
scale t [Ter04].

A multiscale analysis is defined by a family of transforms (Tt)t>0, which, applied to
an initial image I0, yields a family of images dependent on the scale parameter t. The
initial image I0 corresponds to a scale t = 0, while for scales t > 0 the resulting image is
a simplified version of the initial one, where the goal is to not have any false structures
or details. Thus, the family of images obtained by varying the scale parameter t allows
having a multiscale representation of the initial image I0.

The fundamental properties that need to be satisfied by a multiscale analysis were
stipulated by Morel and Solimini in [MS95]:

1. Fidelity – Tt(I0) = I0, t→ 0;

2. Causality – Tt(I0) depends only on Tt′ with t′ < t;

3. Euclidean invariance – if A is an isometry Tt(I0 ◦ A) = Tt(I0) ◦ A;

4. Strong causality (for edge/contour detection) – let Kt be the set of contours
at scale t =⇒ Kt ⊂ Kt′ for t′ < t.

The notion of image representation as a multiscale smoothing was first formalized by
Marr and Hildreth [MH80] and further formalized by Witkin [Wit84] through a model that
allows obtaining images of increasingly coarse scale by convoluting the initial image I0

with Gaussian kernels of increasing standard deviation σ. By varying the scale parameter
σ in a continuous manner the method can be successfully employed as an edge detector
[Wit84]. The method works by using larger scale versions of the initial image to coarsely
identify structures, while the smallest scales follow the initial identification and refine the
search in order to accurately pinpoint them.

The same functionality, of an edge detector using a multiscale approach, can be
obtained with the Marr and Hildreth’s [MH80] method by considering a pixel (x, y) at
a scale t as belonging to an edge if the Laplacian ∆I(x, y, t) of the convolved image I
changes the sign, and the gradient ∇I(x, y, t) is “large enough”. This approach yields
a dendriform representation of the image, thus allowing the identification of pertinent
structures within the initial image I0.

It should be noted that Koenderink [Koe84] was the first to underline the equivalence
between the convolution with a Gaussian kernel of standard deviation

√
2t and the solution

of the PDE describing the heat diffusion, at a time t. He also formalized the principles of:

� causality – stipulates that every image detail at a coarser scale is caused by details
at a smaller scale;

� homogeneity and isotropy – are related to the presence or the absence of a spatial
invariance within a given space.
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The main limitation of Koenderink’s model consists in not complying with the princi-
ple of strong causality, in the sense that isotropic diffusion does not ensure spatial edge
preservation [Ter04].

In overcoming the limitations of the isotropic diffusion model and abiding by the
strong causality principle, Perona and Malik [PM90] proposed an adaptive smoothing
model with edge enhancement. The Perona–Malik anisotropic diffusion model can be
considered seminal to the theory of edge detection and anisotropic filtering as it repre-
sents a stepping stone in PDE-based image filtering, marking the beginning of an entire
family of PDE-based methods dedicated to image processing and analysis. By employing
a nonlinear diffusion function, the Perona–Malik model also allows the interaction be-
tween different scales of the initial image I0. The anisotropic diffusion model allows for
a stronger smoothing in regions of weak luminance variations (small gradients, indicative
of homogeneous or quasi-homogeneous surfaces) while it inhibits, partially or totally, the
smoothing process near edges or contours, i.e., regions of strong luminance variations –
large gradients. Thus, the filtered contours are stable across the different scales of repre-
sentation, meaning that this nonlinear multiscale method is in complete accordance with
the strong causality principle.

Of extreme importance to what is now called in image processing anisotropic diffusion
are also the contributions of Alvarez et al. [ALM92] and Catté et al. [CLMC92] based
on the notion of MCM4. The proposed models were defined using a family of parabolic
equations for diffusion filtering, with emphasis on selective smoothing using the orthogonal
vector to the gradient vector as the main filtering direction.

Further on, the approaches proposed in [AGLM93] and [ST94] introduced the EMSS5

and the AMSS6 nonlinear multiscale spaces, with the latter describing the affine evolution
of level curves employed in anisotropic filtering.

A different multiscale approach is that of Weickert [Wei94], employing a diffusion
PDE model for matrix-based diffusion functions.

The approaches mentioned so far represent only the cornerstone of PDE-based image
processing, their analysis, together with the analysis of more recent methods – derived or
evolved from them – will be the topics of the following sections.

2.4 Linear filtering

In image and signal processing, noise is usually considered to be a high frequency con-
tamination. A classic approach in image restoration is to employ a linear convolution
process in order to reduce the effects of this contamination. Let I0 : R2 → R be the ini-
tial contaminated luminance function defined on Ω = [0, a]× [0, b]. The restored version,
I(x, y, σ) is expressed as follows:

I(x, y, σ) = I0(x, y) ∗Gσ(x, y) =

∫
Ω

Gσ(x− u, y − v)I0(u, v)dudv (2.5)

σ is the parameter that controls the intensity of G, which is often a Gaussian-type op-
erator. The convolution product from (2.5) describes the smoothing process of I0 that

4Mean Curvature Motion
5Euclidean Morphological Scale Space
6Affine Morphological Scale Space
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suppresses spatial variations at scales inferior to σ, which acts as a scale parameter.

Remark The same convolution product (2.5) can be extended to functions defined on
Rn → R, hence a pixel becomes x = (x1, x2, . . . , xn) ∈ Rn and the Gaussian distribution
of standard deviation σ and zero mean is defined accordingly:

Gσ(x1, x2, . . . , xn) =
1(√

2πσ
)n exp

(
−x

2
1 + x2

2 + . . .+ x2
n

2σ2

)
(2.6)

As already mentioned in §2.3, Koenderink [Koe84] was the first to point out the
equivalence between the convolution product (2.5) and the evolution of the heat propa-
gation equation at a scale t = σ2/2:I(x, y, 0) = I0(x, y)

∂I

∂t
= ∆I = Ixx(x, y, t) + Iyy(x, y, t)

(2.7)

The heat equation can also be written as a divergence:I(x, y, 0) = I0(x, y)
∂I

∂t
= div [∇I(x, y, t)]

(2.8)

The well-posedness of (2.8) and the properties of its solution strongly depend on the
chosen boundary conditions – the notion of well-posedness being classically defined as:

Definition 2.4.1 [AK06]: well-posed – “When a minimization problem or a PDE ad-
mits a unique solution that depends continuously on the data, it is said that the mini-
mization problem or the PDE is well-posed in the sense of Hadamard7. Conversely, if
existence, uniqueness, or continuity fails, it is said that the minimization problem or the
PDE is ill-posed.”

In this case, the proper boundary conditions are the Neumann boundary conditions,
expressed as follows:

∇I(x, y, 0)|(x,y)∈∂Ω, t∈(0,∞) = 0 (2.9)

Given the image space boundary ∂Ω and its outward oriented normal ~n, in conjunction
with the divergence theorem, the image evolution can be expressed as:∫

Ω

∂I

∂t
dΩ =

∫
Ω

div [∇I(x, y, t)] dΩ =

∫
B=∂Ω

∇I(x, y, t) · ~ndB = 0 (2.10)

By defining the mean intensity of the image as µ(t) =
1

|Ω|

∫
Ω

I(x, y, t)dΩ and using

(2.10) it can be shown that the multiscale time evolution process is µ(t) preserving,
complying with the principle of conservation of average value:

∂

∂t
[µ(t)] =

1

|Ω|
∂

∂t

[∫
Ω

I(x, y, t)dΩ

]
=

∫
Ω

∂I

∂t
dΩ

(2.10)
= 0 (2.11)

7Jacques Salomon Hadamard
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2.1 – Isotropic diffusion results: (a) Initial noisy image I0 contaminated with an
AWGN of σn = 25; (b) Diffusion result for t = 5; (c) Diffusion result for t = 50; (d)
Diffusion result for t = 500; (e)-(h) Corresponding gradient norm maps.

The downside of the isotropic diffusion approach described by the linear parabolic
equation (2.7) is that the filtering is performed in all directions, indiscriminately, leading
to contour smoothing and edge filtering. This unwanted effect is illustrated in Fig. 2.1 for
an initial image I0 contaminated by an AWGN8 of standard deviation σn = 25.

Fig. 2.1a illustrates a synthetic image containing various geometrical objects with
an overlaid unwanted AWGN contamination. The goal is to use a filtering method so
as to filter out the noise whilst preserving salient information. In the context of image
processing and analysis, salient information is often considered to be edge and contour
information. A simple, yet efficient, tool in detecting and quantifying this information
is the gradient norm |∇I|, as illustrated in Fig. 2.1e – 2.1h. The most simple approach
– based on edge detection and noise smoothing – is the isotropic diffusion method (2.7)
expressed by means of a linear parabolic equation. Fig. 2.1b – 2.1h illustrate the isotropic
diffusion solutions at different scales, i.e., t = 5, t = 50 and t = 500. As the scale t
increases, the AWGN is filtered out and the gradient norm maps are more coherent, but
at the same time the spatial accuracy of the edges and contours diminishes. For a scale
t→∞ the solution of the diffusion equation equals the mean intensity µ(t) of the initial
noisy image (Fig. 2.1a).

Remark Isotropic diffusion or, equivalently, the convolution with a Gaussian kernel is
not directly applicable in noise filtering since it cannot properly filter edge information.
Nevertheless, when employed, it can lead to a progressively simplified version of the noisy
image, making it ideal for preprocessing tasks.

8Additive White Gaussian Noise
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2.5 Nonlinear filtering

Although, as previously discussed in §2.4, the isotropic diffusion model is not directly us-
able in noise filtering due to its nondiscriminatory filtering nature, it also possesses some
desired characteristics, such as efficient noise filtering and image simplification. Adding
to these characteristics one of the main objectives in image restoration, i.e., edge en-
hancement, a viable image filtering method can be envisaged. Such seminal methods,
that combine these three characteristics, were proposed by Perona and Malik [PM90] for
anisotropic noise filtering or by Osher and Rudin [Rud87, OR90] for edge enhancement
of blurry images, also known as shock filters.

Remark Since shock filters represent a special case of image restoration coupled with
edge enhancement (partly an image enhancement paradigm), their overall characteristics,
theoretical definition and practical use are to be analyzed in detail in Chapter 3, a chap-
ter intended to bridge the two fundamental notions of image processing, i.e., restoration
and enhancement, in the context of PDE-based image processing.

2.5.1 The Perona–Malik model

Any comprehensive discussion about PDEs in image processing should cover the Perona–
Malik anisotropic diffusion model since this approach represents the first attempt to over-
come the isotropic diffusion’s drawbacks. Due to the fact that the linear multiscale analysis
(i.e., isotropic diffusion) has its inherent problem of edge delocalization, the Perona–Malik
approach employs a nonlinear multiscale analysis that ensures proper noise filtering with
edge preservation. It represents, at the same time, the first directly applicable PDE-based
filtering method, fulfilling the following principles [PM90]:

� causality,
� immediate localization – at any scale the edges should be sharp and preserve their

spatial position,
� the intra-region smoothing is preferred to the inter-region smoothing.

The selective smoothing with edge enhancement translates into performing a condi-
tional diffusion: a strong smoothing within the homogeneous regions of the image and a
weak, selective smoothing across non-homogeneous ones.

2.5.1.1 The anisotropic diffusion equation

The method for selective smoothing with edge enhancement proposed by Perona and
Malik in [PM90] is described by the following PDE:

∂I

∂t
= div [c(x, y, t)∇I(x, y, t)] (2.12)

with initial conditions I(x, y, 0) = I0(x, y). In order to simplify the notations, from now
on for a given scale parameter t, I(x, y, t) = I and ∇I(x, y, t) = ∇I.

Remark As likewise noted by [Ter04], the Perona–Malik model, often referred to as
anisotropic diffusion is a name also used by Weickert et al. in [Wei94, WtHRV96, Wei97a,
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WtHRV98] to describe a series of tensor-based diffusion approaches. For the sake of clarity,
only the Perona–Malik method will be further referred to as the anisotropic diffusion
model, since it has chronological precedence.

By rewriting (2.12) as:
∂I

∂t
= c∆I +∇c · ∇I (2.13)

and considering the particular case c(x, y, t) = const. the equivalence with (2.7) is imme-
diate.

The function c is called the conductivity and it is defined so as to favor intra-region
smoothing while diminishing the inter-region one by means of a gradient norm-dependent
function of generic form:

c(x, y, t) = g(|∇I|)

If c(s) is a decreasing function satisfying c(0) = 1 and lim
s→+∞

c(s) = 0 the following

behaviors can be distinguished:

� Within the regions where |∇I| is small, (2.12) has a heat equation-like behavior,
resulting in isotropic smoothing.

� Near edges, where |∇I| is large, the regularization process is attenuated, thus the
salient information (edges) is preserved.

In [PM90] the authors propose two alternatives for g(s):

g(|∇I|) = exp

[
−
(
|∇I|
K

)2
]

(2.14)

and

g(|∇I|) =
1

1 +

(
|∇I|
K

)2 (2.15)

where K is a threshold parameter, while φ(s) = s · g(s) is called the flux function and
controls the diffusion process along the gradient direction.

The anisotropic diffusion equation (2.12) can also be expressed in terms of second
order directional derivatives, in order to facilitate its understanding and to help differen-
tiate it from the isotropic formulation. The directional derivatives are computed along

the gradient direction ~η =
(

Ix
|∇I| ,

Iy
|∇I|

)
T

and its orthogonal ~ξ =
(
− Iy
|∇I| ,

Ix
|∇I|

)
T

(Fig. 2.2).

Many PDE-based approaches employ the same frame of reference, making it an almost
standardized approach in PDE image analysis paradigms.

Before further discussing about the notion of edge enhancement, in the context of
the Perona–Malik model as well as in any future reference to this concept, the generic
term edge should receive a proper definition, from a mathematical point of view, in the
context of the anisotropic diffusion model:
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Fig. 2.2 – The (~ξ, ~η) frame of reference.

Definition 2.5.1 [AK06]: edge – “For a fixed time t, (x̂, y) is called an edge of a function
I(x, y, t) if I ′(x̂, y, t) = max(x,y) I

′(x, y, t). If I is smooth enough, at (x̂, y), I ′′(x̂, y, t) is
necessarily equal to 0 and I ′′′(x̂, y, t) 6 0. An edge (x̂, y) is said to be blurred by a PDE
if in a neighborhood of (x̂, y), I ′(x̂, y, t) decreases as t increases, or in other words, if
∂
∂t

(I ′(x̂, y, t)) 6 0.”

“It is said that an edge (x̂, y) is enhanced by a PDE if in a neighborhood of (x̂, y),
I ′(x̂, y, t) increases as t increases, i.e., ∂

∂t
(I ′(x̂, y, t)) > 0.”

The intrinsic edge-enhancing characteristic of the anisotropic diffusion model that
allows for the diffusion filter to simultaneously behave as a low-pass and a high-pass filter,
was also underlined by Perona and Malik for the 1-D case, by rewriting the diffusion
equation:

∂I

∂t
= φ′(Ix)Ixx (2.16)

and the slope’s variation with respect to time is expressed as [PM90]:

∂Ix
∂t

= φ′′(Ix)I
2
xx + φ′(Ix)Ixxx (2.17)

Although this intrinsic edge-enhancing characteristic of the Perona–Malik model is
a desired filtering component, the presence of the same characteristic impedes simulta-
neously proving the existence and uniqueness of solution. Without claiming that such
a solution exists, Perona and Malik introduce a maximum principle for their numerical
model in order to guarantee the causality principle and avoid unbounded oscillations. For
twice differentiable functions I(x, , y, t) defined on Ω× (0, T ) that respect the conditions
imposed in [PM90]:

∂I

∂t
− c∆I −∇c∇I = 0 (2.18)

with Neumann boundary conditions, the maxima and minima belong to the initial image
I0:

inf
Ω
I0 6 I 6 sup

Ω
I0 (2.19)

In the discrete setting, this principle extends to:

I tmin |(i,j) = min
(k,l)∈N(i,j)

Ik,l(x, y, t) then I tmax |(i,j) = max
(k,l)∈N(i,j)

Ik,l(x, y, t)
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(a) (b) (c)

Fig. 2.3 – Isotropic diffusion (b) and anisotropic diffusion (c) filtering of the Paolina
image (a); t = 4, K = 7.

where N(i, j) represents the (i, j) pixel’s 49 or 8-neighborhood10 and if the numerical
scheme is stable:

I tmin |(i,j) 6 I t+1
(i,j) 6 I tmax |(i,j) (2.20)

The two important principles of multiscale analysis, i.e., causality and strong causal-
ity, are only experimentally validated, despite the maximum principle introduced for the
numerical model by Perona and Malik. The edge-enhancing characteristic may also create
new maxima and minima [PM90].

The difference between isotropic and anisotropic diffusion filtering is illustrated in
Fig. 2.3. As compared to the isotropic diffusion model (Fig. 2.3b), the anisotropic diffusion
approach (Fig. 2.3c) successfully restores the original image Paolina [Com11] (Fig. 2.3a)
by filtering out the unwanted noise and preserving the salient information (edges) from
the original image.

2.5.1.2 Model limitations

A first drawback of the Perona–Malik model is tied to the inherent edge-enhancing char-
acteristic of the model: for high and very high noise levels within the initial image, the
anisotropic diffusion will enhance edges and noise alike, indiscriminately. A simple solu-
tion to overcome this effect was proposed with the initial model, by Perona and Malik:
nowadays a common practice in image restoration as well as in other image processing-
related tasks, the input image of the diffusion process will be a slightly smoothed version
of the initial image I0 and not the initial image itself.

Despite the impressive11 anisotropic filtering capabilities of the Perona–Malik model,
as illustrated in Fig. 2.3 the model also exhibits a series of shortcomings, namely the
pinhole effect, latter corrected by the approach of Monteil and Beghdadi [MB98, MB99],
and the staircase effect, highlighted and overcome by the Whitaker–Pizer [WP93] model.

94-neighborhood = (N, E, S, W)
108-neighborhood = 4-neighborhood + (NE, SE, SW, NW)
11n.b. Then, i.e., 1990, more than now, but still a generally valid statement by today’s standards.
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2.5.2 The Catté et al. model

As already discussed, the anisotropic diffusion equation (2.12) with its diffusion func-
tions (2.14) and (2.15), where the flux functions are non-monotone, lacks the mathemat-
ical rationale that simultaneously guarantees the existence and uniqueness of its solution
[CLMC92]. Catté et al. [CLMC92] have highlighted this problem, showing that for gra-
dient values greater than the threshold parameter K, the anisotropic diffusion equation
behaves locally like an inverse diffusion equation, susceptible to developing singularities
at any given time t. Finding a unique solution which respects the regularity theorem and
ensures the stability of (2.12) can prove difficult, if not impossible.

Catté et al. argue that for the Perona–Malik maximum principle, at scale t, the con-
tinuity hypothesis of the solution I and of its derivatives does not hold since the model’s
stability cannot be theoretically justified, being strongly dependent of its numerical dis-
cretization. To this end, the authors propose the following diffusion equation:

∂I

∂t
= div [g(|∇(Gσ ∗ I)|)∇I] = 0, defined on Ω× (0, T )

I(x, y, 0) = I0(x, y)
(2.21)

with:

Gσ(x, y) =
1

4πσ2
exp

[
−(x2 + y2)

4σ2

]
(2.22)

Using a smoothed version Iσ = Gσ ∗ I of the image I together with Neumann bound-
ary conditions, (2.21) yields a unique solution. In terms of model parametrization, the
threshold parameter K is selected similarly to the original Perona–Malik model, while
the inferior limit for the scale parameter t is of order σ. Properly choosing an “optimal”
stopping criterion is linked to σ since the convolution product Gσ ∗ I yields a smoothed
version of the image for estimating the diffusion coefficients, which in the Fourier domain
can be interpreted as a selective smoothing according to different spatial frequencies. This
translates to a selective smoothing that favors large homogeneous regions to small nonho-
mogeneous ones, i.e., details like edges and structures. Hence, in order to use this selective
smoothing to an advantage and thus preserve small details within the initial image I0, the

(a) (b) (c)

Fig. 2.4 – The Catté et al. anisotropic diffusion: (a) Synthetic starting image 128× 128
pixels; (b) Blurred initial image I0; (c) Edge-enhanced result.
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PDE evolution time will be chosen as short as possible, while fulfilling at the same time
the inferior limit condition for the scale parameter.

Remark For Gaussian kernels of relatively small standard deviation, the Catté et al. fil-
ter can lead to edge enhancement, making the model’s PDE an inverse diffusion equation,
where the solution’s stability and uniqueness cannot be theoretically guaranteed.

The edge-enhancing characteristic of the Catté et al. model is illustrated in Fig. 2.4
where the original synthetic image (Fig. 2.4a) has been blurred using a Gaussian kernel
of standard deviation σb = 5 (Fig. 2.4b). The parameters for the Catté et al. anisotropic
diffusion filter are as follows: σ = 0.5, K = 3 and t = 200 (Fig. 2.4c).

2.5.3 The Forward-and-Backward diffusion model

Another approach emanating from the classic Perona–Malik model, is the FAB12 diffusion
model, proposed by Gilboa et al. in [GZS00, GSZ02a]. The model behaves in a selective
manner: the forward diffusion is the equivalent of the anisotropic diffusion, for gradient
norms less than K while the backward diffusion is a diffusion process with a negative
diffusion coefficient.

∂I

∂t
= div [−c∇I] , c > 0 (2.23)

The FAB mechanism is controlled using the following diffusion functions:

g1(|∇I|) =



1−
(
|∇I|
Kf

)n
if 0 6 |∇I| 6 Kf

α

[(
|∇I| −Kb

w

)2m

− 1

]
if Kb − w 6 |∇I| 6 Kb + w

0 otherwise

(2.24)

or

g2(|∇I|) =
1

1 +
(
|∇I|
Kf

)n − α

1 +
(
|∇I|−Kb

w

)2m (2.25)

The diffusion functions (2.24) and (2.25) depend on several parameters that control
their behavior: Kf is the equivalent of the classic threshold parameter K, Kb is the
backward threshold parameter, w represents the width of the inverse diffusion domain and
α denotes the ration between forward and backward diffusion. In conclusion, Kf represents
the upper limit of the gradients that will be smoothed, while Kb and w determine the
gradients that will be enhanced. The pair (n,m) controls the variation speed of the
diffusion functions g1 or g2. The two diffusion functions are very similar, with the remark
that g2 produces better results since it is less sensitive to noise and has a more natural
description. The two diffusion functions used by the FAB model are illustrated in Fig. 2.5.

By introducing a negative diffusion behavior for gradients ∈ [Kb − w,Kb + w] the
FAB model does not respect the Perona–Malik maximum principle (2.19), therefore, for
gradients belonging to this interval, maxima and minima may occur during the PDE time
evolution. Furthermore, this provides a more effective contrast enhancement than the one
obtained using the classic Perona–Malik model.

12Forward-and-Backward
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Fig. 2.5 – FAB diffusion functions: Kf = 8, Kb = 25, w = 5 • g1: n = 4, m = 1, α = 0.15
• g2: n = 4, m = 2, α = 0.2.

In order to avoid uncontrolled oscillations caused by the backward diffusion, the
forward flux needs to be greater than the backward flux according to the inequality:
α 6 Kf/2Kb for (2.24) and α 6 Kf/2(Kb + w) with 0 < w < Kb − Kf for (2.25)
[GZS00, GSZ02a]. These conditions were stated for the 1-D case in order to limit the
formation of extrema, for the 2-D case no such conditions were given by Gilboa et al..

2.6 The variational approach

PDEs, as discussed in §2.5, can be successfully employed as stand-alone image processing
tools, or in conjunction with other methods. Variational methods in themselves repre-
sent an alternative approach to image processing, providing the necessary framework for
various image processing tasks. What makes the synergy between PDEs and variational
methods so appealing is the way in which variational methods are naturally expressed
using PDEs. In the simplest sense, a given PDE describing the evolution of an image can
be regarded as the solution of a variational problem. Among all interconnected methods
(Fig. ??), PDEs and variational methods share the most extensive theoretical common
ground.

This common ground was explored by Morel and Solimini [MS95], underlining the
link between PDEs and the general segmentation model of Mumford and Shah [MS89].
The same synergy between the two approaches was highlighted by Deriche and Faugeras
[DF95] with the introduction of a variational method that unifies the most important
classic diffusion paradigms.

2.6.1 Total variation minimization

The TV13 denoising model was first introduced in 1992 by Rudin et al. [ROF92] and
further developed in [RO94]. Since its first appearance as an image processing tool, there
have been numerous contributions based on the original TV denoising and restoration
model, e.g., [AV97, CL97, CM99, CS00, CKS01, TD01, Ves01, CS02, TD02, VO02, CS03,
BCRS03].

13Total Variation
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The original TV denoising model is expressed as follows:

E(I) =

∫∫
Ω

|∇I|dxdy (2.26)

with the following constraints:∫∫
Ω

Idxdy =

∫∫
Ω

I0dxdy – mean value preservation (2.27a)∫∫
Ω

1

2
(I − I0)dxdy = σ2 – noise distribution knowledge (2.27b)

The noise of standard deviation σ is also assumed white of zero mean.

If I is a differentiable function, (2.26) represents the TV of I:

TV (I) =

∫∫
Ω

|∇I|dxdy (2.28)

Remark As noted in [ROF92], the use of the L1 norm in the minimization process,
instead of the L2 norm, provides an essential advantage: the minimum of the energy
function in the BV14 space can be a monotone function, not necessarily continuous, thus
allowing for an efficient noise removal with edge preservation.

Using Lagrange multipliers, E(I) can be expressed as a minimization problem with-
out constraints since (2.27a) is implicitly fulfilled [ROF92]:

E ′(I) = E(I) + λ

[∫∫
Ω

1

2
(I − I0)2dxdy − σ2

]
(2.29)

Imposing Neumann boundary conditions, the minimum of (2.26) is the result of the fol-
lowing parabolic equation: 

∂I

∂t
= div

(
∇I
|∇I|

)
− λ(I − I0)

∂I

∂n
= 0, on ∂Ω

(2.30)

Since (2.29) is not a diffusion equation, (2.10) does not hold, hence (2.27a) is implic-
itly fulfilled only for an initial condition of the type:

I(x, y, 0) = I0(x, y) + σ
I0(x, y)− I0

σ(I0)
(2.31)

and a time-dependent Lagrange multiplier:

λ = λ(t) = − 1

2σ

∫∫
Ω

(
|∇I| − ∇I · ∇I0

|∇I|

)
dxdy (2.32)

The removal of all constraints of (2.30) leads to a diffusion equation through TV
minimization, also called the weighted mean curvature motion defined as:

∂I

∂t
= div

(
∇I
|∇I|

)
(2.33)

14Bounded Variation
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The parallel between the Perona–Malik model and (2.33) is straightforward, the latter
being a particular case of the former, employing a diffusion function of the form:

g(|∇I|) =
1

|∇I|
(2.34)

directionally expressed as: 
∂I

∂t
= cξIξξ

cξ =
1

|∇I|

(2.35)

From a theoretical point of view, (2.33) is a parabolic equation, with provable ex-
istence and uniqueness of solution [ALM92]. The anisotropic diffusion through TV min-
imization acts along edges, while canceling out along the gradients direction, acting in
every point of the image.

The TV minimization problem can also be expressed in a strictly numerical manner,
without a prior definition on a continuous domain, such a proposition being made by Chan
et al. in [COS01]. The digital TV filter thus obtained, can be regarded as a simplified
version of the continuous model, using finite differences computed on a 4-neighborhood.
Denoting the current pixel with α and its four neighboring pixels with β, thus the 4-
neighborhood being defined as Nα, the local TV is expressed as

|∇αI| =
√∑

β∈Nα

(Iβ − Iα)2

and its regularized version as:

|∇αI|a =
√
|∇αI|2 + a2

By introducing the following weights:

ωα,β(I) =
1

|∇αI|a
+

1

|∇βI|a

Chan et al. show that (2.30) can be replaced by:∑
β∈Nα

ωα,β(Iβ − Iα) + λ(I − I0) = 0

The digital TV filter F : I → J is an iteratively low-pass filter of the form:
Jα,t−1 = Fα(It−1) =

∑
β∈Nα

ωα,β

λ+
∑
γ∈Nα

ωα,γ
Iβ,t−1 +

∑
β∈Nα

λ

λ+
∑
γ∈Nα

ωα,γ
Iβ,0

It = F (Jt−1)

(2.36)

with the following parameters:

� the small positive parameter a called the regularization parameter – avoids division
by zero for regions containing null gradients;
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� the positive parameter λ called the fitting parameter – plays the role of the Lagrange
multiplier from (2.30).

For illustrative purposes, the two major TV-based denoising methods, i.e., TV dif-
fusion (2.33) and the digital TV filter (2.36), are compared (Fig. 2.6) using a standard
AWGN test scenario. An initial, noise free image (Fig. 2.6a), available at [Ima11b] and
also found in [GW06], is contaminated with an AWGN of σ = 20 (Fig. 2.6b). The TV
diffusion result (Fig. 2.6c) is obtained for t = 15, while the two extra parameters of the
digital TV filter (Fig. 2.6d) are λ = 10 and α = 0.0001, respectively.

Due to the existence of an attachment to the initial data I0, the digital TV filter
(Fig. 2.6d) is less sensitive to the stopping time, conversely, since the filtered result is
tightly linked to I0, the noise filtering is weaker. On the other hand, the TV diffusion
result (Fig. 2.6c) shows that the TV diffusion method is more efficient at filtering out the
noise, sometimes at the expense of small details, erased because of gradient estimation
errors – directly proportional to noise.

(a) (b)

(c) (d)

Fig. 2.6 – TV-based denoising methods: (a) Initial image; (b) Noisy image – AWGN of
σn = 20; (c) TV Diffusion result; (d) Digital TV filter result.
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2.6.2 A unifying PDE–variational approach

Since the two distinct image processing methods, i.e., PDEs and variational approaches,
share a common ground, Deriche and Faugeras [DF95] have shown that classic PDE mod-
els can be expressed using a unifying variational approach, thus bridging the two image
processing frameworks. The classically expressed PDE methods can be reinterpreted as
standard TV minimization problems, as the ones discussed in §2.6.1.

The unifying approach of Deriche and Faugeras is based on the initial assumption of
a linear noisy model of the form:

I0 = P · I +N (2.37)

where P is a linear operator – e.g., the identity operator (when working only with noisy
images) or the convolution operator (when working in a more generalized scenario of blur
+ additive noise) – and N is considered to be additive Gaussian in nature, of standard
deviation σ and zero mean.

Obtaining the solution I from I0 under a unifying framework, amounts to solving
(2.37) using a TV minimization approach:

E(I) =
1

2
‖I0 − P · I‖2︸ ︷︷ ︸

E1(I)

+

∫∫
Ω

ϕ(|∇I|)dxdy︸ ︷︷ ︸
E2(I)

(2.38)

The TV minimization energy E(I) comprises two energy terms: an energy term E1(I)
linking the solution I to the initial data I0 and a regularization term E2(I). Properly
solving (2.38), and thus finding the solution I, revolves around the set of requirements
that need to be fulfilled by the regularization function ϕ, with the following associated
Euler–Lagrange equation:

P ∗ · (I0 − P · I) + λ div

[
ϕ′(|∇I|) ∇I

|∇I|

]
= 0, (x, y) ∈ Ω

ϕ′(|∇I|)
|∇I|

∇I · ~n = 0, (x, y) ∈ ∂Ω

(2.39)

where P ∗ is the adjoint of P , ~n is the unit vector normal to the image boundary and λ is
the regularization term.

The steady-state solution of (2.39) is expressed using the following PDE:

∂I

∂t
= ϕ′′(|∇I|)Iηη +

ϕ′(|∇I|)
|∇I|

Iξξ (2.40)

The regularization function ϕ(s) should fulfill the following conditions [DF95]:

� ϕ′′(|∇I|) > 0 and ϕ′(|∇I|) > 0 – ensures the convexity of the energy function E2(I)
and implicitly the stability of the minimization process.

� lim
|∇I|→0

ϕ′(|∇I)

|∇I|
= lim
∇I→0

ϕ′′(|∇I|) = ϕ′′(0) > 0 – ensures an isotropic smoothing for

small gradient norms.
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Table 2.1 – Regularization functions studied by Deriche and Faugeras [DF95]

Model/author ϕ(s) ϕ′(s)/s ϕ′′(s)

Perona–Malik −K2

2

[
e−( s

K )
2

− 1
]

e−( s
K )

2

e−( s
K )

2 [
1− 2

(
s
K

)2
]

K2

2
log
[
1 +

(
s
K

)2
]

1

1+( s
K )

2
K2(K2−s2)
(K2+s2)2

Rudin s
1

s
0

Charbonnier et al.
√

1 +
(
s
K

)2 − 1 K−2√
K2+s2

K2

|K|√
(K2+s2)3

Green log cosh( s
K

) tanh( s
K

) K2
[
cosh( s

K
)
]−2

� lim
|∇I|→∞

ϕ′(|∇I)

|∇I|
= const. > 0, lim

∇I→∞
ϕ′′(|∇I|) = 0 – ensures a unidirectional smooth-

ing, orthogonally to the gradient direction, for large gradient norms.

Table 2.1 synthesizes the more notable functions studied by Deriche and Faugeras
[DF95], i.e., the classic Perona–Malik diffusion functions, Rudin’s diffusion function and
two nondecreasing flux functions: proposed by Charbonnier et al. [CBFAB94] and by
Green [Gre90], respectively. The equivalence between the diffusion functions g – flux
functions φ of the Perona–Malik model and the regularization functions ϕ is readily ob-
tainable by defining:

g(s) =
ϕ′(s)

s
and

φ′(s) = ϕ′′(s).

Thus the precondition φ′′(|∇I|) > 0 meant to ensure the minimization process’ stability,
is reduced to imposing that the flux function be monotonous. Within this framework, the
Perona–Malik functions exhibit an unstable behavior when applied over edge (nonhomo-
geneous) regions, while the Rudin function is not isotropic across homogeneous regions
(where the gradient norms are small).

On the other hand, the functions proposed by Charbonnier et al. and by Green do
not bestow a physical meaning to the diffusion threshold parameter K, while it remains a
weighting coefficient, it no longer determines which gradients will be preserved and which
will be smoothed out.

The initial unifying approach of Deriche and Faugeras was revisited by Kornprobst
et al. in [KDA96, KDA97b, KDA99] with the initial assumption that P from (2.37) is the
identity operator, resulting the following energy minimization functional:

E(I) =

∫∫
Ω

[
(I − I0)2 + λϕ(|∇I|)

]
dxdy (2.41)

with its respective associated Euler–Lagrange equation:

2(I − I0)− λ div

[
ϕ′(|∇I|) ∇I

|∇I|

]
= 0 (2.42)
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The minimization problem (2.41) with its necessary condition (2.42) can be solved
implicitly or explicitly, as indicated by Kornprobst et al. [KDA96, KDA97b, KDA99], the
best results being obtained using a half quadratic minimization approach.

Remark The authors indicate that the best results are obtained when using Perona–
Malik-type diffusion and flux functions.

2.7 Tensor-based filtering

The use of diffusion functions in defining PDE-based filtering models can sometimes prove
restrictive and show its implicit limitations when trying to define complex 2-D or 3-D
structures. Tackling junctions or complex edges simply using a 1-D control function
approach, can prove inefficient if the desired results need to fulfill a high fidelity standard.
1-D diffusion functions of gradient norm arguments do not always suffice for properly
describing the image geometry, thus the diffusion process is inherently limited by its
control functions.

An alternative way of describing image structures and overall image geometry, rather
than using scalar diffusion functions, is through diffusion matrices, yielding a PDE-based
model of the form:

∂I

∂t
= div(D∇I) (2.43)

with initial conditions: I(x, y, 0) = I0(x, y) ∈ Ω and I(x, y) = 0 or D∇I · ~n = 0 on the
boundary of ∂Ω where ~n is the outward normal to the boundary.

The diffusion matrices, hereinafter called diffusion tensors, are symmetric matrices
with the corresponding set of eigenvalues (λ1, λ2) that allow a decomposition within the
orthonormal vectors (~v1, ~v2) basis [Str05]:

D = (~v1|~v2)

(
λ1 0
0 λ2

)(
~v T

1

~v T
2

)
(2.44)

Properly choosing D strongly influences the filtered result, since the diffusion process
is steered along the diffusion matrix eigenvectors’ directions. Furthermore, D describes the
local variations of the gradient orientation, thus, a smoothed gradient map or orientation
coherence-dependent functions are used in constructing the diffusion matrix.

2.7.1 The Weickert tensor-based diffusion models

The Weickert tensor-based diffusion model family, initially proposed in [Wei94], relies on
a steered diffusion mechanism that uses directional information computed either based on
the gradient vector’s norm or based on a notion of spatial coherence. The two main types
of filters derived from these principles are:

� Edge Enhancing Diffusion (EED) – performs an image smoothing with selective
edge enhancement [Wei94, WtHRV96];

� Coherence Enhancing Diffusion (CED) – specifically designed for edge reconstruc-
tion – e.g., fingerprint ridges, in fingerprint images – or fault detection [Wei95,
Wei97b, Wei99].
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2.7.1.1 The Weickert CED model

The CED model was initially introduced by Weickert in [Wei95] for enhancing the co-
herence of 1-D textures and further developed in [Wei97b, Wei99], being centered on the
notion of structure tensor. The structure tensor had been previously used in [KW87,
Rao90, RS91] for orientation estimation purposes. The CED tensor-based diffusion model
shares a common framework with the previously discussed models, being described by
the same diffusion equation (2.43). What fundamentally differs is the way in which the
diffusion matrix D is constructed: starting from the symmetric matrix J0(∇Iσ) that cor-
responds to the smoothed gradient vectors tensor product, at a scale σ (∇Iσ = Gσ ∗∇I):

J0(∇Iσ) = ∇Iσ · ∇I
T

σ =


∂2Iσ
∂x2

∂Iσ
∂x

∂Iσ
∂y

∂Iσ
∂x

∂Iσ
∂y

∂2Iσ
∂y2

 (2.45)

The structure tensor is defined by performing a convolution product on each of the
components of (2.45) using a Gaussian kernel Gρ of standard deviation ρ:

Jρ(∇Iσ) = Gρ ∗ J0(∇Iσ) =

 Gρ ∗
∂2Iσ
∂x2

Gρ ∗
∂Iσ
∂x

∂Iσ
∂y

Gρ ∗
∂Iσ
∂x

∂Iσ
∂y

Gρ ∗
∂2Iσ
∂y2

 (2.46)

Hence, the eigenvectors of the symmetric matrix Jρ(∇Iσ) yield the gradient vectors’
mean orientation (~w1) and the structures’ mean orientation (~w2), corresponding to a
scale ρ, while the associated eigenvalues represent the mean contrast value along the
~w1 direction. The scale parameter σ, also called by Weickert the local scale parameter,
establishes the minimum size of the structures that will be preserved during the smoothing
process, its interpretation being similar in nature to the one of the anisotropic diffusion
model. Finally, the second scale parameter, ρ, also called the integration scale parameter,
indicates the size of structures of interest, within the processed image.

By using the simplified notation:

J =

(
j11 j12

j12 j22

)
the eigenvalues are expressed as [Ter04]:

µ1 =
1

2

(
j11 + j22 +

√
(j11 − j22)2 + 4j2

12

)
µ2 =

1

2

(
j11 + j22 −

√
(j11 − j22)2 + 4j2

12

) (2.47)

The CED model uses the difference between the two eigenvalues:

µ1 − µ2 =
√

(j11 − j22)2 + 4j2
12 (2.48)

as a coherence indicator, i.e., the homogeneous regions are characterized by µ1 = µ2 = 0,
the linear structures by µ1 � µ2 = 0 and the junctions by µ1 > µ2 � 0.
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In order to ensure a directional diffusion process along ~w2, the eigenvalues are chosen
as follows [Wei95]:

λ1 = α

λ2 =


α if j11 = j22 and j12 = 0

α + (1− α) exp

[
− 1

(j11 − j22)2 + 4j2
12

]
otherwise

(2.49)

Parameter-wise, α controls the diffusion along the smoothed gradients’ direction: for
small values it induces an anisotropic behavior, while for values close to 1 the behavior is
almost isotropic in nature.

The resulting diffusion matrix having the following form:

D = (~w1 | ~w2)

(
λ1 0
0 λ2

)(
~w
T

1

~w
T

2

)
(2.50)

Deducing the behavior of the CED model, based on (2.49) is straightforward: for
homogeneous regions, the diffusion process is isotropic with a diffusion speed indicated
by α; for elongated structures, like edges or textures, the diffusion is strongly anisotropic,
characterized by the ratio λ1/λ2.

The importance of tensor fields and tensor-based image processing is further under-
lined by dedicated books, e.g., [WH06, LW09]15, showing the existing interest in these
methods even after more than a decade and a half since their first use in PDE-based
image processing and analysis.

2.8 Level-set and curvature-based filtering

This class of filters was motivated by the need of defining a nonlinear diffusion operator
that exhibits a strong anisotropic behavior, acting along edges and contours. Thus the
resulting diffusion operator is curvature-dependent, driving the diffusion process along
isolines, luminance-wise.

By revisiting the isotropic diffusion equation (2.8) and rewriting it using its second
order directional derivatives, the following expression is obtained:

∂I

∂t
= div(∇I) = ∆I = Iξξ + Iηη (2.51)

The proposition of Alvarez et al. [ALM92] is to replace (2.51) with a PDE model
that acts orthogonally to the gradient vector’s direction:

∂I

∂t
= Iξξ = ∆I − Iηη = Ixx + Iyy −

IxxI
2
x + 2IxyIxIy + IyyI

2
y

|∇I|2

=
IxxI

2
y − 2IxyIxIy + IyyI

2
x

|∇I|2

I(x, y, 0) = I0(x, y)

(2.52)

15Recommended reading for further understanding various key tensor-related topics
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The relevance of (2.52) is reinforced by the extensive study of its geometrical inter-
pretation and its connection with the Euclidean geometric diffusion equation, covered in
[KS96, Sap01].

2.8.1 The Euclidean Morphological Scale Space analysis

In [AGLM93], Alvarez et al. lay down the fundamental principles of multiscale image pro-
cessing, stating that the only continuous domain analysis that abides by those principles
(§2.3, §2.4) is obtained at scale t by the following PDE:

∂I

∂t
= |∇I|F (κ, t)

I(x, y, 0) = I0(x, y)
(2.53)

where κ = div
(
∇I
|∇I|

)
describes the isolines’ curvature and F (κ, t) is a nondecreasing

function with respect to κ.

In practice, the initial condition I(x, y, 0) = I0(x, y) is replaced with a smoothed
version of the initial image, I(x, y, 0) = Gσ ∗ I0(x, y) in order to ensure the continuity and
differentiation of the image function I, thus ensuring a robust mathematical framework.

For the particular case F (κ, t) = κ · t, (2.53) can be rewritten as:

∂I

∂t
= t|∇I|κ = t|∇I|div

(
∇I
|∇I|

)
= t|∇I|

[
∂

∂x

(
Ix
|∇I|

)
+

∂

∂y

(
Iy
|∇I|

)]
= t|∇I|

Ixx(I2
x + I2

y )− Ix(IxIxx + IyIxy) + Iyy(I
2
x + I2

y )− Iy(IxIxy + IyIyy)

|∇I|3/2

= t|∇I|
I2
xIyy − 2IxIyIxy + I2

yIxx

|∇I|3/2
= t

I2
xIyy − 2IxIyIxy + I2

yIxx

|∇I|2

(2.54)

Remark By changing the scale parameter t to t′ = 0.5t2 (2.54) becomes (2.52).

Equation (2.54) exhibits a unidirectional smoothing, being similar in this respect
with the anisotropic diffusion model, but missing the contrast parameter, thus ensuring
the morphological invariance. On the other hand, (2.54) is also similar to the TV diffusion
model (2.32), having a directional interpretation of the following form:

∂I

∂t
= cξIξξ

cξ = 1
(2.55)

The same equation, i.e., (2.54) can be obtained geometrically [Ter04]: let C(x, y, t)

be a closed plane curve defined through its position vector ~C and let, by convention,
~n = − ∇I|∇I| be the normal unity vector. Then, the deformation of C for the Euclidean
geometric diffusion equation corresponds to the deformation of this curve in every point
along the normal direction with a speed proportional to the curvature κ:

∂ ~C

∂t
= κ~n with initial condition: C(x, y, 0) (2.56)
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An important property of (2.56) consists in its ability to transform any non-convex
curve into a convex one [Gra87] without developing junctions as a byproduct, while ex-
hibiting a finite time evanescent behavior [GH86]. The rest of the properties of (2.56) are
detailed in [GH86, Gra87, KS96].

Since the EMSS model is linked to the theory of curve deformation, (2.52) has a
geometrical interpretation: all the image’s isocontours deform along their orthogonal di-
rection with a speed proportional to the mean curvature16.

Remark As noted in [Ter04], the EMSS model is capable of efficiently eliminating the
unwanted noise contamination: since the noisy areas are characterized by strong curves,
the model exhibits a strong smoothing behavior within those areas. Conversely, the use of
this model is limited, especially for large values of the scale parameter t: in this case the
structures are reduced to convex curves, which in time become more and more rounded
at the edges. The model ensures edge preservation only for small values of t.

2.8.2 The Affine Morphological Scale Space analysis

The AMSS analysis was first introduced, as an image analysis tool, by Alvarez et al. in
[AGLM93] and later explained independently from the image analysis framework, using
curve deformation theory by Sapiro and Tannenbaum in [ST94, Sap01].

Similarly to the EMSS, by replacing the Euclidean invariance axiom with an affine
invariance axiom, Alvarez et al. show that the only multiscale analysis that obeys the
required axioms [AGLM93] is expressed using the following PDE:

∂I

∂t
= |∇I|

[
t · div

(
∇I
|∇I|

)]1/3

I(x, y, 0) = I0(x, y)

(2.57)

Rewriting (2.57) yields:

∂I

∂t
= |∇I|

(
t ·
I2
xIyy − 2IxIyIxy + I2

yIxx(
I2
x + I2

y

)3/2
)1/3

= t1/3(I2
xIyy − 2IxIyIxy + I2

yIxx)1/3 (2.58)

By analogy with the EMSS model, changing the scale parameter t with t′ = 3/4 · t4/3,
(2.58) can be rewritten as:

∂I

∂t′
= (I2

xIyy − 2IxIyIxy + I2
yIxx)

1/3 (2.59)

The AMSS model can be also viewed from a directional point of view, being expressed
according to its second order directional derivatives as follows:

∂I

∂t
= cξIξξ

cξ = |∇I|2/3Iξξ
(2.60)

16The equation describing this process is commonly known as MCM – Mean Curvature Motion
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Remark As also noted by [Ter04], the properties of (2.60) are identical to its EMSS
counterpart: a non-convex curve evolves in time into a convex one; the closed curves evolve
toward elliptical points, while ellipses preserve their eccentricity. The AMSS analysis,
just as the EMSS analysis, ensures edge preservation only for small values of the scale
parameter t.

2.9 Numerical approximations

Since PDEs are naturally defined in a continuous setting and conversely, the ones employed
in image processing model discrete processes, the discrete PDEs do not naturally yield a
straightforward solution. In order to successfully use PDEs as digital image processing
tools, their continuous solution needs to be approximated.

The existing numerical approximation techniques cover a wide spectrum of approaches,
from finite difference schemes to convolution masks, and due to the extensive nature of
these techniques, a complete reference to approximating PDEs can be found in [Ort87,
Fun92, Dzy95, Tho95, BDH06, Chi08, QV08]. This section covers only the topics directly
relevant to the work presented in the following chapters, leaving the other approximation
methods as a further recommended reading. Other useful resources that extensively cover
the topic of PDEs in image processing are [AK06, Mar06, TLCO07, Eva10].

Among the existing approximation techniques, a widely used method is that of finite
difference approximation, mainly because digital images are defined on discrete lattices
and thus, a finite difference approach is best suited for their numerical analysis.

2.9.1 Finite difference approximations

For every PDE describing an image processing model, there exists a set of a priori re-
quirements: the existence of an image definition domain, e.g., Ω = [0, a] × [0, b], initial
conditions and boundary conditions.

For the numerical approximation part, a series of preconditioning assumptions need
to be made: the discrete lattices, on which a digital image is usually defined, will be con-
sidered as having an equal spacing h between two lattice points (nodes) on the horizontal
direction x and the vertical direction y, respectively. Since digital image processing inher-
ently deals with discrete quantities, the image definition domain is considered implicitly
discretized, thus the values of the image function are samples (pixels) of a theoretically
continuous function, expressed within the (x, y) frame of reference. In conclusion, the
image size (in pixels) can be expressed as M ×N , where: M = a/h and N = b/h.

Hence, the continuous function I : Ω× (0,∞)→ R is replaced by:

I(x, y, t)→ I(ih, jh, t) = I(i, j, t) with i = {0, 1, . . . , N} and j = {0, 1, . . . ,M} (2.61)

Every PDE describing the models discussed so far is expressed numerically as a
discrete recursive process. The discretization of this process is done three dimensionally for
2-D images or four dimensionally for 3-D images, the extra dimension being the theoretical
evolution time. The discrete time domain is expressed using uniformly distributed time
samples, multiples of a discretization time step dt. The numerical representation of a
time-evolving digital image at instant t is expressed as:

I(i, j, t)→ I(i, j, n · dt) = Ini,j (2.62)
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where n represents the number of iterations required to reach the discrete time t.

The initial condition image function will be similarly expressed as:

I(i, j, 0)→ I0
i,j (2.63)

Remark From a practical point of view, in digital image processing, the boundary condi-
tions do not influence the final result, save for the image margins. For the sake of consis-
tency with the rigorous mathematical definitions, Neumann and(or) Dirichlet boundary
conditions will be imposed for the numerical models, whenever needed.

2.9.1.1 Approximating partial derivatives

In order to preserve the localized characteristics of PDEs, the first order derivatives are
replaced by first and second order approximations, furthermore, the spatial and temporal
derivatives are approximated based on Taylor series expansions using the (x+k, y+ l, t+
m) set of points. The central difference approximation is expressed using symmetrical
approximations:

∂

∂x
[I(x, y, t)] = D0

x[I(x, y, t)] =
I(x+ k, y, t)− I(x− k, y, t)

2|k|
(2.64)

The (2.64) approximation is similarly computed for ∂
∂y

[I(x, y, t)] and ∂
∂t

[I(x, y, t)].

By considering x = ih, y = jh, t = n · dt and displacements of the type k = ±h,
l = ±h, m = ±dt, the spatial approximations using central differences can be rewritten
as:

D0
x(I

n
i,j) =

Ini+1,j − Ini−1,j

2h
, D0

y(I
n
i,j) =

Ini,j+1 − Ini,j−1

2h
(2.65)

First order derivatives can be also approximated using forward or backward differ-
ences of order one:

D+
x (Ini,j) =

Ini+1,j − Ini,j
h

, D−x (Ini,j) =
Ini,j − Ini−1,j

h

D+
y (Ini,j) =

Ini,j+1 − Ini,j
h

, D−y (Ini,j) =
Ini,j − Ini,j−1

h

(2.66)

Alternative approaches, like the one of Scharr and Weickert [SW00] tackle the PDE
approximation problem differently, by estimating first order derivatives using optimized
convolution masks. More specifically, 3 × 3 (Fx and Fy respectively) rotation-optimized
masks:

∂Ini,j
∂x

= Fx ∗ Ini,j,
∂Ini,j
∂y

= Fy ∗ Ini,j (2.67)

The derivative with respect to time is always estimated using a forward difference
approximation of order one of the form:

D+
t (Ini,j) =

In+1
i,j − Ini,j

dt
(2.68)

The finite difference approximations can be also computed along directions other
than the ones of the standard (x, y) frame of reference. An example of such directions is
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the diagonal axes approximation: let ~dx and ~dy be h-norm vectors along the horizontal
and vertical direction, respectively. Hence, the diagonal vectors are expressed as:

~du = ~dx+ ~dy
~dv = ~dx− ~dy

with | ~du| = | ~dv| =
√

2h

yielding:

D0
u(I

n
i,j) =

Ini+1,j+1 − Ini−1,j−1

2
√

2h
, D0

v(I
n
i,j) =

Ini+1,j−1 − Ini−1,j+1

2
√

2h
(2.69)

and

D+
u (Ini,j) =

Ini+1,j+1 − Ini,j√
2h

, D−u (Ini,j) =
Ini,j − Ini−1,j−1√

2h

D+
v (Ini,j) =

Ini+1,j−1 − Ini,j√
2h

, D−v (Ini,j) =
Ini,j − Ini−1,j+1√

2h

(2.70)

The second order derivatives along the x and y directions are expressed using the
corresponding finite difference approximations of order two:

∂2Ini,j
∂x2

=
Ini+1,j + Ini−1,j − 2Ini,j

h2
= D−x [D+

x (Ini,j)]

∂2Ini,j
∂y2

=
Ini,j+1 + Ini,j−1 − 2Ini,j

h2
= D−y [D+

y (Ini,j)]

∂2Ini,j
∂x∂y

=
Ini+1,j+1 + Ini−1,j−1 − Ini+1,j−1 − Ini−1,j+1

4h2

(2.71)

Remark Similarly,
∂2Ini,j
∂u2

,
∂2Ini,j
∂v2

and
∂2Ini,j
∂u∂v

can be numerically expressed using finite differ-
ence approximations of order two.

Another important set of derivatives that often needs to be approximated is the
(Iηη, Iξξ) pair. A straightforward way of numerically expressing Iηη and Iξξ is using (2.71),
since they are mathematically expressed as:{

Iηη = η2
xIxx + 2ηxηyIxy + η2

yIyy

Iξξ = ξ2
xIxx + 2ξxξyIxy + ξ2

yIyy
(2.72)

where:

~η =

(
ηx
ηy

)
=

(
Ix
|∇I|
Iy
|∇I|

)
and ~ξ =

(
ξx
ξy

)
=

(
−Iy
|∇I|
Ix
|∇I|

)
(2.73)

Remark The (2.72) approximation is not rotation-invariant and may lead to instabili-
ties within quasi-homogeneous regions. An immediate solution is to approximate these
derivatives using more robust, rotation-invariant approaches, e.g., 4, 6 or 8-neighborhood
convolution masks.
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2.9.1.2 Approximating differential geometry operators

Numerically expressing classic differential geometry operators like the gradient vector or
the Laplacian operator requires using the numerical approximations previously defined in
§2.9.1.1.

Based on those approximations, one way of expressing the gradient vector is:

∇Ini,j =
∂Ini,j
∂x

~dx+
∂Ini,j
∂y

~dy =
∂Ini,j
∂u

~du+
∂Ini,j
∂v

~dv (2.74)

Using (2.65) and (2.69) the gradient norm can be further expressed as:

|∇I|ni,j =

√(
D0
x(I

n
i,j)
)2

+
(
D0
y(I

n
i,j)
)2

=

√(
D0
u(I

n
i,j)
)2

+
(
D0
v(I

n
i,j)
)2

(2.75)

or, alternatively, using the (2.67) convolution mask approach:

|∇I|ni,j =

√(
Fx ∗ Ini,j

)2
+
(
Fy ∗ Ini,j

)2
(2.76)

The gradient vector, more precisely the gradient norm, numerically expressed either as
(2.75) or as (2.76), is usually employed in expressing diffusion equations or MCM image
processing models.

Another basic differential geometry operator, the Laplacian operator, is most com-
monly approximated as:

∆I(i, j, n) = ∆Ini,j =
∂2Ini,j
∂x2

+
∂2Ini,j
∂y2

= D−x [D+
x (Ini,j)] +D−y [D+

y (Ini,j)] (2.77)

Since the Laplacian operator is inherently rotation-invariant, alternative approxima-
tions are readily available, simply by replacing the (x, y) frame of reference with the (u, v)
or (ξ, η).

Another important differential operator, widely used in defining PDE-based models,
is the divergence operator. One possible approximation such as the one employed by the
Perona–Malik model is obtained from the 1-D diffusion equation at a given scale t:

∂Ini
∂t

=
∂

∂x

[
g

(∣∣∣∣∂Ini∂x
∣∣∣∣) · ∂Ini∂x

]
≈ ∂

∂x

[
g

(∣∣∣∣∂Ini∂x
∣∣∣∣) · Ini+h/2 − Ini−h/2h

]
=

1

h

[
g

(∣∣∣∣∂Ini∂x
∣∣∣∣) |i+h/2 · Ini+h/2+h/2 − Ini−h/2+h/2

h

−g
(∣∣∣∣∂Ini∂x

∣∣∣∣) |i−h/2 · Ini+h/2−h/2 − Ini−h/2−h/2h

]
=

1

h

[
g

(∣∣∣∣∂Ini∂x
∣∣∣∣) |i+h/2 ·D+

x I
n
i − g

(∣∣∣∣∂Ini∂x
∣∣∣∣) |i−h/2 · Ini − Ini−hh

]
(2.78)

Where the value of the diffusion function for the i±h/2 pixels is replaced with a backward
or forward first order finite difference approximation [Ter04]:

g

(∣∣∣∣∂Ini∂x
∣∣∣∣) |i+h/2 ≈ g

(∣∣∣∣∂Ini∂x
∣∣∣∣ |i+h/2) = g[|D+

x (Ini )|]

g

(∣∣∣∣∂Ini∂x
∣∣∣∣) |i−h/2 ≈ g

(∣∣∣∣∂Ini∂x
∣∣∣∣ |i−h/2) = g[|D−x (Ini )|]

(2.79)
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Equation (2.79) leads to the simplified form of (2.78):

∂Ini
∂t

=
1

h
{g[|D+

x (Ini )|]D+
x (Ini )− g[|D−x (Ini )|]D−x (Ini )}

= D−x {g[|D+
x (Ini )|]D+

x (Ini )} = φright − φleft
(2.80)

where φright and φleft represent the flux functions belonging to neighboring pixels, with
respect to the current pixel i.

The 2-D extension of (2.78) is straightforward and amounts to adding another di-
mension and writing the diffusion function as a diagonal matrix [Ter04]:

c(∇Ini,j) =

g
(∣∣∣∣∂Ini,j∂x

∣∣∣∣) 0

0 g

(∣∣∣∣∂Ini,j∂y

∣∣∣∣)


thus resulting:

∂Ini,j
∂t

=
∂

∂x

[
g

(∣∣∣∣∂Ini,j∂x

∣∣∣∣) · ∂Ini,j∂x

]
+

∂

∂y

[
g

(∣∣∣∣∂Ini,j∂y

∣∣∣∣) · ∂Ini,j∂y

]
= D−x {g[|D+

x (Ini,j)|]D+
x (Ini,j)}+D−y {g[|D+

y (Ini,j)|]D+
y (Ini,j)}

= φeast − φwest + φsouth − φnorth

(2.81)

Remark (2.81) represents the standard 4-neighborhood approximation, an 8-neighborhood
approximation being proposed in [Kor98].

Weickert et al. note in [WtHRV98] that the classic (2.81) approximation lacks the
property of rotation invariance and, based on the work of Catté et al. [CLMC92], propose
a more robust approximation:
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{
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D−y I
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i,j

} (2.82)

Another possible way of approximating the divergence operator is using a matrix
form. This is especially useful when dealing with matrix-based diffusion models, resulting
a 3× 3 local diffusion kernel discretization of the div(D · ∇Ini,j) operator:
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2.9. Numerical approximations 37

which in turn leads to a convolution kernel of the form:

L =



−bi−1,j + bi,j+1

4h2

ci,j+1 + ci,j
2h2

bi+1,j + bi,j+1

4h2

ai−1,j + ai,j
2h2

−ai−1,j + 2ai,j + ai+1,j

2h2
−

−ci,j−1 + 2ci,j + ci,j+1

2h2

ai+1,j + ai,j
2h2

bi−1,j + bi,j−1

4h2

ci,j−1 + ci,j
2h2

−bi+1,j + bi,j−1

4h2


(2.84)

For a given scale n, the diffusion equation is expressed as:

∂Ini,j
∂t

= L ∗ Ini,j

Given the generic definition of a diffusion tensor (2.44), and the eigenvectors:{
~v1 = (cosα, sinα)T

~v2 = (− sinα, cosα)T

the coefficients of the convolution kernel (2.84) are expressed as:
a = λ1 cos2 α + λ2 sin2 α

b = (λ1 − λ2) cosα sinα

c = λ2 cos2 α + λ1 sin2 α

(2.85)

Remark Due to stability problems, Weickert [Wei95] proposes an alternative to (2.84)
that ensures increased stability and nonnegative diagonal coefficients.

2.9.1.3 Multiscale approximations

Multiscale approximations mainly refer to the methods employed in the numerical model-
ing of the PDE solution at a given scale t. A widely used approach consists in a progressive
time discretization:

∂Ini,j
∂t

=
In+1
i,j − Ini,j

dt
(2.86)

where dt is the time discretization step.

The PDE solution is numerically described as an iterative process, where the solution
at the time instant n · dt is used in determining the solution at (n+ 1) · dt.

Remark For the discretization of (2.86), result accuracy may vary according to the way
in which the spatial derivatives are approximated.

The 1-D Perona–Malik diffusion equation is a perfect way of exemplifying this remark.
Using a forward difference time approximation, (2.12) is numerically expressed as:

∂I

∂t
≈
In+1
i,j − Ini,j

dt
=

∂

∂x

[
g

(∣∣∣∣∂I∂x
∣∣∣∣) ∂I

∂x

]
(2.87)
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If the spatial derivatives are expressed at scale n ·dt, the approximation is explicit in time:

∂I

∂t
≈
In+1
i,j − Ini,j

dt
=

∂

∂x

[
g

(∣∣∣∣∂In∂x
∣∣∣∣) ∂In

∂x

]
(2.88)

The (n+1)·dt solution is readily computed based on the n·dt one, using the following
discretization scheme:

In+1 = In + dt · ∂
∂x

[
g

(∣∣∣∣∂In∂x
∣∣∣∣) ∂In

∂x

]
(2.89)

Although (2.89) requires a large number of iterations to ensure a proper convergence,
its advantage consists in its simplicity and ease of implementation.

Over the years, more complex and efficient discretization schemes have been pro-
posed, both semi-implicit and explicit, each of them having its advantages and disadvan-
tages. A comparison between the two categories can be found in [WtHRV98], concluding
that given a predefined set of stability constraints, the explicit scheme yields better results.

2.10 Conclusion

From a functional point of view, this chapter was aimed at discussing and analyzing the
prerequisite concepts in PDE and variational-based image processing, each approached
topic relating to the general context of this thesis.

The basic notions presented in Chapter 2 are comprised even in today’s more
evolved, more complex PDE-based image processing models. Some of the newest trends
in PDE-based image processing, relating to the original contributions that are the subject
of this thesis, will be briefly analyzed when needed, while others that are outside the scope
of this work will be referenced only as recommended reading material.

It should also be stressed that one of the main tasks, and at the same challenges, of
this thesis was to ultimately propose (a) new paradigm(s) that synergistically combines
image restoration and enhancement into a single paradigm. Therefore, in order to accom-
plish this, the present manuscript describes a step-by-step approach, starting from image
restoration, passing through image restoration coupled with edge enhancement and finally,
defining a processing paradigm for joint image restoration and image enhancement.

The image restoration part, since it has seen extensive development over the last
decade, required only a thorough analysis and understanding (this being the intended
purpose of Chapter 2), the remaining parts, i.e., image restoration coupled with edge
enhancement and joint image restoration and enhancement, being detailed in the following
chapters.

In the following, a “C 2 C”17 section will provide a brief overview of Chapter 2 and
of the relevance of the topics discussed within this chapter with respect to the overall
context of the thesis.

C 2 C

A short introduction to image processing – §2.2 – provided a quick overview of ex-
isting image processing techniques, emphasizing the particularities of those directly

17Contents to Context – relevance of chapter contents to overall thesis context
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relevant to the present thesis, i.e., PDE- and variational-based image processing,
while at the same time it defined in general terms the two main topics of this thesis:
image restoration and image enhancement.

Multiscale image processing and PDEs – §2.3 – explained the basic concepts of
scale and multiscale in the context of image processing, as well as the properties
and principles of multiscale image analysis and processing, the cornerstone of PDE-
based image processing.

Linear filtering – §2.4 – the most basic form of PDE-based image processing, embodied
by the isotropic diffusion model. A classic example of PDE-based image restoration,
with limited practical functionality but of paramount theoretical importance in the
sense of representing the starting point of image processing via PDE modeling. It
was also relevant to the general context of this thesis because it underlines through
negative example the importance of anisotropic diffusion in image restoration, i.e.,
noise filtering.

Nonlinear filtering – §2.5 – introduced the notion of anisotropic diffusion for image
denoising (the Perona–Malik model) and analyzed the major differences between
anisotropic and isotropic filtering. The subsequent anisotropic models, i.e., Catté
et al., FAB, were chosen to reinforce two important notions directly relating to this
thesis:

� The Catté et al. model as an example of the well-posedness of using pre-
smoothing either for the input I image or for its gradient map – an approach
also employed by the second proposition of this thesis, discussed at length in
Chapter 5.

� The FAB diffusion model, as a perfect example of combining diffusion with
inverse (negative) diffusion in order to obtain a processing paradigm suitable
for both denoising and deblurring. This approach directly relates to the first
proposition of this thesis, discussed in Chapter 3.

It should be stressed that all discussed methods were studied both theoretically and
experimentally, as a prerequisite for designing and testing the proposed methods,
hence their presence within this manuscript.

The variational approach – §2.6 – was extremely relevant from a second proposition
(Chapter 5) point of view, since it provides the theoretical background for notions
such as TV minimization and unifying PDE–variational problems (the second propo-
sition of this thesis relying on such a combined formulation, i.e., PDE–variational).

Tensor-based filtering – §2.7 – provided the theoretical understanding of Weickert’s
CED model in the context of image denoising, directly relating to the extension of the
model for concurrent image restoration and enhancement proposed in Chapter 3.

Level-set and curvature-based filtering – §2.8 – described the fundamental notions
of“intelligent anisotropic diffusion”, i.e., image geometry-based and structure-guided
anisotropic filtering, employing the ~η and ~ξ filtering directions. This approach to
anisotropic diffusion is fundamental in understanding the theoretical principles and
reasoning behind the denoising component of the proposed variational model for
concurrent fusion and denoising (Chapter 5).
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Numerical approximations – §2.9 – a mandatory discussion topic in digital image
processing.
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Hybrid shock filters: an image
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3.1 Motivation

This chapter presents the first major contribution of this thesis, related to image restora-
tion, i.e., a novel image deblurring filter, defined for the generalized restoration scenario
of concurrently filtering blur and overlaid noise.

Although the two processing tasks, i.e., deblurring and denoising, are implicitly image
restoration paradigms, shock filters, through their intrinsic edge enhancement bridge the
domains of image restoration and image enhancement, especially if they possess coherence
enhancement properties (§3.4.5). The theoretical aspects of shock filter theory, along with
a detailed discussion of the most representative shock filter models will be covered in §3.4.

Since the proposed shock filter model combines the two important restoration tasks
of deblurring and denoising into a single approach, and moreover, as a further extension
of the proposed shock filter model, adds a coherence-enhancing component to the ini-
tial proposition, it can be regarded as a complex image restoration–image enhancement
paradigm. The duality of the proposed model arises from two distinct perspectives:

� the intrinsic edge enhancement characteristic of the shock filter formalism, as an
image restoration tool, which partly extends the concept of edge enhancement from
image restoration into the image enhancement realm;

� the coherence-enhancing property, first defined by Weickert in [Wei03] (detailed in
§3.4.5), which is a purely image enhancement paradigm.

Reiterating the overall desideratum of this thesis, its aim is to study, analyze and
develop image restoration and image enhancement approaches, and if possible define a
unifying paradigm that synergistically combines the two processing tasks, all this to be
achieved by means of PDEs. In following this main guideline, the hybrid shock filter
embodies the first proposition to unify the two processing tasks, in this case starting from
a restoration perspective and moving toward an image enhancement perspective.
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Since the first chapter dealt exclusively with the image restoration issue, and since the
proposed hybrid shock filter is an approach originating from image restoration paradigms,
combined with image enhancement elements, it is only fitting to have a chapter that
follows in a functional sense, from simple to complex, the overall layout of the thesis.

The general structure of this chapter comprises an introductory part, describing
some basic notions related to the subject at hand, most notable existing approaches and
of course, the proposed model analyzed both from a theoretical and an experimental point
of view.

The first part of this chapter focuses on the key aspects of image deblurring: proper
definition of this image restoration process, theoretical understanding of its underlying
contaminant, i.e., blur, concluding with the motivation behind further improving existing
approaches. The proposed improvement consists in the introduction of a new approach,
capable of filtering complex contamination in the form of blur with overlaid additive noise.

3.2 Deblurring as an image restoration concept

Image deblurring, also known as image sharpening or image deconvolution is, in simple
terms, the process of removing (filtering out) unwanted blur. Blur, as an unwanted
contaminant is defined as “the process of obscuring or blemishing by smearing, or making
dim, indistinct, or vague in outline or character”, conversely, the inverse process, of
removing blur, can be defined in a more restrictive sense, i.e., image sharpening, as
“putting an image into focus”.

In essence, the problem of image deblurring amounts to recovering a sharp image
from its blurry observation. It is often a crucial image restoration step in numerous
image processing fields, such as industrial processes, military applications, astronomy,
medical image processing, computer vision, just to name a few. In layman’s terms, image
deblurring is an edge enhancement process that is performed under the assumption of
the sole presence of blur as an image contaminant, defined as an unwanted convolution,
behaviorally similar to a diffusion process – discussed at length in Chapter 2.

Thus, mathematically, image deblurring is closely related to the process of inverse
diffusion or deconvolution. At first, the deconvolution problem was approached in a rather
simplistic way, by assuming a linear degrading convolution with an a priori known blurring
kernel, as noted by Gilboa in [Gil04]. The purpose, and at the same time the filtering
effect, of deblurring models is to enhance (sharp) edges since, as already mentioned, salient
information is primarily represented by the edges and contours within an image.

Remark It should be stressed right from the beginning that there exists a subtle differ-
ence between image enhancement and edge enhancement, difference that is not always
sufficiently underlined in some papers, books, etc. Image enhancement deals, as men-
tioned in the beginning of Chapter 2 – §2.2, with increasing or improving the quality of
an input image, while restoration is defined as the process of restoring an image to its
initial condition, or at least close to that initial condition. In this respect, the process of
deblurring with its edge-enhancing component is aimed at restoring a blurred image to
its initial, non-blurred state. In conclusion, throughout this thesis, the particular process
of edge enhancement is considered to be a subcomponent of the general image restoration
framework.
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Fig. 3.1 – 1-D blurring–deblurring example.

The simplest way of describing a deblurring process, assuming that it mainly refers
to edge enhancement, is to employ a trivial 1-D example: ideally, an edge can be modeled
by a simple step function of the form:

I(x) =

{
1 if x < 0

−1 if x > 0

This ideal edge I(x) is further subjected to a convolution process, as part of adding a
contaminant to the original signal. The resulting image, I0 will represent a smoothed
version of I, where the initial condition is expressed as:

I0(x) = − sin(x)

Thus, the deblurring process represents an inverse problem of deconvolution, with initial
condition I0, as illustrated in Fig. 3.1. Mathematically, the convolution–deconvolution
process is an initial value problem, convolution-wise and an inverse problem, deconvolution-
wise: obtaining I → I0 is straightforward, while solving I0 → I relates to all the difficulties
of an ill-posed problem.

Since deblurring is considered to some extent the inverse of a smoothing process, in
a PDE framework the process can be modeled by an inverse diffusion paradigm. The
simplest example of an inverse diffusion process, would be the isotropic inverse heat equa-
tion, which is in essence an inverse problem, thus inherently unstable. Inverse problems,
as noted by Chan and Shen [CS05], are crucially dependent on proper regularizers or
conditioners that ensure stability, often at the expense of losing high frequency details,
belonging to ideal (non-blurred) images. The regularization of inverse problems guaran-
tees the existence and uniqueness of solution.

3.3 Concurrent denoising and deblurring: an image

restoration approach

The motivation for further exploring the concept of deblurring is partly due to the limita-
tions presented by the classic shock filter model proposed by Osher and Rudin in [OR90]
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as well as by the ones of its subsequent evolutions – e.g., [AM94, KDA97a, GSZ02b, RC03,
Wei03].

The main drawback of the classic model consists in the fact that in the presence
of AWGN, the filtering is at best minimal – this minimal filtering effect is mainly due
to the numerical scheme employed in its implementation. The aforementioned numerical
scheme is based on the minmod function defined in [OR90] and used in computing the
gradient norm in each point of the image function – restricting large value variations in
neighboring pixels, such being the case of noise-corrupted images.

Another important drawback of the classic shock filter model resides in its edge
detector based on the second order directional derivative that, in generalized GB+AWGN1

scenarios, fails to correctly detect edges and contours, thus blocking the shock filter’s
natural time evolution.

By knowing these a priori limitations of the classic model, a series of steps toward
improving its overall performance were taken over time. Noteworthy results were de-
scribed in [AM94, RC03, Wei03], the edge detector and its robustness being their main
focus, somehow neglecting the global GB+AWGN scenario. This generalized scenario was
approached in [KDA97a] and [GSZ02b] where the useful signal affected by both GB and
AWGN was part of the problem’s statement.

Handling both contamination sources at the same time implies a series of compro-
mises either processing quality-wise, noise removal-wise or edge enhancement-wise. In the
case of the model described in [GSZ02b], in order to surpass the inherent classic edge
detector’s limitations, a new approach is proposed: an approximation of the second order
directional derivative given by the imaginary part of the image function.

In order to accomplish this, the image definition domain needs to be changed from
the real one to the more general domain, the complex one, thus adding a new dimension
to the work space. The major improvement brought by this edge detector consists in its
robustness to noise even when dealing with low SNR images.

On the other hand, this edge detector presents also a noticeable disadvantage due
to the fact that it will continuously evolve over time, leading to a divergent effect of the
filtered result, instead of reaching a steady-state solution, as in the case of the classic
shock filter model.

More on the PDE-based shock filter formalism for image deblurring, in the forthcom-
ing sections of this chapter, which will cover: the theoretical framework of shock filters,
most notable propositions within the formalism and their characteristics, advantages and
shortcomings, concluding with the proposed method, the hybrid shock filter.

3.4 Shock filters

In the ever expanding field of image processing, image enhancement plays an important
role either as an intermediary step of a processing chain or as a stand-alone processing
task. Since its beginnings, image processing has relied on PDEs to help solve complex
problems, e.g., filter modeling, image segmentation, analysis or fusion.

The advantages of using PDEs in image processing arise from their well-established
theoretical basis and extensive use in mathematics, hence allow for a straightforward

1Gaussian Blur with overlaid Additive White Gaussian Noise
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extension to image processing tasks. Such an important task, a fundamental component
of image restoration, is edge enhancement.

3.4.1 The Osher–Rudin shock filter

Revisiting previous statements, in a more restrictive sense, edge enhancement can be
regarded as a technique of improving or recovering a signal degraded by an unwanted
convolution process, defined in [OR90] as blurring. A process of deconvolution, also known
as deblurring, is required in order to recover the original image. Performing a direct
deconvolution of a discrete signal is not a well-posed problem, since discrete signals are
only piecewise continuous.

As previously discussed, edge enhancement or more generally, deblurring, is the oppo-
site process of image smoothing: the former process is aimed at creating discontinuities at
points in space where they ideally should be, while the latter process removes superfluous
features and false discontinuities [AK06].

A PDE-based approach to image deblurring was first proposed by Osher and Rudin
[OR90] using a so-called shock filter, based on hyperbolic equation theory and an explicit
monotone scheme which preserves the TV and the size and location of local extrema.

Recalling the most simple 1-D deblurring example, an edge can be ideally modeled
by a step function of the form:

I(x) =

{
1 if x < 0

−1 if x > 0
(3.1)

The ideal edge, I(x) is subjected to a convolution process, as part of adding a con-
taminant to the ideal signal. The resulting image, I0 will represent a smoothed version of
I, where the initial condition for the previous 1-D deblurring example is expressed as:

I0(x) = − sin(x) (3.2)

The deblurring process consists in defining a family of evolving curves {I(x, t)}t>0

in order to achieve image sharpening. Following this line of reasoning, Osher and Rudin
[OR90] propose to solve: 

∂I

∂t
= −|Ix| sgn(Ixx)

I(x, 0) = I0(x) = − sin(x)
(3.3)

where:

sgn(I) =


1 if I > 0

−1 if I < 0

0 if I = 0

(3.4)

The advection characteristic of (3.3) can be easily verified by examining ∂I
∂t

at points
where Ix > 0 and Ixx > 0, with:

∂I

∂t
+ Ix = 0

a transport equation with speed “+1”, as also illustrated in Fig. 3.2.
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Fig. 3.2 – 1-D deblurring principle for I0(x) = − sin(x) represented on [−π, π].

According to [AK06], a simplified version of (3.3) can be expressed as:
∂I

∂t
= −|Ix| sgn

(
(I0)xx

)
I(x, 0) = I0(x) = − sin(x)

(3.5)

with an explicit solution determined using the method of characteristics [AK06]. The
time evolution of I from (3.5) at different times scales t is illustrated in Fig. 3.3.

Fig. 3.3 – Time evolution of I, the solution of (3.5) at different time scales t.
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The 1-D general expression of the shock filter proposed by Osher and Rudin [OR90]
is the following: 

∂I

∂t
= −F (Ixx) · |Ix|, x ∈ R, t > 0

I(x, 0) = I0(x)
(3.6)

with F satisfying the following constraints:{
F (0) = 0

F (s) · sgn(s) > 0, s 6= 0
(3.7)

Although in the continuous domain, the shock filter problem seems ill-posed, the
numerical simulations of Osher and Rudin yield generally good results that contradict the
continuous domain ill-posedness. To this end, the two authors conjecture their results as
follows:

Conjecture 3.4.1 [OR90]: “The evolution equation (3.6), with I0(x) continuous, has a
unique solution that has jumps only at inflection points of I0(x) and for which the TV in
x of I(x, t) is invariant in time, as well as in the locations and values of local extrema.”

For the 2D case the shock filter’s expression becomes:

∂I

∂t
= −F (Iηη) · |∇I| (3.8)

with η = ∇I
|∇I| and ξ ⊥ η. Thus, shock filtering translates into the filtered signal developing

shocks at the positions of the zero crossings of Iηη, hence producing an enhancement of
the edges.

A direct approach to numerically discretizing the classic shock filter model using, for
example, finite difference schemes (§2.9.1) for numerically approximating partial deriva-
tives is not suitable since in essence the shock filter model is an inverse diffusion equation,
well known for its inherent instability. In overcoming this problem, Osher and Rudin
propose an explicit discretization scheme that preserves TV and local extrema.

Recalling the notations used in §2.9, the time evolution of I is expressed in terms of
finite differences and the minmod function as follows:

|∇I|ni,j =
√
{m[D+

x (Ini,j), D
−
x (Ini,j)]}2 + {m[D+

y (Ini,j), D
−
y (Ini,j)]}2 (3.9)

where:

m(x, y) =

{
sgn(x) min(|x|, |y|) if xy > 0

0 if xy 6 0
(3.10)

The minmod function allows to select in every pixel the filtering direction according
to the minimal variation in order to avoid oscillations and produce a constant image with
jumps only at inflection points.

Although the Osher–Rudin shock filter is efficient at removing unwanted blur, there
are also extreme situations, e.g., the patch effect (Fig. 3.4c) as underlined in [AK06], when
the filter shows its limitations. Another major shortcoming of the classic shock filter, from
an image restoration point of view, is that when dealing with noise, the filtering process
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(a) (b) (c)

Fig. 3.4 – The Osher–Rudin shock filter – time evolution example: (a) The initial Air-
plane [Uni11] blurred image – Gaussian PSF of σ = 2; (b) Shock filtered image at time
scale t = 1; (c) Shock filtered image at time scale t = 10.

can behave erratic, introducing an infinite number of inflexion points, thus perturbing the
deblurring process.

This sensitivity to noise limits the practical application of the classic shock filter to
simple deblurring scenarios. Several subsequent approaches, e.g., [AM94] or [KDA97a],
have studied this problem, initially proposing a basic solution to it: using a convolution
for stabilizing the edge detector, since, in the presence of noise it is the one which is
responsible for false detections that lead to an infinite number of inflexion points. The
slightly improved shock filter model has the following expression:

∂I

∂t
= − sgn[(G ∗ I)ηη] · |∇I| (3.11)

Remark As noted by [Ter04], even if (3.11) manages to overcome the edge detector’s
instability in generalized GB+AWGN scenarios, the new issue is the size of the Gaussian
kernel G: if σ is too small, the noise filtering of the second order directional derivative is
only partially achieved, while a value too large, could produce an isotropic diffusion-like
effect, leading in turn to false edge detection.

3.4.2 The Alvarez–Mazorra shock filter

Following the discussion about the seminal work of Osher and Rudin [Rud87, OR90] and
their proposition of a PDE-based approach to image deblurring – the first major PDE-
based contribution to image deblurring theory – this section will analyze the first of many
evolutions of the initial proposition, that of Alvarez and Mazorra [AM94].

The proposition of Alvarez and Mazorra emanates from the classic shock filter model,
but at the same time tries to integrate a denoising component into the existing deblurring
model, in order to achieve a complete image restoration paradigm. The proposed approach
is modeled in 1-D by the following hyperbolic PDE:

∂I

∂t
+ F (Gσ ∗ Ixx, Gσ ∗ Ix)Ix = 0 in R×R+ (3.12)
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where Gσ is a family of smoothing kernels, e.g., a family of Gaussian functions and F a
function that satisfies:

F (x, y) · xy > 0, ∀x, y ∈ R (3.13)

A simple choice for F , proposed by the authors is:

F (x, y) = sgn(x) sgn(y)

where the signum function is defined as in (3.4).

The proposed filter will develop shocks in the position of the zero crossings of Gσ ∗Ixx
which will lead to edge enhancement, as it is typically the behavior of all shock filters.
The discretization of (3.12) is done using an unconditionally stable recursive scheme,
dissipative only within homogeneous regions, and nonoscillatory. The smoothing kernel
Gσ(·) is defined as an approximation of a Gaussian convolution using a fast recursive
discretization of the heat equation, i.e., It − Ixx = 0.

For the two dimensional case, the authors propose a shock filter modeled by the
following PDE:

∂I

∂t
= CL(I)− F (Gσ ∗ Iηη, Gσ ∗ Iη)Iη in R2 ×R+ (3.14)

where η is the direction of ∇I, F verifies (3.13), Gσ is a family of 2-D smoothing kernels,
C a strictly positive constant and L(I) a directional smoothing operator, e.g., L(I) = Iξξ,
where ξ is the normal to the gradient vector.

Summarizing the behavior of (3.14), the Alvarez–Mazorra shock filter model diffuses
the initial image I(x, y, 0) along the directions parallel to the edges, for noise filtering
purposes, while it develops shocks along the perpendicular directions to the edges, thus
achieving concurrent edge enhancement and denoising.

The 2-D model (3.14) is discretized using a fast, unconditionally stable recursive
scheme, following the same lines as the 1-D model.

Fig. 3.5 illustrates a typical example of image restoration using the Alvarez–Mazorra
shock filter: the test scenario is the generalized GB+AWGN contamination, while the
filter has an evolution time t = 1s for a discretization step dt = 0.1 with C = 2 and
σ = 1.

(a) (b)

Fig. 3.5 – Alvarez–Mazorra shock filter example: (a) GB(σb = 2)+AWGN(σn = 10)
contaminated image – true color original available at [Kod11]; (b) Filtered image for t = 1,
C = 2 and σ = 1.
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(a) (b)

Fig. 3.6 – Kornprobst et al. shock filter example: (a) GB(σb = 2)+AWGN(σn = 10)
contaminated image; (b) Filtered image for t = 0.5, σ = 1, τ = 15 and αf = αr = αe = 1.

3.4.3 The Kornprobst et al. shock filter

Another proposition, subsequent in time to both the Osher–Rudin and Alavrez–Mazorra
models, following the same line of reasoning, i.e., coupling the deblurring process with
the denoising one, is proposed by Kornprobst et al. in [KDA97a]. For this model, a third
term is added with the purpose of coupling the evolving signal to the contaminated one
in order to maintain signal similarity, i.e., an attachment to the initial data:

∂I

∂t
=αf (I − I0)︸ ︷︷ ︸

Coupling

+αr[hτ (|Gσ ∗ ∇I|)Iηη + Iξξ]︸ ︷︷ ︸
Denoising

− αe[1− hτ (|Gσ ∗ ∇I|)] sgn(Gσ̃ ∗ Iηη)|∇I|︸ ︷︷ ︸
Deblurring

(3.15)

where:

hτ (x) =

{
1 if x < τ

0 otherwise

For sake of consistency, the Kornprobst et al. model is illustrated using the previous
GB+AWGN contaminated initial image (Fig. 3.6a). The filtered result (Fig. 3.6b) was
obtained for a theoretical evolution time t = 0.5s with σ = 1, αf = αr = αe = 1 and
τ = 15.

3.4.4 The Remaki–Cheriet shock filter

Remaki and Cheriet [RC03] approach the classic shock filter shortcomings in a slightly
different way, by proposing an alternative numerical scheme following a space-split strat-
egy and normalized inputs. The resulting filter exhibits increased robustness to noise and
high frequency details and is mathematically described as follows:

For the x direction the shock filter is defined as:

∂I

∂t
+ a1(I) · F1(I0

xx, I
0
x)
∂

∂x
f1(I) = 0 (3.16)
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where:
F1(u, v) = sgn(u) sgn(v)

f1(u) =

u or

1

2
sgn(u)u2

a1(u) =

{
1 or

1 + (1− u0)(1 + u0)

The approximation of I is computed at the point
(
x, y,

(
n+ 1

2

)
dt
)
, where x = ih1 and

y = jh2 – revisit §2.9 if necessary. Thus resulting the simplified notation:

I

[
x, y,

(
n+

1

2

)
dt

]
= I

n+ 1
2

i,j

The x-direction discretization is thus expressed:

I
n+ 1

2
i,j =Ini,j

− 1

2
r1 max

[
0, a1(Ii,j)F1

(
I0i+1,j − 2I0i,j + I0i−1,j

h21
,
I0i+1,j − I0i,j

h1

)
f ′1(Ini,j)

]
(Ini,j − Ini−1,j)

− 1

2
r1 min

[
0, a1(Ii,j)F1

(
I0i+1,j − 2I0i,j + I0i−1,j

h21
,
I0i+1,j − I0i,j

h1

)
f ′1(Ini,j)

]
(Ini+1,j − Ini,j)

(3.17)

where I0
i = I0(ih1, jh2).

For the y direction the shock filter is similarly defined:

∂I

∂t
+ a2(I) · F2(I0

yy, I
0
y )
∂

∂y
f2(I) = 0 (3.18)

with a2, F2 and f2 defined as their x-direction counterparts.

The approximation of I is computed at the point
(
x, y, (n + 1)dt

)
, the y-direction

discretization being expressed as:

In+1
i,j = I

n+ 1
2

i,j

− 1

2
r2 max

[
0, a2(Ii,j)F2

(
I0i,j+1 − 2I0i,j + I0i,j−1

h22
,
I0i,j+1 − I0i,j

h2

)
f ′2(I

n+ 1
2

i,j )

]
(I
n+ 1

2
i,j − In+

1
2

i,j−1)

− 1

2
r2 min

[
0, a2(Ii,j)F2

(
I0i,j+1 − 2I0i,j + I0i,j−1

h22
,
I0i,j+1 − I0i,j

h2

)
f ′2(I

n+ 1
2

i,j )

]
(I
n+ 1

2
i,j+1 − I

n+ 1
2

i,j )

(3.19)

The stability of the filter is summarized by the authors with the following proposition:

Proposition 3.4.1 [RC03]: “Assume that a1, F1, f ′1 and a2, F2, f ′2 belong in L∞(R) and
I0 belongs in BV (R)∩L∞(R). Under the CFL conditions r1|a1F1f

′
1| < 1

2
and r2|a2F2f

′
2| <

1
2

the 2-D numerical scheme is stable for the L∞ norm and spatiotemporally TV bounded
with the following properties:”

(i) |Ini,j| 6 ‖I0‖L∞(R), ∀i, j ∈ Z, ∀n ∈ N.

(ii)
∑

i,j∈Z |Ini+1,j − Ini,j|+ |Ini,j+1 − Ini,j| 6 TV(I0), ∀n ∈ N.
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(a) (b)

Fig. 3.7 – Remaki–Cheriet shock filter example: (a) GB(σb = 2)+AWGN(σn = 10)
contaminated image; (b) Filtered image for t = 1, using a Gaussian mollifier of σ = 1.

(iii)
∑

i,j∈Z |I
n+1
i,j − Ini,j| 6 TV(I0), ∀n ∈ N.

Remark The Remaki–Cheriet shock filter can be numerically modeled with or without
a regularizer for the initial image I0, as stated by the authors.

If a mollifying kernel is used to smooth the input image I0, the authors suggest either
a standard Gaussian kernel or a compact support smoothing kernel, defined as:

ρε(x) =


1

ε
e

(
3ε2

x2−ε2
+3
)

if x2 < ε2

0 otherwise
(3.20)

Fig. 3.7 illustrates an example of image restoration using the Remaki–Cheriet filter
for t = 1s: a Gaussian smoothing kernel of σ = 1 was used for regularization, a1(u) =
a2(u) = 1 + (1− u0)(1 + u0) and f1(u) = f2(u) = 1

2
sgn(u)u2.

3.4.5 Weickert’s CESF model

Following the CED model first proposed in [Wei95] and discussed in §2.7.1.1, Weickert
proposes in [Wei03] the corresponding counterpart pertaining to shock filter theory. As for
the CED denoising paradigm, the CESF2 is developed on the notion of structure tensor
and coherence enhancement in order to better respond to the need of shock filtering
by combining the classic shock filter’s stability with enhancement of coherent flow-like
structures. The coherence enhancement effect is achieved by steering the shock filtering
along the directions yielded by a structure tensor [KW87, Rao90, RS91]. Thus resulting
a deblurring model that acts like a contrast enhancing shock filter, normal to the flow
direction, while along the flow direction it creates a constant signal by applying either a
dilation or an erosion process.

The author motivates his proposition by stressing that the shock filter’s performance
strongly depends on the direction η and that in the presence of flow-like structures, e.g.,
fingerprints, the gradient of a Gaussian-smoothed image G∗I does not supply reliable ori-
entation information, since parallel lines lead to patterns with opposite gradients [Wei99].

2Coherence Enhancing Shock Filter
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If these gradients are smoothed using a Gaussian kernel approach, cancelation effects may
occur that further cause very large fluctuations of the resulting gradient direction. In order
to circumvent this cancelation problem, Weickert proposes a more reliable local structure
descriptor in the form of the structure tensor, replacing ∇I with its tensor product:

J0(∇I) = ∇I · ∇IT (3.21)

Thus the cancelation effect is circumvented, since J0(−∇I) = J0(∇I). The structure
tensor is obtained through an averaging of the gradient directions by smoothing (3.21)
component-wise using a Gaussian kernel of standard deviation ρ:

Jρ(∇I) = Gρ ∗
(
∇I · ∇IT

)
(3.22)

The resulting positive semidefinite 2 × 2 matrix is known as the structure tensor,
second moment matrix, scatter matrix or the Förstner interest operator [Wei03]. Its
orthogonal system of eigenvectors describes the direction of local minimal and maximal
contrast, while the contrast intensity is a measure of its eigenvalues.

Let w be the normalized eigenvector corresponding to the largest eigenvalue, w being
also called the dominant eigenvector of Jρ that describes the direction where the contrast
change is maximal. Using w, the CESF is defined as follows [Wei03]:

∂I

∂t
= − sgn(Iσww)|∇I| (3.23)

where Iσww = (Gσ ∗ I)ww.

The structure scale σ determines the size of the resulting flow-like patterns, while
the integration scale ρ averages orientation information.

Remark As noted by [Wei03], it is possible to close interrupted lines if ρ is equal or larger
than the gap size. Moreover, in order to enhance coherent structures, the integration scale
should be larger than the structure scale.

(a) (b)

Fig. 3.8 – Weickert’s CESF example: (a) Original fingerprint image [Bio11]; (b) Filtered
image: t = 20, σ = 2 and ρ = 6.
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Since one of the main applications of the CESF is digital fingerprint restoration,
a suitable filtering example would be on such an image, breaking the continuity of the
previous examples. Hence, Fig. 3.8a illustrates an original fingerprint image, part of the
FVC2000 fingerprint database [Bio11], while Fig. 3.8b shows the filtered result for t = 20s
and σ = 2, ρ = 6. The dual edge enhancing – coherence enhancing characteristic of the
filter is clearly discernable in Fig. 3.8b, underlining the unique capabilities of the CESF.

3.4.6 The Gilboa et al. complex shock filter

The necessity of fundamentally rethinking shock filters, as a whole, arose from the spe-
cific problem of accurately detecting zero crossings required in correctly performing edge
enhancement. Such an approach was first proposed in [GZS01] where the term of complex
diffusion was introduced, followed by the definition of the complex shock filter framework
in [GSZ02b]:

∂I

∂t
= − 2

π
arctan

(
a · Im(I)

θ

)
|∇I|+ λIηη + λ̃Iξξ (3.24)

The novelty of the complex filter resides in its edge detector, which is no longer
defined using the signum function, being defined instead by a construction of the form
F (s) = 2

π
arctan(a · s), where a controls the steepness of the second order derivative’s

slope near 0 and the arctan function allows taking into account not only the second
order derivative’s sign but also its magnitude. Defining the edge detector in this way,
also ensures an implicit anisotropic characteristic of the edge detector [GSZ02b], partially
replacing the role of the anisotropic diffusion filter.

The second major improvement brought by the complex shock filter formalism is
represented by the replacement of the real definition domain of the image function with
the complex one. This allowed to completely redefine the edge detector’s frame of refer-
ence, augmenting its robustness to AWGN and ensuring increased performance in image
restoration scenarios.

Summarizing, the complex shock filter is a viable alternative to classic shock filtering
and a valuable image restoration tool because [GSZ02b]:

� It represents an elegant way to avoid the need of convolving the signal at each

(a) (b)

Fig. 3.9 – Gilboa et al. complex shock filter example: (a) GB(σb = 2)+AWGN(σn = 10)
contaminated image; (b) Filtered image for t = 2, |λ| = 0.1, λ̃ = 0.5, a = 0.5 and θ = 0.01.
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iteration, and still get smoothed estimations.
� The time dependency of the process is inherent, without the need to explicitly use

a time evolution parameter t.
� Moreover, the imaginary part receives feedback – it is smoothed by the diffusion

component and enhanced at sharp transitions by the shock filtering component,
thus it is more suitable for controlling the process than a simple second derivative.

3.4.7 Shock filters: afterword

As it can be concluded from the previous sections, image deblurring is an important
part of image restoration as a generalized processing tool and, in particular, the shock
filter formalism represents a seminal contribution to the field of PDE-based image deblur-
ring. Numerous contributions to the field of PDE-based deblurring, e.g., [Bar01, Che03,
WTBW05, BW06, WWG07, BS08, RC08], underline the importance and continuous study
of this image processing problem.

The current trend in image deblurring is to attempt to unify the two opposite in
nature image restoration components, i.e., denoising and deblurring, and bring them under
a complementary framework, thus working in synergy as a complete image restoration tool.

Since variational approaches are closely related to PDE-based ones, it is worth men-
tioning some of the contributions to image deblurring, more specifically blind deconvolu-
tion, that have been proposed over the years: [CW98, KSZ05, BKS06, BDFO06, BBSK07,
OBDF09]. The ultimate goal of unifying denoising with deblurring under a single image
restoration paradigm is also tackled by some of the aforementioned variational approaches.

Within these prerequisites, the first major contribution of this thesis, the hybrid
shock filter was developed in the spirit and based on the study of previous deblurring and
denoising models and with the intent of bringing together denoising and deblurring under
a common PDE-based framework. The general theoretical support is derived from the
Gilboa et al. complex shock filter and classic shock filter theory, relying on the strengths
of each while discarding their weaknesses.

Even though subsequent shock filter developments, like the Alvarez–Mazorra [AM94]
model, the Kornprobst et al. [KDA97a] model or the Gilboa et al. [GSZ02b] complex
shock filter successfully deal with the AWGN, there still persists the issue of stability and
convergence for high AWGN values. Therefore, the problem of finding a proper balance
between effective noise filtering on the one hand, and stability and convergence on the
other, still remains an open subject of research. The hybrid shock filter establishes its
premise on finding this balance and achieving all desiderata for robust and reliable image
restoration, within the PDE-based shock filter framework.

3.5 The hybrid shock filter paradigm

As previously discussed in §3.4, the classic shock filter design is not entirely suited for
noise filtering, and more generally, for image restoration. Subsequent developments have
thus addressed this task, distinguishing themselves into two main classes:

� The first class, tackles the problem by adding diffusion filters to the classic shock
filter model and working on pre-smoothed versions of the input signal,
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� While the second class redefines the edge detector, allowing for a robust and accurate
edge detection without the need of additional noise filtering.

Both classes possess a series of advantages and disadvantages: the first class inherits
the stability and convergent behavior of the classic shock filter, defined in [OR90], while it
behaves less efficiently in AWGN filtering, especially in high noise scenarios. The second
class, on the other hand, successfully filters out AWGN, even for high standard deviation
values, however, lacks the stability and convergent behavior of the classic shock filter.

The ultimate goal in shock filter design is to conceive a filter that is both able to
perform properly in generalized GB+AWGN scenarios and to exhibit a stable-convergent
time behavior. The stability of the filter is of paramount importance since the final result’s
accuracy strongly depends on the filter’s capacity to converge, from a qualitatively point
of view, toward the reference signal.

3.5.1 Mathematical model

Although the complex shock filter proposed by Gilboa et al. in [GSZ02b] proves to
be a viable alternative to the classic model in circumventing the noise problem in the
generalized scenario of GB+AWGN contamination, it presents at the same time a series
of shortcomings. The most important of them being its numerical implementation, making
the filter unstable after a sufficiently large number of iterations. This translates into the
method’s dependency on the human supervised control, the algorithm’s stopping criterion
being tied to its input parameters and sensitive to the nature of the input image.

These shortcomings along with the ones presented by the classic shock filter represent
the premise for the hybrid shock filter model. The main goal is to combine the advantages
of both models without preserving any of their disadvantages. So far the hybrid model
solves the inability to efficiently process AWGN of the classic shock filter as well as the
divergent behavior of the complex one, thus resulting a shock filter capable of image
restoration in GB+AWGN scenarios that is both efficient and stable.

Another advantage of this method resides in its modularity, allowing the use of
multiple sets of control functions, useful in the filter’s behavioral analysis over a large
variety of input images.

The general mathematical model of the hybrid shock filter is defined for I : Ω→ C,
with Ω ⊂ R2 when the image space is considered to be continuous and Ω ⊂ N2 when the
image space is viewed as a discrete domain.

The initial conditions for the PDE describing the filtering process of an image
I(x, y, t), with (x, y) ∈ Ω, are the following: I(x, y, 0) = I0(x, y), I0(x, y) ∈ R and ∂I

∂n
= 0,

where n is the direction orthogonal to the image boundary, i.e., Neumann boundary con-
ditions.

Thus, the hybrid shock filter is mathematically expressed as:

Re

(
∂I

∂t

)
=− 2

π
arctan

(
a · Im(I)

θ

)
f1(t)|∇I| − sgn

(
Re(Iηη)

)
f2(t)|∇I|

+ f1(t)
(

Re(λ) Re(Iηη)− Im(λ) Im(Iηη) + λ̃Re(Iξξ)
)

Im

(
∂I

∂t

)
= Im(λ) Re(Iηη)− Re(λ) Im(Iηη) + λ̃ Im(Iξξ)

(3.25)
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Since the hybrid shock filter is partly derived from the complex shock filter [GSZ02b],
it naturally shares some of its parameters, while others belong exclusively to the former:

� a is the parameter controlling the slope of the edge detector’s sign function arctan.

� θ is the complex argument input parameter, with θ ∈ (−π/2, π/2). When θ → 0,
Im(I)

θ
is an approximation of the smoothed Laplacian of the image function I, as

mathematically proven in [GZS01] and revisited in §3.5.2, making the imaginary
part “a natural regularized edge detector”.

� |∇I| represents the gradient norm of the image function I, computed using the slope
limiter minmod function, as defined in [OR90].

� λ = r · eiθ is a complex scalar parameter, computed based on the θ input parameter.

� λ̃ is a real scalar input parameter.

� f1(t) and f2(t) – discussed at length in §3.5.3 – are two complementary control
functions. Their purpose is to control the nature of the hybrid shock filter, i.e., to
control the transition rate of the filter’s behavior from an exclusively complex one
to an exclusively real one.

A typical example of how the hybrid shock filter works and how its constituent
components interact, i.e., the real and imaginary part of the complex image function I,
is illustrated in Fig. 3.10 for t = 2s, |λ| = 0.1, λ̃ = 0.5, a = 0.5 and θ = 0.01, using the
(3.27) control function set.

(a) (b) (c)

Fig. 3.10 – Hybrid shock filter example for t = 2: (a) GB(σb = 1)+AWGN(σn = 5)
contaminated image – true color original available at [Kod11]; (b) Hybrid shock filter
result – real part Re(I), i.e., the filtered output; (c) Hybrid shock filter – imaginary part
Im(I), i.e., the edge detector.
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3.5.2 The small θ approximation

A fundamental component of both the original complex shock filter and the subsequent
hybrid shock filter, the θ parameter is a common parameter of the two filters, first defined
and analyzed by Gilboa et al. in [GZS01] in the context of complex diffusion. Later,
this context was extended to encompass the notion of complex shock filtering, [GSZ02b],
completely redefining this notion and fundamentally changing the core aspect of the for-
malism.

This alternative approach defines the image function as a complex function, where
the real part is the actual time evolving filtered image, while the imaginary part is the
edge detector based on which the complex shock filtering is performed. Due to this
natural parallel evolution of the two key components of shock filtering, the complex shock
filter successfully deals with noise as an input contaminant, thus allowing for a complete
deblurring–denoising image restoration approach.

In a standardized mathematical framework, the complex formulation does not natu-
rally behaves as a shock filter–edge detector tandem, hence the necessity of adjusting the
initial definition in order to describe this desired behavior. The small θ approximation,
as advocated in [GZS01] and at length in [Gil04] is the necessary and sufficient condition
for having the imaginary part of the image function behave like a robust edge detector.

The importance of the small θ approximation is illustrated in Fig. 3.11 for the gen-
eralized GB+AWGN scenario, with the RMSE3 used as a control similarity measure,
measuring the divergent behavior of the filter according to the different values of θ. The
RMSE is computed between the “ideal” image I and the time evolving version ∂I

∂t
of the

contaminated initial image I0. As θ moves farther and farther away from 0, the hybrid
shock filter exhibits an increasingly divergent behavior, showing that the complex frame-
work approximates the filter–edge detector paradigm only if θ is small enough. The filter
evolution is illustrated for t = 100s, where t = n · dt with n = 0 . . . Nn

4 the nth time
iteration and dt the time discretization step size.

Fig. 3.11 – The small θ approximation and its influence on the stability of the hybrid
shock filter.

3Root Mean Square Error
4Disambiguation: in other cases n denotes the normal to the image space Ω, the distinction is always

made by clearly defining the meaning of n according to its current use.
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3.5.3 The f1 and f2 control functions

A key component of the hybrid shock filter formulation, the f1(t) and f2(t) control func-
tions are responsible, as previously mentioned, with controlling the nature of the filter,
i.e., controlling the transition of the filter’s behavior from an exclusively complex one to
an exclusively real one.

The current set of control functions employed by the hybrid shock filter is defined as
follows:

f1(T1i, T1s) =


1, n < T1i

1− n− T1i

T1s − T1i

, T1i 6 n < T1s

0, n > T1s

f2(T2i, T2s) =


0, n < T2i

n− T2i

T2s − T2i

, T2i 6 n < T2s

1, n > T2s

(3.26)

with n = 0 . . . Nn − 1 and T1i, T1s, T2i, T2s ∈ [0, Nn − 1].

The hybrid shock filter’s overall behavior, weighted by its control functions f1 and
f2, can be summarized as follows:

(i) f1 = 1 and f2 = 0 – the filter behaves predominantly as a denoising filter. This
behavior is required in order to effectively deal with the AWGN. Thus, the hybrid
shock filter relies on its edge detector (imaginary part of the image function I) in
correctly detecting edges and contours in GB+AWGN scenarios.

(ii) f1, f2 ∈ (0, 1) – following the filter’s time evolution, after a certain number of it-
erations the AWGN is properly filtered. Thus, focusing the filtering process on
concurrent denoising and deblurring, which translates into a simultaneous evolution
of the two hybrid shock filter’s components, i.e., real and complex.

(iii) f1 = 0 and f2 = 1 – at the end of the filtering process, the hybrid shock filter acts
as an edge enhancement filter, filtering the GB through its real component.

(i) (ii) (iii)

(a)
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Fig. 3.12 – Hybrid shock filter control functions examples for Nn = 1000: (a) The (3.26)
control function set for T1i = 200, T1s = 500, T2i = 100, T2s = 700; (b) The alternative
control function set (3.27): f1(t) = cos(t) and f2(t) = sin(t).
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(a) (b)

Fig. 3.13 – Hybrid shock filter control functions GB+AWGN comparison for t = 2: (a)
Filtered result using the (3.26) control function set for T1i = 5, T1s = 15, T2i = 5, T2s =
15; (b) Filtered result using the (3.27) control function set.

Depending on the choice of the threshold parameters for f1 and f2 from (3.26), other
sub-behaviors can be obtained, some of them useful in specific test scenarios, others,
simply prolonging the filter’s time evolution without additional signal filtering.

Although the control function set (3.26) is adequate in defining and modeling the
desired behavior of the hybrid shock filter, for mild GB+AWGN contamination an alter-
native can be:

{
f1(ω) = cos(ω)

f2(ω) = sin(ω)
ω =

π

2
· n

Nn − 1
, n = 0 . . . Nn − 1 (3.27)

since it requires less parameters, yielding at the same time similar results to the (3.26)
set, as experimental tests have shown.

Fig. 3.12 illustrates the graphical representation of the two control function sets,
while Fig. 3.13 shows a comparative example of the hybrid shock filter employing the
aforementioned control function sets (3.26) and (3.27), respectively. In order to produce
an objective comparison, the same same of input parameters was used, i.e., t = 2s,
|λ| = 0.1, λ̃ = 0.5, a = 0.5 and θ = 0.001 and the same input image I0 (Fig. 3.5a) as for
the previously discussed shock filter models.

3.5.4 Adding coherence enhancement to the hybrid shock filter
formalism

Using the same reasoning and mathematical approach as Weickert in [Wei03] that lead to
the development of the CESF, the initial hybrid shock filter model (3.25) can be further
extended so as to possess coherence-enhancing properties. Employing the same structure
tensor construction (3.22) as the CESF and using a smoothed version of the input image
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(a) (b)

Fig. 3.14 – Coherence-enhancing hybrid shock filter example: (a) Original fingerprint
image [Bio11]; (b) Filtered image: t = 5, σ = 1 and ρ = 5.

Iσ = Gσ ∗ I, the hybrid shock filter can be rewritten as:



Re

(
∂I

∂t

)
=− 2

π
arctan

(
a · Im(I)

θ

)
f1(t)|∇I| − sgn

(
Re(Iσww)

)
f2(t)|∇I|

+ f1(t)
(

Re(λ) Re(Iηη)− Im(λ) Im(Iηη) + λ̃Re(Iξξ)
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(3.28)

For illustrating the coherence-enhancing property of the hybrid shock filter (3.28) an
original fingerprint image from the FVC2000 fingerprint database [Bio11] (Fig. 3.14a) is
used, resulting a filtered image (Fig. 3.14b) for t = 5s with |λ| = 0.1, λ̃ = 0.5, a = 0.5,
θ = 0.01 and the control function set (3.27).

3.6 Experimental analysis

The experimental analysis will be divided from a functional point of view into the following
parts:

� Parameter and stability analysis – with focus on testing the model’s key parameters
and their behavior in generalized GB+AWGN test scenarios.

� Comparative analysis – using existing models, the hybrid shock filter will be tested
against those models and its performances qualitatively assessed from an objective
perspective.

� Coherence-enhancing capability assessment – testing the coherence-enhancing ver-
sion of the hybrid shock filter (3.28) from a comparative point of view against similar
filters.
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3.6.1 Image quality assessment

In performing an unbiased experimental analysis, objective image quality assessment is of
paramount importance in image processing, dedicated research being conducted in order
to improve and diversify quality metrics and measurement protocols. Quality metrics can
be classified into two main categories:

� Objective evaluation metrics that require a reference image
� Objective evaluation metrics that do not require a reference image

Since this chapter has been dedicated to an image restoration paradigm, it is implied
by the definition of image restoration itself, that the process restores a real image I0

to its previously “ideal” state I. Therefore, the most appropriate evaluation metrics for
this particular case are the ones that use a reference image, since in a controlled test
environment the “ideal” image can be a priori known or generated – when dealing with
synthetic test images.

Among the objective quality metrics that require a reference image, there are the
classic ones, such as the RMSE, mathematically defined as:

RMSE(IR, IT ) =

√√√√√√
N−1∑
i=0

M−1∑
j=0

[IR(i, j)− IT (i, j)]2

M ×N
(3.29)

where the discrete image space is defined as in (2.61) for M × N images and IR is the
reference image, while IT is the test image.

A closely related quality metric to the RMSE is the PSNR5, defined as:

PSNR(IR, IT ) = 20 lg

(
L

RMSE(IR, IT )

)
(3.30)

where L = 2bits per pixel−1 is the the dynamic range of I, e.g., for grayscale images L = 255.

Another standard quality metric is the SCC6, mathematically expressed as:

SCC(IR, IT ) =

N−1∑
i=0

M−1∑
j=0

[
IR(i, j)− ĪR

]
·
[
IT (i, j)− ĪT

]
√√√√N−1∑

i=0

M−1∑
j=0

[
IR(i, j)− ĪR

]2 · N−1∑
i=0

M−1∑
j=0

[
IT (i, j)− ĪT

]2 (3.31)

with ĪR and ĪT the mean values of the reference image and the test image, respectively.

A statistical measure, emerged as an alternative to the RMSE, the MI7 measures the
degree of dependence between two random variables and it is defined as:

MI
RT

(IR, IT ) =
∑
IR,IT

p
RT

(IR, IT ) · lg p
RT

(IR, IT )

p
R

(IR) · p
T
(IT )

(3.32)

5Peak Signal-to-Noise Ratio
6Sample Correlation Coefficient
7Mutual Information
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where IR and IT are the two random variables, p
RT

(IR, IT ) is the joint distribution and
p
R

(IR) · p
T
(IT ) is the distribution associated with the case of complete independence

between the two random variables.

The quality metrics presented so far have one thing in common, they are all computed
using a per-pixel approach, measuring the differences between any two pixels, one being
the reference and the other the test sample. In image processing this is often insufficient,
since the aforementioned metrics are unable to a account for visual perception or structural
information [WB09]. This topic, of thoroughly and precisely measuring visual perception
and other complex image data as a quality metric quantity is a research subject on its
own and will not be detailed in this thesis.

Among the most relevant quality metrics belonging to the new wave of dedicated
image quality assessment tools is the SSIM8 developed by Wang et al. [WBSS04], a
further development of the original Universal Image Quality Index [WB02]:

SSIM(IR, IT ) =
(2µ

R
µ
T

+ c1)(2σ
RT

+ c2)

(µ2
R

+ µ2
T

+ c1)(σ2
R

+ σ2
T

+ c2)
(3.33)

with µ
R

the average of IR, µ
T

the average of IT , σ2
R

the variance of IR, σ2
T

the variance
of IT , σ

RT
the covariance of IR and IT , and c1 = (k1L)2, c2 = (k2L)2 two variables

that stabilize the division with weak denominator. L is the dynamic range of the image
functions and k1 = 0.01 and k2 = 0.03 by default.

Another important quality metric is the multiscale version of the SSIM, the MSSIM9,
also proposed by Wang et al. and detailed in [WSB03].

From the recently proposed image-dedicated quality metrics, worth mentioning are
the VSNR10 [CH07] and the VIF11 [SB06]. For additional information concerning these
quality metrics, i.e., the recently proposed ones, both from a theoretical and a numerical
implementation point of view, please refer to [Lab11].

In order to ensure an objective, unbiased quality assessment, all of the previously
mentioned quality metrics will be used under a third-party implementation, i.e., the
MeTriX MuX Visual Quality Assessment Package, available at [Gau11].

3.6.2 Hybrid shock filter parameter and stability analysis

Based on the initial parameter and stability analysis [LLT+10], the hybrid shock filter will
be experimentally tested in generalized GB+AWGN initial conditions using a synthetic
test image.

In carrying out the parameter analysis, as well as the stability and convergence study
of the hybrid shock filter, an experimental setting is defined, based on an initial synthetic
reference image (Fig. 3.15a) contaminated with a GB+AWGN-type contamination of σb =
5 and σn = 40, respectively (Fig. 3.15b).

Since the small θ parameter has been already illustrated (Fig. 3.11) for the same
experimental setting (Fig. 3.15), the parameter analysis will focus on testing the behavior

8Structural SIMilarity index
9Multiscale Structural SIMilarity index

10Visual Signal-to-Noise Ration
11Visual Information Fidelity
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(a) (b)

Fig. 3.15 – Hybrid shock filter parameter analysis experimental setting: (a) Reference
synthetic image; (b) GB(σb = 5)+AWGN(σn = 40) contaminated initial image I0.

of the parameter a controlling the slope of the edge detector’s sign function arctan, detector
which is none other than the imaginary part of the image function itself.

Based on the evolution of a, illustrated in Fig. 3.16, where the real component of the
hybrid shock filter is set to zero, it can be easily seen how the size of a influences the
filter’s behavior and, moreover, how the filter diverges, irrespective of a if parameterized
exclusively based on its imaginary component, i.e., using only its imaginary part as edge
detector.

Since the control function set can be defined either as (3.26) or as (3.27) it is interest-
ing to see how each set behaves under strong GB+AWGN conditions, with emphasis on
the former since it is more flexible due to its increased parametrization. The parameter
analysis is illustrated in Fig. 3.17, the filter’s parameters being the following: |λ| = 0.5,
λ̃ = 0.5, a = 0.55, dt = 0.1 and θ = 0.00001 for t = 100s with the control functions’
parameters detailed in Table 3.1.

Analyzing the test results from Fig. 3.17 the following conclusion can be drawn:
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Fig. 3.16 – Hybrid shock filter parameter analysis: behavior of the parameter a.
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Fig. 3.17 – Hybrid shock filter parameter analysis: control function sets behavior.

the hybrid shock filter performs better in the generalized GB+AWGN scenario when f1

has a short transient evolution from values different from 0, followed by a decreasing
characteristic to its inferior limit, i.e., 0; the f2 control function on the other hand, having
a complementary time characteristic, will exclusively control the filter’s real part without
affecting the imaginary part (which remains unchanged) that acts as an edge detector.

Another important remark that needs to be made is that for low SNR scenarios, the
control function set (3.26) is better suited than the (3.27) set since it allows for better
control, irrespective of the time parameter t.

Recalling the statement from §3.4.7, even if the Gilboa et al. [GSZ02b] complex
shock filter successfully deals with the AWGN contamination, there still persists the issue
of stability and convergence for high AWGN values. Hence, finding a proper balance
between effective noise filtering on the one hand, and stability and convergence on the
other remained an open issue for the previously discussed shock filters (§3.4).

The following test scenario is designed to demonstrate the stable time evolution of the
hybrid shock filter compared to the highly divergent behavior of the complex shock filter
[LLTB10b]. Fig. 3.18 illustrates the core principle behind the development of the hybrid
shock filter, which establishes its premise on finding the balance between robust denoising
and stability, thus achieving all desiderata for robust and reliable image restoration, within
the PDE-based shock filter framework.

The test results illustrated in Fig. 3.18 were obtained under the same experimental

Table 3.1 – f1(t) and f2(t) test parameters – Fig. 3.17

Test no. Parameters
T1i T1s T2i T2s

Test 1 150 250 200 1000
Test 2 150 100 100 900
Test 3 300 400 300 900
Test 4 300 320 300 1000
Test 5 cosine–sine control function set (3.27)
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Fig. 3.18 – Hybrid shock filter stability analysis.

setting, i.e., Fig. 3.15 for t = 1000s with |λ| = 0.5, λ̃ = 0.5, a = 0.55, dt = 0.1, θ =
0.00001, T1i = T1s = 60 and T2i = 60, T2s = 500. The divergent behavior of the complex
shock filter can be explained through its edge detector: although, redefining the image
space as a complex quantity and using the imaginary part of the image function as an
edge detector – under certain constraints (§3.5.2) – is an innovative approach and allowed
for a shock filter paradigm that was efficient at both denoising and deblurring, the same
edge detector is the cause of the complex filter’s long-term instability.

In other words, since the edge detector, i.e., imaginary part, is closely linked to the
image function itself, having a parallel time evolution of its own, every edge misalignment
from one iteration to the next will be exponentially amplified over time by the edge detec-
tor, causing edge shifting up to a point where they no longer, even remotely, correspond
to the initial image geometry.

3.6.3 Shock filters: a comparative analysis

This section will focus on presenting a comparative analysis between the hybrid shock
filter model and previously-developed, well-established ones, e.g., [OR90, AM94, KDA97a,
GSZ02b, RC03].

Using, for the last time the experimental setting illustrated in Fig. 3.15, the motiva-
tion for developing the hybrid shock filter, i.e., finding a proper balance between effective
noise filtering on the one hand, and stability and convergence on the other, is illustrated
in Fig. 3.19, describing the RMSE/time evolution of three filters, i.e., the classic shock
filter [OR90], the complex shock filter [GSZ02b] and the hybrid shock filter (3.25). The
RMSE computation was performed between the reference image Fig. 3.15a and each of
the three filtered results.

As it can be visually observed, the hybrid shock filter possesses the advantages of both
the classic shock filter – stable time evolution, steady-state solution – and the complex
shock filter, i.e., efficient AWGN filtering with concurrent GB deblurring.

Since any output image is considered to be information and according to the definition
of information, it represents an entity about which no prior knowledge is possessed, it is
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Fig. 3.19 – Comparative analysis based on the first experimental setting – Fig. 3.15.

impossible to a priori know the minimum value of the RMSE obtained by filtering. Thus,
the complex shock filter lacks the ability of maintaining a stable behavior – that leads to
a steady-state solution – long enough to ensure that its time evolution has reached the
minimum RMSE value before diverging.

So far the experimental analysis has focused on synthetic images, since they implicitly
provide the reference image and because certain particularities, like edges or junctions at
specific angles can be created as part of the synthetic image’s geometry. What synthetic
images lack is the complexity and stochastic nature of natural images.

To this end, the first experimental setting of the comparative analysis is based on
the House “natural” image, part of the USC-SIPI Image Database [Uni11]. The original
image (Fig. 3.20a) is subjected to a generalized GB+AWGN contamination with σb = 1
and σn = 10, resulting the initial image I0 (Fig. 3.20b). The evolution time of the four
filters is t = 50s and the parameter set is the following: σ = 1, c = 1, |λ| = 0.1, λ̃ = 0.5,
a = 0.5, dt = 0.1, θ = 0.00001, T1i = 40, T1s = 300 and T2i = 30, T2s = 350.

Even after a simple visual analysis, the differences in the filtered results are obvious,
the dual characteristic of the hybrid shock filter, i.e., efficient denoising coupled with a
stable-convergent behavior, being once again underlined. In order to ensure an objec-
tive comparative analysis, the experimental results are qualitatively assessed using the
previously described metrics (§3.6.1) as shown in Table 3.2.

The next experimental setting will test a progressive GB+AWGN contamination

Table 3.2 – Qualitative analysis results for the “Fig. 3.20” experimental setting

Filtered result Quality metrics
RMSE PSNR MI SSIM MSSIM VSNR VIF

GB+AWGN 12.186 26.413 1.512 0.583 0.928 33.302 0.339
Osher–Rudin 17.676 23.182 1.37 0.446 0.883 20.184 0.248
Alvarez–Mazorra 18.176 22.94 1.374 0.689 0.837 14.458 0.173
Gilboa et al. 20.036 22.094 1.485 0.681 0.852 13.147 0.125
Hybrid shock filter 9.264 28.794 1.633 0.785 0.951 21.767 0.33
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(a) (b) (c)

(d) (e) (f)

Fig. 3.20 – Shock filters – comparative analysis: (a) Reference House image; (b) GB(σb =
1)+AWGN(σn = 10) contaminated initial image I0; (c) Osher–Rudin result; (d) Alvarez–
Mazorra result; (e) Gilboa et al. result; (f) Hybrid shock filter result.

scenario, where the reference test image (Fig. 3.21a) is a Gaussian pre-smoothed (σ = 0.6)
version of the 512× 512 pixels, 8 bits/pixel gray scale Fishing Boat image from [Uni11],
as the original contained an unknown noise degradation. Since shock filters are implicitly
designed to filter only Gaussian-type interference it was important to work with a unknown
noise-free reference image.

All tested filters were implemented according to their original description, while the
hybrid shock filter’s numerical model was discretized using finite differences approximation
schemes.

For the first part of this experimental setting (Fig. 3.21) a GB of σb = 1.5 with an
overlaid AWGN of σn = 5 contaminant has been chosen, which is considered to be a mild

Table 3.3 – Qualitative analysis results for the “Fig. 3.21” experimental setting

Filtered result Quality metrics
RMSE PSNR SCC MI SSIM MSSIM VSNR VIF

GB+AWGN 9.502 28.573 0.978 1.824 0.729 0.943 18.96 0.349
Osher–Rudin 11.017 27.289 0.97 1.661 0.66 0.936 19.898 0.322
Alvarez–Mazorra 9.041 29.006 0.98 2.021 0.822 0.945 18.097 0.309
Remaki–Cheriet 12.434 26.237 0.979 2.103 0.828 0.947 16.454 0.331
Gilboa et al. 9.084 28.965 0.98 2.032 0.828 0.944 17.266 0.329
Hybrid shock filter 8.399 29.645 0.983 2.094 0.844 0.952 18.246 0.358
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 3.21 – Shock filters – comparative analysis: (a) Reference Fishing Boat image; (b)
GB(σb = 1.5)+AWGN(σn = 5) contaminated initial image I0; (c) Osher–Rudin result;
(d) Alvarez–Mazorra result; (e) Remaki–Cheriet result; (f) Gilboa et al. result; (g) Hybrid
shock filter result.

GB+AWGN signal contamination.

The filter parametrization can be summarized as follows: t = 2s, dt = 0.1, σ = 0.5,
c = 1, τ = 1 |λ| = 0.1 λ̃ = 0.5, a = 0.5, θ = 0.01 and T1i = 16, T1s = 19, T2i = 17,
T2s = 18. All previous parameters comprise the combined parameter pool common to
all aforementioned filters and were empirically chosen to ensure a minimum difference in
filter parametrization, where applicable. From a qualitative point of view, the test results
are summarized in Table 3.3.

For the second part of the experimental setting (Fig. 3.22) a GB of σb = 3 with
an overlaid AWGN of σn = 10 contaminant has been chosen, regarded as a strong
GB+AWGN signal contamination. Fig. 3.22 illustrates the filtered results, while the qual-
itative analysis is summarized in Table 3.4.

For this part of the experimental setting, the only input parameters that have changed

Table 3.4 – Qualitative analysis results for the “Fig. 3.22” experimental setting

Filtered result Quality metrics
RMSE PSNR SCC MI SSIM MSSIM VSNR VIF

GB+AWGN 16.74 23.655 0.93 1.199 0.401 0.806 13.097 0.122
Osher–Rudin 19.96 22.127 0.901 1.041 0.292 0.764 12.901 0.1
Alvarez–Mazorra 15.072 24.567 0.944 1.38 0.653 0.82 11.455 0.101
Remaki–Cheriet 14.326 25.007 0.952 1.507 0.666 0.848 11.943 0.136
Gilboa et al. 14.812 24.718 0.946 1.425 0.671 0.824 11.62 0.104
Hybrid shock filter 12.668 26.076 0.961 1.6 0.727 0.879 13.082 0.183
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Fig. 3.22 – Shock filters – comparative analysis: (a) Reference Fishing Boat image; (b)
GB(σb = 3)+AWGN(σn = 10) contaminated initial image I0; (c) Osher–Rudin result; (d)
Alvarez–Mazorra result; (e) Remaki–Cheriet result; (f) Gilboa et al. result; (g) Hybrid
shock filter result.

are: t = 20s and the empirically chosen threshold parameters of the hybrid shock filter,
T1i = 50, T1s = 70, T2i = 60 and T2s = 180.

After reviewing the data from the two main experimental settings, i.e., Fig. 3.20 and
Fig. 3.21 & Fig. 3.22, and analyzing the quality metrics measurements from Table 3.2 -
Table 3.4 the following remarks need to be made:

� As already mentioned in §3.6.1, the quality metrics used for the experimental analy-
sis cover a wide range of image properties, measuring denoising capabilities (RMSE,
PSNR), image fidelity (MI, SCC, VIF) or edge enhancement and structure preser-
vation (SSIM, MSSIM). By analyzing the measured data using these indicators,
conclusions regarding how each filter works and how well its performs in a complete
image restoration scenario, such as the GB+AWGN filtering, can be formulated.

� In both experimental settings, the measured data indicates that the hybrid shock fil-
ter effectively behaves as any standard shock filter would, that is properly enhancing
edges as indicated by the highest SSIM and MSSIM values in both scenarios.

� On the other hand, the hybrid shock filter also performs well as a denoising filter,
as indicated by the highest measured RMSE and PSNR, a task which traditionally
is outside the scope of shock filters. This is an important feature since denoising is
performed in this case simultaneously with edge enhancement, making the hybrid
shock filter a complex and versatile image restoration tool.

� Achieving these performances concurrently, while providing a result that converges
toward the reference image, as indicated by the MI, VIF or the SCC was the un-
derlying reason to further study shock filter theory, which ultimately lead to the
development of the hybrid shock filter model.
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3.6.4 The coherence-enhancing hybrid shock filter: experimen-
tal analysis

As stated in the beginning of §3.6 another interesting concept surrounding shock filters
is coherence enhancement, introduced for the first time as part of the general shock filter
formalism by Weickert [Wei03]. Weickert’s CESF, discussed in §3.4.5 proves that shock
filters can perform additional tasks to that of edge enhancement if properly conditioned
an model, a proof to that statement being the proposed hybrid shock filter itself. Since the
CESF model is assumed to perform concurrent deblurring and coherence enhancement,
i.e., edge completion, it is just as natural to assume a broader application, where the
initial image is also contaminated by an AWGN source.

Having this generalized scenario as prerequisite, the coherence-enhancing hybrid

(a) (b) (c)

(d) (e)

Fig. 3.23 – Coherence enhancement and shock filters – comparative analysis: (a) Ref-
erence fingerprint image; (b) GB(σb = 10)+AWGN(σn = 25) contaminated initial image
I0; (c) Gilboa et al. result; (d) Weickert’s CESF result; (e) Coherence-enhancing hybrid
shock filter result and detailed view of the coherence-enhancing effect.
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Table 3.5 – Qualitative analysis results – Fig. 3.23 experimental setting

Filtered result Quality metrics
RMSE PSNR MI SSIM MSSIM VSNR VIF

GB+AWGN 63.217 12.114 1.032 0.372 0.572 5.014 0.08
Gilboa et al. 65.471 11.809 0.84 0.519 0.561 5.167 0.04
Weickert CESF 62.394 12.227 0.935 0.289 0.577 5.857 0.059
Hybrid shock filter 61.203 12.395 0.995 0.486 0.627 5.576 0.059

shock filter (3.28) [LLTB10a, LLBT11] is intended to fulfill a triple task: denoising, de-
blurring and coherence enhancement, simultaneously. It is an empirically proven fact that
when attempting to develop too generalized tools, they tend to perform a multitude of
tasks, but none of them particularly well. In order to refute this rule, or more accurately
to provide the exception to it, the following test scenario is set in place: an “incomplete”
fingerprint image, in the sense that it requires ridge completion, thus suited for an edge-
enhancing-like processing is first blurred with a Gaussian kernel of σb = 10 and then
contaminated with an AWGN of σn = 25.

Since the main purpose of this experimental setting is to test the shock filters’
coherence-enhancing ability in GB+AWGN scenarios, only the more relevant filters are
tested, i.e., Weickert’s CESF, naturally, the Gilboa et al. complex shock filter, due to
its dual denoising–deblurring nature, and last but not least, the hybrid shock filter, re-
defined as described by (3.28). Due to the image size and the nature of the process, the
evolution time is set to t = 100s. The results are illustrated in Fig. 3.23 and qualitatively
synthesized in Table 3.5.

Since this test scenario is different from the others in the sense that it introduces and
tests the notion of coherence enhancement, the classic approach of assessing the results’
quality is only partly suitable, due to the nature of the performed processing. In other
words, coherence enhancement is a process best defined as image enhancement, like image
inpainting or image fusion, since it brings additional information to the processed result,
thus enhancing its quality. The additional information is built using existing information
and a given decision criterion, with a set of rules based on which the process evolves over
time.

It is a well established fact that for image enhancement tasks, determining the quality
of the processed result is not straightforward since the reference is not known a priori,
an ideal initial image, defeating the purpose of image enhancement. The enhanced result
represents an improved version of the initial image, not only a restored one, hence directly
comparing it with its references is not entirely accurate in assessing its quality.

The quality metrics used so far, reveal only in part the qualitative differences between
reference image and filtered result. Even so, the denoising capability is expressed in terms
of RMSE and PSNR, with the hybrid shock filter yielding the best result for both, while
the edge enhancement and to some extend the coherence-enhancing property is quantified
by the SSIM and its multiscale version, the MSSIM. As it can be seen in Table 3.5, the
highest values belong, once again to the hybrid shock filter.

Thus, the previous experimental setting confirms that the hybrid shock filter model
(3.25) can be successfully extended to include coherence-enhancing capabilities (3.28)
without any tradeoff between range of application and filtering performance.
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3.7 Conclusion

The development of the hybrid shock filter has managed to establish a balance between
robust image restoration prerequisites and stability and convergence. The experimental
results in §3.6 clearly indicate, not only that the hybrid shock filter performs well for noise
filtering, as shown by the highest RMSE and PSNR values in all proposed experimental
settings, but also that it surpasses compared filters in edge enhancement, as indicated by
the SSIM and MSSIM values – specifically defined to measure edge enhancement quality.

The most important quality of the hybrid shock filter is that it achieves image de-
noising with edge enhancement simultaneously, making it a versatile and useful image
processing tool. Its versatility can be further extended by adding a coherence-enhancing
component to the initial mathematical model (3.25), thus making possible the successful
use of the extended hybrid shock filter model (3.28) in coherence enhancing scenarios, like
the ones experimentally analyzed in §3.6.4. In this case, the initial GB+AWGN is kept,
adding to the image restoration scenario the requirement of coherence enhancement.

Potential further work will concentrate on improving the current hybrid shock filter
formulation by:

� experimenting with alternative types of control functions, making them to be im-
age dependent, discriminating between homogeneous and nonhomogeneous regions
within the image.

� inserting into the initial model an explicit more sophisticated anisotropic steering
component.

� studying the potential of a localized or semi-localized orientation indicator, that can
be used as argument for the strength of the filtering process and the definition of
the control function set.
and

� using more sophisticated discretization schemes and tensor-driven image restoration.

All of the aforementioned ideas would help improving the filter’s performance, but to what
extent remains to be determined by experimental analysis.

In conclusion, the modular character of the hybrid shock filter allows not only to
define different sets of control functions, to best suit various image restoration tasks –
according to the nature of the processed images, but also to extend its use to coherence-
enhancing practical tasks, such as fingerprint restoration.

Albeit, not the first unifying approach in terms of concurrent deblurring and denois-
ing, the hybrid shock filter helps consolidate the principle of a combined image restoration
process, reiterating at the same time the versatility and effectiveness of PDEs as image
processing tools. Furthermore, the proposed model provides a glimpse at the feasibility
of tackling complex problems in a structured, simultaneous manner, paving the way for
the joint restoration–enhancement proposed approach, detailed in Chapter 5.

In essence, the proposed hybrid shock filter is an intermediary step toward validat-
ing the even more general concept, of a coalescent image restoration and enhancement
paradigm, emphasizing at the same time, the ubiquitous nature of PDEs in image pro-
cessing.

In this context, the hybrid shock filter as a processing tool, and Chapter 3 as a
constituent part of this thesis, represent an essential intermediary stage both in terms
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of formalism and thesis composition, bridging image restoration (Chapter 2) to image
enhancement (Chapter 4) and ultimately to joint image restoration and enhancement
(Chapter 5).

C 2 C

Deblurring as an image restoration concept – §3.2 – provided a quick overview of
deblurring in the context of image restoration (in general) and addressed and viewed
as inverse diffusion (in particular), in the context of PDE-based image processing,
in particular. Even though the notions of denoising and deblurring represent to
facets of image restoration, the many differences between them, from contamination
source to filtering, required a separate discussion, hence the inclusion of PDE-based
deblurring fundamentals in Chapter 3 and not in Chapter 2.

Concurrent denoising and deblurring – §3.3 – before discussing the first proposi-
tion of this thesis, i.e., the hybrid shock filter is was necessary to provide a problem
statement in the context of image restoration and of what was expected from the
proposed model in terms of practical behavior and filtering performance.

Shock filters – §3.4 – since PDE-based deblurring as an image restoration paradigm
already comprises a series of existing proposition, starting with the classic shock
filter, it was necessary to provide a short overview of the existing approaches, serving
for both problem assessment as well as for experimental comparison and analysis.

The hybrid shock filter – §3.5 – introduced the first proposition of this thesis, i.e., the
hybrid shock filter, a PDE-based image restoration paradigm for image deblurring
with simultaneous denoising. The analysis of the proposed model was carried out
along the following lines:

� mathematical definition,
� parameter discussion,
� extended model (adding coherence enhancement to the initial definition).

Experimental analysis – §3.6 – provided the practical analysis of the proposed hybrid
shock filter, experimentally assessing the following:

� parameter and stability analysis,
� comparative analysis, using as filtering reference existing shock filter models,

described in §3.4,
� experimental analysis of the extended model on a particular type of input

images, i.e., fingerprint images, to properly assess coherence enhancement.

In order to properly analyze and compare the proposed model, it was also a priori
required to present the employed objective quality metrics.

Conclusion – §3.7 – presented the conclusions derived from the experimental analysis
for the proposed hybrid shock filter while at the same time offering several pointers
in the direction of further improving and extending the proposed model.
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4.1 Motivation

This chapter represents the transition in terms of topic, from image restoration to image
enhancement. Its intended purpose is to lay down the fundamentals required for a basic
understanding of the key notions and concepts describing image fusion, and thus answer
the basic questions of:

� What is fusion in general and image fusion in particular?
� Why use fusion in image processing?
� When is image fusion necessary?
� How does it work?

Naturally, the contents of this chapter go beyond answering these basic questions,
and further address more complex issues in the area of image fusion, like concurrent image
fusion and denoising, truly bridging the two image processing tasks, i.e., restoration and
enhancement. This new paradigm (detailed in Chapter 5) also brings new difficulties
in properly assessing the quality of the results produced by such methods, and, in part,
the purpose of this chapter is to underline the complexity of not only the task itself but
of quantifying its results as well, raising the intricate questions of how to properly assess
the image quality in concurrent fusion and denoising scenarios? and how much of the
actual quality of the results from such scenarios is lost in the quality assessment process,
on account of not having a truly dedicated quality metric?

In terms of contents, this chapter is organized as follows: the first part presents
the main definitions, fusion vocabulary and classifications required for having a basic
knowledge of this particular image processing paradigm, followed by a brief analysis of
the current image fusion methodology, i.e., image fusion formalisms. Afterward, the
discussion is further narrowed in scope to existing variational approaches in image fusion,
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a direct link to the proposed paradigm, discussed in Chapter 5. Before concluding this
chapter, two interconnected aspects of image fusion will be discussed: quality assessment,
covering dedicated quality metrics and their particular properties, and the related subject
of properly choosing a reference image when assessing the quality of a fused image.

4.2 Image fusion: a short introduction

As an integral component of image processing, image fusion is, according to the definitions
discussed in §2.2, an image enhancement paradigm with wide spread applicability both
in terms of image types (image acquisition-wise) and in terms of application domain, e.g.,
image classification, computer vision, remote sensing, medical imaging, concealed weapon
detection, multifocus image fusion, digital camera application, battlefield monitoring, etc.
As an image enhancement paradigm, image fusion can be approached in terms of theoret-
ical formalization using any of the general image processing techniques, briefly analyzed
in §2.2.

Image fusion first emerged as a distinct image processing tool in the attempt to
emulate the practice of image interpretation experts, as noted by Bloch and Mâıtre in
[BM08]. Images, as an additional source of information, are also integrated more general
fusion processes, such as multi-sensor fusion or data (information) fusion, concepts that
will be properly defined and classified in §4.3.

In very simplistic terms, serving the purpose of an interim definition, image fusion
can be defined as the process of combining multiple input images into a single composite
image, often referred to as fused image. According to Mitchell [Mit10], the aim of image
fusion is to create from this collection of input images a single output image which contains
a better description of the scene than the one provided by any of the individual input
images. The basic problem of image fusion is to determine what is the best procedure of
combining the input images so as to maximize the useful information contained by the
fused image [Mit10].

In a strictly image processing context, image fusion represents a key decision making
component in complex and usually poorly formalized situations, in which each input image
provides and element of “truth” that contributes, in collaboration and in opposition with
the rest of the input images to the overall interpretation of the scene described by these
input images [BM08].

According to Mitchell [Mit10], the main benefits of image fusion are: (i) increased
reliability, (ii) reduced uncertainty, (iii) robust system performance, (iv) com-
pact information representation, (v) extended range of operation, and (vi) ex-
tended spatial and temporal coverage.

Nowadays, image fusion is not restricted to the rather traditional sense of the word
“image”, since today’s imaging sensors comprise optical cameras, MMW1 cameras, IR2

cameras, x-ray and radar devices. Therefore, the broader definitions that previously
applied only to multisensor fusion are now applicable to image fusion, when dealing with
different image acquisition techniques, e.g., an optical image fused with and IR image.

1millimeter wave
2infrared
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4.3 Definitions and classifications

In acquiring a basic understanding of image fusion both as a process and as a theoretical
concept, it is helpful to analyze the notion from a broader perspective, i.e., data fusion.
In the scientific community the fusion process is often referred to using different names,
e.g., sensor fusion, information fusion, and although they may seem synonymous, they
only partly overlap, application-wise, as pointed out by Steinberg et al. in [SBW99].

According to the Oxford dictionary, the term fusion refers to “the process or result
of joining two or more things together to form a single entity”. Similarly, the Merriam-
Webster dictionary defines fusion as “a merging of diverse, distinct, or separate el-
ements into a unified whole”. In terms of a comprehensive approach to understanding
fusion both as a process and as a research field, these definitions are inadequate since
they do not convey the full meaning of fusion as an image processing technique, this, of
course being outside their scope.

Over the years, numerous researchers have tried to define both in terms of purpose
and of meaning, the concept of fusion, linking it to various application domains, accord-
ing to their specific field of research. A review of the most pertinent definitions should
necessarily include the following ones:

Hall [Hal92] – “Multisensor data fusion seeks to combine data from multiple sensors to
perform inferences that may not be possible from a single sensor alone.”

Wald [Wal98] – “Data fusion is a formal framework in which are expressed means and
tools for the alliance of data of the same scene originating from different sources.
It aims at obtaining information of greater quality; the exact definition of greater
quality will depend upon the application.”

Gonsalves et al. [GCTO00] – “The overall goal of data fusion is to combine data from
multiple sources into information that has greater benefit than what would have
been derived from each of the contributing parts.”

From a complexity point of view, image fusion is classified using the following levels
of representation [Sam03, Sam04]:

signal-level

image-level, also known as pixel-level – is defined as the combination of the raw
data from multiple source images into a single fused image. This level consists
in combining the signals provided by different sensors without any preprocessing
performed on the input images. For the fusion process to be robust the sensors
must be similar and, consequently, the signals must be commensurate. The way in
which the signals are combined depends on the relationships that exist between the
sensors. A fused image is obtained by “summing” the input images, fused result that
can be further used for feature extraction purposes either as a preprocessing stage
or as an intermediary image fusion stage.

feature or symbol-level – relies on the extracted features from each sensor and an
identity declaration based on those extracted features. The identity declaration
process comprises several methods, such as knowledge-based approaches (e.g., ex-
pert system, fuzzy logic) or training based approaches (e.g., discriminant analysis,
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neural networks, Bayesian techniques, K-nearest neighbor methods, center mobile
algorithms).

decision-level – the highest level of complexity in image fusion; uses the identity dec-
laration provided by each sensor, further processed by means of: e.g., heuristic
methods, Bayesian techniques, or the Dempster-Shafer approach – a generalization
of Bayesian techniques applied to data with a high level of uncertainty.

In other words, image fusion produces a single fused image by combining information from
a set of source images, using one of the previously described fusion levels. The purpose of
image fusion is to obtain a fused image that possesses a greater information content than
any of the individual sources alone. Due to the addition of redundant and complementary
information the reliability and overall detail of the image is increased.

In a multisensor environment, for example, pixel-level fusion can generate a fused
image that provides the best description of a scene. In this case, each sensor provides
complementary information that is combined into a fused image. The obtained fused
image can be used by other algorithms for further processing or by human end-users –
who cannot easily visualize and combine the results from multiple sensors without the aid
of digital image processing tools.

The processed data, the basis of every fusion scenario, can be classified into:

� multisensor data
� multi-temporal data
� multiresolution data
� multi-parameter data

Since its emergence as a stand-alone research field, image fusion has seen a rapid
expansion, encompassing numerous fusion models based on various mathematical for-
malisms, thus requiring a classification according to complexity, employed formalism and
purpose. Such a classification is proposed by Blum et al. in [BXZ06]:

� Multiscale-decomposition-based image fusion

– Pyramid Transform (PT), e.g., Laplacian pyramid, contrast pyramid, gradient
pyramid, steerable pyramid

– Discrete Wavelet Transform (DWT)
– Discrete Wavelet Frame (DWF)

� Non-multiscale-decomposition-based image fusion

– pixel-level weighted averaging, e.g., Addition, Robust Addition, Subtraction,
Division, Multiplication, Adaptive Weight Averaging(AWA)

– image subspace techniques, e.g., Principal Component Analysis (PCA), Inde-
pendent Component Analysis (ICA), nonnegative matrix factorization (NMF),
Canonical Correlation Analysis (CCA), Linear Discriminant Analysis (LDA)

– nonlinear methods
– estimation theory-based methods
– color composite fusion
– artificial neural networks



4.4. Methodology in image fusion: an overview 79

The intended purpose of all previous definitions and classifications is to properly de-
fine and position the proposed fusion method, detailed in Chapter 5, in order to correctly
juxtapose it against the existing fusion methodology. This is an extremely important fac-
tor in the comparative analysis since comparing methods of different levels of complexity,
e.g., pixel-level with decision-level, does not provide an adequate amount of relevancy,
since it would be like comparing apples and oranges (different comparison criteria apply
to each fusion level and thus, comparison between different levels is not straightforward).

Therefore, in the context of the previously discussed definitions and classification,
the proposed fusion model (detailed in Chapter 5) can be defined as: a pixel-level, non-
multiscale-decomposition-based, nonlinear method, which can be applied to multi-sensor
or multi-temporal data. Furthermore, the definitions of data fusion were provided to:
clearly delineate the purpose of image fusion, underline the general expectations in terms
of fused result and last but not least to provide the basic quality assessment guidelines.

This section has covered so far the most pertinent definitions, classifications and
objectives pertaining to data fusion in general and image fusion in particular, and in order
to attain its intended purpose it cannot close without any reference to the requirements
of image fusion. In image fusion, the fused result is usually a single image Ĩ, on which
the following requirements are imposed [Mit10]:

� Pattern conservation – The fusion process should preserve all relevant information
of the input images in the composite image.

� Artifact free – The fusion scheme should not introduce any artifacts or inconsisten-
cies that would distract the human observer or alter subsequent image processing
stages.

� Invariance – The fusion scheme should be shift and rotational invariant, i.e., the
fused result should not depend on the location or orientation of an object in the
input image.

For time-evolving fusion paradigms, where the fusion data is a set of input images Is(t),
t ∈ [T1, T2], s ∈ {1, 2, . . . , S}, the fused result is an image Ĩ(t). In this case the following
additional requirements are imposed [Mit10]:

� Temporal stability – The fusion output should be temporally stable, that is, gray
level changes in Ĩ(t) should be present in at least one of the input images Is(t).

� Temporal consistency – Gray level changes which occur in the input images Is(t)
must be also present in the fused image Ĩ(t).

4.4 Methodology in image fusion: an overview

Since image fusion is nowadays a complex, stand-alone research field with fusion techniques
covering a large variety of mathematical formalisms and being classified into different lev-
els of complexity (§4.3), and considering the characteristics of the proposed image fusion
model, this section will not exhaustively cover the existing image fusion methodology. In
fact, it is meant to describe only the methods of relevance in acquiring a basic understand-
ing of image fusion, and which have a similar application range as the proposed model,
described in detail in Chapter 5. As a last remark of this paragraph, in order to provide
a structured analysis the selected image fusion methodology will be discussed according
to the Blum et al. [BXZ06] classification (§4.3).
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4.4.1 Non-multiscale-decomposition-based fusion techniques

From a complexity point of view, the most basic fusion techniques within this class are
pixel-level fusion methods that rely on simple pixel operations performed on the input
image’s values. In order to simplify the discussion and focus the interest on the fusion
methods themselves, it is assumed that the input images are spatially and temporally
aligned (where applicable), semantically equivalent and that the general image fusion
scenario is formulated using S input images I1, I2, . . . , IS.

4.4.1.1 Addition as a fusion paradigm

From an intuitive and mathematical point of view, the addition operation can be consid-
ered as the simplest image fusion example, where the fused image Ĩ represents the average
intensity value of the input images Is, with s ∈ {1, 2, . . . , S}, on a per-pixel basis. For a
pixel (m,n) the fused image Ĩ is expressed as:

Ĩ(m,n) =
1

S

S∑
s=1

Is(m,n) (4.1)

Despite its simplicity, addition as a fusion technique is widely used if the input
images are of the same modality [Mit10]. Although, this fusion method assumes semantic
alignment and requires very accurate spatial alignment, as pointed out by Mitchell [Mit10],
it also has the advantage of suppressing any noise, present in the input images. This
advantage relies on the theoretical property of certain types of noise, modeled by a uniform
random distribution, property that for a large enough number of input images – ideally
S →∞ – ensures noise cancelation, as a byproduct of the addition process.

Remark As noted in [Mit10], the pixel average technique has the disadvantage that it
tends to suppress salient image features producing a low contrast image with a “washed-
out” appearance. This effect can be alleviated, to some extent, by using a linear weighted
average of the input images.

Such an approach can be expressed as:

Ĩ(m,n) =

S∑
s=1

wsIs(m,n)

S∑
s=1

ws

(4.2)

where ws are preselected scalars, chosen so that each input image contributes to the fused
result with an amount a priori specified by some fusion criterion, defined according to
application requirements. A more efficient approach to selecting the ws weights is by
using the AWA technique in order to allow the weights to vary dynamically, according to
the amount of information contained in each input image Is.

An alternative altogether to the addition method (4.1) are robust averaging methods
such as the median operator :

Ĩ(m,n) = medians
(
Is(m,n)

)
(4.3)
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or the trimmed mean operator :

Ĩ(m,n) =
1

S − 2α

S−α∑
s=α+1

I(s)(m,n) (4.4)

where I(s)(m,n) = Il(m,n), if Il(m,n) is the lth largest gray level value for pixel (m,n),
while α is a small constant, often set to α = bS/20c.

Remark As previously mentioned, without going into detail, non-multiscale-decomposition-
based fusion techniques also include: fusion by means of subtraction, color space
image fusion, image subspace fusion, et al..

4.4.2 Multiscale-decomposition-based fusion techniques

Multiscale (multiresolution) techniques are the basis of a wide range of image processing
tools, from image compression to image coding, segmentation or filtering, and last but not
least, image fusion. This versatility resides in the fact that multiscale techniques closely
approximate the HVS3 in terms of perception and interpretation, since the HVS relies on
multiscale decomposition in order to completely assess a scene.

For instance, when analyzing a landscape, at first glance, only the coarser elements
are visible providing the first level of analysis, or in other words the first scale of represen-
tation. If that landscape is further analyzed, from a more detailed perspective, by taking
into account only parts of it, smaller and smaller representation scales are obtained, each
providing a new set of details, not visible before at larger scales. In essence, the same
image can be viewed at different scales, each of them with its own unique set of details
that cannot be seen at any other scale.

It is thus obvious how such a representational format could provide, in terms of in-
formation output, an exhaustive perspective of the analyzed image. Therefore, multiscale
techniques applied to image fusion problems, integrate the entire detail spectrum of a
multiscale representation into a single fused image, an immediate application as image
fusion tools being in satellite imagery. Although, their use in satellite imagery usually
deals with input images of different resolutions, multiscale fusion techniques perform just
as well on input images of the same resolution [Pop08].

According to Piella [Pie03], signals often contain physically relevant features at dif-
ferent scales of representation. Thus, for a comprehensive understanding of a signal, an
analysis over a broad range of resolutions is required, although, sometimes signals behave
in a similar way across different scales, i.e., scale-invariant signals. For signals that are
not scale-invariant, it cannot be a priori asserted at which scales the signal contains the
more relevant information, thus all representation scales are of equal importance, meaning
that the signal is uniformly analyzed across all representation scales.

In image fusion, multiscale techniques comprise three processing stages:

I. The decomposition (analysis) stage of each input image, which produces an approx-
imation image and one or more detail images.

II. The fusion stage, where for each decomposition scale a fusion criterion is applied.
III. The reciprocal of the decomposition operation, the recomposition (synthesis) stage,

which yields the fused image.

3Human Visual System
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Fig. 4.1 – [Mit10] – The pyramid representation of the multiscale analysis of an input
image I.

4.4.2.1 Pyramid-decomposition-based methods

According to Mitchell [Mit10], in pyramid-based multiscale analysis an input image I is
decomposed into a sequence of images Ik, k ∈ {1, 2, . . . , K} each of which captures the
information from I corresponding to the scale k. In the pyramid decomposition scheme,
as illustrated in Fig. 4.1 4, at the bottom of the pyramid is the image I0 – the original
input image I – followed at each successive level k by the image Ik. Each image Ik is
recursively constructed by low-pass filtering and downsampling the Ik−1 image. For the
pyramid representation example illustrated in Fig. 4.1, a dyadic multiscale analysis was
assumed, in which Ik has double the resolution of Ik+1.

Recalling the most representative pyramid-decomposition-based fusion methods, which
will be also used in the comparative analysis (§5.4.4):

� The Gaussian pyramid

� The Laplacian pyramid

� The contrast pyramid

� The FSD pyramid

� The gradient pyramid

4.4.2.2 Wavelet-based methods

An alternative to the “less” sophisticated pyramid transform decomposition methods is
centered on the wavelet concept, and it was first introduced as a multiscale decomposition
technique by Mallat in [Mal89]. The author argues that for efficiency reasons, successive
layers of a pyramid decomposition should include only the additional details, which are
not already available at preceding levels, this being the fundamental principle behind the
wavelet decomposition. Moreover, since the wavelet decomposition amounts to a process
of successive spatial filtering and sampling, the method has the property of simultaneously
being a multiscale and a multiresolution technique.

4Fig. 4.1 – the original pyramid representation can be found in [Mit10]
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Since both the wavelet transforms and the pyramid transforms are multiscale decom-
position methods, the matter of choosing one family of transforms over the other amounts
to analyzing which family possesses superior features for a given application field. In
their use as an image fusion framework, wavelets have proven to deliver a richer direc-
tional information content, to be more robust to contrast inversions, to yield a superior
fused result, in terms of SNR and visual perception [LMM95, LON+07].

The wavelet transforms share to some extent the pyramid transforms framework,
begin subjected to the same decomposition-recomposition process with the same analysis
stage. At each level, the wavelet function can be determined based on its mother wavelet.
The most commonly used wavelet families in image processing where proposed and defined
in [Dau92, CMW92].

The most important wavelet transforms employed in image fusion are the following:

� The Discrete Wavelet Transform

� The Undecimated Discrete Wavelet Transform

� The Shift-Invariant Discrete Wavelet Transform

Remark For the comparative analysis presented in §5.4.4 only fusion methods based on
the DWT and the SIDWT are used.

4.4.2.3 Fusion criteria in multiscale image fusion

As discussed at the beginning of §4.4.2, image fusion techniques based on a multiscale
decomposition are implemented using a three-stage approach, i.e., a decomposition stage,
a fusion stage and a recomposition stage. Since, the first and the last stages have been
discussed so far, emphasis will be placed on analyzing the most widely used fusion criteria
employed in the second stage of multiscale decomposition fusion methods.

This section is intended only as a synthesis of the most relevant decision criteria
in multiscale-decomposition-based fusion, a more detailed perspective can be found in
[ZB99, Pie03, PdlC04]. In multiscale image fusion, the input images are decomposed at
each level of decomposition into a detail image and an approximation image, and further
combined (fused) in order to generate to fused image Ĩ(k) at the kth level of decomposition.
Thus, the recomposition process will consist in creating a final fused result Ĩ from the
previously obtained decompositions Ĩ(k).

The fusion criteria are usually divided into two types of processes: a selection process,
of the multiscale representation, and the actual composition process, of the multiscale
sub-images into a fused sub-image, at each level of decomposition. A commonly used
fusion criterion, the choose max criterion, employs the two types of processes at different
stages of decompositions, as follows: at the final decomposition level K, based on all the
approximation input images at that level I

(K)
s , a mean value image Ĩ(K) is generated.

For the remaining K − 1 levels, which contain the detail images I
(k)
s , k = {1, . . . , K −

1}, a selection criterion is applied. In its entirety, the choose max fusion criterion is
mathematically expressed as:

Ĩ(K)(p|0) =
1

S

S∑
s=1

I(K)
s (p|0)

Ĩ(k)(p|s) = arg max
(
|I(k)
s (p|g)|

)
k = 1, . . . , K − 1; g = 1, . . . , G

(4.5)
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where S is the number of input images, K the last decomposition level, G the number of
directional filters, i.e., G = 4 for a gradient pyramid, and p the current pixel’s coordinates.

A more elaborate criterion – which resembles coefficient weighting based on a perti-
nence map – employing a saliency and match measure, is proposed by Burt and Kolczynski
in [BK93] in order to differentiate between the selection process and the weighting process
performed at each decomposition level. The match measure indicates the resemblance de-
gree between images, at each decomposition level and can be interpreted as follows: if its
value is high, the images are weighted, conversely, if its value is low, the image having
the highest saliency value is selected. The measures are defined for a 1 × 1, 3 × 3 or
5× 5 neighborhood while the saliency measure can be either the energy or the variance,
computed over the defined neighborhood. If the saliency measure is defined as an energy
measure:

sal(k)
s (p|g) =

∑
∆p∈W (k)

∣∣I(k)
s (p+ ∆n|g)

∣∣2 (4.6)

where W (k) is the defined neighborhood at level k. For the particular case of two input
images (A and B), the match measure is defined as:

mat
(k)
AB(p|g) =

2 ·
∑

∆p∈W (k)

I
(k)
A (p+ ∆p|g)I

(k)
B (p+ ∆p|g)

sal
(k)
A (p|g) + sal

(k)
B (p|g)

(4.7)

Based on (4.6) and (4.7) and using the two-input image scenario, the fusion process
is described by:

Ĩ(k)(p|g) = αA(p|g)I
(k)
A (p|g) + [1− αA(p|g)]I

(k)
B (p|g) (4.8)

where the αA(p|g) weight is defined as:

αA(p|g) =



1 if mat
(k)
AB(p|g) 6 τ and sal

(k)
A (p|g) > sal

(k)
B (p|g)

0 if mat
(k)
AB(p|g) 6 τ and sal

(k)
A (p|g) 6 sal

(k)
B (p|g)

1

2
+

1

2

(
1−mat

(k)
AB(p|g)

1− τ

)
if mat

(k)
AB(p|g) > τ and sal

(k)
A (p|g) > sal

(k)
B (p|g)

1

2
− 1

2

(
1−mat

(k)
AB(p|g)

1− τ

)
if mat

(k)
AB(p|g) > τ and sal

(k)
A (p|g) 6 sal

(k)
B (p|g)

(4.9)

where τ is a threshold, above which the input images IA and IB are considered alike. This
approach, and the similar consistency check approach, proposed by Li et al. in [LMM95],
allow to overcome the problem of region-based fusion, i.e., contrast inversion.

As pointed out by Pop [Pop08], another important aspect of multiscale decomposition
fusion is the selection of the appropriate number of decomposition levels for the multiscale
transform. Although, an exact way to determine the minimum number of decomposition
levels that would ensure a fused result of good quality does not exist, there exists a
direct link between the size of the objects within the images to be fused and the number
of decomposition levels. If this size is large, a higher number of decomposition levels is
required in order to ensure a quality fused result. Moreover, Rockinger and Fechner [RF98]
point out that, when using shift-variant multiscale methods the number of decomposition
levels is directly influenced by the object’s position and by the type of the filter used in
the decomposition process.
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4.5 Variational and PDE-based approaches to image

fusion

Like any other current image processing formalism (§2.2), PDE-based and variational
methods can be successfully employed as image fusion frameworks. Even more so, their
use can provide a series of advantages, in the form of the inherent properties of PDE and
variational techniques, discussed throughout this thesis. Since the two image processing
approaches a closely related, from a theoretical point of view, it seems only natural to
treat the subject of PDE-based and variational fusion techniques as a single entity.

A simple way of analyzing some of the most representative variational and PDE-
based approaches to image fusion, is to make use of a chronological classification, which
in turn can provide a parallel, intrinsic view of the evolution of such methods over the
years.

4.5.1 Socolinsky’s variational image fusion model

The method proposed by Socolinsky in [Soc00a, SW02] is developed around multispectral
and multisensor fusion applications in remote sensing, and its underlying principle states
that the fused image should have the same gradient vector map as the contrast vector
map measured across all input images Is, where s = {1, . . . , S}.

For a single image, Socolinsky’s approach relies on obtaining the gradient vector ∇I
from the structure tensor J(x, y) defined as:

J(x, y) =


∂2I

∂x2

∂I

∂x

∂I

∂y
∂I

∂x

∂I

∂y

∂2I

∂y2

 (4.10)

The gradient vector ∇I is determined from (4.10) as the eigenvector corresponding to
largest eigenvalue of J. For this particular structure tensor, the square root of the largest
eigenvalue is equal to the gradient norm |∇I|, while the second eigenvalue is equal to 0.

Extending the computation of the gradient vector to a set of input images, as it is
the case in a fusion scenario, is done by constructing the structure tensor according to the
Di Zenzo [Zen86] definition:

JS(x, y) =


S∑
s=1

∂2Is
∂x2

S∑
s=1

∂Is
∂x

∂Is
∂y

S∑
s=1

∂Is
∂x

∂Is
∂y

S∑
s=1

∂2Is
∂y2

 (4.11)

In (4.11) the combined structure tensor JS is constructed using equal contributions
from all the input images Is, a more complex approach being proposed in [Soc00b], where
the weighting coefficients are determined using an entropy function. The combined gra-
dient vector ∇Ĩ of the fused image Ĩ is equivalent to the first eigenvector V of JS, corre-
sponding to the largest eigenvalue of JS, the square root of this eigenvalue being called
by Socolinsky “multispectral contrast”.
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In brief, the variational fusion model proposed by Socolinsky works by establishing
the structure of the desired fused image: in every point of the fused image, the composite
gradient ∇Ĩ should have a magnitude equal to the absolute value of the “multispectral
contrast” and the direction of V ; and then formulating a minimization problem with a
solution that best approximates the desired fused image.

Since based on the decomposition of the structure tensor JS into eigenvalues and
eigenvectors only the orientation of V can be determined, the corresponding direction
needs to be chosen so as to be consistent with the one of the composite gradient [Soc00a].
The dominant eigenvector5 V of JS is expressed as:

V (x, y) = sgn

(
V (x, y) · ∇

[
S∑
s=1

Is(x, y)

])
V (x, y) (4.12)

Since the variational fusion process is expressed as the solution of a minimization
problem, the functional that requires minimizing, as proposed by Socolinsky, has the
following expression: ∫

Ω

∣∣∣∇Ĩ(x, y)− V (x, y)
∣∣∣2 dxdy (4.13)

and its associated Euler–Lagrange equation:

∆Ĩ = div V (4.14)

with Neumann boundary conditions.

For the discretization of (4.13) Socolinsky employs an explicit numerical scheme,
assuming an image defined on a finite grid of [0, X]× [0, Y ] with an initial “guess” Ĩ0, of
the form:

Ĩn+1
i,j = Ĩni,j +

1

4

[
∆Ĩni,j − (div V )i,j

]
(4.15)

with the Laplacian of Ĩ classically approximated as (2.77):

∆Ĩni,j =
∂2Ĩni,j
∂x2

+
∂2Ĩni,j
∂y2

= D−x [D+
x (Ĩni,j)] +D−y [D+

y (Ĩni,j)] (4.16)

where D±x/y is defined as (2.66).

The divergence operator is numerically expressed using a combination of forward and
backward differences, i.e., forward difference approximations in expressing the derivatives
within JS and backward difference approximations for expressing the actual divergence of
V .

Remark It is customary in image fusion problems, when an initialization of the fused
image is required, to use an Ĩ0 of the form (4.1).

Remark On the proposed variational fusion model: “convergence is guaranteed regardless
of the initial guess, and all solutions agree up to an overall additive constant” [SW02].

5The dominant eigenvector of a matrix is an eigenvector corresponding to the eigenvalue of largest
magnitude (for real numbers, largest absolute value) of that matrix.
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In the interest of computational speed, the author proposes adding to (4.15) over- and
under-relaxation, in order to speed convergence [SW02], thus the previous discretization
model becomes: 

Ĩ
n+ 1

2
i,j = Ĩni,j +

1

4

(
∆Ĩn − div V

)
i,j

Ĩn+1
i,j = (1− ω)Ĩni,j + ωĨ

n+ 1
2

i,j

(4.17)

where 0 6 ω 6 2 is a relaxation parameter, defined as:

ω =
2

1 +
√

1− ρ2
, for ρ =

cos(π/X) + cos(π/Y )

2
(4.18)

for a [0, X]× [0, Y ] image.

Remark According to [SW02], since the usual input images have X, Y > 100, the re-
laxation parameter ω is very close to 2, resulting in large speed improvements due to
over-relaxation.

Without trying to define a fusion model that implicitly yields a denoised fused image,
Socolinsky tackles the noise issue by redefining the original fusion model (4.15) in order
to exhibit an inherent noise robustness. This robustness is attained by constructing the
structure tensor JS using low-pass versions of the input images Is that lead to – using the
newly defined JS – the low-pass version of the fused image Ĩ. In obtaining the final fused
result Ĩ, the low-pass version of the fused image is added to the mean of the high-pass
versions of the input images Is.

Remark The averaging process of the high-pass versions of Is leads – in theory, for
S →∞ – to complete noise cancellation, if the noise is assumed to be of zero mean.

4.5.2 The John–Vorontsov variational fusion model

Representing the second major contribution in variational image fusion, the John–Vorontsov
model [JV05] is derived from robust error estimation theory, and amounts to obtaining
the fused image Ĩ from the input images I0

s by minimizing the following functional:

E(Ĩ) =

∫
Ω

ρ
(

(x, y), Ĩ(x, y), |∇Ĩ(x, y)|
)
dxdy (4.19)

where ρ(·) is called the error norm.

The error norm ρ is defined according to the requirements of the application or
the nature of the degradation, e.g., for filtering out AWGN from a degraded image, one
suitable choice for ρ would be a least square error norm:

ρ [(x, y), |∇I(x, y)|] =
1

2
|∇I(x, y)|2 (4.20)

Solving the minimization problem (4.19) for the least square error norm (4.20) leads
to the isotropic diffusion equation (2.7), expressed as:

∂I(x, y, t)

∂t
= ∆I(x, y, t) (4.21)
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In addition to being a fusion paradigm, the John–Vorontsov model also exhibits
inherent edge enhancement characteristics, being defined for a single input image as:

∂Ĩ(x, y, t)

∂t
= α∆Ĩ(x, y, t)− βJI(x, y)

[
Ĩ(x, y, t)− I(x, y)

]
(4.22)

where JI is a smoothed edge map of the form:

JI(x, y) =

∫
|∇I(x′, y′)|2G(x− x′, y − y′, σ)dx′dy′ (4.23)

By suppressing the diffusion term (α = 0) and setting β = 1, the generalized John–
Vorontsov fusion model, for S input images, becomes:

τ
∂Ĩ(x, y, t)

∂t
= −Js(x, y, t)Θ

(
Js(x, y, t)

) [
Ĩ(x, y, t)− Is(x, y)

]
(4.24)

where

Θ(J)

{
1 if J > 0

0 if J < 0
(4.25)

and
Js(x, y, t) = JIs(x, y)− JĨ(x, y, t) with s ∈ [1, S] (4.26)

The term Js(x, y, t)Θ
(
Js(x, y, t)

)
((4.25) and (4.26)) ensures that only salient infor-

mation is transferred to Ĩ, i.e., the difference between the fused result Ĩ and the current
input image Is is “injected” into Ĩ as long as |∇Is| > |∇Ĩ|, in other words, as long as Is
contains edge information that has not yet been incorporated into Ĩ.

As was the case with Socolinsky’s model, here too, the initial fused image Ĩ0 is a
“guess” that can either be a null image, a mean of the input images Is or the first frame
of a video sequence, when the frames of such a sequence are considered to be the inputs
of the fusion process. The fusion process adds with each iteration the salient information
from each input image Is weighted by a factor of 1/τ . According to Pop [Pop08], 1/τ can
be considered as the time interval during which the input image Is is used by the fusion
process, thus τ is equivalent to the total number of input images S.

Remark For the sake of clarity, it should be noted that all input images Is are only
functions of (x, y), being static in nature, from a time evolution point of view, Is(x, y, t) =
Is(x, y, 0) = Is, for s = {1, . . . , S}.

Remark As also noted by [Pop08], the discretization time step for the John–Vorontsov
model needs to be sufficiently small so as to ensure that the fused result will be within the
initial dynamic range (of the input images), since this discretization step strongly depends
on the difference between the quadratic norms of Ĩ and Is.

4.5.3 The Wang et al. variational fusion model

A continuation of Socolinsky’s variational fusion model, the Wang et al. approach [WYTY06,
WY06] improves the initial model either by integrating into the computation (according
to the Di Zenzo [Zen86] definition) of the structure tensor a pertinence map, as proposed
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in [WYTY06] or by using a weighted approach, adapted to the HVS, in computing the
same structure tensor, as proposed in [WY07].

As also mentioned in [Pop08], the second proposed improvement requires an “exces-
sive” user supervision and is thus, limited in application and scope.

The first proposition, i.e., the integration of a pertinence map into the computation
of the structure tensor, is mathematically expressed as:

JS(x, y) =


S∑
s=1

α2
s(x, y)

∂2Is
∂x2

S∑
s=1

α2
s(x, y)

∂Is
∂x

∂Is
∂y

S∑
s=1

α2
s(x, y)

∂Is
∂x

∂Is
∂y

S∑
s=1

α2
s(x, y)

∂2Is
∂y2

 (4.27)

The pertinence map α(x, y) from (4.27) is obtained starting from a distance measure
computed over the (x, y) pixel’s neighborhood W :

D′s(x, y) =
1

card(W )

∑
(x′,y′)∈W

e
−[Is(x,y)−Is(x+x′,y+y′)]

2

σ2 (4.28)

Based on this distance, D′s(x, y), Wang et al. define the local contrast as:

Ds(x, y) = 1− D′s(x, y)

max(x,y)∈Ω [D′s(x, y)]
(4.29)

The pertinence map α(x, y) is readily computed after a normalization of Ds(x, y)
within the dynamic range [0, 1]:

αs(x, y) =
Dr
s(x, y)√√√√ P∑

p=1

D2r
p (x, y)

(4.30)

where r is a selectivity parameter, and the αs(x, y) weights are further normalized with
respect to the pertinence values computed for the rest of the input images.

The aim of this weighting process, using a pertinence map αs(x, y), is to compute the
dominant eigenvector V of JS only based on those input images that contain pertinent
information. A further improvement consists in redefining the composite gradient vector
V so as to eliminate the halo effect [WYTY06]:

V (x, y) =

(
γ

|V (x, y)|

)1−β

(4.31)

where γ is a percentage of the mean gradient norms of V computed in each point of the
desired fused image Ĩ.

Remark For the generalized scenario of noise-contaminated input images, the authors
propose adding a diffusion term to the initial Socolinsky model, the new functional, de-
scribing a variational fusion model with implicit noise filtering, being expressed as [WY07]:

α

∫
Ω

∣∣∣∇Ĩ(x, y)
∣∣∣ dxdy + β

∫
Ω

∣∣∣∇Ĩ(x, y)− V (x, y)
∣∣∣2 dxdy (4.32)
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4.5.4 The Pop et al. variational fusion model

The Pop et al. PDE-based fusion model, first proposed in [PLTB07, PTB+07] is among
the first complex fusion models that a priori assumes the input images to be closer to real-
world images, i.e., noise contamination being considered as part of the fusion problem’s
statement.

Although the proposed model is explicitly expressed within a discrete framework,
it also possesses a continuous domain expression, complying with a discrete min-max
principle:

∂Is
∂t

= −β · div(∇Imax) + γ · div
[
gR(∇Is,∇I0

S)∇Is
]

(4.33)

with the constraint C1:

min
s=1,...,S

[I0
s (x, y)] 6 Ins (x, y) 6 max

s=1,...,S
[I0
s (x, y)] (4.34)

and:

gR[D+
x (Is), D

+
x (I0S)] =



D+
x (Is)− min

s=1,...,S
[D+

x (I0s ), 0]

D+
x (Is)

if D+
x (Is) < min

s=1,...,S
[D+

x (I0s ), 0]

D+
x (Is)− max

s=1,...,S
[D+

x (I0s ), 0]

D+
x (Is)

if D+
x (Is) > max

s=1,...,S
[D+

x (I0s ), 0]

0 othewise

(4.35)

where D+
x is a forward finite difference approximation, defined according to (2.66) while

β and γ are a fusion weighting parameter and a regularization weighting parameter,
respectively.

The Pop et al. PDE-based fusion model is a fusion paradigm of the type S inputs
(sources) – S outputs, with a theoretical convergence of all outputs to a unique solution,
i.e., the fused image Ĩ. This convergence is numerically proven for a sufficiently large
number of iterations N , to this end Pop proposing in [Pop08] two alternative discretization
schemes, one of them being specifically designed to increase the convergence speed.

Remark Although, for a sufficiently large number of time iterations (of the order of tens
of thousands, depending on the input images), the Pop et al. image fusion model exhibits
a discrete convergence of its outputs toward a unique fused result Ĩ, in practice such a
large number of iterations is not necessary in ensuring a proper noise filtering. Thus,
the Pop et al. method will deliver in practical use, S noise filtered outputs, but fusion
quality-wise there still remains the issue of a user selected unique fused result, since the
S outputs are not always convergent, given a fixed number of iterations.

4.5.5 The Piella variational fusion model

The Piella variational approach embodies an image fusion method for enhanced visu-
alization, first proposed in [Pie08] and later detailed in [Pie09]. The Piella variational
model performs the fusion of an arbitrary number of images while preserving the salient
information and enhancing the contrast for visualization [Pie09].

The underlying principle of this model consists in the use of a structure tensor ap-
proach to simultaneously describe the geometry of all the inputs, the basic idea being that
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the fused image should have a structure tensor which approximates the structure tensor
obtained from the multiple inputs. At the same time, the fused image should be “natural”
and “sharp” from a human interpreter perspective [Pie09].

The fusion paradigm combines the geometry merging of the inputs with perceptual
enhancement and intensity correction, all of this being achieved through a functional mini-
mization approach which implicitly takes into account a set of human vision characteristics
[Pie09].

The proposed fusion model amounts to minimizing the following functional:

E(Ĩ) =η

∫
Ω

|∇I(x, y)− V (x, y)|2dxdy + β

∫
Ω

(
I(x, y)− 1

2

)2

dxdy

+ γ

∫
Ω

(
I(x, y)− I0(x, y)

)2
dxdy

−
∫

Ω

∫
Ω

ω(x, y|x′, y′)J
(
I(x, y)− I(x′, y′)

)
dxdy · dx′dy′

(4.36)

where the composite gradient vector V is computed as:

V (x, y) =
√
λ+v+ sgn

(
v+ ·

S∑
s=1

ws(x, y)∇Is(x, y)

)
(4.37)

with a possible choice for ws [Pie08]:

ws(x, y) =
|∇Is(x, y)|√√√√ S∑
s=1

|∇Is(x, y)|2
(4.38)

J(·) represents the relative lightness appearance of the pixel and it is defined such that
J ′(·) is a sigmoid-type function, e.g.,

J ′(r) = k arctan(αr) k > 0, α > 1.

v+ and λ+ are the dominant eigenvector and eigenvalue, respectively of the structure
tensor JS defined using (4.38) as a weighting coefficient:

JS(x, y) =


S∑
s=1

w2
s(x, y)

∂2Is
∂x2

S∑
s=1

w2
s(x, y)

∂Is
∂x

∂Is
∂y

S∑
s=1

w2
s(x, y)

∂Is
∂x

∂Is
∂y

S∑
s=1

w2
s(x, y)

∂2Is
∂y2

 (4.39)

For further insight about the model’s numerical discretization and parameter choice
please refer to [Pie09].

4.5.6 Other variational or quasi-variational fusion models

This section, as indicated by its title will only briefly consider other existing variational
or quasi-variational methods, i.e., defined using a variational framework up to a point,
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meaning that the complete fusion model is a mixture between a variational approach and
some other image processing technique.

Chronologically, the first fusion model from this category is the Fischer–Modersitzki
[FM06] variational approach for image fusion and registration. Since the two processing
steps, i.e., registration and fusion, are hierarchically interconnected (registration is usually
a preprocessing step in image fusion), the authors propose handling the two processing
tasks using the same framework, a variational one. The targeted application domain of
the Fischer–Modersitzki variational approach is medical image processing, more precisely
MRI mammography.

Another important contribution to image fusion, the variational approach proposed
by Ballester et al. in [BCI+06], is a fusion method dedicated to multispectral image
fusion for satellite imagery. Multispectral image fusion, usually employs the use of a high
resolution, grayscale panchromatic image and several low resolution spectral channels,
and since each type of image contains complementary information, the aim is to obtain a
high resolution fused image that brings the complementary information from all sources
into complete synergy.

The proposed fusion model is based on the assumption that, to a large extent, the
geometry of the spectral channels is contained in the topographic map of its panchromatic
image. This assumption, together with the relation between the panchromatic image
and the spectral channels, and the ratio between the lowest resolution and the highest
resolution available, constitute the elements for constructing an energy functional whose
minima will give the reconstructed spectral images at higher resolution [BCI+06].

Having the John–Vorontsov variational model as a starting point, Wang, Shui and
Feng, propose in [WSF08] a quasi-variational image fusion paradigm, based on robust
error estimation, expressed as a TV minimization problem coupled with wavelet domain
filtering. Thus, two distinct image processing formalisms are unified under a common
framework, i.e., image fusion, the proposed model being expressed as a variational repre-
sentation in the wavelet domain, and its aim, to perform a joint fusion–denoising task in
multifocus fusion scenarios.

In the pixel domain, the problem is expressed as a weighted energy functional mini-
mization, where the TV is used as a regularity constraint for noise reduction. The authors
propose a new family of weight fusion functions, based on the local average modulus of
gradients and the power transform [WSF08]. In the wavelet domain, the problem is ex-
pressed as a shrinkage of the weighted wavelet coefficients of the source images, where the
weight functions are based on the local average modulus of intra- and inter-scale wavelet
coefficients and the power transform [WSF08].

Another representative example for the quasi-variational approach category is Mi-
tianoudis and Stathaki’s [MS08] proposition, consisting of a variational framework, derived
from error estimation theory (the John–Vorontsov approach), combined with a cost func-
tion approach for blind restoration. The Mitianoudis–Stathaki proposition represents a
combined spatial-domain joint fusion–restoration method that works by identifying the
common degraded areas within the fused image and uses a regularized restoration ap-
proach to enhance the content in those areas.
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4.6 Quality assessment in image fusion

Assessing the quality of the output result in image fusion, requires a slightly different
approach than the traditional one, where an “ideal” image is available, and thus the
quality assessment is carried out using classic means (§3.6.1). The a priori existence of
an “ideal” reference (ground truth) image is usually conceivable only in image restoration
scenarios, since, according to the definition of image restoration (§2.2) the purpose of such
a process is to restore the input image to its original, unaltered state.

Since image fusion is in essence an image enhancement paradigm, and according to
the definition of enhancement (§2.2) it represents an increase or improvement in quality,
value or extent, the existence of an“ideal”ground truth image would defeat the purpose of
performing image fusion in the first place. Because every image fusion method emphasizes
certain characteristics of its inputs into its output, it is very difficult to say which of the
fused results, using several fusion methods, is the “best”, since the definition of greater
quality, according to Wald [Wal98] will depend upon the application.

Nevertheless, image fusion results can be quantified in terms of quality using dedi-
cated quality metrics and test scenarios. Since initially image fusion was intended, and in
some cases still is, to be an additional confidence parameter in human-decision systems,
it is only natural to subject its quality assessment to a human user as well. According
to Petrovic [Pet01], in image fusion there exist two types of quality assessment methods,
from a user involvement point of view:

� subjective quality assessment: where the degree of quality of the fused image
is decided by a group of experts, with solid knowledge and understanding of how
an “ideal” result (specific to a given application and subjected to the application’s
requirements) should look like. In this case, the accuracy of the assessment depends
on the number of evaluators, increasing with the increase of expert opinions.

� objective quality assessment: the quality of the fused result is measured in terms
of a number of parameters derived from the input images as well as the fused image,
this assessment being performed by means of a dedicated quality metric.

Additionally, a dedicated quality metric, for image fusion quality assessment should
fulfil the following requirements [Pet01]:

� to properly and accurately identify and locate the visual information both within
the input images as well as within the fused image,

� to be able to extract and estimate the importance of the aforementioned visual
information,

� to accurately quantify the transfer of visual information from the input images to
the fused image.

The existence of such quality metrics, i.e., objective quality metrics, greatly improves
the fusion process, since every fusion model requires a proper parameter adjusting, ac-
cording to desired output characteristics. This parameter tweaking is possible, when an
objective point of reference is available and the quality of the fused result is not influenced
by any subjective factors.

The downside of objective quality metrics is that, due to the broad application
spectrum of image fusion as an image processing tool and to the wide range of input



94 Chapter 4. Image fusion: an image enhancement paradigm

images/expected fused results, it is almost impossible to establish certain universally ac-
cepted features, that would constitute visual information cues across the whole application
spectrum. Defining a universal notion of pertinence that would ensure the existence of an
irrefutable, universally accepted, “ideal” fused result is close to impossible, when quality
in image fusion means so many things and often those things are contradictory in nature.

Over the past decade, several authors have tackled with the task of defining fusion-
specific quality metrics, making the qualitative evaluation process less biased and provid-
ing a proper, objective comparative analysis between fusion methods that share similar
characteristics and application spectrum.

4.6.1 The Xydeas–Petrovic quality assessment metric

Among the first dedicated image fusion quality metrics, the Xydeas–Petrovic metric, was
first proposed in [XP00, Pet01] and employs a per-pixel quality assessment approach in
order to compute a global quality index. The quality metric works by measuring changes
in the gradient norm and differences in pixel orientation between the two images, i.e., the
fused image (F ) and the input image (A).

In practical use, as is the case of a minimal fusion scenario of two input images
(A and B), the global Xydeas–Petrovic quality index is determined using a two-step
approach: first, QAF (i, j) and QBF (i, j) are independently computed [XP00], and second,
the global quality index QAB/F (i, j) is obtained through a weighted summation of the two
indices QAF (i, j) and QBF (i, j), using as weights the pertinence maps sA(i, j) and sB(i, j)
corresponding to each input image:

QAB/F (i, j) =

∑
i,j

[
QAF (i, j) · sA(i, j) +QBF (i, j) · sB(i, j)

]
∑
i,j

[
sA(i, j) + sB(i, j)

] (4.40)

4.6.2 The Piella quality assessment metrics

Having as template the SSIM [WBSS04] and its earlier version the UQI6 [WB02], Piella
[Pie04] proposes several quality metrics specifically designed for image fusion quality as-
sessment.

Since, as previously mentioned, fusion scenarios do not benefit from the existence of
a reference image for quality evaluation, Piella introduces the generic concept of saliency
s(I|w), representing a measure that quantifies the pertinence of visual information for a
given image I within an analysis window w. The author indicates a few possible choices
for s(I|w), e.g., contrast, variance, entropy or gradient norm, with the possibility of using
other measures, such as the one proposed by Xydeas and Petrovic [XP00].

The first image fusion quality index proposed by Piella is expressed as follows:

Q(IA, IB, IF ) =
1

|W |
∑
w∈W

[λIA(w) ·Q0(IA, IF |w) + λIB(w) ·Q0(IB, IF |w)] (4.41)

where Q0 is the Wang and Bovik’s UQI [WB02], computed between each of the input
images and the fused image, over a local analysis window w.

6Universal image Quality Index
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The first term from (4.41) quantifies the overall quality Q(IA, IB, IF ) for the regions
of the fused image IF where the information from IA has a higher pertinence measure than
the information from IB. Conversely, the second term of (4.41) quantifies the quality from
the second input image’s (IB) point of view.

In further improving the quality assessment, Piella redefines (4.41) so as to incorpo-
rate the properties of the HVS, particularly sensitive to regions of high pertinence. To
this end, a new term is added to (4.41):

c(w) = max [s(IA|w), s(IB|w)] or (4.42a)

c(w) = s(IA|w) + s(IB|w) (4.42b)

The redefined quality metric, called weighted fusion quality measure is expressed as:

QW (IA, IB, IF ) =
1

|W |
∑
w∈W

c(w) [λIA(w) ·Q0(IA, IF |w) + λIB(w) ·Q0(IB, IF |w)] (4.43)

Using (4.42a) or (4.42b), the redefined quality metric QW is also appropriate for
fusion results classification, an additional reason that justifies the extensive use of this
metric in image fusion analysis and comparative studies.

An alternative quality metric, derived from the weighted fusion quality measure, takes
into account the HVS’s sensitivity to contours and in order to assess the quality of a fusion
method it additionally requires to apply the same fusion method for the contour images
I ′A and I ′B. The edge-dependent quality index is mathematically expressed as:

QE(IA, IB, IF ) = QW (IA, IB, IF )1−αQW (I ′A, I
′
B, I

′
F )α (4.44)

where α expresses the importance of the contour images in relation to the input images,
being defined on the interval [0; 1].

4.6.3 The rSFe quality assessment metric

The rSFe7 metric, proposed by Zheng et al. [ZEHH07] provides a different perspective
for image fusion quality assessment, since it indicates if a fused image is the result of an
over- or under-fusion process. Thus, the rSFe behaves more as fusion fidelity indicator,
its ideal value being rSFe = 0, which means that an ideal fusion process has taken
place, while an rSFe > 0 translates into an over-fused image, with some distortion or
noise introduced. Conversely, an rSFe < 0 indicates an under-fused image, with loss of
meaningful information. Hence, the smaller the absolute value of the rSFe, the better
the fused image, in terms of being the result of an “ideal” fusion process.

In defining the rSFe, Zheng et al. first define the notion of spatial frequency (SF )
[EF95, LKW01], which estimates the overall activity level of an image, being expressed
as follows for an M ×N input image:

SF =
√
RF 2 + CF 2 +MDF 2 + SDF 2 (4.45)

where the four components used in computing the spatial frequency SF are the row
frequency RF , column frequency CF , main diagonal frequency MDF and the secondary
diagonal frequency SDF .

7ratio of Spatial Frequency error
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The use of the rSFe as an image fusion metric, requires computing the spatial
frequency for the fused image SFF and, since a ground truth image is not available,
estimating a desired spatial frequency measure SFR. The SFR computation in each pixel
(i, j) is performed on a 4- or 8-neighborhood, by approximating the first order derivatives
corresponding to that neighborhood.

Remark Since the rSFe metric behaves as a fusion fidelity indicator, its use can be
extended to supervising iterative fusion processes and ensuring an objective stopping
criterion, when the rSFe approaches zero [ZEH04].

The image fusion quality metrics discussed so far represent only the most representative
fusion metrics, with proven efficiency and extended use in the field of image fusion. Since
image fusion is a very complex and diversified image processing task, researchers in the
field are continuously trying to improve, expand and diversify the mathematical tools
employed in addressing this task, as well as the means of objectively assessing the quality
of the obtained results. To this end, other dedicated fusion metrics have been proposed
by, e.g., Cvejic et al. [C LBC05], Chen and Varshney [CV07], Hossny et al. [HNC08] or
Yang et al. [YZWL08].

4.7 Properly choosing a reference in image fusion

quality assessment

As previously pointed out, image enhancement relies on the premise that the result is
“greater than the sum of its parts”, hence the enhancement factor cannot always be cor-
rectly assessed by referencing it to the input data. Furthermore, an a priori existing ideal
reference is only conceivable for testing and validating purposes, since in practice such an
approach would contradict the need of image fusion in the first place. An even more com-
plex scenario is when the fusion formalism is designed for concurrent image enhancement
and restoration.

The two interdependent issues of properly assessing the quality in image fusion sce-
narios and of correctly establishing a result validation scenario for concurrent enhancement
and restoration scenarios, will be the main topics of this section, the experimental analysis
being carried out on a synthetic ground truth image. The reason for choosing a synthetic
image for this analysis is obvious, since in a controlled test scenario the existence of an
“ideal” fused image is possible and furthermore, allows the use of standard quality metrics
(§3.6.1) in addition to the dedicated image fusion quality metrics.

4.7.1 Experimental setting

The experimental setting (Fig. 4.2) intended for analyzing the various facets of image
fusion quality assessment has the following characteristics:

� The fusion inputs are obtained from a single synthetic image (Fig. 4.2a), which, for
all intents and purposes, shall be also considered the ground truth image.

� The experimental paradigm consists in a minimal multifocus fusion scenario, com-
prising two input images (Fig. 4.2b and Fig. 4.2c) that are obtained using a rotation-
ally symmetric Gaussian low-pass filter of size 15 with standard deviation σ = 5.
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(a) (b) (c) (d)

Fig. 4.2 – Initial experimental setting: (a) Ground truth image; (b) I1 input image; (c)
I2 input image; (d) Ĩ fused image.

The input images, emulate a typical out-of-focus fusion paradigm, where the in-
puts describe complementary regions of the same scene in focus and out of focus,
respectively.

� The fused reference (Fig. 4.2d) is obtained using Rockinger’s fusetool for MAT-
LAB, available at [Roc99]. The chosen fusion method for this task is the Laplacian
pyramid method (LAP) with the following input parameters: decomposition level=
7, high-pass combination=saliency/match, low-pass combination=average(A,B) and
area = 9.

The second part of the overall experimental setting is derived from the previous
part (Fig. 4.2) and tackles the problem of concurrent image fusion and restoration, i.e.,
denoising. The fusion inputs I1 and I2 are successively contaminated with an AWGN of
σn = {0.5, 1, 2, 3, 4, 5, 10, 15, 20, 25}, yielding a total of ten input sets. Each set of input
images, i.e., Iσn1 and Iσn2 , thus obtained, is fused using the same fusion method LAP, with
the same set of input parameters, in order to ensure an unbiased fused result Ĩσn .

The experimental analysis and discussion based on the previously described experi-
mental setting will be conduced in three-phase approach:

(i) Performing a standard quality evaluation of the fused results for σn = {0, . . . , 25},
using both the classic quality metrics described in §3.6.1 and the dedicated image
fusion quality metrics, discussed in §4.6. The purpose of this first phase is to properly
establish a fused result hierarchy, provided a ground truth image. This hierarchy
will be further used as a reference for the other two phases of the analysis.

(ii) Analyzing the importance of properly choosing the reference images when using
image fusion metrics for assessing the quality of the fused result.

(iii) Discussing how the standard fusion quality assessment is ill-posed in joint fusion–
restoration scenarios.

4.7.2 Quality evaluation when a ground truth image is available

As repeatedly pointed out, the existence of a ground truth image IGT in real-world image
fusion scenarios is not feasible since it would contradict the principles and need of image
fusion altogether. Such an assumption holds true only for synthetic images used in ex-
perimental analysis and method validation scenarios, where the ground truth (reference)
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Table 4.1 – Standard qualitative analysis (when a reference image is available) results

Fused result Quality metrics

(Iσn1 , Iσn2 )⇒ Ĩσn RMSE PSNR SSIM MSSIM MI VIF VSNR

σn = 0 1.254 46.16 0.964 0.998 1.277 0.914 38.33
σn = 0.5 1.521 44.485 0.96 0.998 1.277 0.913 38.617
σn = 1 1.750 43.266 0.948 0.997 1.277 0.909 39.463
σn = 2 2.440 40.382 0.905 0.992 1.277 0.893 39.34
σn = 3 3.263 37.857 0.843 0.985 1.277 0.864 37.385
σn = 4 4.150 35.769 0.773 0.976 1.277 0.834 35.246
σn = 5 5.062 34.043 0.7 0.965 1.277 0.801 33.331
σn = 10 9.727 28.37 0.421 0.897 1.274 0.663 26.391
σn = 15 14.497 24.905 0.275 0.826 1.219 0.555 22.349
σn = 20 19.281 22.427 0.197 0.764 1.113 0.475 19.413
σn = 25 23.946 20.545 0.152 0.711 1.006 0.422 17.341
IGT 0.000 ∞ 1 1 1.277 1 87.508

image is used in obtaining the fusion inputs, and the fused image represents an attempt
to approximate as close as possible the initial, reference image.

Considering the first phase of the experimental setting described in §4.7.1, the re-
sults of the standard quality evaluation are summarized in Table 4.1. The overall result
distribution is rather intuitive, since it is obvious that a fused result of a smaller σn fusion
input set, will be closer to IGT in terms of quality and similarity, than a fused result of a
larger σn fusion input set.

Whenever a ground truth image is available, the quality assessment process is straight-
forward, the extent of this assessment depending only on the number of quality metrics
used. As was the case with the experimental analysis from §3.6, the quality metrics used
were part of the MeTriX MuX Visual Quality Assessment Package [Gau11], an extra
measure in ensuring a bias-free evaluation.

Remark The IGT vs. IGT quality evaluation is performed in order to establish the base
reference values in terms of best attainable results for each of the employed quality metrics.

4.7.3 Image fusion quality assessment in the presence of noise

When using dedicated metrics for assessing the quality of a fused image, it is important
to understand the fusion process as well as its purpose. For example, the straightforward
approach in defining an image fusion quality metric is to express that metric as a function
of S variables, Is, where s = {1, . . . , S}. This section will analyze when the “straightfor-
ward approach” is not well-posed, e.g., for concurrent fusion and denoising scenarios, and
infer from the experimental analysis how to adapt the use of these metrics for a proper
quality assessment.

Using the previously defined experimental setting, the fused results Ĩσn will be quan-
tified in terms of quality by means of the metrics discussed in §4.7.3, employed “as is”,
i.e., the quality evaluation for a given fused result Ĩσn is computed with respect to its
corresponding fusion inputs Iσn1 and Iσn2 , respectively. The quality assessment and its
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Fig. 4.3 – (Iσn1 , Iσn2 )|Ĩσn fusion quality assessment, using QAB/F , QW and rSFe.

evolution with respect to σn is illustrated in Fig. 4.3, while the measured quality metric
results are summarized in Table 4.2.

Although the overall evolution, quality-wise, follows the same trend as the one indi-
cated by the data from Table 4.1, the issue here is the improper use of the input images
Iσn1 and Iσn2 as reference images. For noise-free fusion scenarios, a straightforward use of
the image fusion quality metrics will usually suffice and, moreover, provide accurate data
in terms of measured quality. For the more complex scenario of joint fusion–restoration
paradigms, logic dictates that the proper reference images IA and IB, for all measured
fused results Ĩσn , should be Iσn=0

1 and Iσn=0
2 since these input images are also noise-free

and would provide a proper reference in terms of quality assessment, restoration-wise,
in addition to fusion-wise. The quality assessment and its evolution with respect to σn,
performed following the previously described line of reasoning, is illustrated in Fig. 4.4,
while the measured quality metric results are summarized in Table 4.3.

Table 4.2 – Image fusion qualitative analysis results for the (Iσn1 , Iσn2 )|Ĩσn scenario

Quality metrics Fused result for σn
0 0.5 1 2 3 4

QW -0.975 -0.975 -0.974 -0.97 -0.964 -0.955
rSFe -0.035 -0.036 -0.037 -0.043 -0.051 -0.061
QAB/F -0.619 -0.568 -0.561 -0.542 -0.533 -0.523

...continued σn
5 10 15 20 25

QW -0.945 -0.876 -0.804 -0.743 -0.699
rSFe -0.073 -0.128 -0.158 -0.176 -0.184
QAB/F -0.518 -0.486 -0.47 -0.454 -0.445
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Fig. 4.4 – (Iσn=0
1 , Iσn=0

2 )|Ĩσn fusion quality assessment, using QAB/F , QW and rSFe.

The difference between the two approaches (Fig. 4.3 and Fig. 4.4) can be quantified
in terms of relative error δx:

δx =
x0 − x
x

(4.46)

where x is the true value of a quantity and x0 is the inferred or measured value. The
relative error for the two quality assessments is illustrated in Fig. 4.5.

Upon analyzing the measured data from the two quality assessment scenarios (Ta-
ble 4.2 and Table 4.3) and the evolution of the relative error (Fig. 4.5), the following
conclusions can be formulated:

� The use of an improper set of reference images IA and IB can equally lead to an
over- or under-assessment in terms of quality, especially when the fusion process is
accompanied by a parallel restoration process.

� In terms of robustness, the Piella quality metric QW proves to possess a systematic

Table 4.3 – Image fusion qualitative analysis results for the (Iσn=0
1 , Iσn=0

2 )|Ĩσn scenario

Quality metrics Fused result for σn
0 0.5 1 2 3 4

QW -0.975 -0.975 -0.975 -0.975 -0.974 0.974
rSFe -0.035 -0.036 -0.034 -0.025 -0.008 0.018
QAB/F -0.619 -0.517 -0.501 -0.495 -0.492 0.493

...continued σn
5 10 15 20 25

QW 0.973 0.967 0.956 0.941 0.924
rSFe 0.049 0.286 0.616 0.985 1.369
QAB/F 0.49 0.488 0.481 0.465 0.449
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Fig. 4.5 – QW and QAB/F relative error between assessing the image quality for (Iσn1 ,Iσn2 )|
Ĩσn as opposed to assessing the quality for (Iσn=0

1 , Iσn=0
2 )|Ĩσn.

bias (Fig. 4.5) when improperly used. Nevertheless, this systematic bias follows
the right evolution pattern and, in fact, when improperly used (Fig. 4.3) it proves
detrimental to the true efficiency of the analyzed method, since it has the tendency
to under-evaluate the fused result’s quality. Conversely, the Xydeas–Petrovic quality
metric QAB/F , does not possess the same systematic bias as QW , over-evaluating the
fused result’s quality for small values of σn and under-evaluating the fused result’s
quality for large values of σn, when improperly using the (Iσn1 , Iσn2 ) input set as
reference images.

Remark Usually, the rSFe metric is less relevant in terms of fused result quality, es-
pecially when trying to assess a fused & restored image, since it evaluates a fused result
from a fidelity point of view, this fidelity being expressed in terms of under- or over-fused
results.

Remark The reason why the fused result of the proposed experimental setting scores so
high on the Piella quality metric scale, even for high AWGN levels, can be explained from
two perspectives:

1. The nature of the synthetic image: the synthetic image proposed in the initial
experimental setting is very simple in terms of composition and geometry and the
contamination (out-of-focus blurring or AWGN contamination) has not been taken
to an extreme, since this was not the purpose of the experimental analysis.

2. The HVS is less sensitive to noise than is to other types of perturbations, such as
blur. The Piella quality metric QW was specifically defined to emulate the responses
of the HVS, being defined on the principles of the UQI [WB02], another quality
metric designed to emulate the HVS and to place emphasis on structural visual
information and overall image geometry when quantifying visual quality.
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4.7.4 Image fusion quality assessment for joint fusion–restoration
scenarios

The last point of this discussion on how to properly assess image fusion quality, is
constructed on the following prerequisites: considering the same experimental setting
(Fig. 4.2) it is assumed that Ĩσn=0 is the result of a concurrent fusion and denoising pro-
cess, which has as inputs any of the image pairs (Iσn1 , Iσn2 ), with σn = {0, . . . , 25}. For
the sake of example, a particular instance of how the restoration process is emulated,
assumes Ĩσn=0 to be the fused result of the image pair (Iσn=5

1 , Iσn=5
2 ), where in this case

the image pair in question is considered to be the only existing reference, not part of a
gradual contamination process, like before. In other words, Iσn=5

1 and Iσn=5
2 are in this

case Iσn=0
1 and Iσn=0

2 from an input reference point of view.

In practical use this is often the case, because seldom images are “ideal”, and even
when they are assumed to be so, they may contain noise from various sources, e.g.,
acquisition, transmission, storage, compression, etc. For small values of σn the influence
of noise on the quality evaluation is negligible, but even this aspect is open for debate,
since there does not exist a universally accepted definition of how much or how little noise
is negligible.

The purpose of the following analysis is to raise the still open question of how to
correctly assess the quality of a joint fusion–restoration process using existing quality
metrics, when neither an “ideal” fused image, nor the “ideal” inputs exist or are available.

Considering the latest experimental setting and the redefined relation between Ĩσn=0

and any of the (Iσn1 , Iσn2 ) input sets, the quality assessment process will exhibit a gradually
increasing evaluation bias, directly proportional to σn. This evaluation error is illustrated
in Fig. 4.6 and quantitatively summarized in Table 4.4.

Assuming the (Iσn=0
1 , Iσn=0

2 )|Ĩσn=0 scenario as the only well-posed joint fusion–restoration
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Fig. 4.6 – Quality assessment for a joint fusion–restoration process.
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Table 4.4 – Quality assessment for a joint fusion–restoration process - experimental data

Quality metrics Fused result for σn
0 0.5 1 2 3 4

QW -0.975 -0.974 -0.972 -0.965 -0.952 -0.935
rSFe -0.035 -0.034 -0.038 -0.053 -0.077 -0.111
QAB/F -0.619 -0.473 -0.429 -0.375 -0.33 -0.294

...continued σn
5 10 15 20 25

QW -0.915 -0.772 -0.621 -0.496 -0.403
rSFe -0.148 -0.346 -0.497 -0.6 -0.668
QAB/F -0.265 -0.175 -0.129 -0.1 -0.081

situation, a relative error (4.46) can be expressed in terms of well-posed scenario vs. ill-
posed ones.

Remark By analyzing the evolution of the relative error (Fig. 4.7), for QW and QAB/F ,
with respect to σn, the following conclusions are readily available:

� In a concurrent fusion–restoration process, if the input images are used as references
in quality assessment, even when the noise contamination is otherwise considered
negligible, the fused result will be under-evaluated by the QW and QAB/F quality
metrics.

� In this case, both metrics exhibit a systematic error, which leads to an under-
evaluation irrespective of the noise level present in the input images.

� The relative error is substantially greater than the relative error present when using
an improper set of reference images (Fig. 4.5).
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Fig. 4.7 – QW and QAB/F relative error for a joint fusion–restoration scenario
(Iσn=0

1 ,Iσn=0
2 )| Ĩσn=0.
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Remark Summing up all previous conclusions and based on the previously discussed test
scenarios (§4.7) the following inference can be made: given a set of input images suited
for an image fusion scenario and additionally contaminated by noise of a less than negli-
gible σn, a concurrent fusion–restoration approach is required in order to further increase
the quality of the resulting fused image. Assessing the quality of this fused image and
implicitly of the concurrent fusion–restoration approach to the fullest extent of its perfor-
mances is not always possible since the existing quality metrics under-evaluate the fused
result in terms of quality, when the reference images are far from “ideal”. Nevertheless, an
adequate approximation of the actual performances of such image processing paradigms
is possible, provided an extensive quality assessment, employing a sufficiently large and
varied number of quality metrics, coupled with the existence of “quasi-ideal” reference
images.

4.8 Conclusion

As the chapter that bridges the two core concepts of image restoration and image en-
hancement, Chapter 4 fulfils its intended purpose by providing a basic understanding of
the field of image fusion, in terms of definitions, classifications, purpose and established
methodology but at the same time it offers a functional insight into the family of varia-
tional and PDE-based approaches to image fusion. Without these fundamental notions,
the following chapter, i.e., Chapter 5, would be missing its theoretical and functional
background, making its understanding cumbersome and out of proper context.

Moreover, the second part of this chapter, intended as an experimental analysis,
raises the important questions of quality assessment in image fusion, and how well is this
assessment suited for even more complex task, such as the combined task of fusion and
denoising. Through a practical example it is shown just how much the entire quality
assessment paradigm shifts when introducing noise in the “equation” and how, otherwise
valid test scenarios, prove to be erroneous when employed in their default form to assess
the quality for joint fusion–denoising image processing models.

Although, the discussion from §4.7, raises a few pertinent questions, complex both
in form and in substance, it also provides the necessary guidelines on how to successfully
overcome the obstacles of quality assessment in complex scenarios such as the joint fusion–
denoising one. These questions alone would make the subject of at least another chapter,
but since the main interest of this thesis is focused on image restoration and enhancement
methods, the issue of proper quality assessment falls outside the scope of this thesis.

C 2 C

Image fusion: a short introduction – §4.2 – provided a necessary overview of the
fusion in the context of image processing, more specifically image enhancement. As
already pointed out, the main challenge in constructing this manuscript consisted,
even from the beginning, was to bring together all the required prerequisites for
the proper presentation and understanding of the work described within. Thus,
the challenging part was to establish a balance between too much information and
not enough information. Since this thesis covers both image restoration and image
enhancement, it was difficult to present the necessary terminology within a single
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chapter, comprising fundamental notions about diffusion, deblurring and image fu-
sion, without creating confusion and forcing the reader to revisit this single chapter
each time it moved on from one image processing paradigm to another.

Definitions and classifications – §4.3 – recalling on the last paragraphs of this sec-
tion: the purpose of the presented definitions and classifications was to properly
determine and position the proposed fusion method, detailed in Chapter 5, in or-
der to correctly juxtapose it against the existing fusion methodology. This was an
extremely important issue in the comparative analysis since comparing methods of
different levels of complexity, e.g., pixel-level with decision-level, does not provide
an adequate amount of relevancy, being like comparing apples and oranges.

Methodology in image fusion – §4.4 – provided a short presentation of the most
commonly used techniques in image fusion, not being intended to cover the entire
methodology from a theoretical understanding point of view. The purpose of this
section was to provide an overview of the methods that will be further used in the
comparative analysis from Chapter 5 by briefly describing the main characteris-
tics of the compared methodology. It is this author’s belief that for the sake of
thoroughness, any comparative analysis should contain a brief presentation of the
compared methods (the existing ones) and not just to limit the discussion to the
proposed method and then simply present the results of the comparative analysis,
without placing the compared methodology into proper context.

Variational and PDE-based approaches to image fusion – §4.5 – the necessity
and relevance of this section needs to be understood from the following perspectives:

� provided the theoretical prerequisites in understanding variational and PDE-
based methodology in image fusion, serving as a starting point for the proposed
fusion paradigm (Chapter 5).

� as for the previous section, it briefly discussed the existing methodology re-
quired for the comparative analysis.

� it tried to assemble into a short presentation all known (to this day and to the
best of this author’s knowledge) variational and PDE-based fusion techniques,
since image fusion by means of variational and PDE-based methods is a rather
new concept, with both interesting and promising results.

Quality assessment in image fusion – §4.6 – although image fusion results can be
qualitatively assessed to some extent (depending on the initial fusion scenario) by
standard objective image quality metrics (§3.6.1), more exactly quality metrics that
require a reference image, there exist also dedicated quality metrics that use as
reference the input images, being specifically designed for image fusion purposes. A
proper understanding of these dedicated metrics was required, since for the proposed
fusion model, even these quality metrics are not entirely adequate (the proposed
fusion paradigm being design for concurrent fusion and denoising).

Properly choosing a reference in image fusion quality assessment – §4.7 – it
provided a discussion using a practical example on how to properly choose the refer-
ence images in image fusion quality evaluation, with emphasis on the particular case
of fusing noisy images. In this case, the customary way of choosing the references
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as the initial, input images is no longer suitable, since the fused result will be the-
oretically an improved version of the inputs (noise-wise) and comparing a denoised
result to a nosy, initial image, is not relevant in terms true method efficiency.

In a sense, this section can be viewed as a secondary contribution of this thesis, since
it raised the question of properly assessing image fusion, when the fused result is also
restored (denoised), via the fusion process. In the context of today’s more complex
image fusion methods, properly assessing the quality of the results is of paramount
importance, since the traditional assessment will almost always underassess denoised
results, as shown in §4.7.
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5.1 Motivation

The fifth chapter of this thesis presents the second major contribution of the work car-
ried out in partial fulfilment of the requirements for the degree of Doctor of Philosophy,
unifying two extremely important areas of image processing, i.e., image restoration and
image enhancement.

This chapter represents the natural evolution in terms of addressed research topics,
from image restoration (Chapter 2), via image restoration coupled with edge enhance-
ment (Chapter 3) to concurrent image enhancement and restoration (Chapter 4 and
Chapter 5).

As discussed at length in the previous chapter, image fusion aims at extracting and
synthesizing information from multiple sources, e.g., multisensor, multifocus or multi-
frame, in order to produce a more accurate, more reliable composite result.

The assumption that the input sources contain only useful information, pertinent to
the desired fused output, does not hold true more often than not. A common contam-
inant in many image fusion scenarios is noise, originating from various sources such as
data transmission, storage, compression or quantization. Preconditioning an image fusion
application with the aforementioned assumption often leads to falling short of maximizing
the output information of “greater quality”, as defined by Wald [Wal98]. In practice, input
images are frequently subjected to noise contamination from various sources, and a priori
considering noise-free inputs will fail to produce “the best” attainable results. Further dis-
cussion and analysis (§5.4.1) is required to stress why a sequential approach to denoising
and fusion is not always possible nor does it lead to the best attainable fusion outcome.

In this chapter the image fusion issue is being addressed from a complex, joint
fusion–denoising point of view, employing a fusion model for concurrent image fusion
and denoising, defined using a variational framework and concepts derived from robust
error estimation theory. The model’s desired behavior is attained through its implicit
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anisotropic design, equally reflected in its edge enhancement and its denoising capabil-
ities. Considering the criteria for discriminating between various types of image fusion
paradigms (§4.3), the proposed image fusion model can be classified as a non-multiscale-
decomposition-based, nonlinear fusion method. Complexity-wise the model falls between
image-level and feature-level fusion, since fusing edge map-level information is considered
to be a feature-level fusion process.

In recent years, several approaches, described in [Pha01, PLTB07, PTB+07, MS08,
Pop08, WSF08], variational or non-variational, were proposed to tackle the intricate
fusion–denoising problem, the majority of them employing a PDE-based framework to
achieve this desideratum. Such a framework is ultimately a natural choice for the com-
plex and intertwined task of concurrent image fusion and denoising, since the use of PDEs
in image processing covers both image enhancement and image restoration, providing
valuable tools for the two image processing tasks.

The proposed fusion model adds to the existing paradigms increased noise robust-
ness (through anisotropic noise filtering) and edge enhancement, improving salient feature
detection and preservation. All of this is accomplished using a variational PDE-based ap-
proach, numerically expressed by means of an approximation scheme that strengthens the
implicit anisotropic filtering and edge-enhancing characteristics of the theoretical model.

The experimental analysis is aimed at thoroughly testing and proving the model’s
robustness to noise, on the one hand, and performing a comparative evaluation of the
proposed model employing some of the most representative, well-established image fusion
models (variational or otherwise), on the other. The quality assessment is carried out using
an extensive set of quality metrics (§4.7.3 and §4.6), both requiring and not requiring a
ground truth (reference) image. Based on the measured results, conclusions are drawn,
and potential applications and further work are presented.

5.2 Theoretical prerequisites

In order to facilitate the theoretical understanding of the proposed image fusion model
certain theoretical concepts need to be a priori defined and discussed, with emphasis on
two notions:

� error estimation theory and
� vector orientation estimation

The first notion is directly related to how the mathematical model describing the
proposed joint fusion–denoising paradigm is formulated, sharing common elements with
John and Vorontsov’s [JV05] model and all subsequent fusion models derived from it, i.e.,
[MS08] and [WSF08]. The second theoretical concept is associated with the particular
way in which the mathematical model is numerically expressed, representing one possible
choice among the existing ones.

5.2.1 Error estimation theory: an overview

Following the guidelines established by John and Vorontsov in their seminal work on image
fusion through TV minimization [JV05], the proposed model is formulated on the same
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TV minimization principle of establishing a parallel between the fused image Ĩ and the
recovered version Ir of an initial image I from error estimation theory. The fundamental
difference between the original approach and the proposed one consists in the fact that
the latter indirectly links Ĩ to Ir through fusion weights, ultimately describing the fusion
process as a linear combination of the fusion inputs Is, each having its own corresponding
weight ws [MS08].

Let I : Ω → R be a degraded observed image and Ir(x, y) the recovered version of
I(x, y), where (x, y) refers to the pixel of coordinates (x, y) within the image space Ω ⊂ R2.
The recovered image Ir(x, y) can be estimated, using error estimation theory, by means
of an error functional E(Ir) that expresses the difference between the original image and
the estimated one, as a function of Ir:

E(Ir) =

∫
Ω

ρ
(
(x, y), Ir(x, y), |∇Ir(x, y)|

)
dxdy (5.1)

where Ω is the image support and ∇Ir(x, y) is the image gradient vector in (x, y). The
error norm ρ is defined according to the requirements of the application or the nature of
the degradation, e.g., for filtering out AWGN from a degraded image, one suitable choice
for ρ would be a least square error norm.

The extremum of (5.1) is estimated using the Euler–Lagrange equation, satisfied by
a function f of parameter u that extremizes the following functional:

E(f) =

∫
F
(
u, f(u), f ′(u)

)
du (5.2)

where F is a given function with continuous first order partial derivatives. The Euler–
Lagrange equation can be described using an ODE1 of variable u that extremizes E(f):

∂

∂f(u)
F
(
u, f(u), f ′(u)

)
− d

du

∂

∂f ′(u)
F
(
u, f(u), f ′(u)

)
= 0 (5.3)

Thus, using (5.3) the extremum of (5.1) can be analogously derived, leading to an
Euler–Lagrange equation of the form:

∂ρ

∂Ir
−∇

(
1

|∇Ir|
∂ρ

∂|∇Ir|
∇Ir(x, y)

)
= 0 (5.4)

A closed-form solution Ir(x, y) is obtainable from (5.4), but not in a straightforward
manner, the estimation of Ir being performed using numerical optimization methods,
such as gradient descent optimization. Hence, Ir can be iteratively estimated using the
following update rule:

Ir(x, y, t+ 1)← Ir(x, y, t)− τ
∂Ir(x, y, t)

∂t
(5.5)

where t is the time evolution parameter, τ the optimization step size, and:

∂Ir(x, y, t)

∂t
= − ∂ρ

∂Ir
+∇

(
1

|∇Ir|
∂ρ

∂|∇Ir|
∇Ir(x, y, t)

)
(5.6)

with initial condition Ir(x, y, 0) = I(x, y).

Remark The time evolution of (5.6), through the gradient descent optimization method,
will iteratively continue until a given minimization criterion is satisfied. In practice, only
a finite number of iterations are required for obtaining visually satisfactory results [JV05].

1Ordinary Differential Equation
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5.2.2 Vector orientation estimation using Principal Component
Analysis

Let I : Ω ⊂ R2 → R be a real-valued image function and ∇I = (Ix, Iy)
T the gradient

vector of I at pixel of coordinates (x, y). In order to define the notion of orientation, the
image function I is assumed to be continuous or piecewise continuous, thus differentiable.
The orientation associated with any given pixel of coordinates (x, y) is defined modulo π
as follows:

θ(x, y) =
(

arg(∇I) +
π

2

)
mod π

=

(
arctan

Iy
Ix

+
π

2

)
mod π, θ(x, y) ∈ [0, π]

(5.7)

Remark The orientation θ, as defined in (5.7), has meaning only for non-zero gradient
vectors. For null gradient vectors, describing homogeneous regions of the image, a given
value (by convention) will be associated with θ.

A more robust and reliable way of describing the orientation associated with a given
vector, belonging to a vector field, is through PCA (Fig. 5.1), as thoroughly explained in
[Don99]. In order to determine θ by means of PCA, a 2×2 symmetrical covariance matrix
is constructed in each point of the vector field:

M =

(
m11 m12

m12 m22

)
(5.8)

and using its eigenvalues, the orientation of the first eigenvector (θη) can be computed as
follows:

θη = arctan

(
m22 −m11 +

√
(m11 −m22)2 + 4m2

12

2m12

)
(5.9)

θη represents the orientation of the gradient vector ∇I, or more precisely of the
η direction, but working in an anisotropic manner requires the use of the ξ direction,
orthogonal to η, which describes the structure’s (edge’s) geometry. Since ξ is orthogonal
to η, θξ is expressed as:

θξ =
(
θη +

π

2

)
mod π (5.10)

(a) (b) (c) (d)

Fig. 5.1 – Vector orientation estimation using a PCA of rectangular support and fixed
size WPCA = 5: (a) Grayscale concentric circles synthetic image; (b) Orientation color
map; (c) θη orientation map; (d) θξ orientation map.
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(a) (b) (c)

Fig. 5.2 – Vector orientation estimation using a PCA of rectangular support – multiscale
characteristic example: θξ orientation map for (a) WPCA = 3, (b) WPCA = 11 and (c)
WPCA = 21.

For specific details on how to construct the covariance matrix M (5.8) given the
gradient vector field information, and other PCA-related issues in orientation estimation
problems, please refer to [Don99].

In computing θη and consequently θξ a PCA of rectangular support and fixed size
WPCA was performed in each pixel. Moreover, as pointed out by Terebes in [Ter04],
the variable size of the PCA window behaves like a multiscale decomposition process,
and hence the orientation estimation exhibits a multiscale characteristic as illustrated in
Fig. 5.2.

Working with a PCA of rectangular support is only one of the available choices, a
circular support that weights the pixels within the analysis window W (x, y) according to
their distance from the central pixel (x, y) is readily obtainable from (5.8) by applying a
Gaussian smoothing, component-wise, to the original covariance matrix M . The resulting
rotation-invariant circular support is defined as:

M∗ =

(
Gρ ∗m11 Gρ ∗m12

Gρ ∗m12 Gρ ∗m22

)
(5.11)

Remark As noted by [Ter04], the choice between a PCA of rectangular support2 and
one of circular support involves a trade-off between noise robustness and improved esti-
mation, respectively. That is, a circular support increases the accuracy of the orientation
estimation, for noise-free images, while the rectangular support is better suited for noisy
images, where the equal weights of the pixels within the analysis window W (x, y) are
more efficient at diminishing the influence of isolated noisy pixels.

A more computationally demanding approach would be to perform a variable-size
PCA in each point of the vector field, thus making use of the PCA’s multiscale property of
better adapting the size of the analysis window W (x, y) to the vector field’s local geometry.
Such an approach, i.e., a multiscale PCA, requires a confidence measure that objectively
quantifies the confidence level of an estimation and properly discriminates between all
available estimations, in order to select the most appropriate of them with respect to the

2were all the pixels have the same contribution, i.e., the same weight
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(a) (b)

Fig. 5.3 – Vector orientation estimation using a multiscale PCA: (a) Grayscale concen-
tric circles synthetic image; (b) θξ – the result of a multiscale PCA.

local geometry within the analysis window W (x, y). One possible choice for this coherence
measure is Rao’s coherence measure [RS89, Rao90, RS91]:

coh
(
θ̂(x, y)

)
=

∑
(i,j)∈W (x,y)

|∇I(xi, yj)| · cos2
(
θ̂(xi, yj)− θ̂(x, y)

)
∑

(i,j)∈W (x,y)

|∇I(xi, yj)|
(5.12)

where θ̂(x, y) is the orientation estimate corresponding to the current pixel (x, y), the
center of the analysis window W (x, y).

The multiscale PCA estimation (Fig. 5.3b) yields in each point (x, y) the orientation
θ(x, y) for which coh

(
θ̂(x, y)

)
is maximum, thus ensuring a more accurate representation

of the local geometry in terms of vector orientation.

5.3 Mathematical model

Having covered the necessary theoretical prerequisites in §5.2, this section focuses on the
mathematical formalization of the proposed variational model for concurrent fusion and
denoising from two complementary perspectives:

� continuous domain definition and
� numerical discretization

Although some image processing models are formalized directly within a discrete
framework, the proposed model, being variational in nature, is described using a contin-
uous framework, which, through proper numerical approximations, can be successfully
expressed in discrete terms. In the present case, for this particular model, the numeri-
cal approximation is just as important as the actual theoretical definition, since it pro-
vides a considerable increase in performance by consolidating and enhancing the intrinsic
anisotropic characteristic of the theoretical model.
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5.3.1 Concurrent image fusion and denoising: a variational -
approach

Continuing the discussion about error estimation and error norms from §5.2.1, one possible
choice for ρ from (5.1) is the least square error norm, expressed as:

ρ
(
(x, y), |∇Ir(x, y)|

)
=

1

2
|∇Ir(x, y)|2 (5.13)

The above error norm provides a simple, straightforward way of filtering AWGN in an
isotropic manner, being a function of |∇Ir(x, y)|, but not explicitly of the image itself.

From an image fusion point of view, a more suitable error norm would be one that
combines AWGN filtering with edge enhancement, since the aim of a fusion process is to
transfer salient features from the input images to the fused result.

In image fusion, as previously stated, saliency is defined as edge information, thus,
the fusion process is aimed at enhancing and highlighting this type of information. Such
an error norm, for noise filtering and edge enhancement, was proposed and used by [JV05,
WSF08, MS08]:

ρ
(
(x, y), Ir(x, y, t), |∇Ir(x, y, t)|

)
=
α

2
|∇Ir(x, y, t)|2

+
β

2
JI(x, y)

[
Ir(x, y, t)− I(x, y)

]2 (5.14)

where α and β are constants that control the level of noise filtering and edge enhancement
respectively, while JI is a Gaussian smoothed edge map of the form (4.23):

JI(x, y) =

∫
|∇I(x′, y′)|2G(x− x′, y − y′, σ)dx′dy′ (5.15)

where G is a zero-mean Gaussian function of standard deviation σ.

Application-wise, isotropic filtering is not suitable for practical use in image pro-
cessing since it destroys salient information in the form of edges and structures [Ter04].
Conversely, anisotropic filtering has been for some time the method of choice in image
processing, for various processing tasks, from image restoration to image enhancement,
edge detection or image segmentation. The same desiderata apply for image fusion, since
the end purpose is to properly detect and fuse salient features, in the form of edges and
structures. This task can be best accomplished by anisotropically processing and filtering
the input information, in this case the input images.

To this end, the proposed variational fusion model is defined using an anisotropic
error norm that better responds to the needs of image fusion, both in terms of noise
filtering and of edge enhancement:

ρ
(
(x, y), Ir(x, y, t), |∇Ir(x, y, t)|

)
=− α

2

|∇Ir(x, y, t)|2

∇Ir(x, y, t)
∇−1

[
Da

(
Ir(x, y, t)

)]
− β

2
J(x, y, t)

[
Ir(x, y, t)− I(x, y)

]2 (5.16)

where ∇−1 is the inverse del operator and J(x, y, t) = JI(x, y) − JIr(x, y, t) is the gain
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function first introduced by [JV05], redefined in an anisotropic manner as follows:

J(x, y, t) =

∫
|∇̇I(x′, y′)|G(x− x′, y − y′, σem)dx′dy′

−
∫
|∇̇Ir(x′, y′, t)|G(x− x′, y − y′, σem)dx′dy′

(5.17)

where ∇̇ is the gradient along the η direction, with ~η = ∇Ir/|∇Ir|, its numerical expression
and computation being discussed in more detail in §5.3.2.

Substituting the anisotropic error norm from (5.16) into (5.6) leads to the following
evolution equation:

∂Ir(x, y, t)

∂t
= −αDa

(
Ir(x, y, t)

)
+ βΘ

(
J(x, y, t)

)
J(x, y, t)

[
Ir(x, y, t)− I(x, y)

]
(5.18)

where

Da(Ir) = cξIrξξ + cηIrηη (5.19)

is a diffusion differential operator computed in an anisotropic manner [TLBB02, TBB+04],
while Θ(J) (4.25) is defined so as to allow only salient information to be transferred to Ir:

Θ(J) =

{
1, if J > 0

0, if J < 0
(5.20)

Remark At first look, when comparing the proposed error norm (5.18) to the error norm
employed by the John–Vorontsov fusion model (4.22), the proposed norm appears to be
defined in a counterintuitive manner, since the diffusion term Da(Ir) describes a nega-
tive advection process, while the edge-enhancement term describes a positive advection
process, the opposite of how a standard PDE-based restoration with edge enhancement
process is normally described.

The fundamental difference between the two models lies in the fact that the John–
Vorontsov model directly employs its error norm in defining a fusion paradigm, while the
proposed model is constructed on the premise of describing a fusion process as a linear
combination of weighted inputs. Thus, the variational framework is indirectly used to
describe the time evolution of each independent weight function, a process that adds an
additional overall sign inversion, ultimately leading to the standard PDE-based restoration
with edge enhancement process description. The complete definition of the proposed fusion
model is further explained and clarified in the following paragraphs.

Irξξ and Irηη are the second order directional derivatives of Ir along the directions η

and ξ (~ξ ⊥ ~η), where ξ describes the structure’s (edge’s) geometry. The detailed discussion
regarding the expression of Da and its discretization is provided in §5.3.2.

Mathematically, a fusion process can be described as comprising S input images,
I1(x, y), . . . , IS(x, y) : Ω → R representing the same scene, spatially or temporally. One
way of classifying fusion techniques, according to [MS08] is into spatial domain and trans-
form domain techniques. In the spatial domain, a fused image can be defined as:

Ĩ(x, y) = C
(
I1(x, y), . . . , IS(x, y)

)
(5.21)
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where C represents the fusion rule, describing how the relevant features from the input
images are combined to yield the fused image Ĩ. Analogously, in the transform domain,
described by a transform operator T , the fusion process can be expressed as:

Ĩ(x, y) = T −1
{
C
(
T {I1(x, y)}, . . . , T {IS(x, y)}

)}
(5.22)

According to the classification of Mitianoudis and Stathaki [MS08], the proposed model
is a spatial domain fusion technique based on error estimation theory, expressed using a
variational framework.

Linking the two theoretical constructs of error estimation and variational fusion is
unambiguously achieved by extending the notion of recovered image Ir, from error esti-
mation theory, to image fusion theory in the form of the fused image Ĩ. Thus, every input
image Is(x, y), s = {1, . . . , S}, of the fusion process is regarded as a degraded image I,
recovered using the error estimation variational approach described by (5.18).

The fused image Ĩ can be constructed therefore, as a linear combination of S input
images Is, where the useful information is transferred to the fused result by means of
weight functions ws(x, y, t), as part of the error estimation process [MS08]:

Ĩ(x, y, t) =
S∑
s=1

ws(x, y, t) · Is(x, y) (5.23)

The process of fusing multiple inputs into a single fused result requires, first and
foremost, ensuring proper edge preservation. This cannot be achieved using a sequential
approach to estimating the S fusion weight functions, since salient information belonging
to one input could be lost if not correlated to all the other inputs. That is why concurrent
fusion and denoising as a parallel, simultaneous process is not equivalent to a sequential
denoising followed by a simple fusion process.

Simultaneously estimating the derivatives ∂ws/∂t, s = {1, . . . , S} for all S input
images can be accomplished by using the following simplifying mathematical construct:

∂Ĩ

∂t
=

∂Ĩ

∂ws

∂ws
∂t

= Is
∂ws
∂t

(5.24)

Thus, all S weights ws are simultaneously estimated based on their corresponding input
Is and correlated to the fused image Ĩ:

∂ws(x, y, t)

∂t
=

1

Is(x, y)

∂Ĩ(x, y, t)

∂t
(5.25)

Each fusion weight function is iteratively estimated using an update rule of the form
of:

ws(x, y, t+ 1)← ws(x, y, t)− τ
∂ws(x, y, t)

∂t
(5.26)

where
∂ws(x, y, t)

∂t
=

1

Is(x, y)

{
− αDa

(
Ĩ(x, y, t)

)
+ βΘ

(
Js(x, y, t)

)
Js(x, y, t)

[
Ĩ(x, y, t)− Is(x, y)

]} (5.27)
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Js(x, y, t) in this case is expressed as the difference:

Js(x, y, t) =

∫
|∇̇Is(x′, y′)|G(x− x′, y − y′, σem)dx′dy′

−
∫
|∇̇Ĩ(x′, y′, t)|G(x− x′, y − y′, σem)dx′dy′

=JIs(x, y, t)− JĨ(x, y, t)

(5.28)

The temporal evolution of each weight ws, governed by the (5.26) update rule, leads
to the fused result Ĩ described by (5.23).

At the beginning of the fusion process, at time t = 0, all fusion weights are initialized
to ws(x, y, 0) = 1/S; over time, the fusion weights ws(x, y, t) will adapt in order to empha-
size the salient information found in their corresponding input images Is(x, y), correlated
to the fused image Ĩ(x, y, t) at that particular instant of time t.

Remark With regard to the previous remark, about the overall sign inversion, an explicit
mathematical example can be given in order to emphasize the concurrent processes that
are taking place as part of the general joint fusion–denoising model.

Assuming a typical fusion scenario of S input images I1, . . . , IS, the initial value of
the fusion weight functions is set to 1/S, for all ws(x, y, 0), and furthermore, in accordance
with the (5.26) update rule:

ws(x, y, t+ 1)← ws(x, y, t)− τ
∂ws(x, y, t)

∂t
(5.29)

with ∂ws(x, y, t)/∂t expressed as (5.27). By integrating the computed ∂ws(x, y, t)/∂t into
(5.29), ws(x, y, t+ 1) is now equal to:

ws(x, y, t+ 1)← ws(x, y, t)−
τ

Is(x, y)

{
− αDa

(
Ĩ(x, y, t)

)
+ βΘ

(
Js(x, y, t)

)
Js(x, y, t)

[
Ĩ(x, y, t)− Is(x, y)

]} (5.30)

Finally, using (5.23), Ĩ(x, y, t) is expressed as:

Ĩ(x, y, t+ 1) =
S∑
s=1

ws(x, y, t+ 1) · Is(x, y)

=
S∑
s=1

{
ws(x, y, t)−

τ

Is(x, y)

{
− αDa

(
Ĩ(x, y, t)

)
+ βΘ

(
Js(x, y, t)

)
Js(x, y, t)

[
Ĩ(x, y, t)− Is(x, y)

]}}
· Is(x, y)

=
S∑
s=1

ws(x, y, t) · Is(x, y) + τ
S∑
s=1

αDa

(
Ĩ(x, y, t)

)
− τ

S∑
s=1

βΘ
(
Js(x, y, t)

)
Js(x, y, t)

[
Ĩ(x, y, t)− Is(x, y)

]

(5.31)
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Recalling the general expression of a time-evolving PDE-based image processing
paradigm:

I(x, y, t+ 1) = I(x, y, t) + dt · ∂I(x, y, t)

∂t
(5.32)

(5.31) can be further simplified, by breaking it down into its constituent parts, i.e.,

∂Ĩ

∂t
=

S∑
s=1

αDa

(
Ĩ(x, y, t)

)
−

S∑
s=1

βΘ
(
Js(x, y, t)

)
Js(x, y, t)

[
Ĩ(x, y, t)− Is(x, y)

]
Ĩ(x, y, 0) =

S∑
s=1

ws(x, y, 0) · Is(x, y)

(5.33)

where τ is equivalent to dt.

By analogy with the Kornprobst et al. [KDA97a] shock filter model (3.15), ∂Ĩ/∂t
can be also formalized in terms of functional components, as follows:

∂Ĩ

∂t
=

S∑
s=1

αDa

(
Ĩ(x, y, t)

)
︸ ︷︷ ︸

Denoising

−
S∑
s=1

βΘ
(
Js(x, y, t)

)
Js(x, y, t)︸ ︷︷ ︸

Deblurring

[
Ĩ(x, y, t)− Is(x, y)

]︸ ︷︷ ︸
Coupling

(5.34)

5.3.2 Fusion algorithm and model discretization

At the core of the proposed joint fusion–denoising variational model lies the anisotropic
diffusion differential operator Da generically expressed as:

Da(I) = cξIξξ + cηIηη (5.35)

representing a curvature-dependent diffusion operator, driving the diffusion process along
isolines, luminance-wise (§2.8).

In its generic form (5.35), the anisotropic diffusion differential operator Da is equiv-
alent to the compact form expression of the Alvarez et al. [ALM92] diffusion paradigm.
The difference between the two expressions lies in their numerical approximation, the
anisotropic diffusion differential operator Da being numerically expressed using an ex-
plicit anisotropic numerical representation of sub-pixel accuracy, first employed by the
Terebes et al. [TBB+04] anisotropic diffusion model, defined as follows 3:

Da(I) = cξIξξ + cηIηη

cξ =
∂

∂ξ
[gξ(Iξ)Iξ] with gξ(u) =

1

1 + (u/Kξ)
2

cη =
∂

∂η
[gη(Iη)Iη] with gη(u) =

1

1 + (u/Kη)
2

(5.36)

3Fig. 5.4a, Fig. 5.5 and Fig. 5.6 – the original figures can be found in [Ter04]
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(a) (b)

Fig. 5.4 – (ξ, η) frame of reference approximation example for a given contour, in pixel
Ii,j: (a) [Ter04] – The ~ξ direction approximation frame; (b) The ~η direction approximation
frame.

where Kξ and Kη are threshold parameters, controlling the strength of the diffusion pro-
cess along the ξ and η directions.

The use of the standard (i, j) frame of reference is not entirely suitable for anisotropic
image processing, since it is fixed with respect to image structures, thus impeding their
accurate description and representation. Hence, a variable, structure-dependent frame of
reference is required to accurately approximate first and second order derivatives.

In selecting and constructing a structure-dependent frame of reference that best
adapts to the local geometry, the (ξ, η) frame of reference is the natural choice since it
best describes structures and gradients at a pixel level.

Moreover, properly describing salient features in an image often requires sub-pixel
accuracy, therefore, a numerical interpolation scheme is needed for computing the finite
difference approximations within the (ξ, η) frame of reference, as illustrated in Fig. 5.4.
The computations performed in each pixel, require the following approximations: I(ξ, η) =
I(x, y), I(ξ + dξ, η), I(ξ − dξ, η), I(ξ, η + dη) and I(ξ, η − dη).

The interpolation points required for computing the previously mentioned approx-
imations with a sub-pixel accuracy are determined using the θη and θξ orientations, as
defined by (5.9) and (5.10).

Computing I(ξ+dξ, η) requires three interpolations points, V1, V2 and V3 (Fig. 5.5a)
expressed as: 

V1 = Ii,j−1 + 0.5 [Ii+1,j−1 − Ii−1,j−1] dξ cos θξ

+0.5 [Ii−1,j−1 − 2Ii,j−1 + Ii+1,j−1] (dξ cos θξ)
2

V2 = Ii,j + 0.5 [Ii+1,j − Ii−1,j] dξ cos θξ

+0.5 [Ii−1,j − 2Ii,j + Ii+1,j] (dξ cos θξ)
2

V3 = Ii,j+1 + 0.5 [Ii+1,j+1 − Ii−1,j+1] dξ cos θξ

+0.5 [Ii−1,j+1 − 2Ii,j+1 + Ii+1,j+1] (dξ cos θξ)
2

(5.37)
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(a) (b)

Fig. 5.5 – [Ter04] – ~ξ direction sub-pixel approximations: (a) V1, V2 and V3 approximation
points for computing I(ξ + dξ, η); (b) V ′1, V ′2 and V ′3 approximation points for computing
I(ξ − dξ, η).

yielding:
I(ξ + dξ, η) =V2 + 0.5 (V1 − V3) dξ sin θξ

+ 0.5 (V1 + V3 − 2V2) (dξ sin θξ)
2 (5.38)

I(ξ−dξ, η) is computed in a similar manner, using another set of three interpolations
points, V ′1 , V ′2 and V ′3 (Fig. 5.5b) expressed as:

V ′1 = Ii,j−1 − 0.5 [Ii+1,j−1 − Ii−1,j−1] dξ cos θξ

+0.5 [Ii−1,j−1 − 2Ii,j−1 + Ii+1,j−1] (dξ cos θξ)
2

V ′2 = Ii,j − 0.5 [Ii+1,j − Ii−1,j] dξ cos θξ

+0.5 [Ii−1,j − 2Ii,j + Ii+1,j] (dξ cos θξ)
2

V ′3 = Ii,j+1 − 0.5 [Ii+1,j+1 − Ii−1,j+1] dξ cos θξ

+0.5 [Ii−1,j+1 − 2Ii,j+1 + Ii+1,j+1] (dξ cos θξ)
2

(5.39)

which in turn yields:

I(ξ − dξ, η) =V ′2 − 0.5 (V ′1 − V ′3) dξ sin θξ

+ 0.5 (V ′1 + V ′3 − 2V ′2) (dξ sin θξ)
2 (5.40)

I(ξ, η + dη) and I(ξ, η − dη) are analogously obtained, each requiring three interpo-
lation points, as illustrated in Fig. 5.6:

Z1 = Ii,j−1 + 0.5 [Ii+1,j−1 − Ii−1,j−1] dη sin |θξ|
+0.5 [Ii−1,j−1 − 2Ii,j−1 + Ii+1,j−1] (dη sin θξ)

2

Z2 = Ii,j + 0.5 [Ii+1,j − Ii−1,j] dη sin |θξ|
+0.5 [Ii−1,j − 2Ii,j + Ii+1,j] (dη sin θξ)

2

Z3 = Ii,j+1 + 0.5 [Ii+1,j+1 − Ii−1,j+1] dη sin |θξ|
+0.5 [Ii−1,j+1 − 2Ii,j+1 + Ii+1,j+1] (dη sin θξ)

2

(5.41)
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(a) (b)

Fig. 5.6 – [Ter04] – ~η direction sub-pixel approximations: (a) Z1, Z2 and Z3 approximation
points for computing I(ξ, η + dη); (b) Z ′1, Z ′2 and Z ′3 approximation points for computing
I(ξ, η − dη).

yielding a numerical approximation of I(ξ, η + dη) of the form:

I(ξ, η + dη) =



Z2 − 0.5 (Z1 − Z3) dη cos θξ

+ 0.5 (Z1 + Z3 − 2Z2) (dη cos θξ)
2 θξ > 0

Z2 + 0.5 (Z1 − Z3) dη cos θξ

+ 0.5 (Z1 + Z3 − 2Z2) (dη cos θξ)
2 θξ < 0

(5.42)

and 

Z ′1 = Ii,j−1 − 0.5 [Ii+1,j−1 − Ii−1,j−1] dη sin |θξ|
+0.5 [Ii−1,j−1 − 2Ii,j−1 + Ii+1,j−1] (dη sin θξ)

2

Z ′2 = Ii,j − 0.5 [Ii+1,j − Ii−1,j] dη sin |θξ|
+0.5 [Ii−1,j − 2Ii,j + Ii+1,j] (dη sin θξ)

2

Z ′3 = Ii,j+1 − 0.5 [Ii+1,j+1 − Ii−1,j+1] dη sin |θξ|
+0.5 [Ii−1,j+1 − 2Ii,j+1 + Ii+1,j+1] (dη sin θξ)

2

(5.43)

yielding an approximation of the form:

I(ξ, η − dη) =



Z ′2 + 0.5 (Z ′1 − Z ′3) dη cos θξ

+ 0.5 (Z ′1 + Z ′3 − 2Z ′2) (dη cos θξ)
2 θξ > 0

Z ′2 − 0.5 (Z ′1 − Z ′3) dη cos θξ

+ 0.5 (Z ′1 + Z ′3 − 2Z ′2) (dη cos θξ)
2 θξ < 0

(5.44)

The anisotropic diffusion differential operator Da, defined as (5.36), is numerically ex-
pressed using forward and backward differences of the form (2.66) computed in: I(ξ, η) =
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I(x, y), I(ξ+ dξ, η), I(ξ− dξ, η), I(ξ, η+ dη) and I(ξ, η− dη), where the numerical values
of these points are obtained throug interpolation, i.e., (5.37) – (5.44).

Da(I) =gξ
(
D+
ξ (I)

)
·D+

ξ (I)− gξ
(
D−ξ (I)

)
·D−ξ (I)

+ gη
(
D+
η (I)

)
·D+

η (I)− gη
(
D−η (I)

)
·D−η (I)

(5.45)

The model discretization is finalized by approximating the directional gradient vector
∇̇I from (5.28) using only the η component of the (ξ, η) frame of reference. By choosing
∇̇I = (Iη, 0)T the anisotropic behavior of the Deblurring component of (5.34) is further
strengthen and, as an observed side effect, this particular choice ensures the absence of
fusion artifacts. ∇̇I is numerically expressed using (5.42) and (5.44), by means of a central
difference approximation scheme, and has the following norm:

|∇̇I| =
√
I2
η = abs(Iη) (5.46)

With all the fusion model’s elements properly computed and approximated, the fusion
algorithm can be summarized as described in Algorithm 5.1.

Algorithm 5.1 Image fusion with concurrent denoising

input S input images

initialize ws(x, y, 0) = 1
S

initialize Ĩ(x, y, 0) =
∑S

s=1 ws(x, y, 0) · Is(x, y)

for s = 1 to S do

compute ∇̇Is(x, y)

compute JIs(x, y)

end for

for t = 0 to Time do

compute Da(Ĩ(x, y, t))

compute ∇̇Ĩ(x, y, t)

compute JĨ(x, y, t)

for s = 1 to S do

compute Js(x, y, t) = JIs(x, y)− JĨ(x, y, t)
compute ∂ws(x, y, t)/∂t

compute ws(x, y, t+ 1)← ws(x, y, t)− τ · ∂ws(x, y, t)/∂t
end for

compute Ĩ(x, y, t+ 1) =
∑S

s=1 ws(x, y, t+ 1) · Is(x, y)

end for

output fused image Ĩ(x, y, T ime)
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5.4 Experimental analysis

The aim of the experimental analysis is to provide a thorough evaluation of the proposed
fusion model from the following perspectives:

� underlining the difference between a sequential processing chain of denoising followed
by fusion, and a concurrent fusion and denoising approach,

� experimentally validating the proposed fusion–denoising model and its robustness
to noise,

� studying the model’s behavior in terms of parameter selection vs. fused image
quality,

� performing a comparative analysis between the proposed model and a selection of
existing fusion and fusion–diffusion approaches.

5.4.1 Sequential denoising and fusion vs. concurrent fusion and
denoising

Before discussing any other experimental analysis-related issues, it is necessary to reiterate
the statement from §5.3.1 that“concurrent fusion and denoising as a parallel, simultaneous
process is not equivalent to a sequential denoising followed by a simple fusion process”.

(a) (b)

(c) (d)

Fig. 5.7 – Concurrent fusion and denoising – advantages. The Book image set test
scenario: (a) Book 1 original input image and detail (b); (c) Book 2 original input
image and detail (d).



5.4. Experimental analysis 123

(e) (f)

(g) (h)

(i) (j)

Fig. 5.7 – (continued): (e) SIDWT with Haar fusion method result and detail (f); (g)
Anisotropic noise filtering of the inputs followed by SIDWT with Haar fusion result and
detail (h); (i) Proposed fusion method result and detail (j).

This important difference ultimately being la raison d’être of the proposed fusion model.

To this end the following test scenario is constructed: given a real-world image set
(Book), consisting of two grayscale input images, available at [Ima11a], with an esti-
mated noise of σn = 0.66 and σn = 0.65 respectively, and of unknown distribution, three
experimental settings are devised. The first experimental setting fuses the two input
images using the SIDWT with Haar fusion method, part of Rockinger’s image fusion
toolbox, fusetool [Roc99], with the following parameter set: Level=4, High-pass combina-
tion=choose max, Low-pass combination=average(A,B).

The second experimental setting is identical to the previous setting in every way,
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except the input images. Since the original images are contaminated with a noise of
unknown characteristics, the required processing steps in this case are a noise filtering
followed by a fusion process. In order to maintain consistency between the experimental
settings and to limit as much as possible method bias, the input images are anisotropically
filtered prior to fusing them, with a filter based on the anisotropic diffusion differential
operator Da, also employed by the proposed fusion model. This limits any bias regarding
the difference in denoising quality that would have arisen if different noise filtering methods
had been employed. The parameter set for the noise prefiltering of the input images is
the following: t = 5s, τ = 0.1, WPCA = 3, Kξ = 10, Kη = 5. The thereby obtained
experimental results are illustrated in Fig. 5.7.

The third, and final experimental setting fuses the two input images using the pro-
posed fusion model with the following set of input parameters: t = 1s, τ = 0.1, WPCA = 3,
Kξ = 10, Kη = 5, σem = 7, α = 1.5 and β = 1.

As it can be seen from the extracted details, visually, the best result from a definition
point of view of greater quality [Wal98] is the fused result obtained with the proposed
fusion method. This statement holds true if the requirements for a “greater quality”
fused result are robust noise filtering with salient feature (edges, contours) preservation
and enhancement. The former requirement is inherently fulfilled by the proposed fusion
model, while the latter is satisfied by the combined effect of anisotropic fusion and the
implicit complementary information contained in the input images.

From an informational point of view, according to [BXZ06], an image fusion process
handles the following types of information: redundant, complementary, more timely and
less costly. By attempting to fulfill the requirements for a “greater quality” fused result
using sequential means, prefiltering followed by standard fusion, important information
(complementary and redundant) may be lost. The noise filtering process in itself considers
only the current input, disregarding all other inputs, regardless of their relevance to the
current input and to the salient features contained within. The fusion process, by defini-
tion, allows simultaneously assessing all inputs and the salient information contained in
each of them. Thus, it is only natural to integrate the denoising process into the overall
fusion mechanism, allowing simultaneous feature assessment and noise filtering.

Remark It also needs to be stressed that the fused result yielded by the proposed model
(Fig. 5.7i) falls within the category of expected results (quality-wise), but it is not the
best, since the fusion model did not undergo any parameter optimization, nor it is the
only possible result of acceptable quality (defined according to application).

5.4.2 Experimental validation and noise robustness assessment

In order to experimentally validate the proposed joint image fusion and denoising model
[LL11b, LL11a], a multifocus image fusion scenario is chosen, comprising two input images
(Fig. 5.8a and Fig. 5.8b) – the original images [ECE11] are real-world, registered images,
describing the same scene in different focus points. The initial, estimated, AWGN of
the original images is of σnoise−bias = 0.48 and is considered as a noise bias when further
adding AWGN.

For validating the fusion method’s denoising capabilities, the test scenario is con-
structed on the assumption of a relative reference image, since the desired output varies
from application to application. In this case, the multifocus image fusion of noisy images
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5.8 – Multifocus image fusion test setting: (a) First input image I1; (b) Second input
image I2; (c) Simple average reference image Ravg; (d) Fusion reference image Rfus; (e)
I1 – detail; (f) I2 – detail; (g) Ravg – detail; (h) Rfus – detail.

is required to produce a fused result of the scene described by the input images (I1 and
I2) that is both in focus and properly denoised.

To that end, the relative reference image is obtained using the fusion method itself,
with an empirically chosen set of parameters that produce a fused image within desired
quality specifications. This result is not necessarily the best, per se, since that would
require a priori knowing the ideal outcome of the fusion process, thus contradicting the
fundamental definition of information and making the image fusion redundant altogether.

In order to establish a somehow objective base of reference in relation with the fusion
reference, a second relative reference is used, obtained by averaging the original input
images, hence using to most basic fusion paradigm, also known as the simple average
fusion rule (4.1), previously discussed in §4.4.1.1.

Thus, the two references are obtained as follows: the simple average reference Ravg,
illustrated in Fig. 5.8c, is obtained by averaging the original input images (Fig. 5.8a and
Fig. 5.8b). The fusion reference Rfusion, illustrated in Fig. 5.8d, is the result of the pro-
posed fusion model, using (5.27) and (5.23) with an empirically chosen set of parameters
(ES14): iterations = 15, τ = 0.1 – theoretical time t = τ × iterations = 1.5s, WPCA = 3,
Kξ = 10, Kη = 5, σem = 7, α = 1 and β = 0.6.

Fig. 5.8e through Fig. 5.8h represent enlarged details of the input images, Ravg and
Rfusion respectively, and illustrate the difference in visual quality and filtered noise be-
tween the original inputs, Ravg and Rfusion.

The joint fusion–denoising model can be analyzed in terms of noise filtering and edge
enhancement using a set of objective evaluation measures that require a reference image
[BXZ06], e.g., RMSE, PSNR, VIF and SSIM, topic previously covered in §4.6.

The test scenario is constructed on the idea of verifying the fusion method’s ro-
bustness to AWGN, while correctly performing multifocus image fusion, that is, yielding
a fused result both in focus and denoised. The AWGN varies from no added noise,

4ES - Experimental Setting
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Fig. 5.9 – Multifocus image fusion test scenario (ES1) - quality metrics: (a) RSME/σnoise
evolution; (b) PSNR/σnoise evolution; (c) VIF/σnoise evolution; (d) SSIM/σnoise evolu-
tion.

(σn = σnoise−bias), to σn = σnoise + σnoise−bias = 30. For the first experimental setting
(ES1), the quality metrics’ evolution with respect to σnoise is illustrated in Fig. 5.9.

Fig. 5.9 illustrates the evolution of the following test results:

� The fused result Ĩσnoise for all tested values of σnoise, with respect to its relative
reference Rfusion, where Rfusion falls within the category of “greater” quality results,
fulfilling the two important criteria of being properly fused and denoised through a
joint fusion–denoising approach.

� The averaged result Iσnoiseavg for all tested values of σnoise, with respect to its relative
reference Rfusion in order to qualitatively quantify the difference between the simple
average fusion method and the proposed fusion–denoising model.

� The two inputs Iσnoise1,2 for all tested values of σnoise, with respect to their relative
reference Rfusion, to provide an extra point of reference, quality-wise.

Upon analyzing the experimental results illustrated in Fig. 5.9, the following imme-
diate conclusions can be formulated:

� The proposed fusion model, with the parameter set ES1, suited for low to medium
noise contamination, performs as intended even for high AWGN levels.
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� As it can be seen from the quality metrics graphs (Fig. 5.9), the proposed fusion
method yields promising results even when the method’s parameters are empirically
chosen, without any prior parameter optimization.

� The proposed fusion process exhibits a robust salient information (i.e., structure
information, such as edges and contours) transfer and integration even for high
AWGN levels, as indicated by the SSIM evolution in Fig. 5.9d.

The aim of defining additional experimental settings is to emulate a real-world sce-
nario of adapting the image processing model to the conditions of the input data. Thus,
two new experimental settings, ES2 and ES3, are defined as instances of the proposed
method, particularly adapted, parameter-wise, to tackle with medium and high noise
contamination, respectively.

The three proposed experimental settings (Table 5.1) emulate a coarse optimization
scenario (Fig. 5.10), where in order to maintain a high quality fused result regardless
of the input images and the degree of their contamination, the model’s parameters are
adjusted so as to compensate for any drop in quality, or at least limit this drop as much
as possible. Thus, the resulting optimization is achieved by using the input parameters
from one of the three experimental settings at each level of σnoise, according to the best
measured value, quality metric-wise.

All of the quality metrics used for the coarse optimization test scenario indicate that
the increase in AWGN can be dynamically compensated by a proper selection of the fusion
method’s input parameters. Hence, a proper parametrization ensures the robustness of the
fusion method across the entire range of σnoise values. The evolution of the SSIM quality
metric (Fig. 5.10d) for the optimized experimental setting Rfusion/OPT underlines the
implicit anisotropic characteristic of the fusion method, both for noise filtering and edge
enhancement.

The same experimental settings can be evaluated using dedicated fusion quality met-
rics, like the QAB/F or the QW (§4.6), having as reference the original input images
I
σnoise−bias
1 and I

σnoise−bias
2 (Fig. 5.8a and Fig. 5.8b). Since there are no completely noise-

free input images available, the quality assessment slightly under-evaluates the fused re-
sults, as discussed in §4.7.4, but within acceptable limits, providing an accurate enough
evaluation.

Moreover, the same reasoning as for the test scenario illustrated in Fig. 5.10 is used
in assessing the quality of the fused results Ĩσnoise with dedicated fusion quality metrics,
for the three experimental settings (Table 5.1). The resulting quality assessment and
the corresponding fusion model’s coarse optimization are illustrated in Fig. 5.11, their
interpretation leading to the following conclusions:

� The overall model behavior is consistent with the previous quality assessment and

Table 5.1 – Noise robustness assessment – experimental settings

Experimental setting Proposed model parameters
t τ WPCA Kξ Kη σem α β

ES1 1.5s 0.1 3 10 5 7 1 0.6
ES2 1.5s 0.1 5 10 5 7 1.6 0.3
ES3 4s 0.1 5 10 5 9 2.2 0.3
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Fig. 5.10 – Noise robustness test scenario: (a) RSME/σnoise coarse optimization; (b)
PSNR/σnoise coarse optimization; (c) VIF/σnoise coarse optimization; (d) SSIM/σnoise
coarse optimization.

coarse optimization scenario (Fig. 5.10), and confirms the validity of the proposed
joint fusion–denoising model, as well as its robustness to noise, achieved by properly
adjusting the model’s input parameters when required to compensate for the increase
in AWGN contamination.

� The evolution of the QW fusion quality metric (Fig. 5.11b) for the three experimental
settings not only supports the previous conclusions regarding the model’s noise
robustness and how its parameters can be dynamically adjusted to compensate for
the increase in AWGN, but also, through its values, underlines the model’s ability
to transfer salient information from the inputs to the fused result, even for elevated
noise levels. The quality assessment using the QW metric is all the more pertinent
since, as concluded in §4.7, the QW fusion quality metric is more reliable in properly
assessing the quality of the fused results than the other available dedicated fusion
quality metrics.

Remark It needs to be reiterated that for the given initial test setting, illustrated in
Fig. 5.8, the proposed method can yield even better results if thoroughly optimized in
terms of input parameters vs. input noise level, a subject that will be discussed at length
in §5.4.3.
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Fig. 5.11 – Noise robustness test scenario – dedicated fusion quality metrics evaluation:
(a) QAB/F /σnoise coarse optimization; (b) QW /σnoise coarse optimization.

The analysis of the proposed noise robustness scenario (Fig. 5.10 and Fig. 5.11), in
terms of fused image quality vs. σnoise, reveals another interesting fact: for high and very
high noise levels the drop in quality is significant and partly due to external factors, such
as:

� the limited number of input images – given a noise of zero mean, for a sufficiently
large number of input images, the initialization process (input averaging) alone
would act as an implicit denoising process. This theoretical property is employed
as an additional denoising step by the Socolinsky fusion model [Soc00a], where the
fusion process is always assumed as comprising a sufficiently large number of inputs.

� the entropy of the input images – usually filtering methods that employ a geometry-
driven processing mechanism have difficulties in initially assessing the image geom-
etry when the inputs are contaminated with high value noise, e.g., the Osher–Rudin
[OR90] shock filter. A simple an efficient solution, employed by many denoising
methods, is to integrate in the filtering model a pre-smoothing component that
helps decrease the initial entropy and allows the model’s edge detector to properly
describe the geometry of the input image. Thus, in the case of the proposed joint
fusion–denoising model, an extra boost in output quality is available by integrating
a pre-smoothing component in the overall model, the fusion inputs being thereby
expressed as G ∗ Is, where G is a Gaussian PSF of σps.

In order to illustrate the difference in output quality between the proposed fusion
model without pre-smoothing and the proposed fusion model with pre-smoothing, the
following experimental setting is constructed: for the input image set Iσn=30

1,2 , the best
quality scores for the proposed fusion model without a pre-smoothing component are
obtained using the ES3 parameter set; in order to assess the difference in quality for the
proposed fusion model with pre-smoothing, the same set of parameters is kept, i.e., ES3
(Table 5.1), with the additional parameter σps = 0.5.

For the input image set Iσn=30
1,2 the initial entropies are EI1 = 7.639 and EI2 = 7.657,

respectively and the fused result Ĩσn=30 (Fig. 5.12a) is obtained using the ES3 input
parameters set, as previously mentioned. For the pre-smoothing case, the input image
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(a) (b)

Fig. 5.12 – Noise robustness test scenario – pre-smoothing example: (a) Ĩσn=30 fused
result; (b) Ĩσn=30

σps=0.5 fused result.

set Gσps=0.5 ∗ Iσn=30
1,2 has the following the initial entropies: EI1 = 7.525 and EI2 = 7.579,

respectively, and the fused result Ĩσn=30
σps=0.5 (Fig. 5.12b) is obtained using the ES3 input

parameters set and the additional input parameter σps = 0.5.

The quality assessment for the proposed experimental setup is summarized in Ta-
ble 5.2 from where it can be concluded that even a small decrease in the initial entropy of
the input images, through a pre-smoothing process (σps = 0.5), can provide a significant
increase in quality of the output fused image Ĩ.

Remark The experimental setting summarized in Table 5.2 has a dual interpretation: on
the one hand it supports the previous inference stating that a small pre-smoothing with the
purpose of reducing the input images’ entropy can provide an additional increase in fused
output quality, as indicated by the image fusion quality metrics for the ES3 w/ σps = 0.5,
while on the other hand it shows that by no means a sequential denoising followed by a
classic fusion process is equivalent or superior in terms of output quality to the proposed
concurrent fusion–denoising approach. Moreover, as the remaining experimental settings
indicate (Table 5.2 – ES3 w/ σps = 1.5, . . . , 3) the fused result quality decreases if the
pre-smoothing is anything other than minimal, just enough to slightly decrease the initial
entropy.

The proposed method’s joint fusion–denoising nature and its implicit noise robustness

Table 5.2 – Noise robustness assessment of the pre-smoothing example – quality evaluation

Experimental setting Quality metrics

Rfusion/Ĩ RMSE PSNR VIF SSIM QAB/F QW

ES3 12.33 26.311 0.296 0.534 0.292 0.857
ES3 w/ σps = 0.5 18.048 30.016 0.335 0.762 0.336 0.895
ES3 w/ σps = 1.5 10.474 27.727 0.283 0.864 0.247 0.785
ES3 w/ σps = 2 12.573 26.141 0.224 0.831 0.214 0.7
ES3 w/ σps = 3 15.651 24.239 0.143 0.777 0.183 0.549
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(a) (b) (c)

(d) (e) (f)

Fig. 5.13 – Office image set – multi-exposure fusion scenario: (a) I1 input image –
with an estimated noise of σnoise−bias = 2.62 and detail (d); (b) I2 input image – with an
estimated noise of σnoise−bias = 2.55 and detail (e); (c) Proposed fusion model fused result
Ĩ and detail (f).

makes the quality assessment process more difficult, as previously discussed in §4.7.4,
especially when the fused reference or the input references do not exist. As already
discussed, seldom the input images are “ideal” in the sense that they contain only useful
information. One such example of noise-corrupted input images is illustrated in Fig. 5.13a
and Fig. 5.13b. The unknown noise contamination can originate from various sources,
e.g., acquisition, transmission, storage, compression and should be either considered as a
noise bias when evaluating the fused result or it should be filtered out to the extent of
becoming a negligible contamination when using the original image set as reference for
quality evaluation. Fig. 5.8 has illustrated a standard multifocus image fusion scenario and
its initial noise contamination problem. Another example of a similar noise contamination
is illustrated in Fig. 5.13 for a multi-exposure fusion scenario using the Office image set,
available at [Ima11a].

As it can be seen from the detailed view in Fig. 5.13d and Fig. 5.13e the noise con-
tamination in this case is not at all negligible and will strongly influence any quality
evaluation, if the original input images are used as references. This is especially the
case for dedicated fusion quality metrics (§4.6), where the input images are considered as
references when evaluating the fused result.

In the case of concurrent fusion and denoising, when comparing a fused result that is
both enhanced and restored with the initial noisy inputs, the evaluation is not based on
sound, well-posed initial conditions. If using objective evaluation methods that require a
reference image, such a reference usually needs to be constructed using a fusion method
that can provide a result within the class of desired results. When dealing with noisy
inputs, constructing the reference by means of a standard fusion method leads to a fused
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result that shares the same shortcoming as its inputs, and renders the evaluation process
ill-founded.

In order to overcome the initial noise problem in quality evaluation for the input
references, one way is to use a slightly filtered version of the original image set, so much
so that the reference images are visually and qualitatively acceptable from a “greater
quality”-definition point of view. As for the fused reference, this can be obtained directly
from the input references using a fusion process that provides a fused result of “greater
quality”.

5.4.3 Model parametrization

Before performing a comparative analysis between the proposed fusion model and existing,
variational and non-variational models, it is required to experimentally test the model’s
response to its input parameters, and their influence on the quality of the fused output.
To this end, a multifocus image fusion test scenario is constructed, using the Clock image
set (available at [Ima11a]) progressively contaminated with an AWGN of σn = 1, . . . , 50.
As discussed in §5.4.2, the original images from the Clock set are not entirely suitable
for use as references since they contain an unknown noise contamination of estimated
σnoise−bias = 0.53 and σnoise−bias = 0.51, respectively. Since the noise contamination in

(a) (b) (c)

(d) (e)

Fig. 5.14 – Clock image set – multifocus fusion scenario: (a) Clock 1 original image
– with an estimated noise of σnoise−bias = 0.53; (b) Clock 2 original image – with an
estimated noise of σnoise−bias = 0.51; (c) I1 reference input image; (d) I2 reference input
image; (e) Reference fused image – used in the noise stress analysis.
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this case is weak, an acceptable approximation of the “ideal” input images can be obtained
by performing an anisotropic filtering of the original images.

In order to establish a fused reference image, needed for the noise behavioral anal-
ysis, the quasi-“ideal” image set is fused using the proposed method with the following
parameter set: t = 0.5s, τ = 0.1, WPCA = 3, Kξ = 10, Kη = 5, σem = 1, α = 1 and β = 1.
The original Clock set, along with the reference inputs and the reference fused image are
illustrated in Fig. 5.14.

For the following experimental analysis, the reference input images (Fig. 5.14c and
Fig. 5.14d) will be progressively contaminated with an AWGN of up to σn = 50. The
envisaged noise stress scenario is designed as follows: each input parameter at a time
varies within specified limits and the output fused result is assessed using three quality
metrics, i.e., RMSE, PSNR and SSIM. The evolution of the quality metrics will indicate
in what way the fusion model is influenced by any given input parameter and how should
the model be parameterized for any given σn so as to yield the best obtainable results.

As a first optimization assessment, α and β are varied between 0 and 2.5 in increments
of 0.1, in order to ascertain how they influence the fusion model’s behavior with the
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Fig. 5.15 – Proposed fusion method – noise stress behavior: (a) RMSE/noise evolution
– α; (b) PSNR/noise evolution – α; (c) SSIM/noise evolution – α; (d) RMSE/noise
evolution – β.
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Fig. 5.15 – (continued): (e) PSNR/noise evolution – β; (f) SSIM/noise evolution –
β; (g) RMSE/noise evolution – σem; (h) PSNR/noise evolution – σem; (i) SSIM/noise
evolution – σem.

increase in AWGN. The two input parameters control the amount of denoising (α) and
edge enhancement (β) the fusion method performs on the combined information supplied
from its inputs.
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Another important input parameter of the proposed model is σem which controls the
degree of dispersion within the employed edge maps, of singular values that usually appear
because of noise contamination. Hence are avoided false gradient responses that lead to
false structures which propagate through edge enhancement into the final fused result.
σem is varied between 1 and 10 in increments of 0.5, to properly evaluate the influence of
this input parameter on the overall behavior of the fusion model.

For illustrative purposes, only the evolutions of α, β and σem are shown in Fig. 5.15,
analyzed using the RMSE, PSNR and SSIM quality metrics. In a similar manner, the
PCA window size WPCA and the number of time iterations were analyzed using the
same noise stress test setting and the same quality metrics. It should be also noted
that the orientation estimation can be performed independently for the denoising and
deblurring terms of (5.34), using differentWPCA window sizes. By doing so, the orientation
is determined separately, allowing for more flexibility in the fusion mechanism, since
the denoising process would require a larger PCA window to benefit from an overall
view of local geometry, while the edge enhancement component should be restricted to
a smaller window size in order to preserve details. But not too small, as to not be
able to distinguish singularities (due to noise) from small salient features. With the
increase of AWGN, distinguishing between localized variations in signal intensity and
small structures, comparative in size with the former, becomes even harder and some
details can be lost in the denoising process. That is why the denoising PCA window size
should not be too large as to filter out the smaller details. Conventionally, as empirically
determined in other works related to PCA-based image filtering, the acceptable maximum
window size is set to 21× 21.

Based on the noise stress analysis, partially illustrated in Fig. 5.15, the overall optimal
behavior of the proposed fusion method can be attained as follows:

� for weak noise contamination the α and β input parameters should have similar
values, close to 1, the σem parameter should be between 1.5 and 5, and a value
of 3 for the WPCA parameter should suffice. Last but not least, Kξ > 10 and
Kη/Kξ 6 0.5, configuration used for any σn.

� for moderate noise contamination the α and β input parameters should be: α > 1.5
and β 6 0.5, while the σem parameter should be between 5 and 7, and a value of up
to 5 for the WPCA parameter should be used.

� for strong noise contamination the α and β input parameters should be α > 2 and
β 6 0.3, respectively, the σem parameter should be between 7 and 11, and a value of
7 for the WPCA parameter should be enough. For high noise values, the fused result
can be further enhanced by working on Gσps ∗Is inputs, an approach commonly used
in image processing. In this case, the input parameters require adjusting to the new
inputs.

5.4.4 Concurrent fusion and denoising: a comparative analysis

In this section [LL11c], the analysis of the proposed fusion model focuses on its effective-
ness with respect to other existing methods, in terms of concurrent fusion and denoising,
using a comparative test scenario based on the Clock image set with the fusion inputs
Fig. 5.14c and Fig. 5.14d, and employing for comparison purposes, several existing fusion
models, variational and non-variational, summarized in Table 5.3.
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For the comparative analysis, the tested fusion methods are evaluated using three
levels of AWGN: σn = 0, σn = 13 and σn = 30. The first noise level, more accurately
the absence of AWGN, tests the proposed model’s effectiveness when employed like any
other fusion method, for fusion purposes only. This will also help in establishing the best
fusion reference for quality metrics that require a reference image (§4.7.3), used to better
assess noise filtering performance for higher AWGN levels.

Table 5.3 – Compared fusion methods and their input parameters

# Fusion method Input parameters

1 Average (AVG) - [Roc99]
2 Principal Component Analysis (PCA) - [Roc99]

3 Laplacian Pyramid (LAP) - [Roc99]

L - decomposition level
H - high-pass combination:
. - choose-max – max
. - saliency/match – sm
w - area (for sm)

4 Filter-Subtract-Decimate Pyramid (FSD) - [Roc99]

L - decomposition level
H - high-pass combination:
. - choose-max – max
. - saliency/match – sm
w - area (for sm)

5 Ratio Pyramid (RAT) - [Roc99]

L - decomposition level
H - high-pass combination:
. - choose-max – max
. - saliency/match – sm
w - area (for sm)

6 Contrast Pyramid (CON) - [Roc99]

L - decomposition level
H - high-pass combination:
. - choose-max – max
. - saliency/match – sm
w - area (for sm)

7 Gradient Pyramid (GRA) - [Roc99]

L - decomposition level
H - high-pass combination:
. - choose-max – max
. - saliency/match – sm
w - area (for sm)

8
Discrete Wavelet Transform - Daubechies Spline DBSS(2,2)
(DWT) - [Roc99]

L - decomposition level
H - high-pass combination:
. - choose-max – max
. - saliency/match – sm
w - area (for sm)

9
Shift Invariant Discrete Wavelet Transform with Haar
(SIDWT) - [Roc99]

L - decomposition level
H - high-pass combination:
. - choose-max – max
. - saliency/match – sm
w - area (for sm)

Variational approaches

10 Socolinsky (Soc) - [Soc00a]
IT - number of iterations
dt - optimization step

11 Wang–Ye (WaY) - [WY07]

IT - number of iterations
dt - optimization step
w - neighborhood (similar to area)
n - selectivity
σ - standard deviation

12 John–Vorontsov (JoV) - [JV05]
IT - number of iterations
dt - optimization step
σ - standard deviation

13 Pop (Pop) - [Pop08]

IT - number of iterations
dt - optimization step
β - fusion weight
γ - regularization weight

14 Proposed fusion model (Proposed)

IT - number of iterations
dt - optimization step (τ)
α - noise filtering weight
β - fusion weight
WPCA - PCA window size
Kξ - anisotropic barrier
Kη - anisotropic barrier
σem - standard deviation (edge map)
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As not all fusion methods were designed for simultaneous noise filtering, only the
most relevant (or their adapted versions) are used for comparison when the AWGN is
different from 0 (σn = 13 and σn = 30). In order to properly compare the performances
of the fusion methods listed in Table 5.3, an optimization process must be carried out
prior to comparing the fused results. Since a similar comparative analysis, using the
Clock image set, was conducted in [Pop08], the optimized parameter sets for the existing
fusion methods are used as determined in [Pop08]. Based on the model parametrization
described in §5.4.3, the proposed fusion model is coarsely optimized so as to provide results
within its best attainable performances.

For the first comparative analysis, when no AWGN is present and the input image
set is assumed quasi-“ideal”, the comparative quality assessment can be performed only
using quality metrics that do not require a reference image (§4.6), since no ideal fused
result exists.

By analyzing the particularities of each fusion quality metric, the best suited for
parameter optimization proves to be the QW [Pie04] metric, because it weights discrimi-
nately the different regions of the fused image, based on their relevance, in terms of visual
acuity, as also concluded by Pop [Pop08]. Its definition is inspired from the human visual
system (HVS) and has a dynamic range between [-1;1], analogous in interpretation to the
SSIM and MSSIM.

On the other hand, the rSFe fusion quality metric behaves more as fusion fidelity
indicator, since its ideal value is rSFe = 0, meaning that an ideal fusion process has taken
place, while rSFe > 0 translates into an over-fused image, with some distortion or noise
introduced. Finally, rSFe < 0 indicates an under-fused image, with lost of meaningful
information. Hence, the smaller the rSFe’s absolute value, the better the fused image.
Although, the QAB/F fusion metric is useful in evaluating a fusion process from several
points of view (artifacts, information loss, etc.), it presents a multitude of parameters
that require tweaking, and are often application-dependent, characteristic that further
complicates the quality evaluation and parameter optimization process.

The fusion performances, objectively assessed using the QW , rSFe and QAB/F fusion
quality metrics are presented in Table 5.4 along with the list of optimized parameters
associated with each fusion method.

The fusion quality metrics were parameterized as follows: for the QW a 9×9 estima-
tion window was used with a max selection criterion. The saliency reference information
in this case, is the variance map of each reference input image obtained using a 5 × 5
sliding window, illustrated for both inputs in Fig. 5.16.

In computing the rSFe a 9×9 window was used, while the QAB/F metric was em-
ployed with the following set of parameters: L = 1, Γg = 0.9994, κg = −15, σg = 0.5 and
Γα = 0.9879, κα = −22, σα = 0.8.

As it can be seen from the experimental setting, qualitatively described in Table 5.4,
the proposed fusion method (Proposed-QW ) result scores the highest score measured by
the QW fusion metric along with the SIDWT fusion method result. The optimization of
the fusion methods was done, as already mentioned, with the purpose of attaining the
highest possible value of the QW , since from a fusion point of view, this metric is the
most relevant. The Proposed-rSFe result is shown in Table 5.4 with the purpose of
illustrating just how close to an ideal fusion, from an rSFe point of view, the fused result
can be, when the fusion model is properly parameterized. Even when optimized for the



138 Chapter 5. A variational approach for concurrent image fusion and denoising

Table 5.4 – Comparative analysis – AWGN of σn = 0

Fusion method Optimal parameter set Quality metrics
QW rSFe QAB/F

AVG 0.907 -0.39 0.656
PCA 0.909 -0.385 0.664
LAP L=6 H=sm w=3×3 0.957 -0.037 0.751
FSD L=3 H=max 0.92 -0.291 0.7
RAT L=4 H=sm w=9×9 0.912 -0.377 0.667
CON L=6 H=sm w=3×3 0.956 -0.028 0.752
GRA L=3 H=max 0.921 -0.293 0.702
DWT L=7 H=sm w=9×9 0.951 -0.033 0.73
SIDWT L=4 H=sm w=3×3 0.958 -0.062 0.751
Soc IT=26 dt=0.25 0.953 -0.05 0.735
WaY IT=114 dt=0.25 w=5×5 n=1 σ=10 0.953 -0.147 0.747
JoV IT=55 dt=0.0003 σ=5 0.956 -0.088 0.761
Pop-out1 IT=4032 dt=0.1 β=0.01 γ=2.49 0.949 -0.056 0.739
Pop-out2 0.955 -0.038 0.75
Proposed-QW IT=6 dt=0.1 α=0.1 β=1.2

WPCA=3×3 Kξ=2 Kη=0.4 σem=5
0.958 -0.105 0.761

Proposed-rSFe IT=5 dt=0.1 α=0.2 β=1 WPCA=3×3
Kξ=10 Kη=5 σem=3

0.95 0.0004 0.752

rSFe fusion metric, the fused result scores well on the other two fusion metric scales.
From a QAB/F metric point of view, the proposed method scores the second best score at
a negligible difference of 0.0004 from the highest score.

Remark As previously mentioned in §4.5.4, the Pop variational fusion method has two
outputs, since it is an “S inputs – S outputs” method with theoretical converging outputs
toward a single solution, for a very large number of iterations, theoretically infinite. That
is why there exist two output results, i.e., Pop-out1 and Pop-out2.

The fused results pertaining to the experimental setting described in Table 5.4 are
illustrated in Fig. 5.17.

(a) (b)

Fig. 5.16 – I1 and I2’s variance maps – used in computing the QW fusion quality metric:
(a) I1’s variance map; (b) I2’s variance map.
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In the following, the analysis is focused on the selected fusion models’ behavior for
medium AWGN (σn = 13) contamination and strong AWGN (σn = 30) contamination,
respectively. As previously mentioned not all the fusion methods compared in Table 5.4
are implicitly suited for concurrent fusion and denoising, thus only the more robust are
retained for the following comparative analyses. Furthermore, the AVG method serves
as a control reference point since it is the most basic form of fusion.

The JoV method can employ a TV minimization approach for fusing noisy images,
as suggested but not tested in [JV05]. A similar adaptation is used by the Pop method,
where a diffusion and regularization term is added, linked to the general fusion model

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5.17 – Comparative analysis – Table 5.4: (a) AVG fused result; (b) PCA fused
result; (c) LAP fused result; (d) FSD fused result; (e) RAT fused result; (f) CON fused
result; (g) GRA fused result; (h) DWT fused result; (i) SIDWT fused result.
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(j) (k) (l)

(m) (n) (o)

Fig. 5.17 – (continued): (j) Soc fused result; (k) WaY fused result; (l) JoV fused
result; (m) Pop-out2 fused result; (n) Proposed-QW fused result; (o) Proposed-rSFe
fused result.

[Pop08]. As for the DWT and SIDWT fusion models, their adaptation to noisy inputs
follows the lines of the approach suggested in [PX03], where the DWT coefficients are
denoised prior to being used in the fusion process. In order to maintain consistency with
the general formalism employed by the two methods, the VisuShrink approach is used,
the denoising being performed by means of a noise estimation step (MAD5) to properly
separate the wavelet coefficients in: noise coefficients and information coefficients.

The comparative analysis is carried out using the previously established guidelines,
following a QW optimization approach (Appendix A), using the existing methods’ opti-
mization performed in [Pop08]. The previous experimental results, described in Table 5.4,
help in selecting a fused reference in order to thoroughly assess the combined fusion–
denoising performances of the tested methods. Based on the quality metrics scores from
Table 5.4 and aiming to maintain objectivity and a bias-free assessment, the LAP fused
result (Fig. 5.17d) is selected as the fused reference. Thus, the fused reference is among
the results having the highest scores, quality-wise, while the LAP method used in ob-
taining the reference result is not further used in the noise comparative analysis, hence
providing a bias-free assessment.

The results from the previous test scenarios, i.e., for an AWGN of σn = 13 and
σn = 30, are summarized in Table 5.5 and Table 5.6, respectively. The reference-based
quality metrics used to assess the performance of the compared fusion models are part

5Median Absolute Deviation
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Table 5.5 – Comparative analysis – AWGN of σn = 13

Fusion method Optimal parameter Fusion quality metrics Reference quality metrics
set QW rSFe QAB/F RMSE PSNR SSIM MSSIM VSNR VIF MI

AVG 0.833 0.726 0.295 10.913 27.371 0.557 0.904 21.485 0.354 1.981
DWT L=7 H=max 0.79 2.103 0.257 17.427 23.305 0.358 0.823 19.276 0.336 1.502
SIDWT L=5 H=max 0.821 1.854 0.292 15.461 24.345 0.395 0.861 21.852 0.383 1.618
DWT-soft L=7 Ln=1 H=max 0.885 0.439 0.335 10.112 28.033 0.637 0.89 19.568 0.352 2.209
DWT-hard L=7 Ln=2 H=max 0.877 0.503 0.356 9.948 28.175 0.674 0.892 19.853 0.333 2.284
SIDWT-soft L=5 Ln=1 H=max 0.929 0.021 0.425 6.837 31.433 0.798 0.932 21.448 0.432 2.726
SIDWT-hard L=5 Ln=2 H=max 0.931 -0.082 0.477 5.771 32.905 0.911 0.965 23.275 0.455 3.055
JoV IT=339 dt=0.0001

σ=5 α=2500 β=0.9
0.855 1.197 0.328 11.585 26.852 0.524 0.906 24.569 0.418 1.961

Pop-out1 IT=35 dt=0.1 α=0.7
β=0.3 γ=1.5 Kξ=5
Kη=2

0.864 -0.25 0.424 9.557 28.523 0.878 0.94 18.489 0.391 2.657

Pop-out2 0.925 -0.161 0.485 7.904 30.173 0.902 0.959 21.517 0.436 2.976
Proposed-QW IT=18 dt=0.1 α=1.6

β=0.3 WPCA=5×5
Kξ=15 Kη=1.5 σem=5

0.936 -0.046 0.524 5.162 33.874 0.879 0.965 26.029 0.482 3.027

Proposed IT=16 dt=0.1 α=1.7
β=0.4 WPCA=5×5
Kξ=10 Kη=5 σem=5

0.932 -0.048 0.478 5.219 33.777 0.885 0.965 25.993 0.48 3.04

of the MeTriX MuX Visual Quality Assessment Package [Gau11], an additional step in
eliminating any quality metrics implementation bias.

Based on the analysis of the experimental data from Table 5.4 – 5.6 it can be inferred
that the proposed method has achieved its expected goals by providing good quality results
through image fusion, even in less than ideal conditions, such as AWGN contamination.
The quality metric scores clearly underline the proposed method’s ability to simultane-
ously fuse and denoise input images, affected by AWGN, ranging from a mild distortion
up to a strong interference, not at all negligible. Fig. 5.18 selectively illustrates the fused
results from the test scenarios summarized in Table 5.5 and Table 5.6.

Remark Optimizing the proposed fusion method using the QW quality metric by de-
creasing the Kη/Kξ ratio can lead to unwanted artifacts, as illustrated in Fig. 5.18d. By
providing a second test result in the form of Proposed for each experimental setting,

Table 5.6 – Comparative analysis – AWGN of σn = 30

Fusion method Optimal parameter Fusion quality metrics Reference quality metrics
set QW rSFe QAB/F RMSE PSNR SSIM MSSIM VSNR VIF MI

AVG 0.656 2.741 0.172 21.706 21.398 0.247 0.766 17.385 0.212 1.18
DWT L=6 H=max 0.519 5.691 0.117 38.071 16.518 0.132 0.614 11.86 0.18 0.719
SIDWT L=5 H=max 0.56 5.200 0.14 34.479 17.379 0.149 0.669 13.866 0.212 0.786
DWT-ps L=6 H=max σps=1 0.855 0.247 0.28 11.925 26.601 0.59 0.806 15.298 0.251 1.945
SIDWT-ps L=5 H=max σps=1 0.876 0.159 0.308 13.207 25.714 0.592 0.78 13.96 0.205 1.845
DWT-soft L=6 Ln=2 H=max 0.811 0.152 0.258 19.516 22.322 0.382 0.719 13.911 0.182 1.467
DWT-hard L=6 Ln=2 H=max 0.729 1.818 0.214 10.519 27.69 0.625 0.835 16.442 0.271 2.092
SIDWT-soft L=5 Ln=2 H=max 0.876 -0.328 0.345 8.766 29.274 0.801 0.894 17.367 0.289 2.391
SIDWT-hard L=5 Ln=2 H=max 0.884 -0.048 0.342 8.808 29.233 0.775 0.894 18.576 0.293 2.369
JoV IT=179 dt=0.0001

σ=5 α=2500 β=0.07
0.641 3.525 0.172 25.491 20.002 0.217 0.74 16.383 0.221 1.046

Pop-out1 IT=26 dt=0.1 α=0.8
β=0.2 γ=1.5 Kξ=18
Kη=6

0.774 -0.264 0.28 11.978 26.562 0.748 0.863 15.166 0.242 2.077

Pop-out2 0.881 -0.146 0.35 9.991 28.138 0.787 0.895 17.785 0.286 2.305
Proposed-QW IT=20 dt=0.1 α=1

β=1.2 WPCA=5×5
Kξ=10 Kη=2 σem=7
σps=1

0.904 -0.151 0.4 7.474 30.659 0.806 0.911 19.692 0.33 2.376

Proposed IT=20 dt=0.1 α=1
β=1.2 WPCA=5×5
Kξ=10 Kη=5 σem=7
σps=1

0.902 -0.171 0.38 7.406 30.738 0.816 0.915 19.771 0.328 2.385
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(a) (b) (c)

(d) (e)

Fig. 5.18 – Comparative analysis – Table 5.5: AWGN of σn = 13 – (a) AVG fused result;
(b) SIDWT-hard fused result; (c) Pop-out2 fused result; (d) Proposed-QW fused result;
(e) Proposed fused result.

it can be shown that by making a small tradeoff between the QW quality score and the
absence of unwanted artifacts, the proposed fusion method can still yield superior results
(see Table 5.5 and Table 5.6). This is especially the case of the test scenario described in
Table 5.6, where the tradeoff is in fact the better result when compared to the reference
fused result – LAP for σn = 0 (Fig. 5.17c).

Moreover, this proves that, although the QW quality metric is inspired by the HVS
and adapted to discriminately assess different regions of an image based on their pertinence
and salient information content, it is not entirely suited for simultaneously assessing salient
information fusion and denoising.

Another important remark concerns the use of the additional parameter σps for high
AWGN levels. It is a common practice in image processing to stabilize an input or to
simply preprocess it by means of a Gaussian pre-smoothing. In the present case, for high
AWGN levels, the fusion process can be performed on I

σps
s inputs in order to reduce the

initial image entropy, thus increasing the quality of the final result, as shown in §5.4.2.

This preprocessing step is similar to the VisuShrink approach used in conjunction
with the DWT fusion methods. To illustrate this fact the DWT-ps and SIDWT-ps
fusion results are obtained by replacing the VisuShrink with a simple Gaussian pre-
smoothing (Table 5.6). The DWT-ps result demonstrates that sometimes simpler is
better, and can increase noise robustness while providing acceptable results. Combining
this pre-smoothing stage with the proposed method produces superior results to any of
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the compared fusion methods, as it can be seen in Table 5.6. This is due to the model’s in-
herent anisotropic behavior combined with the stabilized input entropy obtained through
pre-smoothing.

After analyzing the reference-based quality metric scores of the proposed method in
both AWGN test scenarios, it can be concluded that the method performs well in filtering,
preserving and enhancing the salient features extracted from its inputs. On a related
note, the SSIM–MSSIM discrepancy from Table 5.5 is, to some extent, the consequence
of the small artifacts introduced by the strong anisotropic behavior of the method, when
decreasing too much the Kη/Kξ ratio.

One simple way of counteracting this effect when optimizing the method using QW

as a reference metric, thus using a small anisotropic barrier ratio, is to use the previously
mentioned pre-smoothing technique with a very small σps. Since the SSIM measures
the response to structured information, the artifacts register as false information when
compared to the reference image.

In themselves, due to their size, the artifacts are not qualitatively significant when
properly measured by the MSSIM, since a multiscale assessment is closer to the behavior
of the HVS. The MSSIM is in this case more relevant, and supersedes the SSIM since it
“supplies more flexibility than previous single-scale methods in incorporating the varia-
tions of viewing conditions”, as underlined by Wang et al. in [WSB03].

5.5 Potential application areas

So far, application-wise, section §5.4 has discussed and experimentally analyzed two types
of fusion scenarios, i.e., multi-exposure image fusion (Fig. 5.13) and multifocus image fu-
sion (Fig. 5.7, Fig. 5.8 and Fig. 5.14). Two of these fusion scenarios (Fig. 5.8 and Fig. 5.14)
were tested using simulated AWGN of known σn, with the initial noise, estimated and
considered either as a noise bias, or as being of negligible intensity and filtered out using an
anisotropic diffusion filter, while the other two (Fig. 5.7 and Fig. 5.13) were tested “as is”,
with an unknown noise contamination, in this case due to color-to-grayscale conversion.

The proposed method does not claim to be universally applicable, and to this end,
this section is dedicated to presenting several potential application areas, image fusion-
wise, where the use of the proposed method can prove useful, and where its particular
characteristics can ensure superior results to other fusion techniques, both for noise filter-
ing as well as for salient feature detection, transfer and enhancement.

The potential applications areas tested and discussed in this section include, but are
not limited to:

� multifocus image fusion
� multi-exposure image fusion
� medical imaging
� remote sensing image fusion
� enhanced vision

The first two examples (Fig. 5.19 and Fig. 5.20) illustrate the joint fusion–denoising
capabilities of the proposed method in multifocus image fusion scenarios, with emphasis in
the first example, i.e., Fig. 5.19, on the actual denoising (Fig. 5.19f). The second example
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(a) (b) (c)

(d) (e) (f)

Fig. 5.19 – Multifocus image fusion application example: Lab image set – (a) I1 and
detail (d); (b) I2 and detail (e); (c) Ĩ fused result and detail (f).

illustrates an even more complex situation, when the input images are contaminated
with a quasi-structured interference, where the noise layout resembles a textured surface
(Fig. 5.20d and Fig. 5.20e).

In this case, i.e., Fig. 5.20, the fused result not only successfully filters out the un-
wanted noise, but moreover, eliminates the texture-like interference, thus underlining the
advantages of its anisotropic design (Fig. 5.20f).

The third example (Fig. 5.21) illustrates a multi-exposure fusion scenario, where the
original input images are severely affected by a noise contaminant of unknown distribution
(Fig. 5.21d and Fig. 5.21e). Once again the duality of the proposed joint fusion–denoising
model is highlighted by the fused result (Fig. 5.21f) both in terms of fusion efficiency and

(a) (b) (c)

Fig. 5.20 – Multifocus image fusion application example: Pepsi image set – (a) I1; (b)
I2; (c) Ĩ fused result.
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(d) (e) (f)

Fig. 5.20 – (continued): (d) I1 detail; (e) I2 detail; (f) Ĩ fused result detail.

in terms of denoising performance.

Remark All previous examples used the original image sets, i.e., Lab, Pepsi and Battle-
field, as they are available at [ECE11]. Since all these original images sets are contami-
nated versions of the “ideal” image set, and since this set is either not available or it does
not exist altogether, the quality assessment proves difficult, especially if using dedicated
fusion quality metrics, since their use would under-assess the quality of the fused result,
as previously discussed in §4.7.4.

(a) (b) (c)

(d) (e) (f)

Fig. 5.21 – Multi-exposure image fusion application example: Battlefield image set –
(a) I1 and detail (d); (b) I2 and detail (e); (c) Ĩ fused result and detail (f).
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The next example illustrates the use of the proposed fusion model in medical imaging,
fusing a CT6 image (Fig. 5.22a) and an MRI image (Fig. 5.22b), available at [Ima11a],
in order to improve diagnostic accuracy and integrate the two complementary medical
imaging techniques.

Remark Properly assessing the quality of the fused result is somehow subjective in this
case, since for this type of images a human expert opinion is of paramount importance,
being the decisive factor in making a final diagnostic based on the medical imaging data.
Nevertheless, as it can be seen from visually comparing Fig. 5.22e with Fig. 5.22f, the
proposed fusion model successfully integrates the salient information from the two input
images, while ensuring a noise-free output.

Fig. 5.23 illustrates a standard remote sensing multi-resolution image fusion scenario
where the aim is to produce a fused result of both higher resolution and increased chro-
matic detail. In this case the proposed methods adds an extra dimension to the expected
result, by producing a fused result that not only provides the required higher resolution
and increased chromatic detail, but at the same time produces a coherent, noise-free result
ensuring salient information preservation.

Another example of a potential application for the proposed joint fusion–denoising
model is represented by enhanced vision applications, in essence a multisensor fusion pro-
cess, where the specific characteristics of each sensor is combined to produce an enhanced

(a) (b) (c)

(d) (e) (f)

Fig. 5.22 – Medical image fusion application example: (a) I1 CT image and detail (d);
(b) I2 MRI image and detail (e); (c) Ĩ fused result and detail (f).

6X-ray Computed Tomography
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(a) (b) (c)

(d) (e) (f)

Fig. 5.23 – Remote sensing fusion application example: (a) I1 and detail (d); (b) I2 and
detail (e); (c) Ĩ fused result and detail (f).

fused result. In the example illustrated in Fig. 5.24, the images from two different sensors,
i.e., LLTV7 and FLIR8, are combined in order to provide an enhanced view of the scene.

Table 5.7 summarizes the model parametrization for each of the discussed potential
application areas, with the remark that no explicit parameter optimization was carried

(a) (b) (c)

Fig. 5.24 – Enhanced vision application example: (a) I1 LLTV image; (b) I2 FLIR image;
(c) Ĩ fused result.

7Low-light Level TV
8Forward Looking Infrared
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Table 5.7 – Potential application areas – model parametrization

Experimental setting Proposed model parameters
t τ WPCA Kξ Kη σem α β

Fig. 5.19 1s 0.1 5 10 5 11 0.7 1
Fig. 5.20 0.5s 0.1 5 15 3 7 0.7 1
Fig. 5.21 2s 0.1 5 10 5 9 1.6 0.4
Fig. 5.22 3s 0.1 5 15 3 9 0.5 1
Fig. 5.23 1s 0.1 5 15 3 9 1 1
Fig. 5.24 1s 0.1 5 15 3 9 1 0.5

out in order to obtain the fused results. This also means that, if employed by any specific
application, the model can be optimized an adapted to best respond to the application’s
requirements and consequently the quality of its output can be further increased.

Remark This sections serves only as a practical example, in the sense that the use of
the proposed joint fusion–denoising model is not restricted to the applications presented
in §5.5, other usage areas being easily conceivable.

5.6 Conclusion

After discussing the mathematical formalization and experimentally validating the nu-
merical model of the proposed variational model for concurrent fusion and denoising, the
following conclusions can be formulated regarding its main characteristics:

� The proposed fusion model (5.31) is fundamentally different from the original propo-
sition of John and Vorontsov [JV05], described by (4.22), in the following ways:

– it employs an “intelligent” diffusion component in the form of the geometry-
driven anisotropic diffusion term (5.35) as opposed to a Total Variation-based
isotropic diffusion that was not explicitly designed for denoising (the original
model has limited denoising capabilities),

– its edge-enhancing component (5.28) is also defined anisotropically, as opposed
to the original formalism that is based on a classic Gaussian-smoothed gradient
map.

With these two important changes, the proposed joint fusion–denoising model pos-
sesses anisotropic fusion characteristics as well as anisotropic denoising ones, making
it a fully anisotropic image processing model (the importance of anisotropy in image
processing being detailed in Chapter 2).

� The anisotropic characteristic of the proposed fusion model is also reinforced by its
numerical approximation §5.3.2 which provides an inherent anisotropic behavior for
all model’s components (the numerical approximation applying for all discretized
quantities).

� The proposed model integrates an anisotropic denoising element together with the
classic fusion component, defined with the use of a unifying variational framework.
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� The intrinsic anisotropic behavior of the theoretical model is consolidated by the
use of a PCA-based orientation estimation for anisotropically characterizing salient
features and of a discrete interpolation scheme for the model’s numerical approxi-
mation, in order to provide sub-pixel accuracy.

� The fusion process is defined as a linear combination of its weighted inputs and
its time evolution is indirectly described by the evolution of the fusion weights
themselves, defined using robust error estimation theory and expressed as a TV
minimization problem.

� It addresses a complex image processing paradigm, closer to real-world scenarios,
i.e., fusion of “imperfect” images, where “imperfect” refers to noise contamination,
apart from the usual contamination factors that are normally removed through
classic image fusion.

The results obtained thus far, as described in §5.4.2 and §5.4.3, show that the fusion
method efficiently filters AWGN (even for high values of σn) while properly enhancing
edges and contours, delivering a fused result of desired quality, both in focus and denoised.

The comparative analysis conducted in §5.4.4 underlines the proposed method’s ca-
pabilities of delivering high quality results, even for high AWGN levels. The noise filtering
is performed in an anisotropic manner, hence no compromise is needed when choosing be-
tween properly denoising the input images and efficiently transferring salient information
to the fused output.

The experimental analysis of the proposed model, carried out throughout Chapter 5
also helped highlight a series of potential improvements that would further enhance the
model’s performances both in terms of noise filtering and image fusion:

� The fusion process can be further improved by adding a measure of confidence
(coherence) when computing the orientation θξ by means of PCA.

� The edge enhancement behavior can be further strengthen in order to amend con-
trast preservation within the fused image.

� On the same note, an immediate improvement would also be reconsidering the ini-
tialization phase of the fusion weight functions. Currently, initializing them with
1/S, where S represents the number of fusion inputs, provides a simple and some-
times efficient way of reducing the initial entropy, but this is entirely effective only
when having a very large number of inputs. In real-world scenarios, often the number
of inputs is restricted to a minimum of two or more, but not enough to completely
solve the initial entropy problem. To this end, a better suited solution for initializing
the weights would be through an adaptive weight process, either image-dependent
or even pixel-dependent. Of course, such an approach would add to the overall pro-
cessing time and should be employed only when processing time is not a stringent
issue.

� Another improvement that would considerably influence the total processing time
is the use of a multiscale PCA in determining θξ. In this case as in the previous,
careful consideration should be given to choosing the more complex solution, and a
cost–benefit analysis is required in order to determine the best course of action.
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C 2 C

Theoretical prerequisites – §5.2 – provided an overview of required notions, such as
error estimation theory (viewed as a TV minimization problem) and PCA in vector
field orientation estimation, both, theoretical concepts that directly relate to the
proposed fusion model, expressed within a variational framework.

Mathematical model – §5.3 – represented an in-depth discussion of the proposed fusion
model (the second major contribution of this thesis) from a theoretical perspective,
comprising:

� model description,
� parameter analysis,
� model discretization,
� algorithmic description.

Experimental analysis – §5.4 – this section was dedicated to experimentally testing
and validating the proposed fusion model, carried out on the following directions:

� practical comparison between sequential and concurrent processing in combined
scenarios of fusion and denoising, underlying the differences between the two
approaches and also the inherent advantages of the latter,

� stand-alone experimental validation and noise robustness assessment,
� model parametrization and parameter behavior analysis,
� comparative analysis using existing fusion models, previously described in Chap-

ter 4

Potential application areas – §5.5 – given the fact that the proposed fusion model,
in its current form, serves a general purpose, without being adapted for a specific
image processing task, this section briefly discussed some of the potential application
areas of the model, in its current form. For each application area, a real-world, non-
artificially altered set of input images is used further proving the method’s efficiency
in properly filtering noise while simultaneously fusing the input images. The noise
characteristic of the input images is unknown, thus the quality of the fused results
also underlines the wide applicability of the proposed model, i.e., the proposed fusion
model is not limited to filtering AWGN.

Conclusion – §5.6 – presented the conclusions derived from the experimental analysis
for the proposed variational approach for concurrent image fusion and denoising as
well as offers several pointers in the direction of further improving and extending
the proposed model.
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6.1 Conclusions

Without reiterating the closing section of each of the previous chapters, this section intends
to synthesize the overall conclusions derived from this thesis as a whole, i.e., starting from
the general problem statement and finishing with how each requirement has been fulfilled
and to what extent.

The underlying purpose of this thesis has been to analyze the possibility and feasi-
bility of employing combined processing models for image restoration and enhancement,
thus replacing the classic sequential processing chain. Moreover, the analysis was also
intended to assess the flexibility of PDEs in defining image processing paradigms and
their versatility in expressing a wide range of image processing problems, sometimes even
diametrical in nature.

All these desiderata were addressed in a progressive manner, employing a step-by-
step approach, starting with the initial theoretical analysis of PDEs in image restoration
(Chapter 2), with the intent of establishing the fundamental prerequisites for attain-
ing the final goal, i.e., defining a functional unifying framework for image restoration
and enhancement and highlighting its advantages over the classic sequential approaches.
Chapter 2 helped establish the theoretical fundamentals of PDE-based image restora-
tion by analyzing the seminal contributions to this area of research and, based on this
analysis, formulating conclusions that were subsequently used in defining the sought-after
concurrent restoration–enhancement models.

Chapter 2 is concluded by discussing the appropriate way of approximating the con-
tinuous domain PDE-based models as discrete domain image processing algorithms, since
these approximations schemes were further used throughout this manuscript to describe
PDE-based paradigms, irrespective of their processing purpose, i.e., image restoration or
enhancement.

Chapter 3 introduced the first proposition for a compound image processing model
in the form of the hybrid shock filter, a joint deblurring–denoising PDE-based model, repre-
senting the first step in defining a unified PDE-based image restoration and enhancement
approach. This desideratum was brought one step closer to fulfilment by extending the
initial hybrid shock filter capabilities to coherence enhancement (§3.5.4), which according
to its definition is an image enhancement attribute.

Thus the first step, albeit partial, toward bridging these two core components of
image processing is represented by the proposed hybrid shock filter, proving the feasibility
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of combined approaches and moreover, experimentally showing their intrinsic advantages
in terms of filtered quality (§3.6.3). The proposed shock filter model also proves that
the two counteracting processes of deblurring and denoising, especially when expressed
by means of a PDE-based framework, can be brought into synergy if certain continuous
domain conditions are fulfilled and the mathematical model is properly discretized.

The success of proving the feasibility of a joint deblurring–denoising image process-
ing model paved the way for the final stage of this thesis, i.e., defining and analyzing
a functional and efficient concurrent image restoration and enhancement model. The
proposed model is defined as a joint fusion–denoising model, where the fusion process
represents the image enhancement component while the denoising process embodies the
image restoration part of the overall model.

Prior to experimentally validating and comparing the proposed fusion–denoising
model, it was necessary to study and understand how the classic, as well as the fusion-
specific quality metrics behave in complex test scenarios, where the notion of quality is
defined in complex terms, covering robust noise filtering and proper edge preservation and
in some cases edge enhancement. The difficulty of correctly assessing the model’s output
result in terms of quality and ensuring that the fused result is not under-evaluated arose
from the fact that the result is usually superior in terms of quality to the fusion inputs,
used by the fusion-specific quality metrics as references.

The second part of Chapter 4 addressed this quality assessment issue and exper-
imentally analyzed the phenomena of over- and under-evaluation, showing that special
consideration is required when selecting the fusion references and furthermore, that a
proper reference image is not always available when evaluating image fusion models, even
more so in the case of a joint fusion–denoising model. Investigating the particularities
of quality assessment in joint image fusion and denoising scenarios, also raised several
interesting questions regarding the gaps in the existing image fusion quality assessment
methodology, which currently lacks the necessary tools for properly evaluating complex
fusion models, like the proposed concurrent fusion and denoising model.

The second proposition, i.e., the concurrent image fusion and denoising model, was
discussed at length in Chapter 5, both from a theoretical and an experimental point
of view, the proposed model, as previously mentioned, representing the end goal of this
thesis. By defining a functional and, as the comparative analysis (§5.4.4) has proved,
superior1 fusion model the following goals were attained:

� To unequivocally prove the feasibility of concurrent approaches in image processing,
as opposed to sequential processing chains.

� To provide an alternative fusion model that can provide high quality results in classic
fusion scenarios as well as in fusion–denoising situations.

� Through the significant improvement in quality between the fused result and the
initial fusion inputs, in fusion–denoising situations to underline the shortcomings of
the existing dedicated fusion quality metrics.

As a final, overall conclusion, it needs to be stressed that through the theoretical
analysis and proposed models, the most important accomplishment of this thesis is that
it contributed to what is hoped to be a better and thorough understanding of the core
concepts of image restoration and enhancement, to comprehending the importance and

1in terms of quality, related to the set of compared fusion models and to the discussed test scenarios
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versatility of PDEs in image processing, and last but not least to pave the way for com-
pound image processing paradigms while underlining the key role played by the variational
and PDE-based framework in modeling such models.

In terms of contribution, this thesis could be summarized as follows:

Direct contributions —

� Primary contributions :

– the hybrid shock filter – an original proposition derived from existing
methodology, for concurrent deblurring and denoising. The proposed shock
filter model is further extended to also provide coherence enhancement, an
image enhancement characteristic.

– the variational approach for concurrent image fusion and de-
noising – again, an original proposition that brings into synergy image
restoration and image enhancement under a common framework. The pro-
posed model is formalized using error estimation theory expressed as a TV
minimization problem and anisotropic diffusion, thus obtaining a fusion
model that perfectly adapts to the recent trends in image fusion, i.e., com-
bining the main fusion process with additional image processing tasks for
better handling correlated visual data.

� Secondary contribution: through the second proposition of this thesis, i.e.,
the variational approach for concurrent image fusion and denoising, raises the
problem and at the same time the question of how to objectively assess the fused
result quality in complex image fusion scenarios, were denoising is also involved
as part of the fusion mechanism. Furthermore, it experimentally exemplifies
how existing quality assessment methods, be they classic quality metrics or
fusion-dedicated ones, have the tendency to under-evaluate fused results when
those results are also denoised, and implicitly the input images (the image
fusion inputs) are noisy.

Indirect contributions —

� provides a proper and thorough theoretical background for all discussed no-
tions2 in order to facilitate the understanding of this thesis on the one hand,
and to provide a starting point for researchers interested in further advancing
image restoration and enhancement, using the PDE formalism, on the other.

� continues the work of Terebes and Pop as part of the research team’s3 overall
desideratum of advancing the study and methodology of PDE-based image
processing by: proposing new processing paradigms, expanding the application
area of exiting ones and integrating the team’s work in order to provide a
complete spectrum of PDE-based processing solutions for image restoration
and enhancement.

2while keeping the discussed topics within the thesis’ area of interest and directly relating to the
original contributions presented within, as clearly explained in the C 2 C section at the end of each
chapter

3Signal and Image research group – IMS - CNRS UMR5218
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6.2 Remarks

As a first remark, it should be reiterated the particularity of this manuscript, i.e., that it is
constructed on a functional framework rather than a classic approach, where the opening
chapter covers the state of the art, while the rest of the chapters explore the theoretical
proposition(s) of the thesis from various points of view.

It was this author’s belief that the thesis’ topics would be better addressed and
presented in a functional manner, progressively, from basic to complex, to best emulate
the way in which the research carried out in fulfilment of the requirements for the degree
of Doctor of Philosophy progressed, providing thus a logically structured presentation of
the addressed research topics.

Regarding the first proposed model, i.e., the hybrid shock filter, the following remarks
are in order:

� A first, immediate, remark regarding the hybrid shock filter is that from a theoretical
point of view it represents an exercise in studying the possibility and subsequently
proving the feasibility of compound image restoration and enhancement constructs.

� Although it represents a versatile and efficient image processing tool for deblur-
ring and denoising, successfully addressing the shortcomings of the previous shock
filters4, its current definition still leaves room for improvements.

� One future improvement would be to further increase the deblurring capabilities
of the model, by addressing the filtering process in a more anisotropic manner, to
ensure edge preservation and robust structure enhancement.

� In its current form, the proposed filter is semi-independent since its control func-
tions require an initial input parameter set. A step toward decreasing this user-
dependency would be to redefine the control functions so as to describe a dynamic,
image-dependent behavior.

On the other hand, concerning the second proposition, i.e., the concurrent fusion
and denoising model, based on its experimental analysis the following remarks can be
formulated:

� In its current form, the proposed fusion–denoising model is somehow bounded in
terms of output performance by its initialization phase, i.e., Ĩ0, since this initial
value is computed using a simple averaging process.

� The edge enhancement component of the model supports further improvement, an
enhancement component with an even more pronounced anisotropic characteristic
would additionally increase the overall quality of fused result.

� Since the joint fusion–denoising model was initially defined as a general purpose
image processing method, adapting the method’s functionality to the input images’
particular characteristics (adapting the method to behave in an application-specific
manner) can provide a further increase in quality.

4to a certain degree
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6.3 Perspectives

One of the main goals of this thesis, i.e., bringing together image restoration and enhance-
ment under a common, synergistic framework, can be also regarded as an incentive for
continuing the study and development of new and improved compound processing models
that elegantly address complex image processing problems.

Since the current trend in image processing research is to address more and more
complex issues, often with immediate application value, it is this author’s belief that
further emphasis should be placed on continuing the study and research into developing
and improving the general joint fusion–denoising model since it represents a versatile and
efficient image processing tool, with an extended practical application range.

The current joint image fusion and denoising model can be further improved and
extended by:

� increasing the existing edge-enhancing capabilities by redefining the model’s edge
enhancement component,

� defining an additional, dedicated contrast enhancement term an integrating this
term into the overall joint fusion–denoising model,

� analyzing the proper way of extending the joint fusion–denoising model to 3D and
color image fusion,

� further increasing the model’s upper-end (σn > 25) noise robustness by consoli-
dating and improving the initial image geometry descriptor for the edge-enhancing
component, currently expressed as (5.28).

As an overall remark, another possible extension of the joint fusion–denoising model
would be to bridge the two proposed models, i.e., the hybrid shock filter and the joint
fusion–denoising model, that is to integrate the complex domain approach of the hybrid
shock filter into the fusion–denoising model. The benefits of such an approach remain to
be determined and its overall feasibility experimentally analyzed and validated.

From a more general perspective, the underlying concept behind concurrent image
restoration and enhancement can be also addressed using different methodologies and
fusion approaches, e.g., feature-level fusion or even decision-level fusion, numerically ex-
pressed using estimation theory or artificial neural networks.

On a related note, based on the discussion and experimental analysis carried out in
§4.6, another important issue that requires addressing is the absence of a fully adequate
means of assessing fusion quality in compound scenarios from today’s image quality evalu-
ation methodology. As seen from the experimental data, the current quality metrics have
difficulties in simultaneously assessing denoising and deblurring and hence, one or both of
these image processing tasks is under-evaluated, resulting in an overall under-evaluation
of the fused result.





Appendix A
Concurrent fusion and denoising –
model optimization

Table A.1 – QW optimization – concurrent fusion and denoising: comparative analysis
for an AWGN of σn = 13 – Table 5.5

Proposed model parameters Quality metric
t τ WPCA Kξ Kη σem α β QW

1.5s 0.1 3 10 5 5 2 0.3 0.92800
1s 0.1 3 10 5 5 2 0.3 0.92800
1s 0.1 3 10 5 7 2 0.3 0.92800
1s 0.1 3 10 5 5 1.5 0.3 0.92900
1s 0.1 3 10 5 5 1.5 0.5 0.92900
1s 0.1 3 10 5 5 1.2 0.3 0.92800
1s 0.1 3 10 5 5 1.6 0.3 0.93000
1.2s 0.1 3 10 5 5 1.6 0.3 0.93060
1.2s 0.1 3 10 5 5 1.7 0.3 0.93040
1.4s 0.1 3 10 5 5 1.6 0.3 0.93090
1.6s 0.1 3 10 5 5 1.6 0.3 0.93100
2s 0.1 3 10 5 5 1.6 0.3 0.93090
1.8s 0.1 3 10 5 5 1.6 0.3 0.93100
1.6s 0.1 5 10 5 5 1.6 0.3 0.93130
1.6s 0.1 7 10 5 5 1.6 0.3 0.93120
1.6s 0.1 5 10 2 5 1.6 0.3 0.93550
1.6s 0.1 5 15 1.5 5 1.6 0.3 0.93602
1.6s 0.1 5 15 3 5 1.6 0.3 0.93490
1.6s 0.1 5 20 2 5 1.6 0.3 0.93550
1.6s 0.1 5 10 1 5 1.6 0.3 0.93540
1.6s 0.1 5 15 1 5 1.6 0.3 0.93580
1.7s 0.1 5 15 1.5 5 1.6 0.3 0.93608
1.5s 0.1 5 15 1.5 5 1.6 0.3 0.93590
1.8s 0.1 5 15 1.5 5 1.6 0.3 0.93611

1 Proposed-QW
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Table A.1 – (continued) QW optimization – concurrent fusion and denoising: compar-
ative analysis for an AWGN of σn = 13 – Table 5.5

Proposed model parameters Quality metric
t τ WPCA Kξ Kη σem α β QW

2.5s 0.1 5 15 1.5 5 1.6 0.3 0.93560
1.6s 0.1 5 10 5 5 1.6 0.4 0.93220
1.6s 0.1 5 10 5 5 1.6 0.2 0.92600
1.6s 0.1 5 10 5 5 1.5 0.35 0.93200
1.6s 0.1 5 10 5 5 1.6 0.35 0.93200
1.6s 0.1 5 10 2 5 1.6 0.35 0.93530
1.6s 0.1 5 10 5 5 1.7 0.4 0.93212

1.6s 0.1 5 10 5 5 1.6 0.5 0.93190
1.6s 0.1 5 10 5 5 1.5 0.4 0.93220
1.6s 0.1 5 10 5 5 1.3 0.4 0.93170
2s 0.1 5 10 5 5 1.5 0.4 0.93220
1.4s 0.1 5 10 5 5 1.5 0.4 0.93210

. .

Table A.2 – QW optimization – concurrent fusion and denoising: comparative analysis
for an AWGN of σn = 30 – Table 5.6

Proposed model parameters Quality metric
t τ WPCA Kξ Kη σem α β σps QW

2s 0.1 7 20 2 11 3 0.1 0 0.8520
2s 0.1 7 15 1.5 13 3 0.1 0 0.8510
1.5s 0.1 7 15 1.5 11 3 0.1 0 0.8510
2.5s 0.1 7 15 1.5 11 3 0.1 0 0.8540
3s 0.1 7 15 1.5 11 3 0.1 0 0.8550
5s 0.1 7 15 1.5 11 3 0.1 0 0.8550
2s 0.1 7 15 1.5 7 2 0.1 0.5 0.89000
2s 0.1 5 10 5 7 2 0.1 0.5 0.8770
2s 0.1 5 10 2 7 2 0.1 0.5 0.8860
2s 0.1 5 10 1 7 2 0.1 1 0.8760
2s 0.1 5 10 5 7 2 0.3 1 0.8850
2s 0.1 5 10 5 7 2 0.5 1 0.8950
2s 0.1 5 10 5 7 2 0.7 1 0.8980

2 Proposed
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Table A.2 – (continued) QW optimization – concurrent fusion and denoising: compar-
ative analysis for an AWGN of σn = 30 – Table 5.6

Proposed model parameters Quality metric
t τ WPCA Kξ Kη σem α β σps QW

2s 0.1 5 10 5 7 2 0.9 1 0.9000
2s 0.1 5 10 5 7 2 1 1 0.9000
2s 0.1 5 10 5 7 1.5 1 1 0.9020
2s 0.1 5 10 5 7 1 1 1 0.9020
2s 0.1 5 10 5 5 1 1 1 0.9010
2s 0.1 5 10 5 7 0.5 1 1 0.9000
2s 0.1 5 10 5 7 1 1.2 1 0.9021
2s 0.1 5 10 5 7 1 1.5 1 0.9017
3s 0.1 5 10 5 7 1 1.2 1 0.9021
2s 0.1 5 10 2 7 1 1.2 1 0.9045
2s 0.1 5 10 1 7 1 1.2 1 0.9045
2s 0.1 5 15 1.5 7 1 1.2 1 0.9045

.
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[TD01] D. Tschumperlé and R. Deriche. Diffusion Tensor Regularization with Con-
straints Preservation. In Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, volume 1 of CVPR
’01, pages 948–953, Los Alamitos, CA, USA, December 2001. IEEE Com-
puter Society. 21
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