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Abstract

Breast cancer is the most common cancer among women in the developed as well as

the developing countries. There are a plethora of proposed solutions regarding pos-

sible medical interventions for breast cancer–one in particular is Breast Conserving

Therapy (BCT). BCT comprises of complete surgical excision of the tumor (partial

mastectomy), and post-operative radiotherapy for the remaining breast tissue. This

is a feasible treatment for most women with breast cancer. The goal of BCT is to

achieve local control of the cancer, as well as to preserve breast shape that appeases a

woman’s cosmetic concerns. Although these goals are usually achieved, there are still

occasional unexpected results, such as reexcision of the tumor due to a positive mar-

gin assessment, tumor local recurrence, unsatisfactory cosmetic results, and breast

pain. Other than surgical experience and judgment, there are currently no tools

which can predict the outcome of partial mastectomy on the contour and deformity

of the treated breast. The objective of this dissertation is to propose computational

framework, which contributes to BCT operations, this was achieve by exploring two

areas.

On the one hand we developed a multiscale model adapted for breast cancer tu-

mor growth, ductal carcinoma in situ (DCIS). The model features included: nu-

trients growth limitation, wall degradation enzyme and HER2 chemical expression

tumor phenotype. Our model successfully simulate some pattern of DCIS carcinoma.

Among the interesting result we showed that the enzyme contributed to a greater

tumor size and that when HER2 was overexpressed, the growth limiting factor was

the EGFR. On the other hand, we developed a virtual surgery box to simulate BCT
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surgery. The box will input MRI patient data and will output cosmetic and func-

tional indicator to rate the impact of the surgery. It appears that stiffness of the

tissue, resection radius as well as the lump quadrant location are the most sensi-

tive parameters to the indicators. A healing model was also embedded to simulate

the wound closure after resection, this model was stress dependent and illustrate an

asymmetric wound closure progression.

The tools developed in this research allows a new type of field convergence between

the surgery and computation field. At the local level it will allow surgeons and pa-

tient to be able to communicate on the pertinence and necessity of performing a

lumpectomy surgery, enabling to anticipate the possible outcome of the operation.

On the global aspect this type of tool gives birth to a new type of field: computa-

tional surgery, where computer scientist and surgeons work hand in hand to provide

the best and the most reliable service to the patients.
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Chapter 1

Introduction

According to the World Health Organization, breast cancer is the most common

cause of cancer among women worldwide, comprising 16% of all female cancers. It

is estimated that one in eight women will face breast cancer in their lifetime. Ac-

cording to the American Cancer Society, about 1.3 million women will be diagnosed

with breast cancer annually worldwide and about 465,000 will die from the disease.

Although the incidence of breast cancer is rising, the mortality from the disease is

slowly declining. This has been achieved through earlier diagnosis and improved

treatment.

In the best scenario, and the most developed countries, breast cancer care is pro-

vided by breast specialists of each discipline forming a multidisciplinary team. Such

a team will usually be composed of: a specialist clinician (breast surgeon), special-

ist radiologist and pathologist, breast care nurses, clinical oncologists, and a dedi-

cated multidisciplinary team coordinator. The team composed of various specialties

2



demonstrates the multi-level implication of the disease. This leads to discussion and

compromises the interest between each specialty.

The primary objective of this dissertation is to allow applied mathematicians and

computer scientists to join this multidisciplinary team by providing valuable material

in the breast cancer management process.

Implementing computers effectively in the medical field can be achieved by the

merging of disciplines such as mechanical engineering, computer science, applied

math, biology, oncology, and surgery. Construction of such a tool is an exam-

ple of the convergence between computation sciences and surgery sciences - see

http://computationalsurgery.org - providing additional digital information for clini-

cians and patients. We believe such a science will be a golden subject, improving

with the years with computer and science progress thus providing a direct application

of knowledge.

1.1 Dissertation overview and contributions

The work in this dissertation focuses on the development of a computa-

tional platform for breast cancer treatment. This work addresses two different

areas of breast cancer: tumor modeling and breast conserving surgery modeling.

Tumor modeling is essential in order to understand the dynamics of growth in breast

tumors. The ultimate goal being to have the ability of correctly assessing the nega-

tive margin and to predict the potential invasiveness of tumors. In both cases, this

will allow the patient to avoid unnecessary surgery.
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Breast conserving surgery modeling research focuses on designing a tool that will

predict the surgery outcome. The ultimate goal being to compute the Breast Con-

serving Therapy (BCT) post-surgery shape in the short and long term. This tool

will provide:

1. essential information to correctly select the best surgery option to undergo;

2. a method to outline the potential procedures that cause poor outcomes. Help-

ing the multi-disciplinary team to accordingly adapt breast cancer treatment

for each patient.

3. an educational tool for clinicians to build experiences on BCT surgery.

This dissertation is divided into four major parts, each consisting of a set of chapters

focused on a specific area of work. An overview of the parts and chapters in this

dissertation are provided here, highlighting the contribution made by this research

to the field of breast cancer.

Part I: Motivation and background

Part I provides an introduction and background information to the work in this

dissertation.

Chapter 2 provides background information on the anatomy of the breast and

breast cancer, the mechanics theory for soft tissue modeling, digital image processing

tools, and more specifically image segmentation tools. The chapter concludes with a

informative section on mathematical tool used for tumor modeling.
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Part II: Tumor growth modeling

Part II describes the work done for building a tumor growth model adapted for breast

cancer.

Chapter 3 outlines the biology of the tumor growth model we simulate for this

work, ductal carcinoma in situ. We detail the specificity of this tumor pathology,

and detail the previous research achieved to model DCIS growth.

Chapter 4 depicts the mathematical model of our tumor growth model. We de-

scribe the set of equations and their interaction, implementing the biology model

from chapter 3. This chapter provides a strong example of multiscale mathematical

modeling implementation.

Chapter 5 presents the tumor growth results. We discuss the results obtained from

such a model. At last we discuss the adjustment to provide in order to get a more

realistic model adapted for breast tumor modeling.

Part III: Virtual surgery box for breast conserving therapy:

Part III describes the work accomplished to simulate the breast conserving therapy

surgery.

Chapter 7 describes the design of the virtual surgery box. We outline the different

tools and methods used to proceed for virtual surgery, starting from medical image

processing to the mechanical modeling.

Chapter 8 presents an innovative method to output the results of our virtual surgery

box. We defined two indicators outlining the impact of surgery in two aspects: the
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cosmetic and the breast functionality.

Chapter 9 illustrates the results obtained from this virtual surgery box. We present

a sensitivity analysis of data on a set of three MRI patients.

Chapter 10 presents the design of a more advanced complex simulation model for

breast conserving therapy, implementing a cellular agent to model the post surgery

healing.

Part IV: Dissertation review

Chapter 11 summarizes the body of work presented in this dissertation, the limita-

tion of our work, and outlines the future directions towards implementing a clinically

applicable tool. A list of publications arising from this work is also provided at the

end of the chapter.
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Chapter 2

Background

This chapter provides the necessary background to develop our computational frame-

work. Section 2.1 provides a description of the women’s breast anatomy, breast can-

cer cell biology, and the current method to detect and treat breast cancer. This is

followed by a description of elements for biomechanics modeling (Section 2.2). Image

segmentation tools are discussed in Section 2.3. The chapter concludes with a brief

review of the mathematical tool to model tumor growth (Section 2.4).

2.1 The women’s breast

An understanding of the breast anatomy, the biological specificity of breast tumor

as well as the treatment of breast cancer is important for the development of this

computational framework. We will take time to describe these in the following sub-

sections. Subsection 2.1.1 provides a precise description of the breast anatomy. This
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is followed by a gross description of breast cancer pathology, the biology mechanism

of cancer, and at last an in depth description of ductal carcinoma in situ (subsection

2.1.2). This section concludes with a description of the tools and method available

to detect and treat breast cancer (subsection 2.1.3).

2.1.1 Anatomy of the breast

The mammary glands are present in both sexes, but they normally function only

in females. The biological role of the breast is to produce milk to nourish a new

born baby, therefore they are only of importance when reproduction has been ac-

complished.

Fig. 2.1 depicts the gross anatomical structure and organization of the female breast.

The breast is composed of fat, fibrous, and glandular tissues attached to the thoracic

wall by connective tissues known as Cooper’s ligaments. Cooper’s ligaments, also

known as the suspensory ligaments of Cooper, is an underlying structure of fibrous

bands which provides additional support and also contributes to determining the

shape and contour of the breast. It runs from the clavicle and the clavi-pectoral

fascia branching out through and around breast tissue to the dermis of the skin over-

lying the breast.

Each breast contains 15–25 lobes of compound glands that are embedded in fibrous

and adipose -fat- tissue. These lobes, contain an excretory duct that drains into the

lactiferous sinus, radiating from a central nipple-areolar complex. As in all tissues,

this structure is surrounded and supported by connective tissue, extracellular matrix

(ECM).
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Figure 2.1: Anatomy of the breast: a cross section through the sagittal plane (image
taken from [105]).
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The ducts are composed of three separate layered tubes: the first is composed of

the basement membrane (BM); the second of myoepithelial cells; and the third of

epithelial cells [47]. The epithelial and myoepithelial cells are joined by intermediate

or gap junctions and a number of inter-cellular adhesion molecules. The basement

membrane is composed of fibrous proteins embedded in a hydrated gel. Both the

myoepithelial cell layer and the basement membrane layer are permanent structural

constituents, normally allowing only the passage of small molecules. The inside of

this tubular duct is composed of a liquid called lumen. The mean diameter of the

main ducts at the base of the nipple is 1.9 ± 0.6mm [111]. It is understood that

the duct structure is submited to various structure evolution at two different lev-

els. The first one is regulated by the occurrence of pregnancy: the epithelial cells is

exposed to massive change with an increasing number of alveoli developing. These

alveoli produce breast milk. After pregnancy the duct comes back to normal; the

epithelium is eliminated by apoptosis[127]. During lactation, myoepithelial cells play

a major role, they contract in response to hormones and move milk into ducts and

coordinate the ejection of milk smoothly. The second change is more of a periodical

regulation: the epithelial cells oscillate with the menstrual cycle [48]. In order to

maintain this structure and its normal functionality with structure remodeling, the

basement membrane as well as the myoepithelial cells have asymmetric properties

and functionality. These various mechanisms lead to a polarization that has only

recently been revealed [90]. Cell polarity induces different levels of cell adhesion

between each type of anatomy composing the ducts [116, 127, 44, 48] as well as cell

10



Figure 2.2: (left) Breast duct micro-architecture; (right) breast duct epithelial cell
polarization (Image taken from [48]).

orientation. These observations at the cell level are expected to be a direct conse-

quence for particular tumor shapes observed in ductal carcinoma in situ biopsy. Fig.

2.2 depicts the duct anatomy.

2.1.2 Breast cancer biology

In this subsection we provide a description of breast cancer classification, this is

followed by a microscopic description of the breast cancer biology.

2.1.2.1 Breast cancer types and grade

A tumor is an overgrowth of cells. It can be made of normal cells or cancer cells.

Cancer cells are cells that have grown in an uncontrolled way. The cancerous cells
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may stay confined in the place of initial growth or they can start to grow in the tissue

around them. The fact that the cells are invading the tissue around them is proof

that the tumor is aggressive and that is generally not a good sign. Therefore, breast

cancer is first classified into two types of cancers:

• In situ, which is confined in the place that they grow,

• Invasive, which grow in an uncontrolled way out of the tissue.

However, with this classification, many types of breast cancer remain. Pathologic

classification of mammary carcinomas are confusing to the individual who is not a

specialist in breast disease. Therefore to simplify the description of breast cancer,

the pathology community separates them into 4 types:

• DCIS; Ductal Carcinoma In Situ, takes birth in the duct, stays confined in

the duct and does not invade the adipose tissue. Necrosis can appear for this

type of cancer, they may sometimes contain calcium bits inside. These types of

carcinoma can become an infiltrated lesion. DCIS is not life-threatening, but

having DCIS can increase the risk of developing an invasive breast cancer later

on in life.

• LCIS; Lobular Carcinoma In Situ, first takes place in the lobule. It is a far

more benign carcinoma than DCIS. LCIS is not a true cancer; it is a warning

sign for an increased risk of having invasive cancer in the future, in either

breast.
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• IDC; Invasive Ductal Carcinoma, originates from the duct epithelial that

crossed the membrane and invaded the stroma tissue of the breast. Once the

stroma tissue is infiltrated, cancer cells can penetrate the lymphatic networks

and blood vessels. Metastasis then occurs. 80 % of carcinoma are IDC.

• ILC; Invasive Lobular Carcinoma, originates from the breast lobule that in-

vades the surrounding tissue. Particularly, when it invades the surrounding

tissue, it invades by waves forming indian files which is of fibrous tissue, form-

ing concentric patterns of cells around the lobular carcinoma. LCIS are much

more benign than DCIS, however when it invades and infiltrates it is worse

than IDC. 10 % of carcinoma are ILC, and they are much more difficult to

detect.

Pathologists often assign a histological grade to the patient’s cancerous breast tumor

to identify the type of tumor present and help determine the patient’s prognosis. The

Scarff-Bloom-Richardson system is the most common type of cancer grade system

used today. The histological grade of a tumor is determined after examination of

the cancer cells and their patterns under a microscope. Pathologists determine a

cancer’s grade by observing:

• the frequency of cell mitosis (rate of cell division),

• tubule formation (percentage of cancer composed of tubular structures),

• nuclear pleomorphism (change in cell size and uniformity).
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Each of these features is assigned a score going from 1 to 3 (1 indicating less aggressive

and 3 indicating more aggressive - see table 2.1). Then the score of each feature is

added together for a final sum that will range between 3 to 9. Grading of the tumor

between 1, 2, and 3 is then done:

• Grade 1 (Low grade or well differentiated), final sum between 3 and 5, cells

generally appear normal and do not grow rapidly; cancer arranged in small

tubules.

• Grade 2 (Intermediate or moderate grade), final sum of 6 or 7, cancer cells do

not look like normal cells, they grow somewhat faster than normal cells.

• Grade 3 (High grade or poorly differentiated), final sum of 8 or 9, cells do not

appear normal and tend to grow and spread more aggressively.

Pathologists also look for necrosis when determining a tumor’s grade. Cancers with:

high grade, necrosis, cancers close to the surrounding margin of breast tissue from

a lumpectomy sample, or large areas of DCIS, are more likely to recur after breast

cancer treatment than other breast cancers.
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2.1.2.2 Getting a microscopic description of the breast cancer

In the following division we will take time to describe breast cancer at the microscopic

level. We will introduce the functioning of a normal cell-cycle, then we will give a

description of the hormone and growth factors, and their role in breast cancer. We

will follow this with a description of breast cancer oncogenes: genes that are capable

when activated of transforming a cell and contributing to the production of cancer.

We will give a description of mutated tumor suppressor genes that are present in

breast cancer. A tumor suppressor gene is a gene that normally restrains cell growth

but when missing or inactivated by mutation, allows cells to grow uncontrolled.

Finally, we will describe the metastasis mechanism in breast cancer and point out

its close relationship with cell adhesion properties and degrading enzymes.

Description of normal cell-cycle: In order to fully understand the mechanisms

underlying tumor proliferation, it is key to first comprehend the regular cell cycle.

Cell division is essential for body growth and tissue repair. Individual cells must

increase in size, make exact replicas of all their genetic material, and then go through

a process of division. This process is commonly named the cell cycle and it is

characterized by four distinct phases: G1 phase, S phase, G2 phase, and M phase.

Activation of each phase is dependent on the proper progression of the previous one.

Cells that have temporarily or reversibly stopped dividing are said to have entered a

state of quiescence and are thus called quiescent cells. Following is a brief description

of each one of these phases:
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• Quiescence - G0 phase: Cells which are not proliferating are said to be

quiescent or in “G0” phase. Generally cells enter the G0 state from G1 and

may remain quiescent for long periods, possibly indefinitely. The metabolic

demands of G0 phase varies according to the specialized functions being carried

out by the quiescent cell, but there is often lower levels of energy consumption

compared to actively dividing cells.

• Interphase: Before a cell can enter cell division, it needs to take in nutrients.

All of the preparations are done during the interphase phase. Interphase is

regrouped into 3 states, G1, S, G2.

• Gap 1 - G1 phase: This is the first phase within interphase. It starts from the

previous M phase until the beginning of DNA synthesis. During this phase the

cell increases in size. The phase is marked by the synthesis of various enzymes

that are required in the S phase, mainly those needed for DNA replication.

The G1’s checkpoint is located at the end of the cell cycle. G1’s make the key

decision of whether the cell should divide, delay division, or enter a resting

stage. Duration of G1 is highly variable, even among cells of the same species.

• Synthesis - S phase: The S phase starts when DNA synthesis begins, soon

after the G1 checkpoint; when it is complete all of the chromosomes have been

replicated. Thus, during this phase the amount of DNA has doubled.

• Gap 2 - G2 phase: At the completion of the S phase DNA replication ceases

and cells enter the G2 phase. This phase lasts until the cell enters the mitosis -

M phase. During this phase the cell will grow. A second checkpoint is located
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Figure 2.3: Schematic of the cell cycle. Outer ring: I = Interphase, M = Mitosis;
inner ring: M = Mitosis, G1 = Gap 1, G2 = Gap 2, S = Synthesis; not in ring: G0 =
Gap 0/Quiescence. The duration of mitosis in relation to the other phases has been
exaggerated in this diagram. Picture taken from [7]

at the end of the G2 phase, triggering the start of the M phase. In order to

pass this checkpoint, the cell checks a number of factors to ensure the cell is

ready for mitosis.

• Mitosis - M phase: Cell growth stops at this stage and cellular energy is

focused on the orderly division into two daughter cells. A metaphase checkpoint

is in the middle of mitosis, it ensures that the cell is ready to complete division.

After the cell has split into two daughters cells, the cell enters G1.

As we can see, the cell cycle completes a loop where each step is controlled by

checkpoints. Figure 2.3 is a graphic description of the cell cycle phase.
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Hormone regulation in breast cancer and growth factors: Normal breast

growth and development is regulated by complex interactions of many hormones and

growth factors. For instance, in a normal cycle of breast estrogen, a hormone stim-

ulates the breast growth and interaction between estrogen and cyclin-D1 stimulates

cell-cycles. Because hormones and their receptors regulate normal breast tissue, it

is not surprising that malignant cells arising from breast tissue, might also express

receptors for many of these hormones and might retain some degree of hormonal

dependence. For instance, estrogen plays a critical role in the etiology of breast

cancer, when estrogenic simulation does not occur the incidence of breast cancer is

only 1% of that in normal women. Recent studies suggest that breast cancer cells

under estrogen control can synthesize and secrete their own growth factors that could

auto-stimulate breast cancer cells or adjacent stromal tissues through autocrine or

paracrine mechanisms [64].

Also, observations dating back nearly a century show that some human breast cancers

will regress following ovaroectomy, however by the time breast cancer has reached

the stage of a metastatic disease it retains the hormone dependent phenotype of the

normal breast approximately one-third of the time.

Studies showed that not all cancers were dependent on hormones, therefore a classi-

fication of breast cancer type is given regarding hormone dependency. Tumors that

are Estrogen Receptor positive (ER+) is more likely to grow in high estrogen envi-

ronments. Estrogen Receptor negative (ER-) are usually not affected by the levels

of estrogen in the body. The same classification is made for progesterone (PR+ /

PR-). ER+ are more likely to respond to anti-estrogen therapies such as tamoxifen,
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a drug that works by blocking the estrogen receptor of the breast tissue cell, and

slowing their estrogen fueled growth. Note that even menopausal women can face an

ER+ tumor, since estrogen can be stimulated by other parts of the body other than

ovaries. 70% of breast cancer in women are ER+. Since anti-estrogen therapies are

inefficient in ER-, chemotherapy will be assigned to ER- cases.

Estrogen is not the only source of growth factors, breast cancer cells can synthe-

size their own major growth factors. Also, stormal tissues may secrete insulin like

Growth Factors (IGF-1 and IGF-2) that can stimulate breast cancer cells. The major

potential autocrine/paracrine growth factors identified for breast cancer include Epi-

dermal Growth Factor (EGF), Transforming Growth Factor alpha (TGFα), IGF-2,

plateled-derived growth factor, and fibroblast growth factor.

These growth factors play a critical role in regulating the cellular process, since they

are capable of stimulating cellular growth, proliferation, and cellular differentiation.

Oncogene Oncogenes refer to genes whose activation can contribute to the devel-

opment of cancer. Numerous oncogenes have been characterized in human cancers,

but relatively few have been found to be crucial in the progression of breast cancer.

Amplification and over-expression of these oncogenes and oncogene products are the

major mechanism through which these genes participate in carcinogenesis. Many

cancer drugs target the proteins encoded by oncogenes. Here is a non-exhaustive list

of oncogenes present in breast cancer:

• The HER-2 oncogene: The HER-2 (Human Epithelial Receptor 2, also

known as HER/neu or erbB-2) gene encodes a transmembrane tyrosine kinase
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growth factor receptor. A growth factor receptor’s activation is initiated by

binding to specific ligands, or autonomously, if present in sufficient receptor

density on the cell membrane, followed by dimerization and receptor autophos-

phorylation, which leads to multiple transduction cascades acting through a

variety of pathways. The HER-2 gene is rarely amplified in benign breast dis-

ease, and its expression varies by histologic subtypes, as it is almost exclusively

found in the primary breast cancers of ductal origin, in contrast to those of

lobular origin. The HER-2 gene is amplified and over-expressed in 20%-30% of

invasive breast cancer and, interestingly, in the majority of high grade DCIS

cases [98]. Cancers with too many copies of the HER-2 gene or too many

HER-2 receptors tend to grow fast. They are also associated with an increased

risk of spreading. However they may respond to treatment that works against

HER-2. This treatment is called anti-HER-2 antibody therapy. Usually, a pre-

cise breast diagnosis would inform on the HER-2 status, acknowledging if it is

positive(HER-2+) or negative(HER-2-). In this work, we will build a tumor

growth model for this particular type of tumor, containing a further description

of the chemical mechanism involved.

• Other HER family members: Other HER family genes, such as the

one encoding the Epidermal Growth Factor Receptor (EGFR, also known as

HER-1), are relevant in breast cancer. In actuality, EGFR is expressed very

commonly in lung, head, neck cancer, and to a lesser extent in breast cancer.

However, it is important to note that expression of EGFR has been associated

with a bad clinical outcome as well as ER-.
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• Downstream signal transduction modulators: Cancer cells receive sig-

nals from their environment, stimulating them to grow and to proliferate. To

translate activation of a membrane-bound receptor into a biological response,

the signal generated by receptor activation needs to be carried to the nucleus

to trigger protein synthesis. This is achieved by the activation of a cascade of

intracellular biochemical reactions, the so-called signal transduction pathways.

In cancer cells, elements of signal transduction pathways are often mutated

or over-expressed compared with normal cells. Oncogenic gene mutations fre-

quently lead to constitutive activation of signal transduction elements, such as

growth factor receptor tyrosine kinases, mimicking a situation of continuous

activation of the receptor, even in the absence of the relevant growth factor.

Also, more downstream signal transduction elements may be mutated or over-

expressed, contributing to the malignant phenotype.

• Cyclins: Entrance into cell cycling and active proliferation is a tightly reg-

ulated process. Cyclin-Dependent Kinases (CDKs) are a group of proteins

placed strategically throughout this phase of the cell cycle. When CDKs are

activated it promotes phosphorylation of other proteins, especially retinoblas-

toma protein (pRb), a primary gatekeeper that allows the cell to pass from a

resting state G0, into an active cyclin and mitosis. CDKs are regulated pos-

itively by cyclin-dependent kinase inhibitors (CKIs). Cyclin D1 and cyclin E

expression levels oscillate according to the cell cycle and both play a key role

in the progression of the cell from G1 to S phase.

The gene encoding cyclin D1 has been found to be over-expressed in 40%-50%
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of invasive breast cancers and amplified in 10%-20% of cases [98]. When cy-

clin D1 is complexed with its CDK partner, the pRb tumor suppressor protein

is phorylated, releasing the transcriptional factor E2F, and inducing proteins

required for DNA synthesis. High cyclin D1 expression levels appears to be

positively associated with ER+ and an increased proliferative index.

The gene encoding cyclin E is rarely amplified in breast cancer (∼ 2%); how-

ever, over-expression and alteration of the degradation pathway resulting in

the accumulation of low-molecular weight isoforms have been demonstrated

in 20%-30% of breast cancers [98]. Nevertheless, it is rare to find both cy-

clin D1 and E concomitantly over-expressed. In the same pathway of cyclin

D1, over-expressed cyclin E results in hyperphosphorylation of pRb and in-

creased proliferation, however in contrast to high cyclin D1 tumors, high cyclin

E tumors are additionally able to induce the S phase independently of pRb

phosphorylation and E2F activation. The overall result of this is a marked

reduction in cell cycle control and a significant dysregulation of proliferation.

High cyclin E tumors are more likely to be of a higher grade than high cyclin

D1 tumors which are typically hormone-receptor negative: ER-, have a more

marked proliferative index and are associated with a worse outcome. There are

many reasons why cyclin E is associated with an aggressive phenotype:

– cyclin E over-expressed tumors are able to bypass the pRb node, allowing

for pronounced active cell cyclin;

– high cyclin E levels, in contrast to high cyclin D1 levels, are associated

with increased genomic instability;
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– the enzyme that cleaves E into its low-weight-molecular isoform, has also

been associated with an increased propensity for invasion and metastases

and may, in part explain the more aggressive phenotype.

However the routine use of cyclins or their isoforms for prognostic or therapeutic

decisions remain unproven.

• c-myc oncogene: The c-myc oncogene acts as a transcriptional regula-

tor that is involved in the cellular proliferation, differentiation, and apoptosis.

Over-expression and amplification is observed in 6%-32% of breast tumors.

However, it is not well defined how this oncogene affects cancer growth, even

though in some cases it is associated with the worse prognosis or more aggres-

sive clinical features [106].

Tumor suppressor gene Tumor suppressor genes refer to those genes whose loss

of function results in the promotion of malignancy. They are usually negative regu-

lators of growth or other functions that may affect invasive and metastatic potential,

such as cell adhesion and regulation of protease activity. Tumor suppressor genes

have not been extremely useful in diagnostic applications, with the exception of in-

herited susceptibility genes. Here is a non exhaustive list of tumor suppressor gene

activity in breast cancer:

• p53 oncogene: p53 is possibly the most-studied tumor suppressor gene;

mutation of p53 is estimated to occur in up to half of all human cancers and in

approximately 20%-30% of breast cancers. It codes a protein that has multiple
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functions that are regulated via phosphorylation at different sites. Normally

p53 acts as a regulating mechanism for cell division. When activated, p53

can directly interact with DNA to yield transcription of a number of genes,

including CKI (Cyclin-dependent kinase inhibitor), and lead to a temporary

arrest of the cell cycle in the G1 or G2/M phase prior to mitosis to allow for

DNA repair. p53 has also been shown to factor in the expression in other tumor

suppressors or regulators of angiogenesis and metastasis [98].

Abnormalities of p53 expression have been associated with some of the worst

prognoses in breast cancer cases Its over-expression has been strongly linked

with ER-. Independent of ER status, mutation of p53 increases the relative

risk of relapse by roughly 33% [98].

• p27 and Skp2: p27 belong to the family of cyclin-dependent proteins kinase

inhibitors (CKIs) known as Cip/Kip. Generally, CKIs slow the progression of

the cell cycle. p27 is capable of binding to a number of unique cyclin/CDK

complexes to attenuate their activity, typically directing the cell towards arrest

in the G1 phase. Mutation of p27 appears to be a uncommon event in ma-

lignancy, occurring in only 1% of tumors in one study [98]. In breast cancer,

diminished expression of p27 is associated with shorter overall survival and

shorter time to progression and seems to be a stronger independent predictor

of outcome than either p53 alterations or tumor grade. Some degree of the

poor prognosis conferred by loss of p27 expression may be related in part to a

role in modulating cell-cell adhesion, and thus a tendency for metastatic spread.

Skp2 is required for the degradation of p27, preferentially Skp2 is over-expressed
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in ER- and HER2- breast cancers, these are defined as a subset of breast cancer

recently defined as the “basal phenotype”.

• BRCA-1: BRCA-1 is a gene associated with familial breast cancer. It is

classified as a tumor suppressor gene that is hereditary (0.12% of the population

carries a mutation of BRCA-1), with very few sporadic cases. BCRA-1-related

cancers are less likely to show ER positivity. The functions associated with

BRCA-1 is to localize areas of damaged DNA, support a role in regulation of

transcription, as well as repair of double-stranded DNA.

• BRCA-2: The BRCA-2 gene shares many features with BRCA-1. It is

needed for the high fidelity phase of DNA repair. BRCA-2 mutation has been

strongly associated with high tumor grade as has BRCA-1, but the malignant

cells show a less tubule formation. As with BRCA-1, sporadic mutations of

BRCA-2 are very rare.

• Other tumor suppressor genes: A number of other tumor suppressors of

importance in breast cancer are known, and still others are being identified.

Here is a few of the known genes:

– BRCA-3 gene;

– PTEN;

– Cell cycle checkpoint kinase(CHK2);

– ATM gene;

– Retinoblastoma (Rb).

26



Mechanism of metastasis in breast cancer - cell adhesion properties &

MMP enzyme Tumor cells separate themselves from a solid tumor mass more

easily than their counterparts, normal cells from surrounding tissue. Detachment

of cells are regulated by the property of tumor cell “adhesiveness”. This mobility

provides tumor cells with the capability of metastasis. Cadherins are the family

of functionally related transmembrane proteins responsible for the cell-cell adhesion

mechanism that is crucial for the mutual association of cells (see figure 2.2).

Cadherins bind cell’s tightly by homopholic, identical type biding, interaction, not-

ing that the inactivation of other adhesion systems have little effect on cell-cell ad-

hesion when cadherins are functioning. However treatment of cell layers expressing

cadherins with anti-cadherins antibodies, induces the dispersion of cells. These prop-

erties indicate that cadherins play a major role in inter-cellular physical adhesion,

and that the number of cadherin molecules expressed in a cell directly affect its ad-

hesiveness.

It is believed that the suppression of E-cad activity might trigger the release of tumor

cells from the primary lesion in cancerous tissue. It was demonstrated that inhibi-

tion of cadherins by antibodies promotes cell invasion in a model system in vitro

[21]. Furthermore, more recent studies with transfected cell lines have shown that

selective loss of E-cadherin expression can generate differentiation and invasiveness

of human carcinoma cells [53]. Following this path, Oka et al. [92] suggested that

E-cadherin may play an important role in invasion and metastasis of human breast

cancer.

Metastasis represents a critical event in the course of tumor progression, usually
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leading to the worse prognosis for patients. Invasion and metastasis of tumor cells

into their surrounding connective tissue and to distant sites is a multistep process.

Carcinoma cells must first detach from neighboring tumor cells, invade through the

basement membrane, and migrate into surrounding tissue. The invading cells may

then enter the vascular or lymphatic circulation. Finally, the cells may then attach

to the wall of the capillary at a second site and pass through the basement mem-

brane into a target organ, where growth resumes. As we mentioned earlier cellular

adhesion molecules may play a role both in the detachment of tumor cells from a

primary tumor and in reimplantation at a distant site. Another key factor reported

for metastasis to occur is the secretion of the matrix metalloproteinases (MMPs)

enzymes.

Indeed, for breast cancer cells to manifest their malignant potential, they must de-

velop the ability to break through and dissolve extracellular matrices (ECM), par-

ticularly the delimiting basement membrane (BM). The degradation of the BM and

ECM is catalyzed by the concerted action of several classes of ECM-degrading en-

zymes. One important class of ECM-degrading enzymes includes the matrix metal-

loproteinases.

This biological description is important to understand the origin and mechanism of

breast cancer. We will now describe how this disease is treated.

2.1.3 Breast cancer treatment

It is consider that 1 in 8 women will face breast cancer during their lives. Early

detection resides the best solution with the assumption being that early detection
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will improve outcome. In this subsection, we will describe the general principle

of management available for breast cancer and detail in more depth the surgery

procedure effective for breast cancer.

2.1.3.1 Principle of management

In order to improve early detection for breast cancer, a number of screening tests

have been employed including: clinical and self breast exams, mammography, genetic

screening, ultrasound, and magnetic resonance imaging (MRI). Patient of age 20 are

invited to proceed for a breast self exam, reporting to their doctor any abnormality,

patient of age 30 are also invited to go under a clinical breast exam every three

years. Although genetic testing does not detect cancers, it may reveal susceptibil-

ity to developing cancer. Women who are known to have a higher risk of developing

breast cancer usually undertake more aggressive screening programs. National health

screening programs are also established in most developed countries: in the United

States the screening policy recommends a yearly mammogram starting of age 40 and

continuing for as long as a woman is in good health, in Europe the screening policy

starts at age 50.

A mammogram is a mammography exam which is a specific type of imaging that

uses a low-dose x-ray system to examine breasts. It gives a 2D representation of

the projected X-rays. During this procedure the breast is compressed in order to

reduce the dosage of x-rays transmitted. This tool is also used for the diagnosis of

breast diseases in women. Mammography plays a central part in early detection of

breast cancers because it can show changes in the breast up to two years before a
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patient or physician can feel them. Mammograms have a sensitivity ability to detect

true-positives of up to 90% in women over the age of 50 years [96]. Analysis of these

images can be challenging and sometimes can require an adjunct scanning method

such as ultrasound scanning. Ultrasound uses harmless, high frequency sound waves

to form an image (sonogram). The sound waves pass through the breast and bounce

back or echo from various tissues to form a picture of the internal structures. It is

not invasive, does not involve radiation, and is effective for imaging soft tissues of

the body. Breast MRI is prescribed if there is a discrepancy between the clinical,

mammographic, and ultrasound measure of the tumor [96]. MRI is also a powerful

tool for screening patients with high genetic risk, dense breast, or to assess the size

of the the tumor if breast conserving surgery is being contemplated. Any patient

showing a significant abnormality will then undergo a biopsy.

A biopsy is the removal of a piece of breast tissue for examination by a patholo-

gist. There are several kinds of biopsies available for breasts, each one presenting

their own advantages and disadvantages. The tissue sample will be analyzed by a

laboratory confirming or discrediting the presence of a tumor, and returning as well

the classification and grade of the tumor. A complete analysis of the disease will

contain microscopic and macroscopic information about the disease. Recalling de-

scriptions we provided from the previous section, the report would contain answers

to the following questions:

• What is the size of the tumor: cm?

• What type of cancer is it: DCIS, IDC, LCIS, ILC?
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• If there is lymphatic or vascular invasion?

• How many lymph nodes are involved?

• What is the cancer cell grade: 1,2,3?

• Is the tumor ER+ or ER-?

• Is the tumor PR+ or PR-?

• Is the tumor HER-2+ or HER-2-?

Following diagnosis of breast cancer, the majority of patients will undergo surgi-

cal treatment. This may be followed by adjuvant therapy such as radiotherapy,

chemotherapy, and/or hormone therapy. For most of the patients, a range of sur-

gical options will be offered and discussed in correlation with their diagnosis. This

appears to be a challenging moment for patients who need to take on a load of infor-

mation. Although there is a wide range of surgery available to treat breast cancer,

traditionally the surgical options consists of breast conserving therapy or a mastec-

tomy, the other types of surgery offered usually derives from these two. A range of

oncoplastic breast-conserving procedures can be added to these two surgeries. We

will now give a more in depth description of these two surgical procedures: breast

conserving therapy and mastectomy.

2.1.3.2 Surgery for breast cancer

Surgery remains to this day the mainstay to treat breast cancer. The goal of the

surgery procedure is to remove the cancerous tissue inside the breast. Since the
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breast is not a vital organ and its only biological role is to provide milk for a newborn,

breast surgery remains one of the safest surgery procedures. Mastectomy and breast

conserving therapy are the two surgical procedures conventionally proposed for breast

cancer.

Mastectomy: Mastectomy is the medical term for the surgical operation that

removes one entire breast, or both, usually including the nipple and the areola.

Depending on the patient case, there are a variety of types of mastectomy. It will

usually include removal of the axillary lymph nodes or the first removal of the sentinel

lymph nodes for a biopsy. A patient will opt for a mastectomy if the tumor is

relatively big compared to the patient breast size, if the patient would rather avoid

anxiety of cancer local recurrence, or to avoid undergoing radiation therapy. This

surgery however comes with an aesthetic drawback since the breast is completely

removed. Some mastectomy procedure, will take into account the possibility of a

breast reconstruction procedure.

Breast conserving therapy: Breast conserving surgery, lumpectomy, is less rad-

ical than a mastectomy. Lumpectomy consists of the removal of a part of the breast,

usually the tumor including a positive margin, as opposed to the entire breast.

Lumpectomy followed by radiotherapy is labeled as breast conserving therapy (BCT).

Appropriate radiotherapy is needed in order to completely eliminate residual cancer-

ous tissue. Whelan et al. [142] reported that the risk of local recurrence for lumpec-

tomy, decreases by 24% when appropriate radiotherapy is applied. The advantage

of BCT over mastectomy is that it may offer faster recovery and better cosmetic
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outcome for patients. Nevertheless the patient needs to undergo radiation therapy

in order to reduce local recurrence to the same rate of the mastectomy procedure.

2.2 Elements of soft tissue biomechanics modeling

This section presents an introduction for the subsequent mechanical modeling of

breast tissue. The description below is mainly based on the books by Malvern

[85] and Holzapfel [63]. This section first outlines the kinematics necessary to set

the equations relating strain tensors to displacement gradients, we then present the

stress equilibrium equations derived from conservation laws, then we introduce the

constitutive equation for a non-linear elastic material: hyperelastic material. These

equations constitute the connection between stress and strain of a material. We con-

clude with a brief discussion on the computational implementation of these non-linear

mechanical models.

2.2.1 Kinematics

In this work we only consider Cartesian coordinate sets. We consider a continuous

body Ω0 that has been subjected to deformation and is now in a deformed state Ωx

(see figure 2.4). We identify the current state of the deformed body as the current

configuration and the original, initial state, as the reference configuration. For those

two types of configurations, two types of coordinate systems are used to analyze

stresses and strains:
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• material coordinates (X1, X2, X3) refers to the behavior of a material point,

this material coordinate system is often called a Lagrangian description;

• spatial coordinates (x1, x2, x3) refers to the material behavior at a particular

spatial position.

Figure 2.4: Configuration of a deformed body (image taken from [76]).

As the body deforms, the material coordinate axes deforms with it, and hence the co-

ordinate values of a material point does not change during the deformation, whereas

with the spatial coordinates of a material point can be associated with a different

material point after deformation. The measure of strain requires a relationship be-

tween the spatial coordinates of material points in a deformed body and the material

coordinates of the material points in the reference configuration. It is then possible

to measure a change in the length of a material line segment using this relationship.

Let us consider an intial state of a body (reference configuration), x, deform

to the current configuration, X. The deformation can be represented by mapping
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χ : Ω0 7→ Ωx which takes points X in Ω0 to points x in Ωx : x = χ(X). Suppose

now that two particles of the body are located at points X and X + dX in the

undeformed configuration, after deformation they are positioned at x = χ(X) and

x = χ(X+dX) respectively. Then the deformation gradient tensor, F, relating the

line element in the initial state to the line element in the current state is defined by

the relationship dx = FdX, where:

F =
∂x

∂X
(2.1)

Note that the Jacobian J = det(F) is a measure of the volume change of the

material due to deformation dv = JdV, where dV is the volume in the reference

configuration and dv is the corresponding volume in the current configuration. Sim-

ilarly, an area in the reference configuration is referred to as dA, and in the current

configuration as da.

The deformation gradient tensor represents the entire deformation, including rigid

body motion and the strain, that the material experiences. It can be decomposed ac-

cording to the polar decompositions F = RU where R is a proper orthogonal tensor,

representing the rigid body rotation, and U a positive definitive and symmetric ten-

sor, representing the material strain independent of the rigid body rotation. Because

U is a positive and symmetric tensor, there exists a basis in which U is diagonal.

These are the principal directions of U and by definition, the positive diagonal com-

ponents, λ1, λ2, λ3 of U in the principal axes called the principal values of U, repre-

senting the principal stretches. Since a pure rotation should not induce any stresses

in a deformable body, it is often convenient to use rotation-independent measures of

deformation in continuum mechanics. We derive a tensor that is independent of the

35



rigid body rotation, the right Cauchy Green tensor, C, defined as:

C = FTF

= RUTRU

= UTU

since R is an orthogonal tensor: RTR = I, where I is the identity tensor . In

three-dimension, C is a 3 × 3 matrix and possesses 3 invariants under coordinate

change:

I1 = tr(F) = λ2
1 + λ2

2 + λ3
3 (2.2)

I2 =
1

2
[(trC)2 − tr(C2)] = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 (2.3)

I3 = det(C) = λ2
1λ

2
2λ

2
3 = J2 (2.4)

often used in the expressions for strain energy density functions. When there is no

motion or deformation, the deformation gradient tensor will be equal to the identity

tensor, and hence the right Cauchy Green deformation tensor is as well. In order to

get a strain tensor such that no motion or deformation yields the zero tensor, 0, the

Green Strain tensor, E, was introduced, satisfying this property:

E =
1

2
(C− I) (2.5)

2.2.2 Stress equilibrium

Lets consider a quasi-static equilibrium state of a body (inertia effect neglected),

under the body force, b, per unit of volume and the traction forces, t, per unit of
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area, one can establish the momentum balance:∫
a
tda+

∫
v
bdv = 0 (2.6)

using the Gauss theorem and definition of the Cauchy stress tensor σ (defined through

the constitutive equations) we can write∫
v
(∇.σ + b)dv = 0 (2.7)

The Cauchy stress tensor refers to the force measured per unit area in the deformed

configuration with respect to the deformed coordinate system. Other measures of

stress include P and S, respectively the 1st and the 2nd Piola-Kirchhoff stress tensor

defined by:

P = JσF−T (2.8)

S = JF−1σF−T (2.9)

A strong form of the equilibrium state can be written :

∇.σ + b = 0 (2.10)

For numerical purposes we write the weak form of equation 2.10 using the principle

of virtual work, by introducing an arbitrary virtual displacement δu:

δW =

∫
v

J σ:
∂(δu)

∂x
dv −

∫
s

t.δuds−
∫
v

b.δudv = 0

For incompressible materials, introducing δp an arbitrary variation of the hydrostatic

pressure term, the volume conserving constraint J = 1 is weakly enforced explicitly

by: ∫
v

δp(J− 1)dv = 0.
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δp can be interpreted by the physical hydrostatic pressure required to enforce the

constraint J = 1.

2.2.3 Constitutive equations: hyperelastic material

The fundamental equations introduced in section 2.2.2 - 2.2.1 are essential to char-

acterize the kinematics, stresses, and balance principles, and hold for any continuum

body for all times. However they are not a complete set since they do not distinguish

one material from another and remain valid in all branches of continuum mechanics.

Hence we must establish additional equations, connecting the forces or stresses (σ,

S, or P) to the deformation or strain (F, C, or E). This relationship is known as

the constitutive relation.

A material is called Cauchy-elastic (or elastic) if the Cauchy stress at each material

point is determined only by the current state of deformation (with respect to any

arbitrary reference configuration). In other words, the Cauchy stress, σ, does not de-

pend on the deformation history. Neglecting the effect of temperature and assuming

the body to be homogeneous, a constitutive equation for the Cauchy stress tensor

can be formulated based on the deformation gradient: σ = f(F). Frame indifference

requires that the constitutive relationship should not change when the location of

the observer changes, therefore it is independent of rigid-body rotations and it can

be regarded as a function of any strain measure introduced earlier: C or E. While

Roose et al. [117] simulated breast tissue mechanics using linear-elastic material,

it is commonly said that hyperelastic material provides a more coherent model to

describe breast tissue [121, 123, 17, 18, 19, 131, 132, 133, 100, 108, 32].
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The hyperelastic material is a special case of a Cauchy elastic material with a type

of constitutive model for which the stress-strain relationship derives from a strain

energy density function, W. This strain energy function represents the work done

by the stresses from the initial to the final configuration. Stresses are calculated by

differentiating the strain energy function with respect to a measure of deformation

or strain, i.e.

S =
∂W(E)

∂E
=

∂W(C)

∂C

∂C

∂E
= 2

∂W(C)

∂C
(2.11)

Additionally, if the material behaves isotropically with respect to the undeformed

configuration, then the strain energy function, W, may be expressed in terms of the

principal invariants of its argument:

W = W(E) = W(I1, I2, I3) (2.12)

The majority of strain energy functions used in the literature to model the behavior of

breast tissue was initially developed for the characterization of rubber-like materials.

The polynomial hyperelastic material model [115] is a phenomenological model of

rubber elasticity. In this model, the strain energy density function is in the form of a

polynomial in the two invariants I1, I2 of the left Cauchy-Green deformation tensor

and an additional dependence on volume is added for compressible materials:

W =
n∑

i,j=0

Cij(I1 − 3)i(I2 − 3)j +
m∑
k=0

Dk(J− 1))2k (2.13)

where:

I1 = J2/3I1

I2 = J2/3I2
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Cij and Dk are the material constant expressed in Pa. If we only consider in equation

2.13, n = 1, m = 1, and C00 = C01 = C11 = 0 the polynomial reduces to the

compressible Neo-Hookean solid model:

W = C10(I1 − 3) +D1(J− 1)2 (2.14)

If we consider n = 1, m = 1, and C00 = C11 = 0 the polynomial reduces to the

compressible Mooney-Rivlin material

W = C01(I2 − 3) + C10(I1 − 3) +D1(J− 1)2 (2.15)

The material parameters are fit by performing tension compression tests. In these

two models the compressibility part is identified by the last term of the polynomial.

D1 is representing the bulk modulus of the material, an analogy of such a term would

be the hydrostatic pressure necessary to compress the volume by a factor of 1/e. The

values of these parameters will be discussed later.

2.2.4 Computational implementation

In order to simulate soft tissue mechanics using the computer we will use the com-

mercial software ANSYSTM [8] using the Finite Element Method (FEM). ANSYSTM

employs the “Newton-Raphson” approach to solve non-linear problems. In this ap-

proach, the load is subdivided into a series of load increments. The load increments

can be applied over several load steps. Figure 2.5 illustrates the use of Newton-

Raphson equilibrium iterations in one-dimension non-linear analysis.

Before each solution, the Newton-Raphson method evaluates the out-of-balance load
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Figure 2.5: Newton-Raphson method for non-linear equation P (u) = f (image taken
from [76]).

vector, which is the difference between the restoring forces (the loads corresponding

to the element stresses) and the applied loads [8, 76]. ANSYSTM then performs a

linear solution, using the out-of-balance loads, and checks for convergence. If con-

vergence criteria is not satisfied, the out-of-balance load vector is reevaluated, the

stiffness matrix is updated, and a new solution is obtained. This iterative procedure

continues until the problem converges.

2.3 Image segmentation

This section presents an introduction for image segmentation. The description below

is mainly based on the books by Gonzalez & Woods [61], Blake & Isard [24], the PhD

dissertation of Bresson [26], and Lankton [81], and the technical memo of Ivins &

Porrill [69]. We provide the mathematical background to perform active contour

models and more particularly the implementation of the level set method. We will
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then describe the specific active contour model developed by Lankton [81], that we

implemented to perform medical image segmentation.

2.3.1 Active contour models

The process of segmentation is to split the image into meaningful parts. The result

of image segmentation is a set of segments that collectively cover the entire image, or

a set of contours extracted from the image. Each of the pixels in a region are similar

with respect to some characteristics or computed properties, such as color, intensity,

or texture. This is a necessary initial step for subsequent image processing tasks

such as tracking, detection, object recognition, and shape analysis. When applied

to a stack of images, typical in medical imaging, the resulting contours after image

segmentation can be used to create 3D reconstruction.

Active contour models (snake) is one of the tools to proceed image segmentation.

It is a variational method performing energy-minimization on curves that deform to

fit the image features (see figure 2.6). Active contour models are typically driven

by a potential energy generated by processing the image data, and this energy is

minimized by iterative gradient descent. In addition, other energy sources can be

implemented such as internal forces, producing tension and stiffness, or external

forces, specified by human operator, constraining the behavior of the model. If

the energy function is well chosen, the curve will come to rest when a meaningful

segmentation has been achieved.

In this work, we consider that active contour model are regular parameterized closed

curves. In Ω ∈ R2 a curve x(s) parameterized by the parameter s, is a mapping:
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Figure 2.6: A Closed Active Contour Model: This diagram shows a snake with its
ends enjoined so that it forms a closed loop. Over a series of time steps the snake
moves into alignment with the nearest salient feature, here an edge (image taken
from [69]).

x: [a, b] ∈ R −→ Ω ∈ R2

s −→ x(s) = (x1 (s) , x2(s))

A curve is regular if ∀s ∈ [a, b], x′(s) exists and x′(s) ̸= 0R2 ; and is considered closed

if x(a) = x(b) and x(a) = x(b). Also as we mentioned earlier, active contour model

is a moving curve, therefore active contour can be modeled by indexing an artificial

parameter, t. The active contour motion between two time steps can be described

by the following equation:

x(s, t+∆t) = x(s, t) +
∂x(s, t)

∂t
∆t. (2.16)

We define the vector field ϑ : R2 ×R+ describing the motion of each point along the

active contour:

∂x(s, t)

∂t
= ϑ(x(s, t), t) (2.17)
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This vector field can be decomposed into a unique linear combination of the tangent

and the inward normal normed vectors, respectively t(s, t) and n(s, t):

∂x

∂t
= ⟨ϑ, t⟩t+ ⟨ϑ,n⟩n (2.18)

where ⟨., .⟩ is the inner product. Also, any motion in the tangent direction, t, is

equivalent to a re-parametrization of the curve, not resulting in any change of the

curve. This term can be reduced to zero allowing only the normal component to

contribute to the motion of the contour at each time step:

∂x

∂t
= ⟨ϑ,n⟩n (2.19)

We define the potential energy, E, of the active contour model such as it is only

dependent on the geometric property of the contour (i.e. E(x)), such an energy

is said to be geometric [81]. The active contour model motion is driven by energy

minimization of the curve using a gradient descent method on the following equation:

∂x

∂t
= ∇xE = ⟨−∇xE,n⟩n (2.20)

The advantage of geometric energies is that the behavior of the active contour, x, is

independent of any arbitrary choice of parameterization.

2.3.2 Level set methods

In order to implement active contour models, a choice needs to be made in order

to describe the parametric representation of the curve. Initially most of the active

contours used control points connected with spline. More recently, the level set
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method for tracking moving fronts was introduced by Osher and Sethian in [99].

This method have had great success because it has been used in many applications

from physics, by capturing multiphase fluid dynamic flow, to graphics such as spe-

cial effects in Hollywood, visualization, image processing, computer vision, control,

epitaxial growth, visibility, ray tracing, segmentation, restoration, and many others

becoming the standard choice representation due to four advantages over the initial

one [81]:

1. inherent support of topology change

2. natural representation of surface RN

3. simple estimation of geometric properties

4. straightforward numerical implementation

The core idea in the level set method is to implicitly represent an interface x in R2 as

a level set of a function Φ : R2 −→ R, called level set function, of higher dimension

and compute the geometric characteristics and the motion of the front with this level

set function. The level set function Φ of the closed front x is defined as follows:

∀u ∈ Ω ⊂ R2 Φ(u) =


−d(u,x) for u inside x

0 otherwise

d(u,x) for u outside x

(2.21)

where:

d(u,x) = inf
v∈x

(∥u− v∥)
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This representation provides a simple and smooth function, and the active contour

can easily be recovered as:

x = {u ∈ Ω|Φ(u) = 0} (2.22)

In Fig. 2.7 several visualizations can be seen on two-dimensional curves and their

corresponding signed distance function, from this figure it is obvious to observe that

the level set method allows us natural curve topological changes, such as breaking

or merging, while the level set function remains unchanged. It is worth to notice,

that this representation can be extended to represent surfaces in R3. The geometric

characteristics of the interface can be computed with the level set function, the unit

normal, n, and the mean curvature κ to x(s, t) are given by: n = − ∇Φ
∥∇Φ∥

κ = ∇.n = ∇.(− ∇Φ
∥∇Φ∥)

(2.23)

The definition of the curvature is essentially used in the numerical implementation

for regularization of the curve by penalizing high curvature. One can use the level set

to represent the energy function (i.e E(Φ) instead of E(x)), therefore the equation

to minimize 2.20 becomes:

∂Φ

∂t
= ∇ΦE = ⟨−∇ΦE,n⟩n (2.24)

deforming the curve x implicitly, as Φ is deformed. The definition of the energy

function is key since it fuels the motion of the curve.
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2.3.3 Energy functions

As we mention earlier, active contour models is a variational method that minimizes

energy function of the curve. Two main categories of energy function exists: edge-

based and region-based.

Edge-based active contour model, also known as the geodesic active contours model,

was introduced by Caselles et al. [29]. It uses image gradients to identify object

boundaries. Their approach is based on the relationship between active contours

and the computation of minimal distance curves. The minimal distance curve lies in

a Riemannian space whose metric is defined by the image content. An example of

this type of energy is [81]:

E(x) =

∮ L

0

Ψ(x(s))ds, (2.25)

where s ∈ [0, L] is a parameter chosen to correspond exactly with the length, L, of

the active contour and Ψ is a weight function that reach the smallest value where

strong edges exist within the image, commonly Ψ would be:

Ψ =
1

1 + |∇(G ∗ I)|2
, (2.26)

where I represents the image, G represents a Gaussian smoothing kernel, and ∗

represents the convolution operator. This approach assumes that the segmented

object will display rapid change of intensity at the object boundaries. Edge-based

segmentation only considers information at the contour, taking no consideration into

the inside of the region segmented.

Zhu &Yuille [150] proposed a variational and statistical image segmentation model

based on the snake model and the region-growing algorithm. Their main contribution
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was the introduction of a region-based criterion into the snake model. Region-based

method model images regions statistically and looks for an energy optimum where

the model best fits the image. In these models the energy to minimize is:

E(x) =

∫
R

f(u)du (2.27)

where f is the function to minimize and R the region enclosed by the active contour

in model x. The advantage of such a method is its robust initialization and insensi-

tivity to image noise. However this method can show some limits when segmenting

non heterogeneous objects which often happens in medical imagery. Therefore to ac-

curately segment medical images Lankton [81] developed a new hybrid class of active

contour energies which utilizes local information and also incorporates the benefits

of region-based techniques.

2.3.4 Localized active contour model

Lankton [81] developed a framework, where segmentation is based on information

from local interior and exterior regions along the contour rather than global regions.

This replaces the assumption that the foreground and background regions are distin-

guishable based on their global statistics by the assumption that interior and exterior

regions will be different locally. The analysis of local statistics leads to the construc-

tion of a family of local regions at each point of the curve. Optimization of the local

energy is achieved by motion of each point in order to optimize the energy added

from its local region. Each point’s component of the overall energy is computed

by splitting the local neighborhoods into local-interior and local-exterior using the
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evolving curve and a characteristic function.

Considering an image I defined on Ω, x the active contour defined by the level set

function Φ such that x = {u|Φ(u) = 0} and the following smooth Dirac function

specifying the curve:

δΦ(u) =


1 Φ(u) = 0

0 |Φ(u)| < ϵ

1
2ϵ
(1 + cos(πΦ(u)

ϵ
)) otherwise

(2.28)

where ϵ ≪ 1. Using these notations Lankton [81] defined the energy function for a

generic region-based function, f , as such:

E(Φ) =

∫
u∈Ω

δΦ(u)

∫
v∈Ω

B(u,v)f(Φ, I,u,v)dvdu (2.29)

where B(u,v) is a characteristic function defined by:

B(u,v) =

 1 ∥u− v∥ ≤ r

0 otherwise
(2.30)

with r as a predefined radius value. As we can see such a model will only consider

the local region to compute the energy. An appropriate choice of the region-based

function, f , could be the Yezzi et al. [148] model assuming that foreground and

background regions should have maximally separate mean intensities, or the Chan-

Vese [30] model assuming that the foreground and background are constant intensities

represented by their means.

This PhD dissertation used an adapted version of Lankton [81] model implemented

in MatlabTM [10] to segment breast MRI.
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2.4 Mathematical tools element for tumor growth

model

Mathematical modeling has a major role in the resolution of engineering and physical

problems. It is therefore a valuable tool to be used for biological problems and

more specifically to model the development of tumor growth models. Building a

mathematical model for tumor growth will help clinicians obtain a better prognosis,

plan a more effective treatment, validate experimental hypotheses on tumors, as

well as understand or output relevant interaction phenomena at the microscopic and

macroscopic level. An ideal tumor growth model should be a model that replicates

reality with few relevant and easy to fit parameters that provide a good prediction

and an understanding of behavior.

Cancer is a generic term for a large class of diseases that can affect any part of the

body. There is a lot of controversy over how exactly cancer is initiated, but it is a

generally accepted view that it requires several gene mutations to turn a normal cell

into a cancer cell [89]. While normal cells will have typically controlled growth, due

to these mutations, cancerous cells will allow cells to grow in an uncontrolled manner

forming a tumor. Tumor cells will enter three main stages:

• Avascular stage

• Vascular stage

• Metastasis
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The avascular stage corresponds to the phase where tumor cells acquire nutrients

through diffusion from outside the tumor. After this initial stage the tumor will

enter the vascular stage in which cells stimulate blood vessel production by secreting

tumor angiogenesis factor. Finally the tumor will enter the metastasis stage in

which the cell breaks free from normal control and begins to spread uncontrollably

throughout the body. Each stage increases in complexity involving more entities

from the environment, requiring more equations, more parameters, but mostly more

sophisticated mathematical tools.

In this section we intend to give a small review of the three main categories of tools

to model tumor growth. We will first describe the ordinary differential equation

model to simulate the avascular tumor stage, then we describe the tumor model that

will include greater complexity using either the partial differential equation or the

cellular automata and agent-based model.

2.4.1 Ordinary differential equation model

Earliest tumor growth models considered no spatial variables, the growth was gov-

erned by a simple ordinary differential equation (ODE) [82, 88, 97]. At the initial

stage, the avascular stage tumor faces no environmental limitations, for this reason

using in-vitro data, it was well establish that the human tumor approximated expo-

nential growth rates at their developmental stage. First intuitive tumor models only

considered the number of tumor cells and described the growth equation given by

the exponential:

n(t) = N0e
λt (2.31)
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where n(t) is the number of tumor cells at time t, N0 the initial number of cells, and

λ is the growth constant. Such an equation is the solution of the following ODE:
∂n
∂t

= λn(t)

n(0) = N0

(2.32)

Such a system implies that each cell divides and grows at a rate of λ with no restric-

tion or limitation. However, the exponential function does not describe the rate of

tumor growth in vivo, which will slow down when the tumor size increases due to

the limited environment provisions and natural tumor cell degradation [149]. This

required a more sophisticated equation allowing proliferation as well as degradation

of cells. In the mid century Ludwig von Bertalanffy proposed a general form for such

growth model, known as the generalized Bertalanffy model [94]:

∂n

∂t
= anα − bnβ (2.33)

with a, b, α, and β parameters. In this set of equation if a and b are positive then

the second term represents the loss of cells. The special case α = 1, β = 2 gives the

logistic equation, a widely used equation to model population growth. Such ODE

model gives a first good model to simulate tumor growth [139, 94], in 1994 Olea et

al. used this model as well as the Gompertz model to evaluate the growth rate of

MCF-7 breast cancer multicellular spheroids [93].

In 1825 Benjamin Gompertz proposed an equation that was widely used as a growth

curve for a biological model including various tumor growth models [79, 82, 149, 93,

86, 94]:

∂n

∂t
= An+Bn lnn (2.34)
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with A and B parameters. The solution of this equation is known as the Gom-

pertz curve or Gompertz function, and fits better tumor dynamics. It is a type of

mathematical model for a time series, where growth is slowest at the end of a time

period:

n(t) = N0e
ln(N∞

N0
)[1−e−bt]

(2.35)

where N∞ is the plateau cell number which is reached at large values of t and the

parameter b is related to the initial tumor growth rate. In Fig. 2.8 we can see in vivo

tumor dynamics is best fitted by Gompertz’s equation in comparison to a logistic

equation.

Although this model gives a first good prediction, it appears that cancer is a complex

disease and clinical data cannot possibly be described by a single set of growth

parameters. Tumor cells almost certainly have different growth characteristics in

different patients, individual micro-metastases, and within a single patient may have

different growth parameters. To address this issue, more complex ODE model will

incorporate some variation in the tumor growth by using distribution on growth

parameters. Nonetheless tumor entering the vascular stage and metastasis requires a

more sophisticated mathematical tool since they need to take into account the tumor

environment. In particular this requires that the model includes spatial variables.

And last but not least, ODE models only describes the tumor as a volume quantity,

this leads mathematicians to assume only spheric tumors and radial progression [86],

leading to the conclusion that ODE provides no information on a tumor shape itself.

In the two next subsections we will describe models that fulfill these constraints

using a partial differential equation, cellular automaton, or agent-based model. We
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will first describe continuous tumor growth models using partial differential equation

(in subsection 2.4.2) then we will look into a discrete growth model using cellular

automaton and agent-based models (in subsection 2.4.3).

2.4.2 Partial differential equation model

In order to bring tumor growth models to another level, it is key to consider the

spatial environment. Indeed modeling tumor volume through ODE is useful to un-

derstand the growth rate but this does not provide spatial information on tumors.

Partial differential equations (PDE) are a type of differential equation of several

independent variables and their partial derivatives with respect to those variables,

they allow the incorporation of the spatio-temporal model. In 1972, Greenspan was

the first to implement spatial variable proposing a diffusion-limited growth model

for tumors [62]. More recently Byrne & Chaplain [27] developed a growth model

limited by the influence of inhibitors. Today there are an extensive use of tumor

growth models using complex PDE, simulating multi-species of cancer cells [145],

giving predictions to drug responses [46, 114], or simulating microscopic and macro-

scopic effects by developing multiscale models [113, 25, 23, 45].

The importance of including spatial variables was key in order to efficiently use

clinical tumor growth models. The Swanson et al. [129, 130] model was a pioneer

example: developing a simple diffusion model used for the clinical outcome of brain

tumors. They proposed a mathematical model of gliomas based on proliferation and

diffusion rates to incorporate the effects, reported by Giese et al. [60], of augmented

cell motility in white matter as compared to gray matter. The model defined the
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evolution of the glioma cell population solely by proliferation and diffusion. In this

model the rate of change of tumor cell density is equal to the diffusion (motility) of

tumor cells plus the growth cell division of tumor cells. Lets consider a domain Ω (

⊂ R2 or R3), if we let c(x, t) be the number of cells at any position x ∈ Ω and time

t, such a model can be written mathematically as a reaction-diffusion equation:

∂c

∂t
= ∇.(D(x)∇c) + ρc (2.36)

where ρ (1/day) represents the net rate of growth of cells including proliferation

and death (or loss), D(x) (cm2/day) is the diffusion coefficient map of cells in brain

tissue, and ∇ represents the spatial gradient. The diffusion term D(x) depends on

the space variable in order to take into account the heterogeneity of brain tissue. If

we consider a simple case where D(x) = D1, a constant ∀x ∈ Ω, we can break down

equation 2.36 in an explicit way by time:

cn+1 = cn +∆t(D1∇2cn + ρcn) (2.37)

with ∆t the discrete time step. If we consider Ω ⊂ R2, using the finite difference

numerical method to discretized the two-dimensional diffusion term (assuming a

uniform spatial discretization hx = hy = h) we get:

(∇2c)i,j =
1

h2
(ci,j+1 + ci,j−1 + ci+1,j + ci−1,j − 4ci,j) (2.38)

Compiling equation 2.37 and 2.38 we obtain the following:

cn+1
i,j = cni,j +

∆tD1

h2
(cni,j+1 + cni,j−1 + cni+1,j + cni−1,j − 4cni,j) + ∆tρc

n
i,j (2.39)

Such a simple model appears to be very useful and provides the potential of a direct

clinical implication: as we can see in figure 2.9 Swanson et al. performed simulation
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of real patient brain tumor and mapped it on the patient brain CT (computed to-

mography) scan.

As mentioned earlier a wide range of tumor models are using PDEs to simulate

cancer proliferation at the avascular and vascular stage, as well as angiogenesis and

metastasis phenomena. PDEs appear to be a powerful tool to simulate tumor growth,

however such a tool will usually consider tumors as a global entity/density in com-

parison to considering each cell as an individual or a group of individuals, a property

that cellular automata and agent-based models are able to provide.

2.4.3 Cellular automata model

Cellular automata (CA) and agent-based modeling (ABM) are two methodologies

widely used to simulate tumor growth. CA consists of discrete agents or particles,

which occupy a grid of specified shape with one or more discrete or continuous inter-

nal state variables. A set of rules describes the evolution of their state and position

depending on the current state of the particle and those of neighboring particles.

These rules may either be discrete or continuous in the form of deterministic, prob-

abilistic rules, or ODEs. These rules can be manipulated to obtain well known

continuous PDEs such as the diffusion equation, or discrete logical interactions of

simple Boolean system [14]. One motivation for using CA is the enormous range

of length scales demonstrating the typical biological phenomena. Organisms may

contain dozens of organs composed of tissues containing tens of billions of cells. This

allows the model the flexibility to treat more realistically complex situations. ABM

is defined in a similar way, it is a system modeled as a collection of autonomous
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decision making entities called agents. Each agent individually assesses its situation

and makes decisions on the basis of a set of rules.

CA for tumor growth models was first used in 1985 by Duchting and Vogelsaenger

[37] to simulate aspects of tumor growth and therapy. These automaton rules were

designed to reflect nutritional needs for tumor growth. Other important factors,

such as surrounding cells and mechanical pressure, however, remained unconsidered.

Qi et al. [107] considered a two-dimensional cellular automaton tumor model that

reproduced idealized Gompertz results. The model only allowed cells to divide if one

of their nearest neighbors was empty. More recently, Kansal et al. [74, 73] have de-

veloped a CA for avascular tumor growth on a Voronoi lattice, with each of their new

automaton cell taking the form of a polyhedra in a three-dimensional space. The use

of this type of lattice preserves the discrete nature of cells but removes the anisotropy

introduced by the use of a regular lattice. Patel et al. [104] have developed a CA

model to study the role of acidity in tumor growth. Tumor-induced angiogenesis

has also been modeled using a CA approach coupled with PDEs [16, 87]. CA and

ABM remain an excellent tool to simulate tumor growth, although the bottleneck

of such a method could have been the clinical implementation/application due to

the necessity of individual element initialization. Macklin et al. [83, 84] recently

developed an ABM of a ductal carcinoma patient calibrated thanks to breast biopsy.

This recent breakthrough gives a first direct clinical application and opens up great

opportunities for CA and ABM tumor growth model to be implemented for clinical

use.
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Figure 2.7: Natural changes of topology in the level set framework. The right column
presents the evolution of the curve and the left column shows the evolution of the
associated level set function. We note that the curve changes its topology but not
the level set function. (image taken from [26]).
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Figure 2.8: Best-fit curves by Gompertz and logistic models with in-vivo results of
tumor growth volumes in µm3/ time in days) (image taken from [86]).
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Figure 2.9: Sections of the virtual human brain intersecting the site of the glioma
originating in the superior frontal region denoted by an asterisk (*). The left column
of brain sections corresponds to the tumor at diagnosis whereas the right column
represents the same tumor at death. Red denotes a high density of tumor cells
while blue denotes a low density. A thick black contour defines the edge of the
tumor detectable by enhanced CT. Cell migration was performed in a truly three-
dimensional solid representation of the brain. The elapsed time between diagnosis
and death for this virtual glioma is approximately 158 days. (image taken from
[130]).
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Part II

Tumor growth modeling
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In 2011, the American Cancer Society [2] estimated 230,480 new cases of inva-

sive breast cancer will be diagnosed among women, as well as an estimated 57,650

additional cases of in situ breast cancer. The majority of in situ breast cancers are

DCIS, which accounted for about 83% of in situ cases diagnosed during 2004-2008.

While DCIS in itself is not considered by clinicians as a tumor, it has the potential

to turn into an invasive carcinoma. In fact it was suggested by Page et al. [101]

that 28% of women presenting DCIS will develop invasive carcinoma in a follow-up

period of approximately 15 years. This study was consolidated by similar reports

more recently [75, 124] suggesting that DCIS is a potential precursor for invasive

carcinoma. Hence, an understanding of the DCIS behavior and potential to progress

into an invasive carcinoma will help the patient avoid over-treatment.

Until a quarter century ago, a mastectomy was the only surgery option. The 1980s

brought considerable advances in lumpectomies and other forms of BCT, and have

been increasingly utilized in the US. Today in the US patients diagnosed with DCIS

are more likely to choose lumpectomy over mastectomy. One of lumpectomy’s short-

comings is the evaluation of tissue to resect: it is reported that at least 10% of DCIS

treated by lumpectomy result in a negative margin, requiring patient to undergo a

re-excision surgery [36, 31, 28]. Another shortcoming of the lumpectomy procedure

when treating DCIS is the potential risk of local recurrence at the same location.

Studies reported a local recurrence around 27% for lumpectomy, and approximately

10% for lumpectomy if followed by radiation therapy, other studies reported a lower

risk of local recurrence for greater excision margin [103]. It is more likely that these

recurrences occur due to residual cancerous cells left after surgery. This shows the
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importance of a thorough evaluation of the tumor in terms of shape and size as well.

We believe that these shortcomings could be solved by building a tumor growth

model for breast cancer, allowing clinicians to be able to estimate the size and shape

as well as understanding the potential invasiveness of the tumor.

This part focuses on developing a tumor growth model adapted for breast cancer

and more particularly DCIS. We build a continuous model using PDEs. Our model

is a multiscale simulation taking into account macroscopic and microscopic environ-

mental phenomena. We will first give an introductory chapter (chapter 3) where we

extend a description of DCIS biology in section 3.1, detailing some specific DCIS

abnormalities (in section 3.2), we will conclude chapter 3 with a literature review of

a tumor growth model developed for breast cancer (section 3.3). In chapter 4 we

present the multiscale tumor growth model adapted for breast cancer that we devel-

oped. Finally chapter 5 concludes part II, presenting and discussing some results of

our tumor growth model and discussing the potential improvements to the model.
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Chapter 3

Biology model

3.1 Ductal carcinoma in situ (DCIS) pathology

DCIS is the grouping of the whole family of intraductal tumors and was introduced

in subsection 2.1.2. Since it is not an invasive lesion, DCIS are not usually recognized

as a type of cancer. Nevertheless due to its potential to progress into an invasive

carcinoma DCIS are classified as having a cancerous pathology. Among the medical

community there is still debate on whether DCIS can be classified into two groups,

invasive or non-invasive, or whether all DCIS are non invasive at first and mutations

lead DCIS to progress into an invasive carcinoma.

In terms of pathology DCIS can be classified in different types, these classifications

are made through observation of the DCIS tumor under the microscope after a biopsy.

This classification divide DCIS into two groups:
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Figure 3.1: Solid DCIS sample: (left) general view; (right) zoomed on a fern like
projection. Picture taken from [1]

• The non-comedo types: The term non-comedo is suggesting that there are

not many dead cancer cells, necrosis, in the tumor. This is often associated

with the hypothesis that the cancer is growing slowly, and that there is enough

nutrients to feed all of the cells. Pathologists sub-divide non-comedo DCIS into

3 class:

– Solid DCIS: cancer cells completely fill the affected breast ducts, see

figure 3.1;

– Cribiform DCIS: cancer cells do not completely fill the affected breast

ducts; giving birth within the tumor to distinctive holes in between the

cancer cells, making it look like Swiss cheese see figure 3.2;

– Papillary and micropapillary DCIS: the cancer cells arrange them-

selves in fern-like projections of cells into the center of the duct; micropap-

illary type projections are smaller than the papillary type see figure 3.3

for micropapillary DCIS.

• The comedo type: Comedo-type DCIS tends to be more aggressive than the

non-comedo types of DCIS. Pathologists are able to easily distinguish between
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Figure 3.2: Cribiform DCIS sample. Pink represents the tumor cells and white spots
represents the non tumor area (lumen). Picture taken from [1]

Figure 3.3: Micropapillary DCIS example: (left) general view; (right) zoomed on a
fern like projection. Pink represents the tumor cells and white spots represents the
non tumor area (lumen). Picture taken from [1]

66



Figure 3.4: DCIS - comedo type with microcalcification [4]

comedo-type DCIS and other non-comedo types when examining the cells under

a microscope because comedo-type DCIS tend to plug the center of the breast

ducts with necrosis (dead cells). When necrosis is associated with cancer, it

often means that the cancer is able to grow quickly. Necrosis is often seen with

microcalcifications (tiny calcium deposits that can indicate cancer). Figure 3.4

is the perfect illustration of such DCIS type.

Presence of comedo and non-comedo DCIS is not directly linked with the poten-

tial invasiveness of DCIS. Necrosis also depends on the tumor neighborhood environ-

ment, a poor nutrition environment could easily lead to comedo DCIS types, with

this tumor being a fast growing tumor. It is generally accepted that comedo DCIS

tends to be more aggressive. In the next section we will give a description of DCIS

pathology and mechanisms that lead to carcinoma. This section is key in order to

correctly build our growth model.
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3.2 DCIS abnormality

DCIS is a heterogeneous entity with a wide range of morphological appearances,

leading to different growth patterns. This unbalanced growth phenomena is initiated

by the overexpression of oncogenes and underexpression of tumor suppressor genes.

Most of the time estrogen and progesterone receptors (ER and PR) or the oncogene

products (HER2) are expressed in DCIS. As a matter of fact studies [43] suggest

that 2 main groups could be obtained from DCIS lesions:

• low nuclear grade that is commonly ER-positive and characterized by a loss of

genetic material on chromosome 16q

• high nuclear grade, ER-negative and HER2 positive that show more complex

genetic changes including gains on chromosomes 8q and 17q.

Although it was observed that high nuclear grade and HER2-positive lesions are

likely to be larger than low nuclear grade HER2-negative lesion, Erbas et al. sug-

gested in his review [43] that this could be directly linked to the duration of follow

up, and simply translate the fact that the growth rate of the former type of lesions

are more aggressive.

DCIS abnormalities occur either by accumulations of DNA mutations or hereditary

mutations. It is understood that these transformations occur in stages. Poor grade

DCIS generally maintain their basic cell proper configuration, in particularly their

polarity and an anisotropic distribution of surface adhesion receptors, resulting in

finger like growths into the lumen (papillary or cribiform type). In solid-type DCIS,
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the cells lack polarity and the micro-structures are lost. Cells will proliferate until

they fill the lumen. In this case it appears that the nutrients and growth factors will

act as a growth limiting factor. The lack of nutrients will give birth to a necrosis

region, usually in the core of the tumor. We will highlight later how our tumor

growth model will successfully show this behavior.

Although factors leading to DCIS are understood, the natural history of DCIS re-

mains unclear. One of the reasons for this is that current procedure to treat DCIS

is an immediate surgical removal of the lesion. While by definition, DCIS arises first

in epithelial cells, whether all ductal cancers go through a prolonged, potentially de-

tectable phase of in situ cancer or whether some cells rapidly invade the surrounding

storma is unknown. Unlike other types of cancer there is a debate about whether in

situ breast cancer is an obligate precursor of invasive breast cancer, and what pro-

portion of in situ breast lesions progress to an invasive cancer[43]. Although there is

a debate today, DCIS is often regarded as an important precursor of invasive ductal

carcinoma (IDC), where a more elaborate gene mutation leads the tumor to extended

motility and the secretion of matrix-degrading enzymes. This leads to a deterioration

of the basement membrane (BM), leading to an invasion of the surrounding storma.

Erbas et al. [43] illustrates in figure 3.5 a possible model for the different outcomes of

a DCIS lesion. After initiation within the duct epithelial cells, Erbas et al. suggested

four different scenarios that may happen in an unknown proportion of cases:

(a) it rapidly becomes invasive without a prolonged DCIS phase. Such rapid invasion

could occur due to mutations in critical genes during the initiation phase of

the tumor. For instance BCRA1 tumors are rarely associated with in situ

69



Figure 3.5: Possible pathways for the natural history of DCIS. Cross section of a
breast-duct. Figure taken from [43]

carcinoma and could be an example of this type of progression.

(b) it spreads along the duct and has a prolonged DCIS phase that could even be a

dormant phase, till it witnesses a trigger event such as a critical gene mutation

leading to the invasion of the BM.

(c) it spreads along the duct and has a prolonged DCIS phase till it reach a de-

tectable size by mammography.

(d) it undergoes a regression for example following post-lactational or post-menopausal

involution.
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3.3 DCIS modeling-related work

A wide range of tumor growth models specifically adapted to breast cancer has been

submitted using various kind of mathematical tools such as ODEs, PDEs, CA, and

ABM. In 2004, Xu [147] adapted a nutrition diffusion limited model [27], including a

rigid duct wall radially symmetric to study DCIS. Xu showed that the spatial patterns

associated to the stationary solutions of his model were consistent with morphology

commonly observed in DCIS(for instance cribiform and comedo). Their model only

took into account one uniform cell density. Later, Franks et al. [50, 49, 51] proposed

a model of DCIS growth that took into account the local mechanical environment.

They illustrated a model where DCIS will grow and deform the duct wall. Their

model took into account two types of cells, necrosis and proliferant, and cell motion

governed by advection. In order to understand the progression of DCIS to an inva-

sive carcinoma, the model included secretion of matrix-metalloproteinase (MMPs)

enzymes, responsible for wall degradation. Their results suggest that the elevated

pressure accompanying tumor growth, can in addition to deforming the basement

membrane, stimulate MMP enzyme production near the duct wall. Enderling et al.

[39, 40, 41] provided a mechanism explaining why breast cancer recurs in a certain

percentage of women even after surgical treatment and standard radiotherapy treat-

ment. They suggested that this could be due to the presence of a tumor suppressor

gene having a Lost in Heterozygosity (LOH - only one mutation of the tumor sup-

pressor gene), which were considered in their model as invulnerable to radiotherapy.

Another study developed a three-dimensional CA model of DCIS pathology. The

author [68] considered a stochastic mutation differentiating four different levels of
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carcinoma cells. The model did not include a mechanical law to govern cell motion.

In 2011, Kim et al. [77] proposed a very complete multiscale model. They were

ably to study the effect of mechanical properties of the tissue environment on tumor

progression as well as the tumor micro environment influence on growth.

Of particular interest to investigators is the ability to reproduce particular micro-

structure shapes observed in DCIS. Rejniak et al. [112] proposed a cell-based model,

implementing continuum mechanics, reproducing similar micro-structure shapes ob-

served in DCIS. This was achieved due to a polarized arrangement of cells. However

their model did not consider different types of cell death such as necrosis or apopto-

sis, as well as growth limiting factors such as nutrients or growth factor dependence.

More recently, Norton et al. [91] proposed a two-dimensional discrete model that

implemented mechanical effects such as cellular adhesion, duct wall resistance, as

well as biological features such as apoptosis, necrosis, and cell polarity. They were

able to successfully reproduce micro-structure features observed in DCIS as we can

see in Fig. 3.6.

In an area of personalized medicine, the ultimate golden model will deal with clin-

ical application using patient specific data providing personalized therapy. Macklin

et al. [48] brought the first step into this new path for breast cancer treatment.

They designed a patient specific calibration ABM for DCIS. The model encompass

a wide range of features for each cell: quiescent state, proliferate state, apoptosis

state, necrotic state, and calcified debris. Cells are submitted to drag force as well as

interaction forces: cell-cell adhesion, cell-BM adhesion, (calcified) debris-(calcified)

debris adhesion, cell-cell repulsion, and cell-BM repulsion; cell motion is induced by
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Figure 3.6: Results taken from Norton et al. work [91], from left to right: micropap-
illary structures, cribiform pathology, solid comedo, non-comedo. In the simulations,
the green cells represent myoepithelial cells, the blue cells represent the tumour cells
and the gray cells represent the necrotic cells.

the equilibrium of these competing forces. The proposed model was calibrated with

help from to formalin-fixed, paraffin-embedded (FFPE) patient tissue. Validation

of the model was made by comparing the aptotic index (AI), the proliferative in-

dex (PI), the viable rim thickness, the density in the viable rim, the general tumor

morphology, and the spatial distribution. Their model was able to successfully re-

produce a comedo DCIS type without the viable rim observed in patient data. They

suggested that cell adhesion protein model and speed of cell burst is the reason for

this and suggested that in their future work they will adapt the model to fit these

observations. This model brings a great contribution to the discipline, inspiring a

new era of model targeting clinical applications. We believe that the limitation of

their model resides in the use of individual ABM for each cell, requiring a fastidious

initialization that cannot, today, satisfy the purpose of personalized treatment. We

strongly believe that continuum models can adjust this issue and provide the best fit

for clinical solutions. Indeed, although they agglomerate multiple phenomena into a
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single parameter they require a significantly lower load of work regarding the cali-

bration and initialization.

We are going to build a continuum tumor growth model using PDEs to simulate DCIS

growth. This model will be multiscale including a macroscopic and microscopic phe-

nomena. The purpose of this model will be to include the maximum relevant feature

as well as making sure that it can easily be fit for clinical application.
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Chapter 4

Mathematical model

In this dissertation we build a multiscale mathematical model of DCIS regulated

by HER over-expression which represents 30% of DCIS cases. This, allows us to

study the impact of HER over-expression on the growth rate using the HER chem-

ical reactions described by Eladdadi and Isaacson’s work [38]. This model will be a

nutrient-limited growth model, involving the surrounding fluid inside ducts (lumen),

healthy cells, proliferant, and dead tumor cell concentrations. The model is embed-

ded in a macroscopic model based on Darcy’s law to describe spatial tumor dynamics.

The model will enable tumor cells to secrete the MMP enzymes giving the potential

for the tumor to progress into an invasive carcinoma. A simplified illustration of

the following model description is plotted in figure 4.1. This mathematical model

was computed using the numerical toolbox developed by the INRIA MC2 team in

Bordeaux [66]. In the following sections we are going to give a detailed description

of our model.
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Figure 4.1: Tumor growth model

4.1 Environmental conditions

In our model we considered four types of entities: healthy cells, lumen filling the

duct, proliferant cells, and necrosis cells. The cycle of reproduction for healthy cells

being negligible in comparison to tumor cells, in this model only tumor cells divide,

also only tumor cells are subject to death.

Let’s consider Ω(⊂ R2,R3) the computation domain. Let the concentration (i.e. the

volume fraction), at position x ∈ Ω and time t,of healthy tissue, lumen, live tumor

cells, and dead tumor cells be represented respectively by S(x, t), Lu(x, t), P (x, t),

and N(x, t). We denote by vS, vLu , vP , vN as their respective internal velocity field.

We denote the rate of change of proliferant cells, P , inside the domain equal to the

birth rate of new cells minus the death rate of tumor cells, similarly we quantify the

rate of change of the necrosis population, N , equal to rate of death of proliferant

cells.
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The continuity equations governing these quantities are then:

∂tP +∇.(vSS) = (fP −fPN) α P

∂tN +∇.(vNN) = (0 +fPN) α P

∂tS +∇.(vSS) = 0

∂tLu +∇.(vLuLu) = 0

(4.1)

where fN is the birth rate, fPN the deat rate, and α is a positive constant. We

assumed that tumor cells, healthy cells, and lumen form an incompressible fluid with

no voids present; the sum of these concentrations will always be equal to one:

S + Lu + P +N = 1 (4.2)

Motion of the system defined is driven by the birth of new cells in Ω, therefore we

assume that cells are passive and move at the velocity of the “surrounding fluid” v:

v = vS = vLu = vP = vN

Using this egality, we sum up the system in eq. 4.1 and plug in eq. 4.2, we obtain a

condition on the velocity:

∇.v = αfPP (4.3)

The divergence of the velocity field is non-negative. This corresponds to an increase

of the volume of the tissue and will create a movement of the cells from the center of

the domain to the boundary. Entities at the boundary of the domain are therefore

pushed out through the boundary.

The death of cells is triggered when cells face a lack of oxygen concentration, Θ. If

this concentration is below a particular threshold value, ΘN , the proliferating cell

will die permanently, hence we define fPN :
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fPN =

 tanh(Kp(Θ−ΘN)) if Θ < ΘN

0 otherwise
(4.4)

where Kp is a positive constant. This function always remains positive, representing

the permanent state of a necrosis cells.

In this model, a proliferant cell is assumed to be HER-2 positive, over-expressing a

high level of HER-2 protein, and the proliferation of cells is regulated by a chemical

process involving HER-2 entity. The chemical reaction process will be detailed later,

for now we know that the outcome of this chemical reaction is a ternary complex,

labeled as [T ], that weighs the proliferation rate. The proliferation function, fP ,

from equ. 4.1, of the HER-2 positive nutrient growth-limited tumor model is then

defined by:

fP =


[T ]

αT+[T ]
tanh(Kp(Θ−ΘN)) if Θ > ΘN

0 otherwise
(4.5)

where αT is a positive constant. As demonstrated, our model considered two factors

regulating the proliferation of cells: (1) oxygen provision, and (2) the ternary complex

signaling due to HER overexpression. We will investigate in the next two sections

these regulating factors.

4.2 Nutrients distribution

Our model considered the oxygen entity, Θ, as the unique element for nutrition cells.

From previous equations, our model considered oxygen essential to the division of

cells as well as for surviving. Indeed if the oxygen concentration is lower than ΘN ,
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our model states that cell starts necrosing at a certain rate. ΘN can be interpreted

as a hypoxia threshold. We considered that oxygen molecules are much smaller

than cells, and therefore are not affected by the motion created by mitosis of the

“surrounding fluid” velocity. Instead, the oxygen undergoes a diffusion process.

Since the diffusion process occurs on a much smaller time scale than the cellular

division, the adiabatic approximation was considered, assuming that the equilibrium

is reached instantaneously. Let’s consider O ⊂ Ω the source of oxygen, this could

be a network of blood vessels for instance, collecting these assumptions we can write

the following elliptic equation on Θ:
−∇.(Kdiff∇Θ) = −ϕ PΘ on Ω\O,

Θ = Θ0 on ∂Ω,

Θ = Θmax on O.

(4.6)

With ϕ being the rate of consumption by the proliferating cells, and Kdiff the coeffi-

cient of diffusion. Note that Θmax is the concentration of oxygen in the blood, while

Θ0 is some reference value needed for the computation on the external boundary of

the computational domain.

Remark: For the sake of simplicity, we have considered that healthy tissue does not

uptake nutrients (since their consumption is smaller than one of the proliferative

cells). However it could be easily added in the model if necessary through Eq. 4.6.
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4.3 HER overexpression

In this section we first review the HER overexpression model defined by [38]. Elad-

dadi and Isaacson [38] developed in 2008 a model based on ODE, to simulate cancer

cell population growth. They studied the impact that HER overexpression had on

growth rates. To our knowledge this work is the only one that involved chemical in-

teractions for breast tumor growth model, however this model being an ODE based

model, did not take into account spatial dependence. Our goal is to produce a breast

tumor growth model based on chemical interaction specific to the breast and rewrite

it as a multiscale model. Therefore we will first describe Eladdadi and Isaacson’s

work [38], in order to fully understand the chemical interaction they simulate, and

embed this model into our multiscale tumor growth model in subsection 4.3.2.

4.3.1 Eladdadi and Isaacson model

Their model considered a homogeneous population of P cells distributed throughout

a medium that contains a large amount of EGF ligands. A monovalent EGF ligand

(L) binds reversibly to a monovalent cell surface EGF receptor (R) with forward and

reverse rate constants kf and kr, respectively to form a receptor-ligand EGFR-EGF

complex (C). The occupied receptor then hetero-dimerizes with a cell surface HER2

receptor with coupling and uncoupling rate constants kc and ku, respectively to form

a dimer or ternary complex EGF-EGFR-HER2 (T). The schematic representation

of a simple ternary complex model (receptor-ligand-receptor) is shown in figure 4.2.
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Figure 4.2: Simple ternary complex model (image modified from [38]

Their model can be represented by the following chemical reaction :

R + L �kf
kr

C, (4.7)

C +H �kc
ku

T (4.8)

Using the law of mass action, they derived the following differential equations de-

scribing the time rate of change of the ternary complexes binding reaction:

d [R]

dt
= −kf [R] [L] + kr [C] (4.9)

d [C]

dt
= kf [R] [L]− kr [C]− kc [H] [C] + ku [T ] (4.10)

d [H]

dt
= −kc [H] [C] + ku [T ] (4.11)

d [T ]

dt
= kc [H] [C]− ku [T ] (4.12)

d [L]

dt
= −kf [R] [L] + kr [C] + SL − λd [L] (4.13)

where [L] denotes the concentration of EGF ligand in M (molar or moles per
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volumes). [R] and [C] are the numbers of unbound and bound EGFR receptors

(#/volume), respectively. [H] represents the number of unbound HER2 receptors

( #/volume). SL (molecule/min) and λd (molecule/min) are the ligand source and

ligand degradation rate constants, respectively. The source of the whole mechanism

is fed by the ligand production, this will be given more attention in next section of

the report. Remark: for the sake of simplicity the sign [ ] will be removed in the

next differential equations.

Assuming there is no cell proliferation at this stage, the conservation laws apply.

The sum of Eqs. (4.9), (4.10), and (4.12) is zero, as well then the sum of Eqs. (4.11)

and (4.12), this implies that there exists non-negative constants, RT and HT , such

that:

RT = R (t) + C (t) + T (t) (4.14)

HT = H (t) + T (t) (4.15)

where RT is the total, unbound and bound, EGFR receptors per unit volume, and

HT is the total, unbound and bound, HER2 receptors per unit volume. Using Eqs.

(4.14) and (4.15), R (t) and H (t) are expressed respectively by:

R (t) = RT − C (t)− T (t) (4.16)

H (t) = HT − T (t) (4.17)

Substituting these expressions into the system of equations, we get:

dC

dt
= kf (RT − C − T )L− krC − kc (HT − T )C + kuT (4.18)

dT

dt
= kc (HT − T )C − kuT (4.19)

dL

dt
= kf (RT − C − T )L− krC + SL − λdL (4.20)
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Assuming that the total number of receptors that can initiate a signal transduction

pathway in response to the ligand, is proportional to the number of cells per unit vol-

ume, the relationship between the total cell surface receptor EGFR(RT ) and HER2

(HT ) receptors and tumor cell density (P) we get :

RT = ρRP (t) (4.21)

HT = ρHP (t) (4.22)

As demonstrated previously, the basis of the ODE model to describe the growth

kinetics of proliferant cells P(t) with the proliferation rate µ is:

dP (t)

dt
= µP (t) (4.23)

As we said, Eladdadi and Isaacson’s model considered that all the cells are cancerous

and more particularly HER2-positive, cell overexpressing high level of the HER2

protein. Therefore they used the Monod phenomenological model to propose a new

definition of the cell proliferation rate. Their description of cell proliferation, µ by

unity of time, being the following:

µ(C, T ) = A1
µ1
maxC

µ1
half + C

+ A2
µ2
maxT

µ2
half + T

+ µ0. (4.24)

with:

• A1 and A2 non-negative constants.

• µi
max(i = 1, 2) the maximum specific cell growth rate constant (time−1).

• µi
half (i = 1, 2) the number of occupied receptors required to generate half-

maximal response (#/unit volume).
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• µ0 the cell proliferation rate independent of EGFR and HER2 receptors (time−1).

Finally, combining all the model equations, we get the proliferation model describing

the relationship between cell surface complexes EGF-EGFR and EGF-EGFR-HER2,

and cell proliferation dynamics proposed by Eladdadi and Isaacson:

dC

dt
= kf (ρRP − C − T )L− krC − kc (ρHP − T )C + kuT (4.25)

dT

dt
= kc (ρHP − T )C − kuT (4.26)

dL

dt
= kf (ρRP − C − T )L− krC + SL − λdL (4.27)

dP

dt
=

(
A1

µ1
maxC

µ1
half+C

+ A2
µ2
maxT

µ2
half+T

+ µ0

)
P (4.28)

4.3.2 Receptor-ligand interaction

We build our model based on the work of Eladdadi and Isaacson detailed above.

Using the similar notation from their model, we consider all the entities defined at

position x ∈ Ω and time t. In this model, we consider the source term of the ligand,

[L], as the tumor cells themselves, with γp the rate production of ligand by the

tumorous cells. We rewrite the chemical processes for the EGF-Receptor and the

EGF-ligand as the following equations:
∂tC = kf (ρRP − C − T )L− krC − kc (ρHP − T )C + kuT

∂tT = kc (ρHP − T )C − kuT

∂tL = kf (ρRP − C − T )L− krC + γpP −∇. (D∇L)− λdL

(4.29)

where λd is the natural decay rate for the EGF ligand L; kf and kr are respectively

the forward and reverse, binding rate constant of ligand with EGF-Receptor; kc and
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ku are respectively the coupling and uncoupling, rate constant of hetero-dimerizes

with cell surface HER2 receptor; ρR and ρH are respectively EGF and HER2, total

cell surface receptors (bounded and unbounded) per unit density volume (#/cell

density); D the diffusion term of the EGF ligand L. In our model we considered that

ligand diffusion depends on the environment, D is then defined by:

D = PD1 + (S + Lu +N)D2 (4.30)

with D1 and D2, the diffusion coefficients of the ligand respectively, in living tumor

cells(proliferative tissue) and other types of tissue (necrosis, storma tissue, lumen).

We choose the diffusion coefficient such as D2 ≫ D1. This hypothesis models the

rapid cleavage and consumption of ligand by locally proliferative cell (autocrine pro-

cess).

4.4 Computation of velocity

In order to determine the dynamics of the environment, more specifically the tumor

motion, we need to compute the velocity, v. Using the first equation on the velocity

define by eq. 4.3, is not sufficient to determine the velocity, requiring an additional

constitutive law. In this model we consider the different entities of cells forming a

porous structure permeated by an organic fluid. The porous structure is deformable

and its constituents undergo a relative motion because of cell division (see section

4.1). We will consider a Darcy-type law, such a model has already been applied

to describe tumor cells [65, 15, 114] . The potential, Π, and the velocity, v, for a
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material of permeability, k, are described by the following equations:

v = −k∇Π (4.31)

Thus, using eq. 4.3 the potential field Π satisfies the elliptic equation:

−∇.(∇kΠ) = αfPP (4.32)

We use this law, with a heterogeneous value of k, accordingly to the environment

definition. This will express the different mechanical property of the environment,

hence the porosity k is defined by:

k(x, t) = klumenL+ kcells(S + P +N) + kwall1η>0,

with kwall, kcells, klumen positive constants, and η a function quantifying the mem-

brane and its degradation, that we will develop later (see section 4.5). Here we

impose kwall ≪ kcells ≪ klumen, therefore the lumen will be considered less imperme-

able than cells and the duct wall will be considered as highly impermeable. This will

allow for the lumen to have a fluid like behavior and the duct to be less subject to

deformation. We consider that the boundary of the computational domain has no

resistance to the movement of the entities:

Π = 0 on ∂Ω (4.33)

We also prescribe the following boundary condition on the velocity field:

v.t = 0 on ∂Ω (4.34)

with t being the tangent at the boundary of the domain Ω.
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4.5 Duct wall: localization and degradation

In this model the duct wall location is defined by a level set function η. The motion

of the duct wall position is driven by fluid motion through the Darcy Law. We also

assume the duct wall to be subject to possible degradation by MMP enzymes. MMP

concentration is usually a local balance between production by cancer and stroma

cells, and natural decay, for simplicity, we assume that MMP is locally proportional

to the density of proliferant cells, and that degradation of the duct membrane is

a function of MMP concentration, as it was performed in Ribba et al. work [114].

At time, t, and position, x ∈ Ω, the variable η represents the localization and

degradation of the duct wall by the enzymes. The duct wall domain is represented

by ∆t = {x ∈ Ω, η(x, t) > 0} and the duct wall interface by Γt = {x ∈ Ω, η(x, t) = 0}.

The variable η evolves through:

∂tη + v.∇η = −β(MMP)η+ (4.35)

where η+ represents the positive function of η:

η+ = 1η>0η,

MMP is the enzyme concentration, and β is a function written as a Michaelis-Menten

model:

β(MMP) =
βmaxMMP

κβ +MMP
(4.36)

where βmax and κβ are positive constants.

We define the production of enzyme MMP(x, t) at the position x = (x, y, z, ) and

time, t. We consider that the enzyme concentration is a local balance, proportional
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to the density of cancerous living cells:

MMP = κMMPP, (4.37)

where κMMP is a positive constant. In section 4.4 it can be seen that the duct wall

porosity is highly penalized leading to a high mechanical resistance of the duct to

velocity. This will then necessitate a higher presure to put the duct wall into motion,

emulating the real scenario expected.

4.6 Computational approach

We defined a mathematical model based on PDEs to simulate HER positive DCIS.

The model is nutrient-limited and the spatial dynamics is given by Darcy constitu-

tive law. In this model the duct wall can be degraded by MMP enzymes produced

by the proliferant cells.

Our model presents the advantage of materializing the environment condition through

the equation and the initialization. Indeed the model in itself contains the different

porosity values, and the wall location is determined by the level set function. This

structure will be then well adapted for later clinical adaptation. Indeed, such a model

will be able to treat individual clinical cases, by allowing the user to compute any

simulation if the breast structure, more specifically the duct network, is well defined.

For instance, a current tool used to define the duct network is the galactography:

a contrast material is injected into the milk duct, and a mammogram is performed

so that the inside of the milk duct can be seen. By using the level set function to

define the duct network, the computation and evolution of the tumor in the whole
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breast can be performed. This will allow surgeons to correctly determine the tissue

to resect in order to have a negative margin.

To compute this mathematical model we will use eLYSe a numerical toolbox de-

veloped by INRIA MC2 team in Bordeaux [66]. In order to provide a complete

description of the model, we define the general algorithm, giving an insight on the

computation procedure. The definition of the computation algorithm is essential

since our model is multiscale, each entity feeding the computation of other entities

at a more macroscopic or microscopic scale. We defined our multiscale process in

algorithm 1.

Algorithm 1 Multiscale algorithm

1: Initialize all entities
2: for ∆ t =1:Ncycle do
3: Compute nutrients: Θ
4: Compute birth and death rate of proliferant cells: fPN , fP
5: Compute permeability: k
6: Compute Darcy potential : Π
7: Compute velocity: v
8: Compute divergence of v: ∇.v
9: for δt =1:nsub−cycle do
10: Compute cells entities: P , N , S, Lu

11: Compute enzymes: MMP
12: Compute duct wall: η
13: Compute ligand diffusion term: D
14: Compute chemical entities: C, T , L
15: end for
16: end for
17: return results
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Chapter 5

Results & discussions

In this chapter we present brief results of our tumor growth model computation.

Then we discuss the drawback of our model and the potential improvement we have

derived.

5.1 Results

We test our model for a two-dimensional configuration, the usual experimental setup

is illustrated in figure 5.1. This configuration will consider a tumor inside the duct

surrounded by healthy (storma) tissue, this configuration represents a typical DCIS

tumor. Initially no necrosis cells are considered. The source of oxygen will be

placed around the storma tissue. Similarly to this disposition, we define our default

configuration setup (see figure 5.2), it describes the environemental condition that

appears the most descriptive from the local biology. This domain is quantified by the
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Figure 5.1: Computational domain of the experimental setup considered

length D0 in long and L0 in large. These lengths are considered as adimensionalized.

The duct canal is in the transverse cut, positioned at the middle of the domain (i.e.

D0

2
), the diameter of the duct being w D0

6
. Two oxygen sources are represented by

disks at location (L0

2
, D0

8
) and (L0

2
, 7D0

8
) both with a radius of ≃ D0

100
. The duct wall

thickness is about ≃ D0

300
. All the parameters for the default test case are referenced

in table 5.1. The initial configuration contains a disk of proliferant cells localized

inside the duct, at the neighborhood of the duct wall with a radius ≃ D0

1000
. It can be

observed in table 5.1, the parameters of the MMP enzyme production was selected

in such a way that the MMP are not present and active in the default test. This can

be removed by increasing the rate of the MMP production parameter βmax.

The computation of default setup and the default parameters corresponding is
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Figure 5.2: Illustration of the initial environment default setup scenario. Light blue
being the lumen, dark blue the stroma/healthy cell, black dot the initial proliferant
cells, white disks represent the nutrient sources, and the red strips the duct wall.

presented in figure 5.3, we can see that the tumor grows in order to fill the duct

and is more likely to spread in the radius direction of the duct since it is attracted

by the two nutrient sources around the duct. Also due to nutrient limitation of the

environment, the tumor presents a necrotic core. This phenomena can be observed

for real DCIS cases, referred as the comedo type (see section 3.1), we illustrate a jux-

taposition of the default numerical result as well as a DCIS biopsy. The similarity

leads us to believe that our model can reproduce such DCIS phenomena.

When reducing the nutrient rate of consumption by the cell, we observe that a

solid DCIS with no necrotic core can be simulated (see figure 5.5). If the compu-

tation continues, the tumor will spread along the duct, after it completely fills the

duct radius area. This phenomena replicates the non-comedo solid DCIS described

in section 3.1.
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Figure 5.3: Default test after 3000 cellular cycle. Gray: proliferant density P ≥ 0.5;
Black: necrosis density N ≥ 0.5. Percentage distribution in the whole domain:
P = 1.097%, N = 0.201%, S = 87.183% and Lu = 11.511%.

Figure 5.4: Juxtaposition of numerical results and biopsy. Left: Default test after
3000 cellular cycle. Gray: proliferant density P ≥ 0.5; Black: necrosis density
N ≥ 0.5. Right: Biopsy of DCIS with comedo type.
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Figure 5.5: Default test after 1000 cellular cycle with a nutrient consumption rate
very low: Φ = 1. Gray: proliferant density P ≥ 0.5; no necrosis core has been
reported in this simulation.

In an other campaign of computation we intend to visualize the influence of param-

eters on the whole computation. We compute the simulation for the default param-

eters, with only one parameter varying at a time, and output the total proliferant

and necrosis density. The results of this computation, for the EGF receptor density

coefficient, ρP , the HER2 density coefficient, ρH , the EGF ligand rate production

γP , and the natural decay rate for the EGF ligand λd, can be seen in figure 5.6. We

can observe that the most sensitive parameters amongst these is the EGF receptor

density coefficient ρP . If we investigate these results further, we can also observe

that overexpression of the HER2 density coefficient ρH , leads to a greater tumor

growth speed than the ligand overexpression (increasing EGF ligand rate produc-

tion γP ). When comparing the relative difference for proliferant cells between ligand

overexpression and HER2 overexpression, no considerable results can be outputted,
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Figure 5.6: Graphs showing the total density of cells in function of the variation
rate of the default value parameter: ρR(blue), ρH(red), γP (green), λd(purple). Left:
Proliferant cells; Right: Necrosis cells.

however the relative difference of necrosis cells does not follow the same pattern; we

observe an increase of ∼ 13% of necrosis population when HER2 are overexpressed

as comparison of the ligand overexpression. Using the standard point of view that

a tumor adapts and mutates as a function of the environement in order to increase

their population, this could explain why HER2 positive carcinoma are more likely

to overexpress the HER2 protein rather than EGF ligands, since it favors a greater

total density of the tumor. Indeed Eladdadi and Isaacson reported that, while nor-

mal breast cells possess 20, 000−50, 000 HER2 receptors, the neu gene amplification

can increase levels of this receptor up to 2, 000, 000 per cell, therefore representing a

potential increase greater than 10,000% [38].

So far, our computation never included MMP production, we studied the effects of

MMP on the tumor growth rate by igniting the coefficient βmax ̸= 0. In figure 5.7 we

plotted the influence of the MMP enzyme on the total density of tumor, we can see

that the MMP contributed to the increase of the tumor density. This is due to the
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Figure 5.7: Total density of proliferant and necrosis cell as a function of the MMP
production coefficient βmax

invasive property of the tumor into the environment by breaking the duct wall. This

allows the tumor to invade the healthy tissue and get closer to the nutrient source

(see figure 5.8).

Finally, we investigate the importance of nutrient localization. Indeed as we men-

tioned earlier, we observed that the proliferation direction is oriented towards the

nutrient source. The default configuration considered two sources of nutrients around

the duct as presented in figure 5.2, this caused the tumor to fill the tumor in the

radius direction, with a necrotic core (see figure 5.3). We investigated two other

configurations of oxygen sources: test-A considers four disks of nutrients displayed

in each corner of the domain (see figure 5.9); and test-B will consider two sources of

nutrients represented in the transverse cut parallel to the duct (see figure 5.10). The

visual result of these two computations are significantly different, suggesting that

the tumor growth model is highly dependent on nutrient source location.
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Figure 5.8: Illustration of the duct wall degradation by the MMP enzyme for a initial
tumor placed at the lower part of the two-dimensional duct
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Figure 5.9: Left: Initial configuration for test-A, four sources of nutrients are placed
around the duct. Right: Result of test-A computation (light red) proliferant cells,
(white) necrosis cells.

After investigating the tumor growth model, by playing with a various set of pa-

rameters, we are going to discuss the model and its limitation. We will propose a

possible improvement of the model.

5.2 Discussion

We presented a tumor growth model that we coded for a two-dimensional configura-

tion. The next step will be to implement this model into a three-dimensional code.

However before jumping into such considerations we need to improve the model in

order to correctly model 3-D breast tumor growth. The tumor growth model we

proposed is well adapted for the current 2-D configuration of the duct we proposed,
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Figure 5.10: Left: Initial configuration for test-B, two sources of nutrients represented
in the transverse cut parallel to the duct . Right: Result of test-B computation (light
red) proliferant cells, (white) necrosis cells.

however a simulation of a transverse cut of the duct, as in figure 5.11, will imme-

diately output some difficulties. Indeed such a configuration is not well adapted to

our model since the tumor will grow indefinitely, increasing the pressure on the duct

wall due to the incompressibility of the fluid. This will lead into a duct that will

grow as big as the domain will be or the computation to crash due to unrealistic

potential value, Π. This is due to the fact that no condition is established between

the tumor proliferation and the value of the potential (that can be interpreted as a

pressure). This will cause greater problems when computing in a three-dimensional

since the tumor volume will grow indefinitely, increasing the breast size with it as

well. In order to address this problem we are going to propose an alternative model

that accounts for a relationship between the growth and the pressure, Π.

The new proposed model considered that the proliferation is regulated by an ad-
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Figure 5.11: Transverse configuration of the duct with an initial tumor inside

ditional factor which is the pressure/potential Π. We considered that if cells are

stressed to a certain threshold pressure Πmax, cellular division is inhibited. We ad-

just then the function fP in eq. 4.5 by:

fP =


[T ]

αT+[T ]
tanh(Kp(Θ−ΘN)) if Θ > ΘN & Π < Πmax

0 otherwise
(5.1)

Thanks to this change, the pressure plays a regulatory factor on the cell proliferation,

in order to materialize this with a sense, we need to consider the meaning of the

presure threshold Πmax. To achieve this we replace the boundary equation on Π (eq.

4.33) by the following time dependent pressure:

Π(t) =

(
V (t)

Vmax

)Γ

Πmax on ∂Ω (5.2)

where Πmax is the pressure threshold considered earlier, Vmax is the corresponding

volume threshold for the domain, V (t) is the computed volume of the duct canal,

and γ = 2
5
. This description is inspired from the ideal gas consideration. Lets

consider that initially V (t = 0) = Vmax

2
, this results in a boundary pressure of
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Π(t = 0) = (1
2
)γΠmax < Πmax. While the tumor grows, V 7→ Vmax, resulting in

Π 7→ Πmax, such a pressure change will induce the proliferant cells to stop the

cellular division process. The computation of the volume can be processed using a

level set function of the duct similar to η (see eq. 4.35) with no degradation. Also

note for such an application to be possible, we need to ensure that the duct interface

will never quit the domain.

Another improvement of the model could be to allow cells to switch into a quiescent

phase when environmental conditions are not favorable, in this phase cell division no

longer occurs, however if environmental condition are favorable again these quiescent

cells can switch back into a proliferant state. In figure 5.12 we illustrate the flowchart

of this growth model.

Far from providing the ultimate model, we presented a model that has considerable

potential for clinical application. Indeed our model can easily be adapted to all kinds

of geometric configuration, giving the ability to treat each patient case individually.

In the long term such a model will allow surgeons to correctly assess the extent of

the tumor to resect. This will allow patients to avoid undergoing a second surgical

procedure, which represents at least 10 % of BCT procedures [36, 31, 28]. In order

for this model to be fully ready for clinical practice, the model needs to considerably

reduce the number of parameters to be tuned. This can be achieved by proceeding to

a complete sensitivity analysis and disable non sensitive parameters, as well as fixed

certain parameters which are considered similar for a load of groups of patients. Also,

if such a tumor growth model can be used clinically, the increasing data provided

by each patient case will allow to reduce the model parameters. In the mean time,
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this model can be used to understand the tumor behavior and its adaptation to the

environment as displayed in the results section.

Figure 5.12: Improved tumor growth model
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Parameter Value Unity Equation Ref.
Numerical parameters:
Nx 150
Ny 150
CFL 0.45
Environment parameters:
T 3000 cycle
L0 1.2 length
D0 1.2 length
Cancerous Cell parameters:
CN 2.7 ∗ 10−2 M 4.4, 4.5
α 2.8 cycle−1 4.4, 4.5
αT 0.5 − 4.5
Kp 1.0 − 4.5 , 4.5
Oxygen parameters:
Θ0 0.0 M 4.6
Θmax 1.0 ∗ 10−1 M 4.6
ϕ 50.0 − 4.6
Kdiff 1.0 length2.M−1 4.6
Porosity parameters:
klumen 10.0 4.31
kcells 2.0 4.31
kwall 1.0 ∗ 10−5 4.31
Chemical parameters:
kf 1.5714 ∗ 10−1 M−1.( 1

10
cycle)−1 4.29 [38]

kr 2.4 ∗ 10−1 ( 1
10
cycle)−1 4.29 [38]

kc 1.0 ∗ 10−1 ( 1
10
cycle)−1 4.29 [38]

ku 1.0 ∗ 10−2 ( 1
10
cycle)−1 4.29 [38]

ρR 3.33 ∗ 10−1 receptors.V OF−1 4.29 [38]
ρH 1.0 receptors.V OF−1 4.29 [38]
D1 1.0 ∗ 10−6 length2.( 1

10
cycle)−1 4.29

D2 1.0 ∗ 10−6 length2.( 1
10
cycle)−1 4.29

γP 1.0 ∗ 10−5 M−1.( 1
10
cycle)−1 4.29

λd 1.0 ∗ 10−5 ( 1
10
cycle)−1 4.29

MMP parameters:
βmax 0.0 ( 1

10
cycle)−1 4.36

κβ 1.0 − 4.36
κe 1.0 − 4.37

Table 5.1: Default parameter values of the tumor growth model
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Part III

Virtual surgery box for breast

conserving therapy
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Chapter 6

Review & motivation

6.1 Motivation for virtual surgery

The current procedure to treat patients diagnosed with breast cancer is surgery, un-

fortunately this step appears to be inevitable. Although some alternative techniques

requiring no surgery have recently been investigated, such as the eradication of the

tumor by cooling [11], no accepted clinical substitutions to surgery have been pro-

posed and accepted to date. As we detailed earlier in part I, surgery for early stage

breast carcinoma is either total mastectomy (complete breast removal) or surgical

lumpectomy (only tumor removal). Lumpectomy coupled with radiotherapy [143],

commonly known as Breast Conserving Therapy (BCT), enables the elimination of

any microscopic cancer cells in the remaining breast tissue. The goals of BCT are

to achieve local control of the cancer as well as to preserve a breast that satisfies

the woman’s cosmetic, emotional, and physical needs. Trials for breast conservative
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therapy with patients affected by breast cancer (I and II) have demonstrated con-

clusively that BCT produces disease control and survival rates at least equivalent to

those of mastectomy, and possibly better in the long run for patients with stage II

breast cancer [22]. While most women undergo partial mastectomies with satisfac-

tory cosmetic results, in many patients the remaining breast is left with significant

cosmetic defects including concave deformities, distortion of the nipple-areola com-

plex, asymmetry, and changes in tissue density characterized by excessive density

associated with parenchymal scarring. These flaws have been reported to contribute

to poor body image and psychological distress in some patients.

The advantages of BCT over mastectomy include faster recovery and a better cos-

metic outcome for patients. Therefore, BCT should improve the Quality Of Life(QOL)

of the patient. Nonetheless, these patients still have to undergo the trauma and hard-

ship of radiation therapy. Therefore, it is key for the surgeons to come out with a

satisfactory assessment of the patient on their body image. Furthermore, it has been

reported that a link exists between the psychological aspects of patient satisfaction

due to the cosmetic outcome, and morbidity[13]. Hence, a bad cosmetic outcome

could end up in a complete failure for the patient. Taylor et al. [134] addressed

the tumor and group characteristics that led to good outcomes in terms of cosmetic

results. They reported that large resections, older age groups, scar orientation, and

high radiation doses could lead to a poor outcome. Researchers assessing QOL after

breast surgery [134, 52, 128, 54, 42], do not only include the aesthetic factor, but also

functional status such as pain and mobility. As a matter of fact, Vries et al. [34], on

a study including 102 women undergoing BCT, reported that 63% expressed breast
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pain within an average of 36 months after surgery, decreasing to 52% 18 months later.

They also reported that the severity of the pain decreased significantly with time,

and that no correlation could be established with post-chemotherapy or hormonal

treatment.

Using the convergence of disciplines, we propose to build a computational framework,

named the Virtual Surgery Box (VSB), for BCT surgery. This tool will improve the

surgical outcomes of BCT in regards to prediction of cosmetic and functionality of

the breast. The first objective is obviously to provide a tool that can help the di-

alogue between the patient and the surgeon by providing some rational evidence of

what the BCT outcome would be. Virtual surgery in that context should help in

exploring various options and therefore guiding decisions. This is a very ambitious

goal because the VSB needs to be finely tuned to specific patients’ data. Indeed,

the more experiences one accumulates with the digital information provided by the

VSB for each patient, the better is the quality of the prediction. An intermediate

objective of the VSB is to companion each clinical case with the VSB processing in

order to build a data base of knowledge. There are numerous techniques available in

data mining and statistics that would provide rigorous classification information and

error estimates. Finally, once a VSB has gained enough accuracy in this learning

process, this tool should be relevant for surgery education. The VSB used as a simu-

lator should enable beginners to gain some judgment, experience, and understanding

of the influencing factors through virtual surgery rather than actual surgery. To

our knowledge, our work constitutes the first computational framework designed to

predict BCT outcomes and explore targets for improvement.

107



In this part III, we are going to present the work achieve in regards of building this

VSB. We started by giving the motivation of our work and a literature review of

breast tissue mechanical model in this chapter 6. We will describe the design of the

VSB in chapter 7, and the creation of the VSB indicators in chapter 8. We will

output the results of out simulations on chapter 9, and we will conclude this part

III, by proposing in chapter 10 a multiscale model simulating wound healing using

CA that we implemented in two-dimension.

6.2 Model and related work

A fair amount of bio-mechanical models for breast tissue have been investigated,

all mainly employ finite element methods to predict breast deformation in different

situations, this includes:

• guiding clinical breast biopsy (Samani et al.[121] and Azar et al. [17, 18, 20,

19]);

• simulating the compression of breast as in X-ray mammograpy (Ruiter et al.

[120, 119]);

• investigating the X-ray and MR mammography registration (Schnabel et al.

[126, 125], and Tanner et al.[131, 132]);

• reconstructing the breast using idealized and realistic geometric models, and

real patients (Williams et al. [144], and Roose et al. [117]);
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• analyzing the impact of stresses and strains occurring in the skin after breast

reconstruction (Pamplona et al.[102]);

• predicting the impact of gravity loading on breast mechanics, on an idealized

shape and a real patient case (Ozan [100], and Palomar et al. [35])

• finding the reference state of the breast from a deformed configuration (Uni-

versity of Auckland Bioengineering Institute[32, 108, 109, 110]).

Breast biopsy today consists of an extraction of a breast tissue sample using a needle.

While the patient lies in prone position with the breast gently compressed between

plates, the needle is placed in the breast through one of the plate holes, called the

lateral plate containing 1000 holes placed at 5mm intervals [18]. The impossibility to

conduct continuous breast imaging through MRI, makes the breast biopsy a critical

intervention. Indeed the location of the needle insertion is key in order to make

sure the correct region of interest is being extracted. In order to accurately operate,

the location of the cancerous lesion is calculated from the contrast-enhanced MRI,

the correct hole in the plate is identified and the needle is inserted into the breast

through the hole with a precalculated depth. The issue of such a method is that the

use of the compression plate after the contrast agent MRI, may critically change the

characteristics of the tumors making this operation critical [18]. An inaccurate initial

needle placement can removed a tissue specimen outside the lesion of interest. Azar

et al. [17, 18, 20, 19] proposed a new method to track the position of the hard inclu-

sion based on a deformable finite element model of the breast. This work presented

is the first in the area of breast modeling, allowing clinical cases to successfully take
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advantage of mechanical modeling. This opened the door to other areas of interest

for breast cancer to come in and use FEM such as image registration.

Image registration, is the process of transforming different sets of data into one coor-

dinate system, allowing clinicians to relate the different breast imaging data coming

from different periods of time and different imaging modalities, and providing some

assistance for a image guided procedure. The earliest model constituted of nonrigid

registration excluding the tissue mechanics [118]. Schnabel et al. [126, 125] proposed

a method to map between pre- and post- contrast enhanced MRI using biomechani-

cal models. Ruiter et al. proposed a similar strategy to correlate MRI images with

X-ray mammograms, which are typically compressed.

Other applications of breast mechanical modeling involves the prediction of post

surgery shape. As it was mentioned by Williams et al. in 2003 [144], there is cur-

rently no reliable methods to accurately predict the outcome of breast surgery. So

far the current breast reconstructive procedure performed, relies on the surgeon’s ex-

perience and subjective judgment. Williams et al. addressed this issue by studying

the response of the breast to implants and the transverse rectus abdominis myocu-

taneous (TRAM) flap. The breast tissue was modeled as an hyperlastic material

using the Mooney-Rivlin strain energy function detailed in part I. In an other study,

Pamplona and Alvim [102] used finite elements to analyze the immediate stresses

and strain occurring in the breast after reconstruction using an hyperelastic repre-

sentation of the breast tissue. More recently Ozan [100] studied the deformation

under gravity of an idealized breast shape using different commercial FEM software
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(ABAQUS & COMSOL). His computation was performed testing different mechan-

ical breast models, with or without skin, and different material constituitive law:

Mooney Rivlin, Neo-Hookean. Palomar et al. [35] proposed a biomechanical model

to predict the different positions of the breast. The study was performed on two

patients and results were compared using a 3-D scan. The breast tissue was mod-

eled through ABAQUS as a Neo-Hookean material covered by a skin model using

a polynomial strain energy function. The accuracy of the model was measured by

comparing manually identified landmarks. Their model was successful, keeping all

measures under a 7.5% relative error.

While most studies propose accurate mechanical models to simulate breast deforma-

tion they somehow all used a wide range of different materials to model breast tissue.

Most of these studies, reported here, considered the breast tissue as an incompress-

ible (or nearly incompressible) isotropic homogeneous material, some performed the

computation using linear elastic model [133, 117] to simulate the breast material,

the other majority using a non-linear constitutive law to simulate the breast tissue

material [17, 18, 20, 19, 133, 35, 100, 32, 108]. Studies using non-linear material,

presented different approachs to simulate breast deformation, the most current ones

being:

• Exponential model, where the young modulus is given by E = bemε with ε

representing the strain, and b and m the material constant [17, 18, 20, 19];

• Neo-Hookean model where the strain energy function is defined by W =

C10(I1 − 3) +D1(J− 1)2 (see eq. 2.14 part I) [133, 35, 100, 32, 108];
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• Mooney-Rivlin model where the strain energy function is defined by W =

C01(I2 − 3) + C10(I1 − 3) +D1(J− 1)2 (see eq.2.15 part I) [100, 32, 108];

• complex polynomial model where the strain energy function is defined by W =∑n
i,j=0 Cij(I1−3)i(I2−3)j +

∑m
k=0Dk(J−1))2k (see eq. 2.13 part I) [133, 122].

This range of different models highlights the fact that there is not a general accepted

biomechanical model to simulate breast deformation, however it should be noted that

tendency is to use hyperelastic material, most recent applied studies showing that

Neo-Hookean or Mooney-Rivlin was a good enough behavior definition for breast

tissue [35, 32, 108]. Another issue is that, there is a fair amount of uncertainty in

the material properties (material constant values measured) of the soft tissue that

composes the breast.

According to Krouskop et al. [78] fat tissue and glandular tissue have similar elastic

modulus at low strain levels, while glandular tissue elastic modulus increases by

one order of magnitude at high strain levels. Likewise fibrous tissue has an elastic

modulus with an one to two order of magnitude higher than fat tissue. Furthermore,

with breast tissue composition and distribution being specific and unique to each

patient, it is expected that each patient presents a different value for the material

constant. For these reasons, it will appear unreasonable in later studies to propose

a model with fixed values regarding the constant material.

Breast mechanical models cover a great range of clinical applications, however while

one of the latest input in breast cancer surgery, the lumpectomy, is rising and has

become widely embraced by clinicians and patients, this type of surgery has never

been offered any kind of simulation. Therefore we are going to develop a toolbox
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in order to fullfill this task and propose a virtual surgery box (VSB) for the BCT

operation.
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Chapter 7

The virtual surgery box (VSB)

In this chapter we present the Virtual Surgery Box (VSB), we will detail design

considerations we implemented through the input in section 7.1, we followed by

describing the VSB computational process detailing the tools and methods used for

the breast image acquisition and the breast surgery modeling (in section 7.2).

7.1 Design considerations

Our objective is to build a tool that can emulate the BCT surgery using mechanical

modeling. The ultimate goal being to provide patients and clinicians a device which

is patient specific to simulate the BCT surgery outcome. This will provide a powerful

tool for the decision process patients and clinicians undergo, allowing them to make

a choice for the best interest. While we focus on the design and feasibility of such a

virtual box, our approach should readily extend to a more advanced patient specific
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situation. To fulfill these requirements, the design of the input is key to provide

clinicians with a tool that is easy to use and parameter. It also means that we

need to have parameters that can be assessed or be measured by clinicians. Indeed,

providing a tool for clinical practice needs to insure that the model proposed by the

scientist requires only available clinical information.

We classified the VSB input into three different categories:

• surgery inputs: the one related to the size and location of the resection;

• patient environment input: the one related to the mechanical properties of

the breast tissue specific to the patient;

• recovery inputs: the one related to recovery and healing dynamic.

To embed this tool for clinical conditions we defined input constrains making sure

that these inputs were simple and relevant for surgeons.

The first input constraint was the nature of the surgical information. It is obvious

that surgeons are not able to provide the accurate location, volume, and shape they

are going to administer to each patient before surgery. Indeed many variables need

to be taken into account from the patient’s side. As well as on the surgeon’s side,

providing different type of resections based on their own technique and experience.

Therefore, our model assumes that the tumor resection is a sphere, the information

needed are then: the center coordinates and the resection radius.

The second input constraint, is the patient’s environmental conditions. Assessment of

soft tissue property is challenging and to date there is currently no tool that can claim

to provide an accurate measure of mechanical soft tissue property in a non-invasive
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manner. Moreover the breast tissue heterogeneity and they different mechanical

properties add complexity to the addressed issue. Indeed, those tissue mechanical

properties are patient specific and certainly not homogeneous across the breast. As

mentioned in part I, the breast anatomy is composed of different structural tissue

regions, e.g. fat, fibroglandular, skin; also it was highlighted earlier that glandular

and fat tissue, for example, have different mechanical behaviors [78](see section 6.2).

Highlighting these observations, published values of the stress to strain relationship of

breast tissue types vary considerably in the literature [123, 95]. From a mechanical

engineering point of view, playing with all these spectrum of parameters can end

up in a fastidious process, therefore the design of this box was made considering

models with the least parameter: allowing freedom to change but constraining the

user not to get lost in details. We expect the user to be able to play with a set of

different mechanical property values using their own knowledge and experience. We

envision a process in which the human operator will interact with the VSB. In the

best case scenario, the lower load of data required by soft tissue mechanics would

be an estimate of stiffness and compressibility of the tissue. For this reason, to keep

this input as simple as possible, we considered the breast tissue to be homogeneous

and characterized by two attributes: the tissue compressibility that is related to the

expected change of volume under pressure, and the tissue stiffness that corresponds

to the expected resistance to deformation. Since, the values for each patient is highly

inaccessible with the technology developed so far, our hypothesis is that the surgeons

can gain experience to set up these parameters values by a trial and error series with

the simulator. In fact, the surgeon should set the ratio of these two parameters to
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default values known for an average patient, and from there, increase or decrease the

material parameter.

The last input constraint is in regards to the recovery process. Response to surgery

can vary significantly among patients depending on age, tissue property, and life

activity, each body responding in its unique way. This toolbox is designed to provide

the freedom for the user to be able to consider different recovery options, allowing it

to be patient specific. Our hypothesis is that the dynamic of BCT recovery might be

characterized by the amount of inflammation at the beginning of the process and/or

tissue lost at wound closure. This, respectively, will dilate or contract the open

space left by the resection. The potential positive or negative impact on recovery

will be conveniently assessed by one single additional parameter using a pseudo

internal pressure in the wound. As a first draft, the idea would be for the surgeon

to virtually test the worst possible scenario, assuming for example that the amount

of tissue lost in healing can be as much as 20% [72]. A more advanced model will be

described later implementing a wound healing code.

The VSB will integrate all these input data, translate, and adapt it to processing

parameters for the toolbox. Once this step is achieved, the mechanical model tool

will proceed the simulation and will output the results, the unprocessed result from a

mechanical tool usually being a three-dimensional surface visualization or the value

of marker displacement. This toolbox design is illustrated in figure 7.1. In the next

section we are going to describe in more detail the VSB algorithm.
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Figure 7.1: Virtual surgery box illustration.
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7.2 VSB algorithm

The VSB step processes to simulate the BCT surgery is described in algorithm 2.

The illustration of this algorithm is illustrated in figure 7.2, showing the different

Algorithm 2 VSB algorithm

1: MRI acquisition of the patient breast
2: Segmentation of the patient breast
3: Create the 3D breast geometry in FEM software
4: Mesh the breast geometry
5: Get the unloaded shape of breast patient
6: Get the loaded shape of breast patient before BCT
7: Proceed to virtual surgery for the unloaded shape
8: Get the loaded shape of breast patient treated with BCT
9: Output results

steps of the process done by the VSB. In this section, we are going first to introduce

the breast MRI acquisition tool specificity, then we will introduce the segmentation

method we used to segment the breast shape in subsection 7.2.1; and in subsection

7.2.2, we will describe the FEM simulation process we followed in order to get at first

the unloaded shape, then proceed for virtual surgery, and finally get the post-surgery

loaded shape.
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7.2.1 Image acquisition

7.2.1.1 Magnetic resonance imaging (MRI)

Magnetic resonance imaging (MRI), or nuclear magnetic resonance imaging (NMRI),

is primarily a medical imaging technique most commonly used in radiology to visual-

ize detailed internal structures and limited functions of the body. Magnetic resonance

imaging is a relatively new technology. The first MR image was published in 1973

and the first cross-sectional image of a living mouse was published in January 1974.

The first studies performed on humans were published in 1977. MRI provides great

contrast between the different soft tissues of the body, making it especially use-

ful in neurological (brain), musculoskeletal, cardiovascular, and oncological (cancer)

imaging. Unlike most medical imaging devices, MRI does not expose the patient to

radiations, it uses a powerful magnetic field (standard unit being the Tesla) to align

the nuclear magnetization of (usually) hydrogen atoms of water in the body. Radio

frequency (RF) fields are used to systematically alter the alignment of this magneti-

zation, causing the hydrogen nuclei to produce a rotating magnetic field detectable

by the scanner. This signal can be manipulated by additional magnetic fields to build

up enough information to construct an image of the body. In figure 7.3 we output a

General Electric MRI device the Optima MR360 using a 1.5 Tesla magnetic field.

There are three main planes of acquisition used in MR imaging (see fig 7.4):

• Coronal orientation: in a cross section (plane), for example, across the shoul-

ders, dividing the body into front and back halves

121



Figure 7.3: Magnetic resonance imaging device Optima MR360 from General Electric
(image taken from [9]).
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• Sagittal orientation: in a cross section (plane), for example, down the middle,

dividing the body into left and right halves

• Axial orientation: in a cross section (plane), perpendicular to the long axis of

the body, dividing the body into upper and lower halves

Figure 7.4: The three MR slice orientations: 1. Coronal, 2. Sagittal, 3. Axial.
(Image taken from [3])

Patient undergoing breast MRI will be required to lie on their stomach on the scan

table (prone position). The breasts will rest in cushioned holes that are part of the

breast coil (see figure 7.5). This breast coil works like an antenna and allows the

MRI device to take very detailed images of the breast. The scan table will slide into

the scanner with the upper body centered in the scanner. A series of pictures will

be taken during the procedure, each series lasting only a few minutes. Patients are

not required to hold their breath while the images are being taken, but it is very

important to be as still as possible while the machine is acquiring images. Unlike a

mammogram, this procedure does not require compression of the breasts.

The other type of imaging modality for breast cancer is mammography, ultrasonog-
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Figure 7.5: (left) Patient positioning in MR examinations [6]; (right) Breast MRI
equipment [5]

raphy, and computed tomography (CT).

In this study we will adapt our toolbox to input breast MRI data. The MRI data

are collected in stack of DICOM (Digital Imaging and Communications in Medicine),

these files contain the medical scan and the meta-data such as the pixel spacing in

the image directions, the space between each slice of scan token, as well as all patient

information. In figure 7.6 we output DICOM of a breast MRI mapped on the sagittal

plan with a pixel spacing of 0.4mm in the MRI plane and a 2.4mm between each

slices. Starting from these MRI slices we will rebuild the 3D breast geometry by

segmenting the images.

7.2.1.2 Image segmentation

The segmentation of the breast contour was required in order to be able to rebuild

the 3D breast geometry for each patient data. The segmentation method needs to be
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Figure 7.6: Breast Magnetic Resonnance Images (BMRI) in the Sagittal plane ori-
entation

robust in order to be able to cope with the different scenarios and difficulties specific

to each patient. For instance, the presence of noise is high for peripheral slices (at

the extremities of the breast), other cases will also present scenarios very difficult to

interpret as it can be seen in figure 7.7. Also, the heterogeneity makes the extraction

of the breast contour a segmentation task that is not straight-forward. Adapting the

hybrid active contour -snake- model, developed by Lankton et al. [80] outputed the

best results for breast segmentation. This method was detailed earlier in section 2.3.

This method demonstrated to be the most robust and accurate for our application,

coping with the fuzziness of image contour that is found at the periphery of the breast.

The segmentation was done through MATLABTM , the code was semi-automatic and

needed an operator’s intervention to initialize the method for each patient. In order to

decrease the computation time and to make sure the segmentation was done correctly

we proceed with a 5-level multiresolution pyramid for the segmentation (see figure

7.8 for an illustration of multiresolution pyramid), first segmenting the slice with a

lower resolution and using the result as the new initial mask for the next resolution.
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Figure 7.7: Illustration of noisy breast MRI in the sagittal plane orientation
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This will also allow the contour to initially segment the greater object which was in

figure 7.8 the breast contour. In fact using this method for some patients could avoid

any type of human operator initialization. The algorithm is detailled in algorithm 3.

The computation time for a complete breast segmentation using this method with

a dual core CPU of 2.10 GHz and 2.00 GB RAM will typically take less than 30

minutes. An example of results of slice segmentation for patient can be seen in figure

7.9, as well as the 3D results in MATLABTM after the whole breast reconstruction.

Besides the fact of being a robust method, Lankton model shows the advantage to

be a level set-based method leaving the user the ability to distinguish the inside and

outside of the object with no intervention as well as giving the contour coordinates

as precise as the pixel spacing.

Algorithm 3 Breast MRI segmenation algorithm

1: Get the width and length, NL and NW , of the MRI slice image
2: Create IMASK the initial segmentation mask for MRI slice # 1
3: for All MRI slices do
4: for k =0:4 do
5: Segment MRI of pixel resolution NL

24−k × NW

24−k using IMASK

6: Update IMASK

7: end for
8: end for
9: Translate pixels into a metric measure using the DICOM information
10: Merge slices data to create 3D shape
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Figure 7.8: Illustration of a 3 level multiresolution pyramid. We can see that the
resolution of the images increases when going to the right direction. The use of low
resolution for segmentation allows the segmentation contour to increase the compu-
tation speed as well as making sure the active contour model segments the main
object.

7.2.2 FEM simulation

7.2.2.1 Biomechanical model

In this study we propose to use a biomechanical model for breast tissue to simulate

the BCT operation. All the finite element computation for the VSB will be using the

commercial code ANSYSTM [8]. This software has previously been used by Tanner et

al.[133] in 2006 to perform finite element computation simulating breast compression.

We segmented the geometry using the tetrahedral element SOLID187 of ANSYSTM

(see figure 7.11). This element is defined by 10 nodes having three degrees of freedom

at each node: translations in the nodal x, y, and z directions. It supports the large

displacement and large strain characteristics of breast deformation. The average

mesh size for the computation was 8 mm (see table 9.1 for the number of total

elements).
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Figure 7.9: Snake method segmentation for different breast MRI slices of patient
#01, after: 500 iterations(left); 1250 iterations (middle, right)
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Figure 7.10: 3D breast reconstruction in MATLABTM after segmentation of the
DICOM stack
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Figure 7.11: SOLID187 elements of ANSYSTM

The boundary conditions imposed for our model are the following:

• the front contour of the breast was left as a free surface - no force or displace-

ment constrains;

• all the other sides of the breast boundary were considered fixed - no displace-

ment allowed.

Based on the literature [32, 108, 100, 121], the Neo-Hookean hyperelastic me-

chanical model is well adapted for breast tissue deformation, and allows us to keep

the number of parameters to the strict minimum. Hence we selected this model to

simulate all our breast deformation with the VSB. This model was described in more

detail earlier in subsection 2.2.3 of part I. The Neo Hookean hyperelastic material

form of strain energy potential is given by equation 2.14. As we can see, in this

model, the stiffness matrix which is derived from this energy function, is affected
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when the material stretches or the body volume of a solid is varying (compression of

the material), this in a non-linear way. The lift side of the equation increases energy

when the material stretches while on the right side the solid is compressed. These

changes are following a non-linear behavior, the tissue being dramatically stiffer when

the strain increases. For reference purposes, we can relate the shear modulus µ and

the bulk K to the Young modulus E and the Poisson ratio ν of the classical linear

elastic theory with the following relationship:

µ =
E

2(1 + ν)
and K =

E

3(1− 2ν)
(7.1)

We considered the breast tissue to be isotropic homogeneous with an uniform density.

However the design of the VSB leaves the ability to use the tissue heterogeneity

feature as an available option.

This mechanical model was used to output the deformation shape of the breast for

different loading conditions, with the goal to simulate BCT operation. As mentioned

in subsection 7.2.1, breast MRI is acquired in the prone position, we then adjust

gravity in order to obtain the breast shape for the standing position. The adjustment

of position required is illustrated in figure 7.12. We hypothesize that the BCT

operation was performed with a breast shape under no gravity load: unloaded shape.

To obtain this result the BCT mechanical modeling for breast MRI was decomposed

into three steps:

1. breast deformation from prone to unloaded;

2. tumor resection from the unloaded shape;

3. breast deformation from unloaded to standing.
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Figure 7.12: Illustration of the prone and the standing position in regards to gravity
direction (Image modified from [67]). Note that the “prone axis” is always attached
to the patients body.

7.2.2.2 Prone to unloaded

We seek to output the shape of the unloaded breast; therefore it is necessary to

first reverse the gravity loading before proceeding with the tumor resection. As

we highlighted earlier, The MRI data is acquired while the patient is in the prone

position (see figure 7.12). The first computation is to reverse the gravity loading

perpendicular to the “prone axis” to obtain a coarse approximation of the unloaded

shape. We presume that in the initial prone position the tissue is stress free. We

assume that initial stress does not have a major impact on the final deformed shape.

This hypothesis is reasonable in the sense that this study focuses on comparison
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between computations without virtual surgery and with virtual surgery, hence the

emphasis of getting a very accurate unloaded shape may not be relevant since both

computations, with or without virtual surgery performed, underwent the exact same

hypothesis in regard to the initial stress status. Also, one can improve that method

and skip that computational step by using a floating device during MRI acquisition

[108] in order to acquire directly the unloaded shape. Once we obtain the unloaded

shape we can perfom virtual surgery on the breast model.

7.2.2.3 Virtual surgery

During the BCT surgery, the surgeons remove the tumor from the breast. As men-

tioned earlier, we assumed the the removed tumor is spherical. Also, we assumed

that the following operation is performed from an unloaded position, therefore we

perform the virtual surgery from the unloaded geometry. The radius of resection

is denoted RT and the sphere center coordinates (XT , YT , ZT ). We defined three

different conditions available to be set on the void left by the surgery intervention:

1. leave the resection void with a free surface boundary at the wound edge;

2. fill the resection with a liquid like behavior material that is incompressible and

has very low stiffness;

3. apply some stress at the wound edge with positive or negative hydrostatic

pressure.
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Each one of these conditions is intended to simulate a specific stage of the recovery,

respectively:

1. immediate stage after surgery and/or draining the seroma from the resected

cavity;

2. lumpectomy filled with seroma and/or a breast implant;

3. dilatation of the wound due to the accumulation of inflammatory fluid or con-

traction of the wound due to the scarring process.

The VSB allows us to simulate each of these options, providing different outcomes and

reactions to the BCT surgery outcomes. The surgeons have the ability to visualize

worst case scenarios and decide from experience.

7.2.2.4 Unloaded to standing

In order to simulate the outcome of the surgery, we computed the gravity effect on

the breast unloaded shape after the virtual surgery was done. We computed the

gravity corresponding to the patient in the standing position (see figure 7.12). This

corresponds to a gravity in the direction parallel to the “prone axis”. We performed

the same simulation on the breast from the unloaded shape with no virtual surgery as

well. For both breasts, we assumed that the unloaded shape is stress free. The breast

geometry that did not undergo the virtual surgery was used as a control/reference

shape. This provided a powerful tool to compare the impact of surgery.

At the end of the day, such a tool will allow patient and surgeons to get the outcome
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of BCT procedure and debate on whether or not this is the best solution. The output

of this toolbox so far will provide the users with 3D geometry visualization, and the

displacement values of manually placed marker. The results will be presented in

section 9.1 of chapter 9.
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Chapter 8

Building surgical indicators

Assessing a 3D shape of the breast is very subjective to variation in regards to the

environmental conditions i.e. lighting, orientation, visualization device, as well as

the personal judgment of the operator [33]. The alternative using visual features

such as marker displacement, could improve the rating of surgery impact. Never-

theless providing visual output will never fulfill the purpose of such a study, as it

is time consuming, requires observations skills, and it will rely on the subjectivity

of personal judgments. In order to address this issue we propose to build indicators

rooted on scientific basis providing a more robust quantitative measurement. Fur-

ther, the mechanical model provides much more information since we have access to

the displacement and the mechanical stress across the complete volume of the tissue.

We redesigned the VSB as such that it includes two indicators as an output: the

cosmetic and the functional indicator (see figure 8.1). Building indicators seems to
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be the best output the VSB could provide. Indicators are widely used and under-

stood by clinicians, they allow classification of patients into different groups with

increasing potential risk and a posteriori can be tuned using a greater pool of data.

In this chapter we are going to describe our method and hypothesis to derive the

cosmetic indicators in section 8.1, and the functional indicator in section 8.2 .

Figure 8.1: Virtual surgery box illustration.

8.1 Cosmetic indicator

Aesthetic outcome is a major issue in breast cancer treatment when it comes to

quality of life. Although the aesthetic rating of a breast is subjective, this issue

needs to be addressed for the sake of the patient’s psychological welfare. Waljee et
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al. [141] highlighted this in their psychological study, adding that symmetry of the

breast played an important role on quantifying breast cosmetics.

In order to provide an assessment of BCT surgery impact on cosmesis we built a

cosmetic indicator based on the following hypothesis:

• The shape without virtual surgery is considered as the ideal cosmesis outcome;

• Preservation of symmetry is required in order to keep cosmesis acceptable;

• Loss of symmetry localized near the nipple of the breast has more negative

impact on the cosmesis overall grading than at the periphery.

We report mathematically these assumptions into a cosmetic indicator as follows.

Let fS be a three-dimensional vector function, representing the displacement in the

the breast along a defined path S(t) with a parametric representation t ∈ (0, 1). We

set the following norm:

Nω(fS) =

∫
[0 1]

∥ω(t) · fS(t)∥1 dt

with ω(t) = e
− (t−0.5)2

σ0 and σ0 = 0.05.

w is a weight function that emphasizes the role of symmetry and geocentricity

of aesthetics shapes. σ0 expresses the rate at which peripheral cosmetic defects

influence, overall, the indicator. The path is defined such that the value at t = 0.5

coincides with the nipple location. We concentrated on two specific paths. We choose

the path to be an intersection of the sagittal or axial plane with the skin surface.
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In this paper, the central tumor resection center (XT , YT , ZT ) relative to each

patient, was chosen to be in the same sagittal or axial plane location. In principle,

this may minimize the cosmetic defect. If f0S, (respectively f1S) defines the displace-

ment function along S before lumpectomy (respectively after lumpectomy) then the

distance:

CI = Nω(f
1
S − f0S) (8.1)

gives a simple quantitative indication on the cosmetic impact of surgery. This quan-

tity will be, for now, our definition of a cosmetic indicator. We expect that the

greater the cosmetic indicator is, the greater the impact of surgery on aesthetic form

should be.

We may modify this indicator by considering other paths or weight functions.

It would be interesting to take into account additional criteria, for example, if the

tumor location was far from the sagittal plan that it intersects the nipple. Optimiz-

ing the definition of that cosmetic indicator will be the topic of a further study that

requires more patients’ data enrolled in a clinical trial.

8.2 Functional indicator

Like most surgical procedures, lumpectomy has an impact on the functionality of

the breast in regards to mobility, pain presence, and healing. Vries et al. [34], re-

ported that breast pain occurs in the majority of women after BCT intervention.

The intensity is low and decreases with time. Although it is expected that surgery is
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followed by pain, the time range reported by this study, in average 36 to 54 months

after surgery, goes beyond our expectation. Sources of pain has been investigated in

different studies unrelated to breast itself, such as tissue healing or bone fracture.

Xu et al. [146] introduced a multiscale model relating the biothermomechanics of

skin tissue that establishes a correlation between the pain process and mechanical

stress. In another study, Li et al. [140] study the correlation of mechanical fac-

tors with gallbladder pain. They reported that, the normal stress peak total may

be used as an effective pain indicator for gallbladder pain. Their study includes 37

patients, showing a success rate of 88.2% in positive pain prediction. On an other

hand, Javierre et al. [70, 71] developed a healing model that uses the mechanical

stress as a triggering mechanism for wound contraction. This later study highlights

the potential impact of stress due to surgery on post-surgery healing.

We intend to take advantage of the VSB simulation to supervise how lumpectomy

affects the anatomy at the mechanical stress level. In regards to previous obser-

vations, stress could provide some understanding in the source of pain as well as

lumpectomy healing. This investigation would be a first in this area. We build a

functional indicator assessing the impact of BCT on pain and healing based on the

following hypothesis:

• The mechanical stress map before virtual surgery is considered as the ideal

functional outcome;

• The gradient map of stress before virtual surgery contributing to the ideal

functional outcome.

141



We will now translate mathematically this general idea of a functional indicator

linked to mechanical stress. As before, we restrict our indicator to vector functions

in the sagittal or radial planar domain Ω inside the breast that intersects the nipple.

Let BR(y) be a disk of radius R and center y in that domain, i.e

BR(y) = {x ∈ Ω such as | x− y |≤ R} (8.2)

Let f and g be two vector functions defined on Ω. We define the scalar product

(f, g)R (y) =

∫
BR(y)

f(x)g(x)dx+
2∑

i=1

∫
BR(y)

∂f(x)

∂xi

∂g(x)

∂xi

dx, y ∈ Ω

From this scalar product, we define the norm:

∀y ∈ Ω, ( . , . )R (y) = ∥.∥2R (y).

Let (σ0
x, σ

0
y, σ

0
z) (respectively (σ1

x, σ
1
y , σ

1
z)) the three components of the normal

stress inside the breast before surgery (respectively after surgery).

The following scalar indicator

D(σ0 − σ1)(y) =

√
∥σ0

x − σ1
x∥

2
R (y) +

∥∥σ0
y − σ1

y

∥∥2

R
(y) + ∥σ0

z − σ1
z∥

2
R (y)

provides an average measurement on the change of stress in the disc BR(y). Our

functional indicator FI(y) provides a relative change of that stress:

FI(y) =
D(σ0 − σ1)(y)

1 +D(σ0)(y)
(8.3)

This functional indicator should reveal locations of abnormal changes of the normal

stress after lumpectomy.
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To get a single scalar value that represents the worst stress value, we will use the

maximum norm of that indicator inside the breast:

|| FI(y) ||∞.

As noted earlier, this a priori indicator of mechanical stress might be fine tuned with

conducting a clinical study involving a large number of patient’s feedback, thanks to

statistical analysis.
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Chapter 9

Results & discussions

The impact of BCT was simulated on four different breast geometries coming from

three patients.These patients were women with breast cancer who have elected to

undergo BCT and are being treated at the Methodist Hospital in Houston, TX. In

table 9.1, we detail some of the characteristics of each patient with respect to age,

anatomy, relevant MRI image specification, as well as the number of meshes used in

the mechanical model later on. Each computation was perform with less than 50000

elements, and the default values for the material constant were as such:

• initial shear modulus µ = 1677 Pa,

• bulk modulus κ = 83333 Pa,

• tissue density ρ = 1000 kg.m−3.
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As mentioned earlier, a fairly large distribution of these parameters values were

found in the literature. According to (7.1), these (µ, κ) values correspond to a Young

modulus E = 5000 Pa and a Poisson ratio ν = 0.49 . The Poisson ratio being very

close to 0.5 describes this tissue as highly incompressible. The Young modulus being

very low, describes the tissue as has having very low stiffness. For reference E would

be in the range 0.01 to 0.1GPa for rubber.

We simulated the BCT operation for each of these patients, and the results are

presented in two different sections. In section 9.1 the raw product from the VSB

with no extensive post-processing is outputed, displaying three-dimensional breast

shape after BCT, and the curve of the marker displacement. On section 9.2, the result

obtained from the cosmetic indicators is displayed. In this later section, a sensitivity

analysis on the input parameters was conducted and the results we obtained are

discussed.

Table 9.1: Patient’s specification

Patient # 01 Patient # 02 Patient # 03 L Patient # 03 R
Label P01 P02 P03L P03R
Age 50 65 72 72

Breast side RIGHT LEFT LEFT RIGHT
Pixel spacing (mm) 0.4297 0.7813 0.664 0.664
Y pixel spacing (mm) 2.4 0.7813 0.664 0.664
Z pixel spacing (mm) 0.4297 2 1 1
Model volume (mm3) 3222 2895 2978 3118

Mesh size 47000 41000 42901 44428
MRI acquisition plan sagittal axial axial axial
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Figure 9.1: Breast shape of patient # 02. Top row: before surgery; middle row:
resection radius R=15mm; bottom row: resection radius R=35mm;

9.1 Vizualization results

This section provides some vizualization output results of the BCT simulation. Al-

though it is difficult to provide a judgment on visual observation of 3D snapshots

we can see in figure 9.1 the impact of lumpectomy for two different resection sizes

for patient P02. We denoted that after lumpectomy the breast has a more elongated

shape, leading to the accentuation of a bump deformity.
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Figure 9.2: Breast shape of patient # 03 R. Top row: before surgery; middle row:
resection radius R=15mm; bottom row: resection radius R=35mm;

This visual defect observation is not visible in an obvious manner for every pa-

tient. Figure 9.2 represents the breast shape after lumpectomy for different resection

volumes on patient RP03. In this case, it is less obvious to highlight a difference

between the shapes, although we can still guess an overall more concave shape of

the breast with a higher resection volume. Figure 9.3 superposes the 2D deformed

shape on the sagittal plan of the breast before and after surgery for each patient for

a centered tumor resection of radius R = 35mm. As we can see, the effect of surgery
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is more highlighted, indeed we can observe that for each case the birth of a bumpy

shape at the top, leading to an overall more elongated shape.

Fig. 9.4 represents the displacement difference on the “prone axis”(parallel to

gravity direction) between the breast, before and after surgery for the 3 patients.

Patient PO3, presents quantitatively very similar results for both breasts. However,

the pattern of deformation for patient PO3 is rather different than for patient PO1

and PO2 as shown in figure 9.4. Although a difference in the amplitude is observable

between both patients PO1 and PO2, the displacement for the two patients follows

the same pattern. In other words, the location of local minima and maxima of the

displacement, are very similar for both patients PO1 and PO2, provided that the

tumor location relative to the breast stays similar. However this was different for

PO3.

In order to visualize where these points stand, we picture the location of the refer-

ence points on the breast surface. Figure 9.5 illustrates the local minima, maxima,

and fixed point locations attached to the tissue on the patients’ breast, as well as

the direction of deformation compared to an untreated breast. Interestingly we note

that the parts more likely to create a visible unaesthetic shape are the 3 top markers.

From this, we can assume that a bump will appear on the top part of the breast. In

the meantime, a concavity will appear on top of the nipple area. This technique may

provide a rational method for choosing tracking points. The implies is that patients

can be classified into categories that will have similar cosmetic surgery outcomes on

the basis of the input parameters of our VSB.

Although computer visualization can provide a model of the breast surface, we are
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Figure 9.3: Breast deform shape on a sagittal plan (from left to right) P01, P02,
RP03, LP03 for a resection radius R=35mm.
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Figure 9.4: Displacement difference on gravity loading direction of breast before and
after BCT operation for the different tumor size of (top left) LP03, (top right) RP03,
(bottom left) P01, (bottom right) P02. Sagittal plane

looking for a quantitative measurement that will be less subjective. Computing the

displacement of a specific plan, or specific points to track the motion between the

shape before and after surgery appears to be helpful to provide some premium anal-

ysis. Nevertheless providing visual output will never fulfill the purpose of such a

study, as it is time consuming, requires observations skills, and it will lie under the

subjectivity of personal judgments. In the next section we will perform an analysis

on the VSB input, outputting the sensitivity of the indicators.
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Figure 9.5: Breast deformation pattern after BCT operation; (red) local minima and
maxima points, (green) fixed points.

9.2 Sensitivity analysis for the VSB input

We are going to, separately, test the impact of various parameter inputs of the VSB

for breast patient data listed in table 9.1. If not specified otherwise, the tumor

resection will be: (i) of radius RT = 30mm, (ii) localized at the center of the breast,

(iii) empty therefore its boundary will be considered as a free surface.

Specifically for the functional indicator computation we select R = 10mm for the

disk radius in equation 8.2. The radius was chosen to be large enough to deal

with the finite element mesh we use, and small enough to provide some localized

information. In our study, we notice significant spatial variability on mechanical

stress distributions among subjects. For instance, figure 9.6 represents the functional

indicator plot for patient #01 for a tumor resection size RT = 30mm at the center

of the plane cut. As we can see, the surrounding of the tumor resection seems highly
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Figure 9.6: Pain indicator contour for a tumor resection size RT = 30 mm on P01.
Sagittal plane. Scale map from dark blue to red: [ 1, 2, 5, 10, 15, 20, 50, 100, 140] .

Figure 9.7: Pain indicator contour for a tumor resection size RT = 30 mm on P02.
Sagittal plane. Scale map from dark blue to red: [ 1, 2, 5, 10, 15] .

solicited, with a peak at the top of the breast resection near the angle π = 140. After

conducting, a similar analysis for patient #02, the computation of the functional

indicator gives a completely different spatial distribution as shown in figure 9.7:

although only the surrounding of the tumor resection is still the most solicited, the

peak stays at the angle π = 18, and its magnitude is one order of magnitude less

for patient #01. For this reason, when studying the functional indicator, we output

only the maximum norm value of the function indicator ||FI||∞.
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9.2.1 Sensitivity analysis

Test 1 - Influence of tumor position

When describing the location of a breast lump, the breast can be subdivided into

four quadrants:

• UOQ - Upper Out Quadrant

• UIQ - Upper Inside Quadrant

• LOQ - Lower Out Quadrant

• LIQ - Lower Inside Quadrant

Each quadrant is further subdivided using the clock face model, see figure 9.8. The

12 o’clock position is above the nipple and the 6 o’clock position is below the nipple.

Care must be used when describing the location of a lesion in the right vs. the

left breast. In this test, the sensitivity of lumpectomy to the quadrant location

will be studied. We will perform these simulations for a tumor resection of radius

RT = 20mm.

Figure 9.9, represents the plot of the cosmetic indicator as a function of the quadrant

location of a tumor resection of radius RT = 20mm respectively for the sagittal and

axial plane. The Lower Inside Quadrant (LIQ) scored the highest whereas a centered

resection will have the most satisfactory cosmetic impact.

Figure 9.10, represents the plot of the∥.∥∞ norm of the functional indicator as a

function of the quadrant location of the tumor resection for the 3 patients (P01 P02,
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Figure 9.8: This schematic drawing demonstrates the four quadrants of the breast:
upper inner quadrant (UIQ), upper outer quadrant (UOQ), lower inner quadrant
(LIQ), and lower outer quadrant (LIQ). The clock face model is superimposed on
the four quadrant model to demonstrate how each breast is subdivided within the
quadrant model.

Figure 9.9: Cosmetic indicator as a function of the quadrant location of a tumor
resection of radius R = 20mm. Left: Sagittal plan; Right: Axial plan
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Figure 9.10: ∥.∥∞ norm of the functional indicator as a function of the quadrant
location - Test 1; From right to left top to bottom: P01, P02, PL03, PR03.

PL03, PR03) on the sagittal plan. We observe that although we have a general trend

to get higher results for a centered tumor, there is no real general tendency, neither

there is a standard of amplitude of the functional indicator. This test carries two

observations: the first is that we are facing a limitation on the number of patients

and a higher pool of patients is required to be able to conclude on any particular

finding; second this highlights the necessity of such a tool due to the unpredictability

of behavior for each patient in regards to the tumor position.

Test 2 - Influence of the occlusion size

In 1995, Taylor et al. [134] investigated the factors that qualify to be considered

a good cosmetic outcome for BCT. Obviously, it appeared that poorer cosmetic
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Radius (mm) 15 20 25 30 35

Volume (cm3) 14.14 33.51 65.45 113.10 179.59

Table 9.2: Radius (mm) and corresponding volume (cm3) of the occlusion that have
been tested.

outcomes were obtained with increasing volume of breast removed. In this test, we

explore the impact of surgery for different tumor sizes. We considered only spherical

occlusion shapes and varied the occlusion radius. We vary the radius from 15 mm to

35 mm corresponding to a resection volume varying from 14.14 cm3 to 179.59 cm3

as in table 9.2.

Figure 9.11, represents the plot of the cosmetic indicator as a function on the radius

of the tumor resection for 3 patients, respectively, on the sagittal and axial plan. We

observe that the greater the radius the greater the cosmetic indicator is. Although

this could have been easily predicted, it is interesting to observe that the effect on

the cosmetic indicator has a steep non-linear growth.

Figure 9.12, represents the plot of the∥.∥∞ norm of the functional indicator as a

Figure 9.11: Cosmetic indicator as a function of the tumor resection size RT (in
mm); Left: Sagittal plan; Right: Axial plan.

function of the radius of tumor resection for each patient on the sagittal plan. We

156



Figure 9.12: ∥.∥∞ norm of the functional indicator as a function of tumor resection
radius - Test 2; Sagittal plan.

observe that the greater the radius, the greater the functional indicator is, nonetheless

it decreases after a certain radius. Although we can see that the behavior is similar,

the amplitude is patient-related.

Test 3 - Influence of tissue compressibility

Tissue characteristics vary between different patients, and more specifically, between

different patient age groups. Tissue characteristics could explain the fact younger age

groups have a better cosmetic outcome[134, 12]. We explore how tissue compress-

ibility could affect the outcome. The compressibility of a material in the mechanical

model we are using, the neo-Hookean model, is characterized by the bulk modulus

κ. The higher the bulk modulus is, the more it penalizes the energy function, the

less it allows a volumetric difference change into the material. In this study, we will

test the influence of changing the bulk modulus κ between 0.015 MPa and 1 MPa on

the surgery outcome. For reference the bulk modulus for air averages 0.1 MPa while
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Figure 9.13: Cosmetic indicator as a function of the bulk modulus κ (in Pa) for
patient #1 and #2. Sagittal plan

the bulk modulus for water(incompressible material) is ∼ 200 MPa.

Figure 9.13 represents the cosmetic indicator for two patient cases as a function of

the bulk modulus for a tumor resection with a radius RT = 30mm. As we can

see for a lower bulk modulus, the cosmetic indicator remains lower. However above

κ = 100 KPa there is no noticeable effect. Furthermore, the overall variation of the

cosmetic indicator is only about 10%, suggesting that tissue compressibility has no

major impact on the aesthetic outcome.

Figure 9.14, represents the plot of the∥.∥∞ norm of the functional indicator as a

function of the tissue compressibility for a tumor resection with a radius RT = 30mm

for 2 patients (P01 and P02) on the sagittal plan. In Figure 9.14 we observe that

increasing the bulk modulus leads to an increase of the functional indicator. The

increase rate is low and converges to a plateau. The overall variation of the cosmetic

indicator is only about 15%, suggesting again, that tissue compressibility has no

major impact.
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Figure 9.14: ∥.∥∞ norm of the functional indicator as a function of the tissue com-
pressibility - Test 3; Sagittal plan.

These observations could result in upgrading the VSB design by fixing, κ parameter.

This is a suggestion that needs to be validated only after launching a whole study

on a greater pool of patients.

Test 4 - Influence of tissue stiffness

Following the same reasoning from above, we explore the effect that stiffness has

on changing the surgery outcome. The stiffness of the material in the neo-Hookean

model is represented by the shear modulus µ. When µ is increased, the energy

function gets more sensitive to stretch in the material principal direction. Therefore,

the higher µ is, the stiffer the material will be. In the literature, a stiffness of 5 kPa

is the average right order of magnitude [100, 108, 109, 110, 32]. To study the stiffness

influence, we will vary the initial shear modulus µ from 1.3 kPa to 6 kPa.

Figure 9.15 represents the cosmetic indicator for two patients as a function of the

initial shear modulus for a tumor resection with a radius RT = 30mm respectively

159



Figure 9.15: Cosmetic indicator as a function of the initial shear modulus µ (in Pa);
Left: Sagittal plan; Right: Axial plan.

Figure 9.16: ∥.∥∞ norm of the functional indicator as a function of the tissue stiffness
- Test 4. Sagittal plan

on the sagittal and axial plan. We can observe a significant decrease on the cosmetic

indicator while the tissue property gets stiffer. Also, it is interesting to highlight

that the cosmetic indicator behaves similarly for the sagittal and axial plan.

Figure 9.16 displays ∥.∥∞ as a function of the compressibility and stiffness of the

tissue. As we can see, the functional indicator behavior is similar for each patient.

Nonetheless, the amplitude is highly dependent on the patient, suggesting that each

breast shape does not agree on the same sensitivity in regards to tissue stiffness.
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Figure 9.17: Cosmetic indicator as a function of an imposed pressure at wound
boundary surface Pwound (in Pa). Left: Sagittal plan; Right: Axial plan.

Test 5 - Influence of a pseudo-pressure inside the wound:

In order to simulate the potential boundary condition that the wound edge faces

after surgery during the recovery process, we imposed an hydrostatic pressure con-

dition at the wound edge. We vary this pressure between −300 Pa to +400 Pa. As

a side note, the hydrostatic pressure exercised by a fluid such as water on a sphere

surface of 30 mm radius is equivalent to ∼ 100 Pa. Positive pressure corresponds to

the accumulation of seroma during the inflammation process. Negative pressure will

simulate the contraction of scar tissue and overall loss of volume due to fibroblast.

Figure 9.17 represents the plot of the cosmetic indicator as a function of the pseudo

pressure boundary condition imposed at the tumor resection for both patients. Neg-

ative pressure on the wound edge creates damage regarding the cosmetic outcome.

However, it is interesting to note that positive pressure can limit the cosmetic out-

come.

Figure 9.18 displays ∥.∥∞ of the functional indicator as a function of the hydrostatic

pressure imposed at the tumor resection surface. Regardless of the value amplitude
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Figure 9.18: ∥.∥∞ norm of the functional indicator as a function of the hydrostatic
pressure at the wound - Test 5. Sagittal plan

specific to each patient, we can observe the same general behavior occurs. The same

conclusion of test 4 can be made: each breast has its own sensitivity in regards to

hydrostatic pressure at the wound. It is also important to note that in all the sensi-

tivity tests, P01 always scored the highest, suggesting that some patients have some

critical responses to BCT surgery and they are more likely to experience post-surgery

difficulties.

Test 6 - Influence of a liquid-filling inside the wound

In order to simulate the post-surgery state in a more realistic way, we simulate the

stage where the surgical resection would be filled up with liquid seroma. In order

to achieve this, we imposed a very elastic material that has low stiffness E = 500

Pa. In this test we performed the computation for 2 different values of bulk modulus

corresponding to a Poisson ration ν = 0.40 and ν = 0.49 for an elastic linear model.

Figure 9.19 represents the cosmetic indicator values as a function of the Poisson
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Figure 9.19: Cosmetic indicator as a function of the filling fluid compressibility for
a tumor resection of radius R = 30mm. EFLUID = 500Pa; Sagittal plan

ratio of the liquid filling resection of 30mm. We can see that most of these cosmetic

indicators exceed the value of 3 which is large in comparison to the average cosmetic

indicator value we have seen thus far.

Figure 9.20 represents ∥.∥∞ of the functional indicator as a function of the Poisson

ratio of a liquid filling resection of RT = 30mm. We can see that patient #01

experienced great values for the functional indicator compared to the other patients.

Apart from this, most of these cosmetic indicators exceed the value of 3 which is

large in comparison to the average cosmetic indicator value we have. There is no

difference between the value of the functional indicator for each patient with two

different Poisson ratio values. Leading to the conclusion that the compressibility of

the tissue was not a big influence on the outcome of the results.
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Figure 9.20: ∥.∥∞ norm of the functional indicator as a function of the filling fluid
compressibility for a tumor resection of radius R = 30mm. EFLUID = 500Pa;
Sagittal plan

Variation Resection size RT Incompressibility Stiffness Pressure
↘ - - + +
↗ + Ø - ∼

Table 9.3: Summary of cosmetic indicator behavior in regards to the input parame-
ters.

9.2.2 Discussion

The cosmetic indicator was conceived around the hypothesis of preservation of sym-

metry in regards to pre-surgery shape. Whereas the functional indicator was built

taking into account the birth of a stress region as well as the gradient of stress,

expressing concern in regards to tissue mechanics and energy re-distribution in the

tissue. In table 9.3 we summarize the observations we performed in this study for

the cosmetic indicators. This table highlights that BCT is sensitive to the amount

of tissue removed and to the stiffness of tissue. This conclusion is consistent with

the clinical observation obtained by Taylor et al. [134]. It is important to note that

the cosmetic indicator average value was patient specific, meaning that maximum
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Figure 9.21: Absolute relative impact of parameters on the cosmetic indicator, aver-
age value on the 3 patients combined. Blue: Sagittal plan; Red: Axial plan.

amplitude varied significantly among patients. This observation could be explained

in many ways. One reason may be the fact that breast volume and shape were quite

different among patients. However, in order to correlate the sensitivity of the cos-

metic indicator to the input parameter, regardless of the patient, we plotted in figure

9.21 the average value of the relative difference of the cosmetic indicator for each test.

We can observe that the volume of the resection, the stiffness of the tissue, and the

quadrant location are the input parameters that are the most sensitive with regards

to the cosmetic indicator. This result remains coherent with the Taylor et Al. [134]

study. Also, we can observe that the cosmetic indicator has the same relative impact

whether it is in the sagittal or axial plane, suggesting that the shape is relatively

affected in both directions in the same way. Conversely, we still have an unclear

picture of the relationship between this cosmetic indicator and the visual results for

the breast shape after surgery. Subjectivity on visual outcome can account for one

reason, but we need more patient data to further that relationship. It is anticipated

that the design of the cosmetic indicator will then be adjusted to straighten that
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Figure 9.22: Absolute relative impact of parameters on the functional indicator av-
erage value on the 3 patients combined. Sagittal plan

relationship.

Regarding the impact of lumpectomy on the functional factor, we observed that the

amplitude is strongly dependent on the patient. This could lead us to identify pa-

tients that are high risk for eventual recovery in respect to healing and perhaps pain

and/or radiotherapy sensitivity. More research still needs to be done to state that

stress has, unequivocally, a major impact on healing and that it is highly sensitive

to radiation. We plotted in figure 9.22 the average value of the relative sensitivity of

the functional indicator in regards to input parameters for all patients. The radius

of the tumor resection as well as the tumor location were the most sensitive to this

indicator, suggesting that these two parameters can have major impact on healing

as well as the functionality/pain of the patient.

Mechanical stress is not easy to assess from medical imaging. This new functional

indicator provided by the VSB has the potential to deepen our understanding of the

process that leads to successful or unsuccessful cosmetic results.
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Chapter 10

Multiscale modeling

Thus far we have presented a tool allowing the user to simulate the impact of BCT

surgery using a mechanical model. We simulated the recovery process using boundary

conditions at the wound, either by simulating a liquid like material or by imposing

hydrostatic pressure to model contraction or dilatation. It is expected for the sur-

gical wound to heal, while we believe this process is potentially responsible for post

surgery breast deformities experienced by some BCT patients. In this chapter we

propose a new method to implement a healing model combined with the mechanical

simulation of the VSB. This implementation will constitute a two-time scale model,

(1) combining the mechanical model, describing the behavior at the macroscopic

level, (2) and combining a CA model of healing, describing the wound recovery at

the microscopic level. In section 10.1 a description of this two-time scale model will

be given. In section 10.2 we will present the healing model we used. Finally, in

section 10.3 results of our simulation will be given.
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10.1 Two-time scale model

Wound healing mechanism involves complex interactions between the biological,

chemical, and mechanical processes. A multiscale model was designed that uses

the interaction between the mechanical and the healing process. Tissue generated at

the cellular level influences the mechanical deformation of the breast by modifying

the tissues distribution, simultaneously the deformation induces mechanical stress

along the wound edge that is a function of the shape of the breast and the geometry

of the wound. Our computational approach is summarized in figure 10.1. We start

from an initial unloaded position of the breast with a known geometry of the tissue

resection inside the breast. From this initial condition, we compute the displacement

and mechanical stress using our mechanical model. The healing model operates on

the unloaded configuration of the breast and takes into account the map of stress

distribution. From this new shape of the breast in the unloaded position, we apply

the soft tissue mechanical model to get the new displacement and mechanical stress

under gravity load. This procedure is repeated for a number of cycles until the in-

ternal cavity is closed. This procedure as been detail in algorithm 4. This model

presents two scale levels:

1. temporal scale, while the tissue mechanic is approached as quasi continuous

transformations, the healing takes over an extended period. In our model a

time step of the wound healing model will correspond to the cycle time of a

cell > 24 hours. The healing process itself lasting over several generations of a

cell, e.g. about one week.
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Figure 10.1: Illustration of the two steps Algorithm.

2. spatial scale, the mechanical model is operated at the centimetric scale, with

average size of mesh element being in millimeter units, while the healing com-

putes cells as agents and approximates their size to about 20µm, which is an

order of magnitude 104 times superior of the mechanical model scale.

In this model, we implement this method for a two-dimensional configuration.

The mechanical part is computed using the Finite Element Modeling (FEM) com-

mercial software ANSYSTM [8]. The breast structure was meshed using PLANE182

elements. PLANE182 is a 2D solid structure modeling element, defined by four nodes
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Algorithm 4 Two-time scale model

1: Get initial unloaded position ⇒ Breast0
2: for Till wound recovery do
3: Compute Loaded shape of Breast0
4: Compute Get stress at the wound ⇒ σwound

5: Map σwound in unloaded shape ⇒ σ0
wound

6: for healing cycle do
7: Compute healing using σ0

wound

8: end for
9: Get new wound shape in unloaded position
10: Update Breast0
11: end for
12: Output results

having two degrees of freedom each, translations in the nodal x and y directions.

It has the capabilities to model large strains and hyperelastic materials. The mesh

size for this simulation was 2mm. We considered the front skin as a free surface

and fixed all displacements for the back of the breast. The Neo-Hookean hypere-

lastic mechanical model was used to model breast tissue deformations (see eq 2.14).

Simulations were performed with an initial shear modulus µ = 3448 Pa, a bulk

modulus κ = 33333 Pa, and a tissue density ρ = 1000 kg.m−3. In order to simulate

the shrinking of tissue we penalize the determinant term of the elastic deformation

gradient, J , at the neighborhood of the wound according to the following expression:

Jnew = Jold(1 + α∆L)3 (10.1)

with α = 0.3 and ∆L = −1. Aside from the wound neighborhood where we pe-

nalized volumetric components to simulate tissue contraction, the breast tissue was

considered as homogeneous.

In our model we consider an active layer of the wound where cell division is promoted

170



by the mechanical stress experienced [70]. We will represent, this mechanical stress

stimuli by computing the energy, E, at the wound through the following equation:

E(θ) = σxεx + σyεy + σxyεxy (10.2)

where θ parametrizes the wound edge. σ∗ is the stress components of the stress

tensor and ε∗ the strain component of the strain tensor. This energy function will

be used for the healing model later (see section 10.2).

10.2 Model for wound healing

The healing model used a CA over a finite spacial grid, with each grid element

representing a cell. Each cellular automaton cell is defined by a finite number of

states, and follows a simple set of rules that are common to all the cells of the CA

that only involve neighborhood interactions. The complex behavior of the evolution

of the considered area of cells emerges from a large number of sites of CA, which are

required to match the spacial scale of the model. This is the main advantage of the

realistic approach of the CA where the complexity of the simulation comes from the

large dimension of the system instead of the degree of complexity of the models that

rule the system. A hexagonal grid was used, which represents the complex spacial

distribution of cells in tissues; in this model one cell is surrounded by six neighbors.

Since each site represents a cell, with an average cell diameter being 20µm, a domain

of centimetric size for the computation will require an order of magnitude of 107

number of CA sites. The state of each CA is either empty or occupied by a cell, and

the cell can undergo two types of transformation. Cells can either divide (mitosis)
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or migrate. The model is described by four successive operators that applies to the

CA at each time step(here a cell cycle): division of the cell at the wound edge, cell

mobility, cell division inside the active layer of the wound, and cell redistribution.

Hexagonal unloaded CA with wounded domain

Figure 10.2: Hexagonal grid for CA.

We define Ω as the considered domain, Ωwound the domain occupied by the CA

with no cell present, and Γ the wound edge. The algorithm is initialized such as ui = 1

for the resected area (Ωwound), and ui = 0 outside the resected area (Ω \ Ωwound).
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(i) Cell division at the wound edge

This step only applies to cells that are located at the wound edge and simulate the

invasion by tissue cells of the area were the tissues are removed after BCT. In this

step, the cell of the wound edge (Γ), and the one in contact with the wound area

(Ωwound), are assigned a random probability, p. If this probability is greater than the

predefined probability pedge, then mitosis is considered to happen, affecting a random

free site among the neighbors.

(ii) Cell mobility

This step concerns only the cells of the resected wound, u ∈ Ωwound. Motion is

simulated by diffusion towards the empty sites of the CA. Indeed, uniform diffusion

corresponds to an equi-probabilistic migration of the cells where the probability of a

cell to move to an empty site is q
6
, with q being the number of empty sites surrounding

the cell. The probability distribution Ui ∈ [0, 1] of a cell after diffusion is computed

using a P1 finite element approximation of the diffusion operator

∂t −∆ (10.3)

on the hexagonal grid. The probability of the CA site is computed explicitly from

the initial values (0 or 1) of the sites of the CA:

un+1
i = un

i +
1

2
(
1

6
Σneighborsitesj uj − ui) (10.4)

This scheme is repeated overNd iterations, whereNd serves as the mobility parameter

for the model. From this probability distribution we select the empty sites where
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cells have migrated and the ones that have become vacant, by selecting the level set

of U = U0 ∈ (0, 1) such that the number of sites where U ≥ U0 conserves the total

number of cells.

(iii) Cell division inside the active layer

Unlike step (i), we consider here the cells that are inside an active layer of Ω\Ωwound

and that are subject to the mechanical stress of the tissues. The active layer is a

preselected area around the wound. The propability of mitosis in the tissue is a

function of the strain energy, E (see eq. 10.2). The growth factor is calculated first

by applying the diffusion operator (10.4) to all the sites uold
i and then by thresholding

at 0 the resulting value, i.e. the sites where unew
i > 0 will undergo mitosis with a

non-uniform probability pinside. We define E(θ), the energy along the wound edge Γ

and Emax = maxθ(E). From this we compute:

pinside(ui) = pactivelayer(E0 + E1
Ei

Emax

) (10.5)

where

Ei = E(θi), θi = argmin θ d(θ, ui)

with d(θ, ui) the L2 distance between the position of the site ui in Ω and θ, and E0

and E1 are weighting the influence of the strain energy on the probability distribution

and pactivelayer is the predefined probability of mitosis inside the active layer.
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(iv) Cell redistribution

Once the density of probability cell division inside the active layer is known, we can

create a new array of sites umitosis
i of the cells of the active layer that will undergo

mitosis:

umitosis
i =

 1 if ni ≥ pinside(ui)

0 if ni < pinside(ui)
(10.6)

where ni ∈ [0, 1] is pseudo-randomly generated from a standard uniform distribution.

After cell division inside the active layer we need to modify the arrangement of

cells in the tissue so that each site of the CA remains occupied by a single cell.

After the mitosis step each cell will exert a pressure (hydrostatic pressure) on its

neighbors leading to a rearrangement of the cell distribution. We model this in the

same fashion of the cell mobility step.

First we define a probability distribution using the operator (10.4) repeated over

Nd times, initialized as well with ui = 1 inside the active layer and ui = 0 otherwise.

Then we keep the probability distribution superior to zero only inside the empty

area. Hence, the site with the maximum value of computed probability distribution

corresponds to the final site of the shortest path for an active layer cell to move. In

other words, a cell of the active layer that went through mitosis will move towards

the site with the highest value of the probability density.

To avoid conflicts induced by equi-probability for two or more empty sites to be

occupied after the redistribution step, we introduce a white noise pi to the normalized
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probability density:

pi =
pi

pmax
i

+ 10−3ni (10.7)

where ni ∈ [0, 1] is pseudo-randomly generated from a standard uniform distribution

as well. The new distribution of cells in the tissue is then retrieved using the same

method as iii.

10.3 Preliminary results

Presented in this section are results for a two-dimensional simulation of a breast con-

traction. Represented in figure 10.3 is the breast geometry meshed with the resected

area in the loaded position, parameters used are the following: pedge = 0.05 and

pinside = 0.02. Figure 10.4 shows the evolution of the energy along time as well as its

non uniformity; the two peaks being induced by the mechanical stress due to gravity.

In figure 10.5 we plotted the evolution of the closure of the wound area. We can see

that the closure does not occur in an uniform way in all directions, this is due to the

dependence of the active layer division due to the mechanical stress. In figure 10.6

we plot the loaded breast contour before and after the healing process. We can see

that the breast after the healing process displays a more significant bump, and the

overall breast reaches a lower level.

Merging the complete work achieved so far, the VSB and the coupled healing mod-

eling, this work presents an innovative computational framework for clinical study.

This tool allows to red flag patient with lower outcome for BCT, understand the
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Figure 10.3: Meshing of breast with wounded area.

post surgery recovery, and therefore later allow clinicians to adapt the surgery to the

patient thanks to the recovery knowledge gained. This tool is a first in its kind and

the general idea should be applied for various types of surgery.
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Figure 10.4: Evolution of strain energy through the healing process E(θ) = f(t).
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Figure 10.5: Closure of the wound: history of the wound area.

179



150 200 250 300 350

120

140

160

180

200

220

240

260

280

300
breast shape

Figure 10.6: Final and intermediate shape of the breast through the healing process.
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Chapter 11

Conclusions and future work

The primary goal of this dissertation is to develop a computational framework for

breast cancer treatment. Indeed the rise of technology in this last century is phenom-

enal, however a gap still exist between these advances and the actual implementation

into the medical world. Taking more time than expected, was probably due to various

ranges of variability among patients, and the need for science to get more stable in-

puts. This gap gives place in the medical world for a lot of uncertainty when treating

diseases, i.e. patient over-treatment, patient under-treatment, patient re-excision. In

this dissertation we developed tools that used the merging of various science such as

computer science, mathematics and biology to benefit the outcome of breast cancer

treatment, focusing on the development of DCIS growth model overexpressing HER2

and realistic mechanical model to perform BCT virtual surgery. In this chapter the

conclusion of our work was presented, section 11.1 presents the conclusion derived

from the tumor growth model. The conclusion from the breast conserving therapy
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modeling was presented in section 11.2. This will be followed up in section 11.3 by

the dissertation contributions, and finally in section 11.4 are detailed the potential

for further studies in the area.

11.1 Tumor growth model studies

In this dissertation a continuous mathematical model was build to simulate tumor

growth model, using PDEs. The model was adapted for DCIS with the potential of

secreting MMP enzyme, allowing the tumor to switch into an invasive mode. The

model considered healthy cells, the liquid lumen inside the duct, tumor cells, and

necrosis cells, these entities were modeled as an incompressible fluid. The constitu-

tive law to model the fluid dynamics was Darcy’s law. The fluid motion dynamic

was driven by cellular division only. The tumor growth was nutrient limited, the

oxygen playing the role of nutrients. Also this model included a growth dependence

regarding the concentration of a ternary complex [T ]. Ternary complex was the

result of a chemical reaction involving the HER2 oncogene. This tumor model is

therefore likely to simulate DCIS cases that overexpresses HER2, which represents

30% of DCIS cases. The model was implemented into a 2D code using the eLYSe

library.

The numerical simulation showed that the tumor was successfully simulating the

pattern of solid tumor cases of DCIS with or without the presence of necrosis. The

influence of various parameters controlling the chemical reaction was investigated,

and this illustrated the influence of nutrients source location in our model. At last
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tumor that was secreting MMP enzymes was computed, it showed that the growth

was greater when the duct wall was broken.

To conclude this part of research, a potential improvement of our model was proposed

in order to get a successful implementation and application of a 3-D clinical case.

This model presents the advantage to be well adapted for clinical application since

it is a continuous model, that inputs the environmental conditions directly into the

equations. Using medical imaging technology to get a three-dimensional description

of the duct network inside the breast, this model will easily simulate tumor growth

model taking into account the whole environment. Which will lead to great clinical

implementation. For instance it will enable surgeons to visualize exactly the region

of the tumor to resect avoiding patient positive margin, and going for re-excision,

which represents at least 10% of lumpectomy cases. Another implementation will be

the ability to judge to what extent the radiation therapy should be applied, avoiding

patient over or under treatment, leading to eventually disabling any case of local

recurrence.

Implementing chemical reaction in the model, allows to include all phenomena in-

volved in a cancer development, this model, will allow the understanding of tumor

mechanism and trigger what are the factors for aggressive growth versus factors that

have no influence.
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11.2 Breast conserving therapy modeling studies

While BCS is the preferred therapy for most patients with early stage breast can-

cer, no tools or grading tools have been implemented further in order to answer the

surgery outcome regarding the physiological aspects of such an intervention. In this

work the design of a virtual surgery box to predict surgery outcome after a lumpec-

tomy intervention was presented. This VSB has inputed, to date 4 sets of patient

data. Our prototype system requires an MRI of the breast and, by design, a lim-

ited number of input parameters such as the radius and position of the resection,

the stiffness of the tissue, and the potential dynamic of the recovery expressed as

a pseudo pressure. These last two parameters must be estimated by the surgeons

who may provide a range of values using their past experience. The outcome of

the present study is the straight visualization of the breast shape before and after

surgery, either by 3D visualization or displacements of plane section or marker points.

Three-dimensional visualization results suggested that this could lead to some misin-

terpretation, leading to the conclusion that quantitative measurements will be more

useful. Displacement information provide relevant conclusions on potential behavior.

Pushing the analysis to a further step, indicator to assess the cosmetic outcome of

surgery was created. It was derived as well a second indicator that evaluates the rate

of relative change of normal stress occurring inside the breast after surgery. This

indicator being “functional” as opposed to cosmetic or “geometric” because it mea-

sures the mechanical response of the tissue to resection. These indicators have the

advantage to provide simple output that can be used to compare clinical cases and

possibly lead to a classification of clinical outcomes rather than use the human eye
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judgment of breast shape that is highly variable and relative to each person. Using

the design of these indicators a sensitivity analysis was performed on the input pa-

rameters, rationalizing the sensitive physical parameters impacting the outcome of

lumpectomy.

This work was followed by of a proposition of a more developed model for the VSB,

adding a new module representing the healing process. This module was implemented

in a multiscale fashion interacting with the mechanical model. Some preliminary re-

sults of this work for a two-dimensional configuration of a breast was outputted.

This study brings the first brick to such a direction, trying to merge the technology

advances made in different fields to benefit patient comfort and satisfaction as well

as provide a powerful tool for surgeons to build on experience.

11.3 Work contributions

The primary research contributions that was made during the course of this doctoral

study are:

1. Implementation of a DCIS growth model expressing HER2;

2. Modeling of breast tumor invasion threw the release of MMP enzyme;

3. Breast tumor growth model that implemented the mechanical environment;

4. Implemented a breast MRI segmentation tool;

5. Mechanical modeling tool to simulate BCT surgery;
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6. Design of cosmetic and functional indicator assessing the outcome of surgery

using mechanical modeling;

7. Sensitivity analysis on successful factors for BCT;

8. Coupling healing model and mechanical model to simulate long term recovery

of BCT surgery.

In item 4, 6, the work was performed on women with breast cancer who have elected

to undergo BCT and are being treated at the Methodist Hospital in Houston, Texas.

11.4 Future work

Merging these two studies could provide significant assistance to surgeons and patient

facing breast cancer. Indeed, using the tumor growth model will allow clinicians to

exactly measure the extent of the tumor and the exact resection needed for the

patient. This quantification being made, clinicians will use the VSB to forecast post-

surgery shape. The VSB will more likely output indicator scores in order for the users

to classify the patient into a group and based on experience judge the likelihood of

the BCT being an option for the patient. In order for this model to be complete

the VSB should fully implement the recovery process such as the healing, a module

that we already implement in two-dimension, but as well the effect of radiotherapy

on tissue. It is expected that the radiation therapy will affect the tissue composition

and more likely influence the final shape. Finally such a tool will need to be tested in

a more significant pool of patient in order to tune the indicators. Also in order to get
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a more accurate description of the breast it will be interesting to investigate the effect

of using an heterogeneous tissue for the breast mechanical tissue model. In the long

term, we expect future research to use this framework to engineer tissue material

that will be inputted inside the tumor resection during BCT surgery, in order to

process a controlled healing, limiting cosmesis and breast functionality defect as well

as local recurrence of the tumor.
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