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Modeling and simulation of Hybrid Systems and Cell factory
applications

Abstract : The main aim of this thesis is to develop an approach that allows
us to describe biological systems with theoretical sustenance and good results in
practice. Biological functions are the result of the interaction of many processes, that
connect di�erent hierarchy levels going from macroscopic to microscopic level. Each
process works in di�erent way, with its own goal, complexity and hierarchy level. In
addition, it is common to observe that changes in the conditions, such as nutrients
or environment, modify the behavior of the systems. So, to describe the behavior of
a biological system over time, it is convenient to combine di�erent types of models:
continuous models for gradual changes, discrete models for instantaneous changes,
deterministic models for completely predictable behaviors, and stochastic or non-
deterministic models to describe behaviors with imprecise or incomplete information.
In this thesis we use the theory of Composition and Hybrid Systems as basis, and the
BioRica framework as tool to model biological systems and analyze their emergent
properties in silico.

With respect to Hybrid Systems, we considered continuous models given by sets
of di�erential equations or more general dynamics. We used Stochastic Transition
Systems to describe the dynamics of model changes, allowing coe�cient switches
that control the parameters of the continuous model, and strong switches that choose
di�erent models. Composition, reconciliation and reusing of models allow us to build
complete and consistent descriptions of complex biological systems by combining
them. Compositions of hybrid systems are hybrid systems, and the re�nement of a
model forming part of a composed system results in a re�nement of the composed
system. To implement our approach ideas we complemented the theory of our
approach with the improving of the BioRica framework. We contributed to do that
giving a BioRica speci�cation of Hybrid Systems that assures integrity of models,
allowing composition, reconciliation, and reuse of models with SBML speci�cation.

We applied our approach to describe two systems: wine fermentation kinetics,
and cell fate decisions leading to bone and fat formation. In the case of wine
fermentation, we reused known models that describe the responses of yeasts cells to
di�erent temperatures, quantities of resources and toxins, and we reconciled these
models choosing the model with best adjustment to experimental data depending on
the initial conditions and fermentation variable. The resulting model can be applied
to avoid process problems as stuck and sluggish fermentations. With respect to cell
fate decisions the idea is very ambitious. By using accurate models to predict
the bone and fat formation in response to activation of pathways such as the Wnt
pathway, and changes of conditions a�ecting these functions such as increments in
Homocysteine, one can analyze the responses to treatments for osteoporosis and
other bone mass disorders. We think that here we are giving a �rst step to obtain
in silico evaluations of medical treatments before testing them in vitro or in vivo.
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Résumé : Les Fonctions biologiques sont le résultat de l'interaction de beaucoup de
processus, avec di�erents objectives, complexités, niveaux d'hiérarchie, et change-
ments de conditions que modi�ent le comportement de systèmes. Nous utilisons
des équations diferenciales ou dynamiques plus générales, et Stochastic Systèmes
de Transition pour décrire la dynamique de changements des modèles. La compo-
sition, réconciliation et reutilisation des modèles nous permettent d'obtenir des de-
scriptions de systèmes biologiques complètes et compatibles et leur combiner. Notre
spéci�cation de Systèmes Hybrides avec BioRica assures l'intégrité de modèles, et
implement notre approche. Nous appliquons notre approche pour décrire in-silico
deux systèmes: la dynamique de la fermentation du vin, et des décisions cellulaires
associées à la formation de tissu d'os.
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and λw = 0.7, and in (C) λR = 0.7 and λw = 0.5. Parameters are n = 4,
kR = kW = bR = bW = 1, and the θ's coe�cients have value 0.5. As
in [55], we show the relative quantities of xR (GATA1) and xW (PU.1)
over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
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Chapter 1

Introduction

The aim of this chapter is to present the main elements for modeling biological
systems. We summarize about the challenges to model this type of systems, the
methodology and speci�cations. The main points that we discuss are the presence of
modules and hierarchies, the associated numerical problems, the role of composition
of models, and the consideration of randomness and hybrid systems to describe
biological systems.

To describe the behavior of a biological system over time, it is convenient to com-
bine di�erent types of models: continuous models to describe gradual changes over
time, discrete models for instantaneous changes, deterministic models to represent
completely predictable behaviors and stochastic models to introduce randomness.
Hybrid systems and Composition, as we de�ne them here, allow us to combine all
these elements.

1.1 Dynamical Models for Biological Systems

Since many years living organisms have been an object of study by natural science,
which tries to understand the di�erent mechanisms that are developed by organ-
isms to live and to interact between themselves and with the environment. Living
organisms are analyzed from many points of view to explain di�erent biological
processes that go from macroscopic to microscopic level. To live they must inter-
act with other organisms, its organs, its cells, cell organelles, proteins, genes and
transcription factors, etc.

The need to accurately explain biological mechanisms means that the use of
Mathematics and Computer Science is essential. Mathematics allows us to represent
and to analyze interactions between entities by studying the variables that charac-
terize the entities, their interactions and the factors that a�ects these processes. The
development of Computer Science has made it possible to obtain accurate results
when one considers that the number of variables or factors and the mathematical
formulas representing the interactions are complex.

The set of biological entities and processes that is studied is called Biological
System.

De�nition 1.1 Complex Biological Systems.

11



Chapter 1. Introduction

• In general, a complex system is one composed of interconnected components
that as a whole exhibit properties not obvious from the properties of the indi-
vidual parts ([61]).

• Complex Biological Systems are complex systems that come from observation
of living organisms. A system is analyzed in a hierarchical way, de�ning it as
being composed of components, where behaviors emerge from the associations
and its diversity ([64]).

The modern approach to study complex biological systems is called Systems
Biology.

De�nition 1.2 Systems Biology. it is a biology-based inter-disciplinary study �eld
that focuses on complex interactions in biological systems. Its paradigm is opposite
to reductionism and favors the integration of multiple components ([64]). In System
Biology hierarchical systems are described de�ning their levels, components and the
relations between them ([109]).

The formal way to describe a system is called model, if it uses Mathematics is
called Mathematical model. The behavior of a biological system is summarized in a
set of mathematical relations that characterize it.

De�nition 1.3 Mathematical models and modeling.

• A mathematical model is a description of a system using mathematical lan-
guage. A model characterize the system by the called system variables, at-
tributes that describe it. Mathematical notions are used to de�ne relations
between these variables and the so called factors (or explanatory variables) of
the system.

• The process of building a mathematical model is called mathematical modeling.

De�nition 1.4 Dynamical models. If the laws of a mathematical model establish
the temporal behavior of the system we call them Dynamic Models. In this case, the
future values of the system variables are considered to be functions of the current
values (current state) and factor values.

As one can observe living organisms from di�erent levels, the modeling process
implies an abstraction level. One must decide what entities to represent, what
factors and interactions to include and how to do that.

For this thesis we will focus on Dynamical models. There are many di�erent types
of these models, which it is used depends of the analyzed system, what information
is available, types of variables, and what questions we want to answer with the
model. One can divide the family of models in many subgroups.

The �rst classi�cation of models is separating them between continuous and
discrete models.

De�nition 1.5 Continuous and Discrete Models.

12
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• In continuous models, system variables change continuously over time. The
system is abstracted in a model where it is relevant to know the behavior at
any time.

• Continuous models use functional relations between system variables and fac-
tors. A typical way to represent them are the di�erential equations.

• On the other hand, if variables are not modeled at any moment. It is to say,
time it is measured at isolated instances. Then the model is called discrete. In
this case, the laws use logical and recurrence relations of variables.

Another classi�cation of models is related with the level of certainty of the vari-
ables and the answers of the model, and with the completeness of the model. Models
are divided into deterministic, stochastic ([112]) and non-deterministic.

De�nition 1.6 Deterministic, Stochastic and non deterministic Models.

• A model is called deterministic if the system variables are uniquely determined
by the factor variables.

• In opposite case, the model can be stochastic or non-deterministic. A model
is called stochastic when the possibility of obtaining di�erent answers to the
same factor values is part of the model. It is to say the system variables values
are described by probability distributions.

• One says that a model is non-deterministic (ND) if the fact of obtaining dif-
ferent answers is not modeled.

An special class of models are the Hybrid models, that combine di�erent types.
The so called Hybrid systems are dynamic systems that respond to both continuous
and discrete factors. An example is given by di�erential equations with discontinu-
ous right hand, with applications in biological networks ([39]; [42]; [87]; [83]).

The key challenge is to have a modeling framework capable of integrating in
a non-ambiguous way di�erent types of models such as continuous and discrete;
deterministic, stochastic and non deterministic happening within di�erent timescales
and with hierarchical levels.

In hierarchical approach of Systems Biology, a system is modeled de�ning their
components and the relations between them ([78]). A model is de�ned as being
composed of sub-models. Base formalisms capable of including the semantics of a
wide variety of languages are used to de�ne hybrid models ([13], [47], [86]) of the
hierarchical system. In the last years research studies about reusability of models
have been vigorous ([109]), searching how to de�ne and simulate composed models
in an unambiguous way ([33]).

1.1.1 Fitting biological models

Models try to accurately represent biological reality, by using empirical observations
and knowledge. Consequently the notion of model is strongly linked to the obser-
vations of the reality that one wants to represent, but the observations are limited.
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One wants to build models that are valid to explain the system in general conditions
without testing it on all the conditions. The observations that are used to build the
model are called training data. The larger the training data, the more accurate the
model, but too much training data can leads to over�tting. To avoid this problem
a statistical technique is to validate the model on other data set called validation
data, one imposes that the model �ts the validation data.

Techniques to correct the model with the validation data exists too. Machine
learning is the scienti�c discipline about the design and development of learning
systems that allows to learn from the data ([23]).

The process of construction of models can be divided in �ve steps:

1 Collection of experimental data.

2 Exploratory data analysis.

3 Selection of model type.

4 Building the model: tuning parameters according to training data.

5 Generalization of the model.

One starts by obtaining the experimental observations (step 1). They correspond
to tuples of system variables and factors values that will be used to characterize
the system. The system variables are the measures that the model explain and
the factor variables are the measures used by the model to explain them. The
�eld called Experimental design studies how one plans experiments to consider the
combinations of factors with economy ([81]).

The experimental data is a set with the form:

{xik : i = 1, . . . , N, and k = 1, . . . , l,

where we consider N individuals (called observations too) and l variables (called
features too).

A important part of the process is Exploratory data analysis (step 2, [105]). Here,
one pre-processes the data and selects the �nal system variables (feature selection).
Between the preprocessing techniques, one uses outlier removal to eliminate obser-
vations with anomalous or spurious behavior (called outliers).

In many practical situations the data must be �xed to avoid that features with
superior values scales have a over-estimated in�uence on the model. The typical way
to correct this is by normalizing the features according to their means and variance.
One can use a linear method of normalization, where the data is supposed to be
distributed symmetrically around the mean, or it is possible to transform the data
by applying logarithmic, exponential, trigonometric or more complicated functions
before normalization (such as softmax scaling, [105]).

In feature selection or reduction is reduced the number of variables, by elimi-
nation or generation of combined variables. A large number of variables produces
redundant information, that may contribute to make the model more complex. To
more considered features more model parameters, and more di�cult to generalize.
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One way to reduce variables is based on statistical hypothesis testing. One elim-
inates the factors whose e�ect on system variables is not statistically signi�cant,
and the system variables with behavior too similar. In this exploratory step, hy-
pothetical relations between system variables and factors are also analyzed. If it
is bene�cial for the future model, one detects simple relations between factors to
reduce them, such as by replacing them by linear combinations of original factors
(Principal Components Analysis: PCA, [105]).

The chosen model, result of step 3, is a consequence of the previous exploratory
step. It can be automated to use known function such as polynomials, exponential
and trigonometrical functions or others as needed by the researcher.

After the type of model has been decided, to obtain the model it is necessary
to adjust the parameters or coe�cients of the model (step 4). The parameters
are obtained by applying the model on training data, the parameters are tuned to
accurately �t the training data.

The last phase (step 5) is the generalization of the model. Since the process
of construction uses a limited set of training data, to obtain general models it is
necessary to use post-processing techniques. The model is evaluated and, if it is
possible, corrected too. In the evaluation process of the model, one studies its
performance on general data. The typical form to proceed is to test the model
on not-used observations (validation data). The representativity of training and
validation data are essential to obtain more general models.

One can use techniques to repair models with the inclusion of new experimental
observations (Machine learning, [23]). With these techniques the process of model-
ing becomes iterative.

1.1.2 Model speci�cations

With respect to the form in which modular biological models are represented there
are di�erent alternatives. For biochemical reactions models, governed by temporal
di�erential equations, the most popular abstraction is SBML that de�nes a machine-
readable format ([56]) for mechanistic kinetic models. Last version of SBML (Level
3) also allows stochastic and discontinuous transitions by including the notion of
event ([56]).

Here we used BioRica: a high-level modeling framework that integrates discrete,
continuous, stochastic, non-deterministic and timed behaviors in a non-ambiguous
way allowing multi-scale dynamics, composition of models, inclusion of SBML mod-
els, and hierarchical relations. The work here presented contributed to the devel-
opment of BioRica, that currently allows continuous dynamics, such as di�erential
equations systems, and hybrid systems with interactions between continuous and
discrete dynamics. More details in section 4.4.
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1.2 Composition and Hierarchy challenges

1.2.1 Modularity and Hierarchy of biological systems

The human understanding of Biology is modular. Most biological functions are
obtained as the result of many interacting processes.

De�nition 1.7 Module. We consider a module to be any interacting entity forming
part of a system ([22], case of cell biology: [49]). One talks of functional module
when the module has a function associated.

To explain its behavior, one associates a model to describe each module. Examples
of functional modules are those for protein synthesis, DNA replication, glycolysis
and other metabolic pathways ([89, 77]).Two questions arise:

1. Is the biology modular?

2. How build/detect modules?

At a cellular level modularity is intrinsically related with evolution, one talks
about evolutionary modules ([22]).

Modules seem to exist naturally in biological systems. Some modules have been
reconstituted in vitro and other ones theoretically modeled with success. In silico
reconstruction of the yeast protein-protein interaction network, con�rmed experi-
mentally, has demonstrated the existence of particular proteins that interact with
many partners to connect di�erent biological processes ([48]). Another fact is that
concepts needed for understanding biological systems, such as translation, inhibition
or adaptation, arise from interactions among components ([22]). Another one is the
robust functioning of modular models of biochemical networks ([65],[66]), that seems
to be related to structural stability. In a higher biological level such as physiology,
the modular approach has been useful to simulate human answers to changes of
pressure or other stimuli, and to develop medicines to control these responses ([45],
[46], [106], Figure 1.1).

The detection of modules many times is non-trivial. To represent a system with
interacting modules we must decide what elements act in coordinate way to group
them, that is to say we must de�ne modules ([49, 88]). Essentially a module is a
entity whose function is separable from those of other modules. To build modules
we need to identify the functions, the elements that participate in them and how the
interactions with other functions work. There are many factors to consider, such as
the existence of hierarchy levels, speci�c and general functions, and the capacity of
decomposing higher-level properties of the system into properties of modules.

It is in the construction of modular models of biological systems that synthetic
sciences, Mathematics, Computer Science and Engineering, play a fundamental role
together with strong interactions with experimental and theoretical biology. There
exists a relative consensus about considering hierarchical de�nitions of modules. In
a hierarchical model there are de�ned several levels of complexity, the modules are
de�ned by groups of variables and parameters in one level that are lumped together
to form the elements of the high level of complexity. Consequently, a hierarchical
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Figure 1.1: Guyton model [46]. The system is composed by 18 interconnected
modules, each one modeling a di�erent function associated with the human cir-
culatory physiology. Systems of di�erential equations, DAEs and other models
are used in each module.

models could include the levels: molecule-cell-tissue-organ-organism-population of
a biological system.

There exists a set of tools have been used in di�erent cases to implement the
notion of module. They can built, among many methodologies, by analyzing the
input-output responses of the interaction graph of the system, or grouping together
nodes whose variations have comparable timescales ([49, 88]). Clustering tools have
been used in some studies. In protein-protein interaction networks modules are de-
�ned by statistically analyzing topological properties like connectivity and the e�ect
of remove proteins of the network. It is studied in silico in the modeled network, and
in vivo with knockouts of genes ([89, 48]). With the mathematical notion of modu-
larity, one quanti�es the quality of a division of a network by assigning high values
to those in which there are dense connections between the nodes within modules
but only sparse connections between di�erent modules ([52, 114]).

To study the quality of the modular separation one can analyze if global model
properties are inherited from the modules. One would want to ensure properties
such as stability and robustness of the model by these properties in its modules
([88]). Sti�ness and timescales must be considered too.
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1.2.2 Sti�ness and timescales

Sti�ness is a property of mathematical equations. It is associated to the capacity of
numerically solving a problem. It is mainly studied in di�erential equations, where
one uses numerical integrators with discrete time steps.

De�nition 1.8 Sti�ness. A equation is sti� if numerical methods for solving it
must use small time intervals to be accurate.

Given a system, it is logical to have equations with di�erent sti�ness levels.
Moreover, the interaction between processes developed in di�erent timescales

produces a problem to solve complex systems. Sometimes, to see the changes in
the behavior it is necessary to compare nearby times, but other times the changes
happen in distant times. Often it is necessary to connect biological functions that
pass in short time intervals with more slow functions.

Both characteristics, di�erent sti�ness levels and timescales, generate a compli-
cation to solve systems. Computation times and accuracy are a�ected. The use of
modules solves in part these problems. If the equations solved by a module are sti�
one uses smaller time intervals only at that module. If each module is capable to
have its own timescale, one improves the representation of the processes of a system.

In fact, sti�ness and timescales can be used as criteria to build or to qualify
modules. Ideally functions at the same module must have similar sti�ness and
timescales.

1.2.3 Composition: its challenges

The act of building a model that is valid for two or more modules is called Compo-
sition.

De�nition 1.9 Composition. Let us consider the modules M1 and M2 (with two
associated models). The composition of M1 and M2 is the model that explain the
behavior of both interacting modules.

An important need to develop science is to be able of reuse it. The advance of
science is based on the reuse, the application and the improvements of the scienti�c
discoveries. As said Isaac Newton, �... If I have seen a little further it is by standing
on the shoulders of Giants.� In the case of building models, we need reuse the
existing models to look beyond.

A good implementation of this concept is essential to take advantage of the mod-
ularity of biological systems to build accurate and complete models. The de�nition
of composition must be su�ciently �exible to be capable of joining modules de�ned
with di�erent types of models, and to reuse modules that have been a-priori de-
�ned. This allows us to learn and to integrate knowledge of diverse type. The model
can be extended and improved by introducing new modules that relates di�erent
functions, or that model behaviors of factors.

Another characteristic that one wishes is the reduction of composed system prop-
erties in properties of modules. That is to say, questions about the global system
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must can be answered by analyzing the modules and the interaction between them.
Ideally by looking the modules it must be easier to answer to functional questions.

According to the observed relation between modularity and Hierarchy, the com-
position must be capable of including hierarchical relations to recover the be part
of relation. It must be possible to go up and down the levels by using reduction
operations that lump together variables and parameters and speci�cation operations
respectively.

The composition must answer coherently to re�nements of its modules. If a
module is re�ned by adding information of its behavior, the composition of this
module with another module must result re�ned. In the opposite direction one want
to check re�nements of composed models by proving re�nements between modules,
this is called Assume-guarantee rules of composition under re�nements.

It is necessary to impose technical requirements to avoid implementation prob-
lems. As explained in section 1.2.2, composition has to be capable of integrating
modules with di�erent sti�ness and timescales.

1.3 Presence of randomness and use of Hybrid

Systems in Biology

Randomness has two reasons to be present in biological models: sampling and in-
complete information ([112]). Models are built by using data samples that allows us
to build and validate them on a fraction of the total population. As we explained
in section 1.1.1 one tries to use representative experimental data to obtain a good
representation of the reality, but this statistical sampling always provokes the so
called sampling error of the model.

The other important error source is the fact that the available information often
is incomplete. Due to obtain biological data often is expensive, one needs to work
with incomplete information. Moreover, the intrinsic unknown nature of some bio-
logical process makes di�cult to predict accurately the behavior. Non-deterministic
and stochastic models allow us to include random decisions.

These facts give space to randomness in Biology. One uses non-deterministic and
stochastic models to include estimations of error and random (or non-deterministic)
decisions.

In addition, one considers Hybrid systems to combine di�erent types of fac-
tor a�ecting a biological system. One uses continuous models to describe gradual
changes over time, discrete models for instantaneous changes, deterministic models
to represent completely predictable behaviors and stochastic models to introduce
randomness. Changes in the conditions of the system, such as levels of nutrients
or environmental conditions can change the behavior laws (equations) of the sys-
tem, or biological facts such as a gene is activated, to be expressed as protein, by a
transcription factor or regulator give power to this approach.

Hybrid systems as we de�ne them here (section 2.1), are one way to perform
this combination. Some applications in biology are shown in [1]. In a recent article
by Al�eri et al ([3]) is used the theory of Hybrid systems to simulate the R−point
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transitions that occur during the cell cycle. Applications of Biotechnology to in-
dustrial processes, such as wine fermentation, are capable of approaching by Hybrid
systems too (section 5).

An important application area is Gene Regulatory Networks (section 6.2). Some
biological facts such as a gene is activated, to be expressed as protein, by a tran-
scription factor or regulator give power to the idea of using hybrid models. In
this thesis (section 6), they are analyzed some hybrid models of Gene Regulatory
Networks with applications in Cell di�erentiation ([36, 96]) and cell division cycle
([83, 40]).Another application area here considered was the modeling of wine fer-
mentation kinetics by reconciling di�erent models ([10], section 5). According to
initial condition levels and temporal phase the system switches between di�erent
modes, to obtain good predictions of its dynamics.

1.4 Outline of this thesis

In Chapter 2 we begin by describing the known elements about hybrid systems,
and the particular case of switched systems in which the continuous dynamics is
described by di�erential equations. We continue by summarizing the theory of
stochastic transition systems, in which the discrete dynamics depend on stochas-
tic decisions and schedulers that solve non-determinism. Finally we explain the
main ideas about composition of models: synchronization of events according to the
theory of transition systems and input-output connections.

In Chapter 3 we present our modeling approach of complex biological systems.
We begin by describing our approach to reuse and reconcile models. We recall the
main arguments to use modular descriptions of biological systems (explained in this
chapter), and present ideas about how to modeling biological systems by hybrid
systems and composition. After that, we formalize the notion of hybrid system: the
discrete dynamics of mode variables is described by stochastic transition systems,
while the e�ect of the mode transitions on the continuous dynamics is described by
coe�cient switches that modify coe�cients of the continuous model, or by strong
switches that change the model itself. We �nish by presenting the guarantees of
our approach, and summarizing the main contributions of this work with respect to
modeling.

In Chapter 4 we present the implementation of our modeling ideas and theo-
ries. In the �rst section we describe the requirements of such a implementation.
After that, we describe the computation steps of the solving process, as a general
schema independent of the implementation used. The next sections are related with
the BioRica framework, which we use for implementing our approach. We explicit
the contributions done in this thesis to the development of BioRica to satisfy the
implementation requirements, and describe the implementation of hybrid systems
with BioRica, the syntax, the semantics and the process of simulation. We �nish
by summarizing the conclusions of this chapter.

In Chapter 5 we apply the approach presented here to modeling, implementing
and simulating the wine fermentation kinetics. We analyze this application as a
particular case of reconciliation of competing models. This hybrid model results
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from the reconciliation of three wine fermentation models ([10]): Coleman ([28]),
Scaglia ([94]) and Pizarro ([85], [92]). For each factor con�guration, one chooses the
model that best �ts the experimental data of three papers: [85], [75] and [79] used as
training. In function of the initial conditions one chooses the model and arriving at
the stable fermentation phase, the model is updated to obtain the best predictions.
The e�ect that produces the level of nutrients on the behavior of the system is
successfully described by switching the model to include competence coe�cients
when the resources are scarce.

In Chapter 6 we apply our approach to cell fate decisions associated with the
formation of speci�c cells. We describe these types of processes by using the theory
of switched systems, reusing and composition of models. The di�erentiation process
is described by a system of di�erential equations, wich is a�ected by regulatory
processes (implemented by reusing SBML models) that switch coe�cients to favor
one or other lineage. We focus in the case of bone and fat formation, in which the
dynamics of the di�erentiation of progenitor cells into osteoblasts and adipocytes
is controlled by the interactions between di�erent processes. With this model, we
want to predict the changes in bone or fat formation by stimulating (or inhibiting)
the Wnt signaling pathway, the PPARγ pathway, the division of progenitor cells,
and the apoptosis of progenitor or osteoblast cells. Based on this, one can analyze
in silico the physiological responses to treatments of bone mass disorders based on
the Wnt signaling pathway, and to explore the e�ciency of new medical strategies
before testing them in animal models.

Finally in Chapter 7 we concludes and discusses the basis, scopes and future
improvements of our work.
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Chapter 2

Preliminaries

Hybrid systems allow us to describe biological systems by including deterministic,
non-deterministic, stochastic, continuous and discrete elements. With this approach
one captures behavior changes by using the theory of Stochastic transition systems.

There are many applications of Hybrid models in other science areas. In modeling
of physical phenomena it is usual to have partial or ordinary di�erential equations
with right hands piecewise de�ned. Some classic examples are heat and wave equa-
tions, where changes in the medium produce hybrid systems ([95, 11]). Hybrid
models are very useful to analyze electronic circuits and electrical networks. Vari-
ables like the current are continues, while switches are real electronic dispositives
([58, 67]).

In Biology, many dynamical systems are represented by ordinary di�erential
equations. Changes in environmental conditions or controlled factors modify the
development of diverse processes, which interact to realize the complex system be-
havior. In biological modeling randomness and non-determinism are common (sec-
tion 1.3).

The non-ambiguous combination of di�erent models by composition allows us to
build complete models. One can reuse and reconcile existing models to obtain more
general models.

2.1 Hybrid Systems

According to our de�nition of Complex Biological Systems (de�nition 1.1), the com-
plexity of biological processes arises not only from the association of many compo-
nents, but from the components too ([64]). One associates components with di�erent
characteristics, properties and laws.

This association of diverse behaviors carries to the use of Hybrid models to
represent biological processes. With the aim of obtaining good modeling, wide
range of models are allowed. The existence of di�erent types of models to explain
connected processes makes to be necessary to de�ne tools to integrate them.

De�nition 2.1 Hybrid systems and models. One talks of Hybrid System if it re-
sponses to both continuous and discrete factors.
Models that include both types of variables are called to be Hybrid models.
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In our case, we are interested in Hybrid dynamic systems. They are described
using a mixture of continuous dynamics, discrete dynamics, and logical relations.
The dependent variables of the system, x = (x1, . . . , xn) ∈ Rn, are called state vari-
ables in analogy with Transition Systems. One considers as factors the continuous
variables u = (u1, . . . , uk) ∈ Rk, and the mode variables mode ∈ M = {1, . . . ,M}.
The values over time of these variables are called respectively the continuous and
discrete dynamics.

Hybrid Systems can be seen from two points of view: function ([18, 100, 104])
and implementation ([50, 60]). The �rst one, called switched systems, focuses in
human comprehension, the second type is more general and focuses in automatic
interpretation. This second approach uses tools of Automata theory and is easy to
understand in terms of Transition Systems theory ([7, 29]). Continuous variables
evolve according to continuous models, but at any time mode changes can change
the de�nition of the continuous model. These changes are called mode transitions
and are considered to be transitions in the sense of Transition Systems theory.

Given an action producing a mode transition, the next mode is chosen according
to transition probabilities and system schedule laws. The conditions that allow
mode transitions are called guards. For each mode, the system evolves in function
of its continuous dynamics. In literature, the discrete dynamics is modeled by
deterministic models, and allowing non-determinism with ambiguous guards. Here
we extend the formal notion of hybrid system to include stochastic behaviors by
considering stochastic transition systems ([29], section 2.2).

Hybrid systems are described using a mixture of continuous, discrete dynamics
and logical relations. The continuous and discrete dynamics interact, so that the
changes in discrete variables provoke changes in continuous models and vice versa.
To de�ne the dynamics of Hybrid Systems it is necessary to also describe interaction
between the continuous and discrete dynamics.

2.1.1 Continuous dynamics

The best known form of dynamic system is a set of ordinary di�erential equations.
In such models, the dynamics of one or more variables (x) is described in a equation
with the form shown in equation 2.1, where the temporal rates of x at time t
are denoted ẋ(t) and called temporal derivatives. So, at any time t the temporal
derivative of each variable xi depends on a function (Fi) of all the values of state
variables x(t) and the values of continuous control variables u(t). One �nds notable
examples in classic mechanics such as the equation of motion, and in biological
systems such as models of two or more populations competing by resources (Lotka-
Volterra equations, [98]).

ẋ(t) = F (x(t), u(t)) (2.1)

The solution of equation 2.1 depends on the initial values of x, called initial con-
ditions. Often it is not possible to obtain solutions with explicit formulas, and one
has to use numerical methods to approximate the solutions at a given time using
iterative schemes.

24



2.1. Hybrid Systems

In addition, when physical or mechanical systems are determined by conservation
laws, such as the conservation of energy or momentum, these systems are modeled
by equation 2.2. The function G is given by algebraic combinations of the state
variables x, derivatives ẋ and continuous control u, which is constrained to be equal
to zero. The model is called di�erential algebraic equations (DAE) ([38]).

G(ẋ(t), x(t), u(t)) = 0 (2.2)

In general DAEs, we can use the form of equation 2.2 to separate the model into a
system of di�erential equations and a set of implicit algebraic constraints (equations
2.3, 2.4). This is done by decomposing the variable x into two variables x and z
([68]). The vector of variables x represents the dependent variables whose deriva-
tives are as in the equation 2.1, while z corresponds to algebraic variables whose
derivatives are not considered.

ẋ(t) = H(x(t), u(t), z(t)) (2.3)

G̃(x(t), u(t), z(t)) = 0 (2.4)

As example, let us consider the Lotka-Volterra equations ([98]) to model two
populations: prey x, and predator y. If we assume that the prey have an unlim-
ited food supply (unlimited proliferation in absence of predator), the dynamics is
described by the set of di�erential equations 2.5-2.6 below:

ẋ(t) = x · (α− β · y) (2.5)

ẏ(t) = −y · (γ − δ · x), where (2.6)

α is the growth rate coe�cient of the prey, β the rate of depredation coe�cient, γ
the predator mortality or emigration coe�cient, and δ is associated to the growth
of the predator population. All of these coe�cients are considered to be positive
constant over time.

One can describes the same system but with limited supply by the DAE system
with di�erential equations 2.7, 2.8 and algebraic constraints (with form 2.4) 2.9,
2.10. The coe�cients β, γ, δ, a, b and F are positive constant; while α and z are
algebraic variables.

ẋ(t) = x · (α− β · y) (2.7)

ẏ(t) = −y · (γ − δ · x) (2.8)

α = k · z (2.9)

a · x+ b · y + z = F (2.10)

The equations 2.9 and 2.10 describe how the growth rate coe�cient decreases if the
rate of food consumption a · x+ b · y is near the allowed rate F .

Partial di�erential equations are also common in many areas of science and
technology. Such models use the form of equation 2.2, but G is allowed to depend
on k−order derivatives of each state variable xi with respect to any of the other
ones xj (i, j ∈ {1, . . . , n}).
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2.1.2 Discrete dynamics

The discrete dynamics is given by the changes over time of the mode variablesmode.
Discrete dynamics can be deterministic, stochastic or non-deterministic. Approaches
from the implementation point of view favor the use of all these possible behaviors.

2.1.3 Interactions between continuous and discrete

dynamics

The way in which continuous and discrete models interact is by switches, which
control changes in the continuous model by modifying the values of coe�cients or
changing the de�nition of the continuous model (F in case of ordinary di�erential
equations as 2.1, and G for DAE or partial di�erential equations with form shown
in equation 2.2). The discrete dynamics of the system, modeling the temporal
evolution of the discrete variables, is determined by such switches. In the same
way that discrete dynamics can be stochastic or non-deterministic, the values of
the discrete factors can provoke switches in the system both stochastically and
non-deterministically. That is to say, given a discrete factor value it switches the
continuous model according to deterministic, stochastic or non-deterministic rules.

At the same time, the values over time of the discrete factors depend on time,
the previous values, and the values of the state variables. Speci�c values of time or
state variables provoke the change in the value of the discrete factors.

2.1.4 Switched Systems

An special type of Hybrid system are the so called Switched Systems ([18, 100]).
Let us consider a Hybrid System whose model has continuous variables x and

discrete variables m. Independent of x, the value of the right hand function F
changes in function of the value of discrete variable m. If for each value element of
S the model change its form, laws, its equations: its con�guration. We will say in
these cases, that changes in discrete variables values carry switches between model
con�gurations, the Hybrid system is called Switched System.

Each model con�guration is called a mode, the set M corresponds to the set of
modes. To be capable of simulating it, generally it is assumed that there are only
�nite switches in �nite time.

Switched Systems, associated to di�erential equations 2.1, have the form of the
equation 2.11.

ẋ(t) = Fm(t)(x(t), u(t)), (2.11)

where Fm(t) depends on the mode m(t). It is to say, m de�nes the mode dynamics
of the system (Figure 2.1).

The dynamics of m can be represented by the equation 2.12

m(t) = G(x(t), u(t),m(t−)),where G : Rn × Rk ×M −→M (2.12)

Starting at (x(0) = x0, u(0) = u0,m(0) = i ∈ M) the continuous trajectory
evolves over time according to ẋ(t) = Fi(x(t), u(t)), at the �rst time tj > 0 where
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∃j ∈ M : (x(·), u(·)) ∈ G(·, ·, i)−1(j) then the variables become (x(tj), u(tj), j) and
the process continues.

Other approach to represent switched systems is by a set of Di�erential Algebraic
Equations (DAEs). This implicit representation takes the form of Equation 2.13.

0 = G̃(xr(t), ur(t),m(t)) (2.13)

The variables xr and ur are reduced versions of x and u. For each possible value
of m(t) there is di�erent DAE representing the system dynamics. The implicit
equation 2.13 de�nes the discrete dynamics. It has a solution for each m(t). The
equation 2.1 gives the continuous dynamics.

x=F
1
(x,u) ... .

x=F
2
(x,u)

 .
x=F

|M|
(x,u)

 .

s=v
v=f

1
(u,v)

s=v
v=f

2
(u,v)

s=v
v=f

3
(u,v)

s=v
v=f

4
(u,v)

 .
 .  .

 .  .
 .  .

 .

General switched model

Switched model: Motion of a car

A)

B)

s: position
v: velocity
u: throttle angle
g: gear (1,2,3, 4)

Figure 2.1: A): The dynamics of a Switched System. The model moves between
di�erent modes, nodes in the picture, de�ning its discrete dynamics. At each
mode, the system changes its continuous dynamics. B): The Switched System

of the motion of a car. The continuous dynamics, represented by the evolution
of the variables position s and velocity v, changes its laws according to the
engaged gear.

A very intuitive example of switched system is the Motion of an automobile with
a manual gearbox ([100], Figure 2.1). This system is characterized by two continuous
variables: velocity and position. The manner in which these variables responds to
the throttle angle depends on the engaged gear. In each mode of the engaged gear
the dynamics evolve in some continuous speci�c way. The dynamics of this system
is hybrid in its nature.

2.2 Stochastic Transition Systems

We use the theory of Stochastic transition systems (STS ) to describe transitions in
Hybrid systems (section 2.1). Introduced by De Alfaro ([29]), STS cover the need
of modeling dynamics of biological systems with inclusion of uncertainty and the
presence of uncontrolled external factors. The implemented notions of Composition
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and Synchronization allow us to de�ne systems by composing interacting modules
and synchronizing actions.

The state of the system in a given time is represented by the value of its ob-
servable (interface and external) state variables. The system evolves over time by
changing its state. The transitions between states are caused by actions and spent
time. One studies the stochastic behaviors of the system over time, depending on
the actions at each state and the transition chosen for each action.

STS correspond to Continuous Time Markov Decision Process (CTMDP) ([15],
section 2.2.3) in that one uses randomized schedulers to solve non-determinism in
simulations. The concepts were extended to continuous domains by using probability
measures on sub set of states and actions ([25]). Let us begin with the theory.

De�nition 2.2 Transition System. A Transition System S ([7]) is a tuple
(Q,Q0, A,−→) verifying:

1. Q is a set (commonly �nite) of states.

2. Q0 ⊂ Q is the set of possible initial states.

3. A is a set of actions.

4. −→ ⊂ (Q× A×Q) is the set of transitions.

One denotes q
a−→ q′ if (q, a, q′) ∈−→. One de�nes the set of actions available at the

state q as A(q) = {a ∈ A : ∃q′withq a−→ q′}.

De�nition 2.3 Executions and observable executions. An execution is a sequence
σ = q0a0q1 . . . qnanqn+1, . . .. If ∀i > 0 (qi, ai, qi+1) ∈−→ one says that σ = q0

a0−→
q1, . . . , qn

an−→ qn+1, . . . is observable in S.

De�nition 2.4 Sets of executions. Exec, Exec∗, Execw denote the set of execu-
tions, �nite executions ending with an state, and in�nite executions respectively.

De�nition 2.5 Traces. Sequences of states are called Q−traces, of actions
A−traces.

The �rst state of a execution σ is denoted first(σ). The last one, if the execution
is �nite, is last(σ).

In the example (Figure 2.2), the set of states is Q = {q0, q1, q2}, q0 is the (unique)
initial state, the set of actions is A = {s, a, e}, and the transitions of the system
are (q0, s, q0), (q0, a, q1), (q1, e, q0) and (q1, e, q2). An observable �nite execution is
q0sq0aq1 with �nite trace of actions sa.

If ones assigns probabilities to the transitions, it is called a Stochastic Transition
System ([29]).

De�nition 2.6 Stochastic Transition System. One says that S is an Stochastic
Transition System if it is a transition system (defnition 2.2) that ful�lls 5 and 6.

5. An execution of S is chosen to start at q ∈ Q0 with probability P0(q).
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Figure 2.2: Example of Transition system for cell division. Circles represent
states, black arrows transitions. Transitions are labeled by actions, but di�er-
ent transitions can have the same label to represent that an action may produce
many responses. The initial action selects the initial state of the system, al-
ways begin at q0. States: q0, q1, q2, transitions: (q0, s, q0), (q0, a, q1), (q1, e, q0)
and (q1, e, q2). Red arrows are inherent idle transitions that are added to the
system to assure in�nite executions, and to de�ne composition.

6. Given q ∈ Q, a ∈ A, the probability to choose to continue the state r ∈ Q,
verifying (q, a, r) ∈−→, is Pa(q, r).

In the example 2.2, for the state q1 we see that given the action e, two successors
q0 and q2 are possible. If we add probabilities to each option we have an Stochastic
Transition System. It is not necessary to de�ne probabilities to start the execution
because only q0 was considered as initial state.

2.2.1 Randomness and non-determinism

We saw that randomness is present in the de�nition of Stochastic Transition Sys-
tems (de�nition 2.6): given an state and an action there are two or more possible
transitions to continue the execution (Figure 2.2, state q1 and action e).

The non-determinism arises from the fact that given an state q of an �nite
observable execution, many actions could be available. By de�nition, this fact is
not probabilistically modeled a priori and hence, to simulate executions, one must
solve it. In the example of Figure 2.2, given the state q0 it could select the action s
or the action a with di�erent successors.

A way of solving the non-determinism is to introduce the concept of Scheduler.
The Scheduler, [113], speci�es the criteria to choose actions. They can be determin-
istic or randomized, with memory or not. With these elements, a �rst de�nition of
randomized scheduler is:

De�nition 2.7 Randomized Scheduler. A (randomized) scheduler is a function
D : Exec∗ −→ Distr(A) verifying that ∀σ ∈ Exec∗ supp(D(σ)) = A(last(σ)).

With the aim of having in�nite executions one add an implicit idle transition
(that stay in the state) to each state of the Stochastic Transition System. Con-
sequently, an STS produces a Markov Decision Process (de�nition 2.8) for each
non-determinism solution.
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De�nition 2.8 Markov Decision Processes generated by Stochastic Transition Sys-
tems. If for each q ∈ Q we impose that A(q), the set of actions available at q, is
non-empty for all q ∈ Q, the triple Π = (Q,A, P ) (with P given by Pa(q, r) the
probability of a transition from q to r when action a is selected) is called a Markov
Decision Process (MDP).

Let us consider our example (Figure 2.2) and the scheduler that selects after the
state q0 the action s with probability 0.5 and the action a with probability 0.5. This
scheduler allows us to obtain executions of the system and it does not have memory:
it is not important how one arrives to q0 to decide the next action. We say that
a scheduler D is memoryless if it can be written as function from Q to Distr(Q),
as in this case. A scheduler is deterministic if it returns a Dirac distribution for
any execution, that is to say after each execution it is assigned an unique action to
continue (for example if in q0 the scheduler always selects the actions a).

With these elements one can simulates the Transition System, whose results
depends of the scheduler that is chosen. But, what does the dynamics of the system
represent? what do the states represent? We have not established the relation
between a Transition System and Dynamic models.

2.2.2 Dynamics of system variables: Probabilistic modules

In the original approach of Transition Systems ([7]), one associates states with
values of variables. Given a Transition System S = (Q,Q0, A,−→), each state in
Q represents a valuation of the system variables. With this interpretation, state
transitions are changes in system variables values.

De�nition 2.9 Typed state variables. It is considered the set x of typed state
variables to be a set of names of variables, each one of them with �nite domain.
Q is the �nite set of interpretations of X, at each state q ∈ Q the value of each
variable x ∈ X can be obtained. The set Q0 is written as {q ∈ Q : q satis�es Θ},
where Θ is an assertion over X. Consequently, actions correspond to changes in the
system variables.

Let us consider the example of Figure 2.2, and the following interpretation of states:
Variables: N : number of cells, A : activity level, G : growth.
States (valuations of variables):

• q0 = {A = 0, N = 1, G ∈ [0, 1]},

• q1 = {A = 1, N = 1, G ∈ [0, 1]},

• q2 = {A = 1, N = 2, G ∈ [0, 1]}.

Given a system, some variables are modeled and others, representing factors with
unknown behavior, are not controlled. Continuing with our example (Figure
2.2), let us consider that the growth G is not controlled while A and N are
part of the model, but only N can be accessed by other Transition System (A is
private or internal). These considerations are denoted ext = {G}, intf = {N}
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and priv = {A}. The interface intf and external ext variables form the set of
observable variables, obs = {N,G} in our example, while private and interface
variables form the set of controlled variables, cont = {A,N}.

So, we can consider the following Interpretation of the actions:

• initial action: ∅ −→ {N := 1, A := 0},

• s : {G,N,A} −→ if(G ·N < 0.5) {N := N,A := A},

• a : {G,N,A} −→ if(A = 0) {N := N,A := 1},

• e : {G,N,A} −→ if(A = 1, N = 1) {N := N + 1, A := A} ∨ {N :=
N,A := 0} each option with probability 0.5.

In our example, only the action e is strictly probabilistic. The action s includes a
dependence on the external variable G, not controlled by the model, and at q0 both
actions s and a could be possible. The action initial action selects the �rst state,
the �rst valuation of variables that in this case is not probabilistic. As the external
variables are not controlled by the system, the scheduler that selects the next action
cannot depend on private variables of the module. In order to correctly de�ne
schedulers on composition of modules, the controlled variables are partitioned into
atoms (de�nition 2.10) with associated read variables. An Stochastic Transition
System, with these interpretations of states and actions is called a Probabilistic
module (de�nition 2.11).

De�nition 2.10 Probabilistic X-atom. A probabilistic atom N consists of a set
read(N) ⊆ X of read variables, ctr(N) ⊆ X of controlled variables, init(N) an
initial action from ∅ to ctr(N), and an update action upd(N) from read(N) to
ctr(N).

De�nition 2.11 Probabilistic module. A probabilistic module P consists of two
parts:

• Declaration: variables X(P ) partitioned into: ext(P ) the external variables,
intf(P ) the interface variables, and priv(P ) the private variables.

• Body: �nite set atoms(P ) of probabilistic X(P )-atoms such that:

1. intf(P ) ∪ priv(P ) =
⋃
a∈atoms(P ) ctr(a),

2. ∀a1, a2 ∈ atoms(P ) : ctr(a1) ∩ ctr(a2) = ∅.

In summary, for each module we need a scheduler to simulate the environment
(the initial and updated values for the external variables), and a scheduler for each
atom to chose the initial values and the dynamics of the variables controlled by that
atom (more details in subsection 2.3.1).
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2.2.3 Inclusion of Time: Continuous-Time Markov Decision

Process

Although with these elements one can study the dynamics of the system, an im-
portant element is not considered: the advance of time. To each transition one can
associates a unity of time, but it is logical to think that not all the transitions use
the same quantity of time.

The usual way to include time is by considering transition times and to link the
probabilities of successors with the time ([29], [113]).

De�nition 2.12 Stochastic Transition System as Timed Probabilistic System.
If we add to the Markov Decision Process Π = (Q,A, P ), the set of possible initial
states Q0 and a labeling time function time, where time(q, a) is a non-negative value
representing the expected amount of time spent at q when action a ∈ A(q) is chosen,
Π = (Q,A, P,Q0, time) is a Timed Probabilistic System (TPS).

According to [29], some transitions can be immediate and others delayed. The
�rst ones have priority and do not spend time, the last ones have associated strictly
positive times of transition.

To relate spent times with the probability of transitions P , one considers that
for each action the spent time of transitions has exponential distribution. That is
to say, one includes as part of the model a three-dimensional rate matrix R.

De�nition 2.13 Rate matrix. Is a three-dimensional matrix that satis�es:

1 R : Q× A×Q −→ R+.

2 Given an state q and an selected action a, the probability that any of the
successors is reached within time t is

1− e−R(q,a,Q)·t, where R(q, a,Q) =
∑
r∈Q

R(q, a, r)

3 Given an state q and a chosen action a, the transition is selected according to
competition between possibilities. That is to say, the probability to chose the
successor r is Pa(q, r) = R(q,a,r)

R(q,a,Q)
.

In this case Π = (Q,A,R, P0) is called a Continuous-Time Markov Decision
Process (CTMDP), object that has been strongly studied in Probabilities ([15]).

Exponential distributions describe the time between events, in a process in which
the events occur continuously and independently at a constant average rate (Poisson
process, [112]). Given an state and an action, the properties 2 and 3 are direct
consequences of supposing that the transition options are time independent and
exponentially distributed.
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In our example, Figure 2.2, by adding the rate matrix R to the model we have
that

Pe(q1, q0) =
R(q1, e, q0)

R(q1, e, q0) +R(q1, e, q2)

Pe(q1, q2) =
R(q1, e, q2)

R(q1, e, q0) +R(q1, e, q2)

According to property 2 in de�nition 2.13, the soujourn time in q ∈ Q under an
action a is determined by a exponential distribution that includes all the probable
transitions to leave q by the action a. In our example, for the state q1 and the action
e the soujourn time has exponential distribution with rate R(q1, e, q0) +R(q1, e, q2).
The probability to reach an successor within time t is 1− e−((R(q1,e,q0)+R(q1,e,q2)))·t.

2.2.4 Schedulers and Timed executions

As we explained in section 2.2.1, the existing non-determinism in Transition Systems
is solved by randomized schedulers. A randomized scheduler assigns probabilities to
the possible actions given a �nite execution. When these probabilities are chosen,
one can completely simulate the dynamics of the system.

The dynamic of the model includes the time, consequently one can add the
transition times to the notion of execution of a Stochastic Transition System.

De�nition 2.14 Timed executions. A timed execution is a possibly in�nite se-
quence of states, actions and time values σ = q0a0t0q1, . . . , qnantnqn+1, . . .. The set
of timed executions, �nite timed executions ending with an state, and in�nite timed
executions are denoted Σ, Σ∗, Σw respectively. Given a stochastic transition system
one says that a timed execution is observable if it can be obtained with probability
not 0 by simulating the system.

In our example, let us consider exponential distributions for spent times as is
shown in the Figure 2.3.

In addition, let us consider a randomized scheduler D that solves the non-
determinism in q0 by selecting both the actions a and e with the same probabil-
ity (0.5). On other states, the scheduler answers with the unique possible action
(with probability 1). This scheduler is memoryless, it depends only on the current
state. Given T > 0, we will compute the probability to obtain the �nite execu-
tion q0aq1eq2 with a total spent time lower than T . It corresponds to obtaining
P ({q0at1q1et2q2 : t1 + t2 6 T}), assuming the scheduler to be D. At computing:

P ({q0at1q1et2q2 : t1 + t2 6 T}) = D(q0)(a)Pa(q0, q1)D(q0aq1)(e)Pe(q1, q2)P (t1 + t2 6 T )

= 0.5 · 1 · 1 · 1

1 + 1
·
∫ T

t1=0

∫ T−t1

t2=0

2e−2t1 · 2e−2t2dt2dt1

= 0.25·
(
1− (1 + 2T )e−2T

)
For example, if T = 1 the probability is 0.25 · (1− 3e−2) ≈ 0.1485.
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Figure 2.3: Example of Stochastic transition system. The presence of ran-
domness (two possible successors of q1 under the action e: q0 and q2) and the
time advance are modeled by considering that spent time of transitions has
exponential distribution. We show the rate values R at each arrow between
parenthesis. The non-determinism, associated to have two or more actions pos-
sible at the same state (case of q0), can be solved by a randomized scheduler

that assigns them probabilities.

2.2.5 Extensions of Stochastic Transition Systems

To continue we explore some of the main existing extensions of Stochastic Transition
Systems, that generalize the notion of scheduler and the states and actions domains.

It is possible to extend the notion of scheduler to consider that the selection of
actions depends not only on previous states and actions, but also on the transition
times that have been used ([25, 113]). It corresponds to functions from �nite timed
executions (Σ∗) to probability measures on actions (Distr(A))

De�nition 2.15 Randomized timed history-dependent scheduler. A randomized
timed history-dependent scheduler is a function D : Σ∗ −→ Distr(A) verifying that
∀σ ∈ Σ∗ supp(D(σ)) = A(last(σ)).

In the Figure 2.4, we show part of a transition system. To go out from q1, there
are two possible actions: a and b. Let us consider the scheduler D2 such that:

D2(q0ctq1) =

{
δa if t ∈ V
δb otherwise,

where δa is the distribution that selects the action a with probability 1, analogously
δb for the action b. This scheduler satis�es the last de�nition, depending explicitly
on time.

Thus, given this scheduler the probability to reach q3 in two steps is

P (t ∈ V ) · Pa(q1, q3) =

∫
t∈V

2e−2tdt · 1

2
,

that is de�ned if the set V is measurable in R+. Consequently, to include time
dependencies in the scheduler de�nition is necessary to have considerations on mea-
surability.

Another extension of scheduler arises from observing that an important element
of non-determinism is not being considered: given an action, maybe one does not
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Figure 2.4: Stochastic Transition system with inclusion of rate values for spent
times (between parenthesis). At state q1 two actions, a or b.

know the probability of each transition. In our example (Figure 2.2), given the
action e after q1 the probability to obtain each successor (q0 or q2 in this case) could
be unknown (Pe(q1, q0) and Pe(q1, q2) with Stochastic Transition Systems notation,
or R and if we work with exponential distributions of transition times). We need a
de�nition of scheduler that considers this case too.

In [25] is introduced a wider de�nition of Stochastic Transition System that cor-
rects this last problem in the scheduler de�nition together with extending stochastic
transition systems to continuous spaces of states and actions. Here, we modi�ed the
de�nitions to allow a measurable set of possible initial states.

De�nition 2.16 Stochastic Transition Systems with continuous spaces. A Stochas-
tic Transition System is a tuple

(
(Q,FQ), Q0, (A,FA),−→

)
where:

• (Q,FQ) is the analytic space of states,

• Q0 ∈ FQ is the set of possible initial states,

• (A,FA) is the the analytic space of actions,

• −→⊂ T = Q× A×Dist(Q,FQ) is the set of probabilistic transitions.

The fact that in a general model variables can take a continuity of values gives
sense to allowing continuous states domains. The possibility of having continuous
action spaces links the time to the associated action. It allows us to have models
with general temporal distributions of transition times. But, as a consequence of
this extension, the computations become more di�cult.

The main analysis di�erence is the way to measure probability of executions,
which appears the notion ofmeasure space of transitions and the scheduler de�nition
is adapted to the continuous case.

De�nition 2.17 Measure space of transitions. Given the set T = Q × A ×
Dist(Q,FQ), it is de�ned the σ−algebra FT = FQ⊗FA⊗FDist(Q,FQ). Thus, (T, FT )
is a measure space.
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FT is the set of measurable transitions. It is formed by the product of measurable
sets of states, actions and probability measures that characterize the transitions.
The set of transitions enabled from a state q is T (q) = {(r, a, µ) ∈−→ withr = q}.
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1

e
0 q*
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Figure 2.5: Stochastic Transition system with continuous space of states. The
action e of our old example (Figure 2.2) was decomposed into two actions e0

and e1. The action e0 has an in�nity of possible transitions: any q∗ ∈ {{A =
1, N = 1, G ∈ [0, 1]} with G given byµ}.

In Figure 2.5 we show a new stochastic transition system, in this example the
action e of our old example (Figure 2.2) is decomposed into two actions e0 and e1.
Let us consider that the states have the following interpretations:

• q0 =
{
A = 0, N = 1, G ∈ [0, 1]

}
• q1 =

{
A = 1, N = 1, G ∈ [0, 1]

}
• q∗ ∈

{
{A = 1, N = 1, G ∈ [0, 1]}, with G given by the measure µ

}
• q2 =

{
A = 1, N = 2, G ∈ [0, 1]

}
So, the values of G are chosen by the probability measure µ. We have that

P (q2|q1) =

∫
[0,1]

P (q2|G)µ(dG)

Let suppose that the action e1 has the following behavior (with V a known subset
of [0, 1]):

P
(
q2 | q∗ = {A = 1, N = 1, G ∈ [0, 1]}

)
=

{
1 if G ∈ V
0 otherwise,

With this, P (q2|q1) =
∫
V
µ(dG) = µ(V ), and we need V measurable in [0, 1].

As in discrete case, the way to solve non-determinism is by using the scheduler
notion (de�nition 2.18). Given a �nite execution (where the time can be included
in selected actions), it returns a probability measure over the set of probabilistic
transitions T enabled from the last visited state.

De�nition 2.18 Scheduler (for STSs with continuous spaces). D : Exec∗ −→
Dist(T, FT ) such that ∀σ ∈ Exec∗, supp(D(σ)) = T (last(σ))
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2.2.6 Measurability of schedulers and executions

In the previous section (2.2.5) we showed evidence for the need of including notions
of measurability to analyze schedulers and executions. It is not possible to compute
probabilities to any scheduler and execution. It is necessary to de�ne measurable
schedulers, measurable probabilistic executions and the relations between these ele-
ments. Although the discrete case of [113] can be seen as a sub case of the general
stochastic transition systems of [25], for simplicity we will explain in detail the
discrete approach.

When one considers that schedulers can depend on previous transition times,
it is necessary to impose measurability conditions to schedulers to be capable of
computing probabilities of executions or timed executions (see section 2.2.5). With
de�nition 2.19, the scheduler D2 in previous sub-section is measurable if and only
if V is measurable in R+ (i.e. i� V ∈ Borel).

De�nition 2.19 Measurability of timed history-dependent schedulers. One will
say that a timed history-dependent scheduler is measurable if ∀L ∈ FA, D(·, L) :
Exec∗ −→ [0, 1] (where D(·, L) is de�ned by D(σ, L) = D(σ)(L)) is a measurable
function.

To de�ne measurability of timed executions, one starts by de�ning the measur-
able sets of a given �nite length, the measurable sets of any length and �nally one
joins the sets (de�nition 2.20).

De�nition 2.20 Measurability on sets of timed executions.

• As Q and A are considered to be �nite, for them one uses the powerset σ−
algebras. To measure the time it is considered the Borel σ−algebra.

• Thus, for the timed executions with length n, one generates FΣn =
FQ×(A×R+×Q)n with the rectangles Q0 ×M1 × . . .×Mn, where Q0 ∈ FQ,Mi ∈
FA×R+×Q.

• The generators of FΣw are the cylinders with base a measurable rectangle in Σk,
with k ∈ N. It is to say, it is generated by the sets R(Λ) = {σ ∈ Σw : σk ∈ R}
where R is a rectangle in F k

Σ and σk is the pre�x of length k of σ.

• Finally, for the arbitrary timed executions it is used the standard σ−algebra
(FΣ) formed by the disjoint union of the families {FΣn}n∈N and FΣw .

In the case of Stochastic Transition Systems with continuous spaces ([25]), the
notion of measurability of executions is similar, but measurability of schedulers is a
little more di�cult to understand (de�nition 2.21).

De�nition 2.21 Measurability on set of executions with continuous spaces of states
and actions.

• As Q and A are considered to be continuous, one considers Λ = Q0 × A1 ×
Q1 × . . .× An ×Qn the sequences of measurable sets (Qi ∈ FQ, Aj ∈ FA with
i ∈ {0, . . . , n}, j ∈ {1, . . . , n}).
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• The set of �nite executions FExec∗ is the σ−algebra generated by all the the
sets Λ, with n ∈ N.

• Thus, the cylinders with base Λ are de�ned as

CΛ = {q0a1q1 . . . anqnα} : ∀i ∈ {0, . . . , n}qi ∈ Qi,∀i ∈ {1, . . . , n}ai ∈ Ai, α ∈ Exec

• The set of measurable set of executions FExec is the σ−algebra generated by
CΛ.

To clarify concepts, let us consider the example of Figure 2.5 (section 2.2.5) with
the successor of q∗ chosen by a scheduler D3 de�ned such that:

D3(. . . q∗) =

{
q2 if q∗ ∈ V
q0 otherwise,

where V is a subset of Q.
For this scheduler, the probability P (q2|q1) =

∫
V
µ(dG) = µ(V ), and we need V

measurable in [0, 1] to be capable to compute it.
One de�nes measurability of Scheduler for Stochastic Transition Systems with

continuous spaces to relate measurable executions with measurable schedulers, gen-
eralizing the example.

De�nition 2.22 Measurability of schedulers, �attening of a scheduler.

• Given a scheduler (for Stochastic Transition Systems with continuous spaces)
D, and σ ∈ Exec∗ a �nite execution. The probability measure µD(σ) over
((A×Q), FA ⊗ FQ) de�ned ∀A ∈ FA, X ∈ FQ by:

µD(σ)(A×X) =

∫
(q,a,µ)∈T

1A(a)µ(X)dD(σ),

is called the �attening of D in σ.

• A scheduler is measurable if its �attening is a measurable as function from
(Exec∗, FExec∗) to (Dist(A×Q), FDist(A×Q))

The �attening corresponds to the combined transition probability of actions and
states to continue the executions. That is to say, it measures the probability of
continuing with each set in (FA⊗FQ) (actions and probabilities) after the execution
σ and with the scheduler D.

In our example, µD3(·) is a measurable function if and only if

µ−1
D3(·)(1V ({q2})) = V is measurable.

Thus, D3 is a measurable scheduler if and only if V is measurable.
To link measurable schedulers with measurable executions, one introduces the

notion of probabilistic execution and its measurability.

De�nition 2.23 Probabilistic execution and measurability.
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• Given an stochastic transition system (with continuous spaces) S and D
a scheduler. The probabilistic execution PS,D for S and D is the tuple
(Exec∗, FA×Q, µ), where µ : Exec∗ × FA×Q −→ [0, 1] such that for each
σ ∈ Exec∗ µ(σ, ·) de�ned by µD(σ) is a probability measure over A×Q.

• A probabilistic execution PS,D = (Exec∗, FA×Q, µ) is measurable if µ(·, X) is a
measurable function for each X ∈ FA×Q.

Consequently, a probabilistic execution de�nes the transitions probabilities in-
duced by a scheduler and a �nite execution.

In this case, from the measurability de�nitions one obtains the following mea-
surability relation:

Theorem 2.1 Given an stochastic transition system (with continuous spaces) S,
and D a scheduler. D is measurable if an only if PS,D is measurable.

2.3 Composition of models

The composition of modules is based on two elements: synchronization of events
and input-output relations. The �rst element is associated with the stochastic tran-
sition system (section 2.2) that describes the transitions of the hybrid system. By
synchronizing two events we associate probabilistic modules by imposing that the
occurrence of an speci�c event in one module coincides with the occurrence of an-
other event in the other one. Given two modules, we use input-output connections
to impose that the output of one module is input of other one. So, updates of the
output imply updates of the input.

2.3.1 Composition of probabilistic modules

Let's return to the previous section 2.2. The presence of sources of non-determinism
allows that Stochastic Transition Systems can grow by joining modules to obtain
more complete interacting models. As we shown in our example (Figure 2.2 and
2.2.2), actions can depend on external variables not controlled by the module (action
s, variable G). The dynamics of external variables can be considered to be modeled
by another module.

As example, we consider that the dynamics of the variable G is given by the
module Q (Figure 2.6), whose actions are:

• initial action: ∅ −→ g0 = {G := 0} ∨ g1 = {G := 0.5} ∨ g2 = {G := 1} with
probabilities 1

3
,

• g : {G} −→ {G := G+ 0.5},

The module Q controls the behavior of G, the growth of the cell.
We connect the modules P and Q, modeling division, by using the notion of

composition (de�nition 2.24, [30]).
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0 g g

Initial action

Figure 2.6: Stochastic transition system that represents the behavior of G
(growth of cell). It is formed by the states: g0, g1 and g2. The initial action
selects with the same probability any state, the action g relates the states.

De�nition 2.24 Composition. The composition of two stochastic transition sys-
tems P and Q, denoted P ||Q, is the stochastic transition system that models the
probabilistic behavior of P and Q that interact synchronously.

For probabilistic modules (where states are interpreted as valuations of variables
and actions as probabilistic changes of its values, see section 2.2.2), the composition
has to be consistent with respect to the mutually visible variables. It is to say, in a
execution of P ||Q, the interface variables of P that are external variables of Q (and
vice verse) must agree to have unique values per each observable variable.

The modules can be composed if they are consistent with respect to the types of
variables. These facts are summarized in the following a�rmations:

• Two modules, P and Q, can be composed if:

1. ext(P ) ∪ intf(P ) = ext(Q) ∪ int(Q),

2. intf(P ) ∩ intf(Q) = ∅,

3. priv(P ) ∩ V (Q) = ∅,

4. priv(Q) ∩ V (P ) = ∅.

• If they can be composed, then P ||Q is a module such that:

1. ext(P ||Q) = (ext(P ) ∪ ext(Q)) \ intf(P ||Q),

2. intf(P ||Q) = intf(P ) ∪ intf(Q),

3. priv(P ||Q) = priv(P ) ∪ priv(Q),

4. atoms(P ||Q) = atoms(P ) ∪ atoms(Q).

The way to represent the behavior of a system is by obtaining the values of its
answers, but it is not possible to use only the notion of execution. As stochastic
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transition systems include randomness and non-determinism, the number of dif-
ferent executions can be in�nite. To add the stochastic element to the behavior
characterization, one de�nes the notion of bundle ([30]).

De�nition 2.25 Bundles and semantics of probabilistic modules.

• A bundle of length n is a probability distribution over Q−traces of length n.

• It is de�ned the semantics of a module P , denoted [[P ]], as the set of bundles
associated to the module.

Each bundle records the outcome of a particular sequence of randomized choices
(answers of randomized schedulers) made by the system. The use of randomized
schedulers, that transform non determinism in randomness, makes possible this
de�nition.

One can add the interpretation of the states in the semantics de�nition (de�nition
2.26) by replacing Q−traces by V−traces (with V the set of typed variables), thus
bundles are probability over V−traces and they are called V−bundles.

To de�ne correctly the composition of modules, one considers only the observable
variables, then [[P ]] is a probabilistic (extl(P ) ∪ intf(P )-language ([30]).

De�nition 2.26 Semantics of composition of probabilistic modules. If two modules
P and Q can be composed, the semantics of the composition is the intersection of
the both semantics, it is to say

[[P ||Q]] = [[P ]] ∩ [[Q]]

.

With de�nition 2.27, the equality [[P ||Q]] = [[P ]] ∩ [[Q]] = [[P ]] × [[Q]] de�nes
the composition as (VP ∪ VQ)−language.

De�nition 2.27 Product of bundles. Given two typed set of variables, VP and
VQ for the modules P and Q respectively. Two bundles bP and bQ, for P and Q
respectively, can be multiplied if bP [VP ∩ VQ] = bQ[VP ∩ VQ] (i.e. the probabilities
coincide for VP ∩ VQ−traces).

The product of bP and bQ bundles of length n, bP × bQ, is a (VP ∪ VQ)−bundle
of length n such that ∀(VP ∪ VQ)−trace t of length n:

(bP × bQ)(t) =
bP (t[VP ]) · bQ(t[VQ])

bP (t[VP ∩ VQ])

An extension of our model of cell division is obtained by considering the modules
P and Q (Figure 2.7), to allow K divisions of the cell.

We de�ned the concept of composition of modules that allows us to join di�erent
models. However, in that notion do not exist restrictions about what actions are
compatible. If a transitions happens in a module any possible transition is allowed in
the other one, but often actions of di�erent systems are associated. In our example, a
cell must grow if it is not capable of dividing, consequently the action g in Q happens
if the action s occurs in P . This fact is included by de�ning the Synchronized product
of Transition Systems ([6, 24], de�nition 2.28).
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Figure 2.7: Two Transition systems that at composing them represents the
cell division process as depending on a growth index. Extension of models of
Figure 2.2 and 2.6. We do not show the idle transitions at each state.

De�nition 2.28 Synchronized product of Transition Systems. Given n sets of ac-
tions A1, . . . , An, and a synchronization constraint I ⊂ A1 × . . . × An. Let us
TS1, TS2, . . . TSn transition systems with states sets Qi, actions sets Ai, initial
states Qi

0 and transitions −→i for each i ∈ {1, . . . , n}. The synchronized product of
TS1, . . . , TSn is the transition system

(
(Q1× . . . Qn), (Q1

0×Qn
0 ), (A1, . . . , An),−→

)
,

de�ned by the following equivalence:

(q1, . . . , qn)
(a1,...,an)−−−−−→ (r1, . . . , rn)⇐⇒ (a1, . . . , an) ∈ I ∧ (∀1 6 i 6 n, qi

ai−→ ri)

With these composition elements one can build models formed by many inter-
acting components. These ideas give the primary support to develop hierarchical
models with di�erent complexity levels. The inclusion of randomness and non-
determinism grants a major level of reality and �exibility to the models, to consider
di�erent probable answers of the system and to improve models by composing them
and synchronizing actions. The technical way to describe the concept of improve-
ment of models is called re�nement. One wants that the re�nement relation behaves
well on compositions. That is to say, be capable of proving re�nement of composed
models by checking re�nement properties on the components. This is achieved by
having assume-guarantee rules for composition under re�nements. The de�nition of
composition of probabilistic modules satis�es a very strong rule.

The re�nement of a probabilistic module intuitively corresponds to the speci�ca-
tion of the model. For example non-determinism reductions by associating probabil-
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ities to actions re�ne the module. A re�nement reduces the set of possible behaviors
of the system.

De�nition 2.29 Re�nement of modules. One says that a probabilistic module P
re�nes another module P ∗ if the following properties are satis�ed:

1. intf(P ∗) ⊆ intf(P ), extl(P ∗) ⊆ extl(P ) ∪ intf(P ),

2. Given typed variables v1, v2 ∈ intf(P ∗), if an atom A ∈ Atoms(P ) such that
v1, v2 ∈ ctr(A) then ∃A∗ ∈ Atoms(P ∗) such that v1, v2 ∈ ctr(A∗),

3. ∀u ∈ intf(P ∗), v ∈ intf(P ∗) ∪ extl(P ∗), if ∃A ∈ Atoms(P ) : u ∈ ctr(A), v ∈
read(A) then ∃A∗ ∈ Atoms(P ∗) : u ∈ ctr(A∗), v ∈ read(A∗),

4. Bundle containment: [[P ]] is contained (⊆) in [[P ∗]].

The three �rst properties are structural, the last one relates the behaviors.
It is clear that an stochastic transition system is a re�nement of a transition

system. Solving non-determinism of a module by adding randomness schedulers to
the module is a way to re�ne, as is adding composition or synchronization of two
modules. One can prove ([30]) the validity of an circular assume-guarantee rule for
probabilistic modules given by the following assertion:

(P ||Q∗ � Q, Q||P ∗ � Q∗) =⇒ P ||P ∗ � Q||Q∗

The utility of this rule is to prove that a composed module re�nes another when the
module is composed by many components. Consequently, to check that the compo-
sition of two modules Q||Q∗ is re�ned by P ||P ∗, it is su�cient to check re�nements
of the components of the two original modules Q and Q∗. In particular, this says
that to obtain a re�nement of Q||Q∗ one must �nd a component P that, composed
with Q∗, re�nes Q and other component P ∗ that composed with Q re�nes Q∗.

2.3.2 Input-output connections

A natural way to integrate two models is by using the outputs of one as inputs of
another one. It is useful to decompose extensive systems, or to connect processes
a priori separated. In application sections (5 and 6), we will see how to use these
relations to build reconciled models (case of wine fermentation kinetics) and to
connect regulatory systems to control cell fate.

As example, if we restrict the physiological circulatory model by Guyton
([45, 46, 106], Figure 1.1) to those modules of the renin-angiotensin-aldosterone
system (RAAS) associated to renal control of the blood pressure (crucial for blood
circulation [91]), we have the input-output connections in Figure 2.8.
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Figure 2.8: Guyton model [46] restricted to the renin-angiotensin-aldosterone
system. Systems of di�erential equations, DAEs and other models are used
in each module, and they are connected by input-output relations. Rates
variables: MDFLW (�uid in the renal tubules at macula densa), TV D (�uid
intake), NOD, KOD, V UD (urine output), ADH (rate of hormone entry into
the �uids). Concentrations: CKE, CNA, ADHC (antidiuretic hormone in the
blood). Multiplier e�ects: ANM (angiotensin), AMK, AMNA, ADHMK.

44



Chapter 3

Our approach: Modeling biological
systems

Here we present our approach to describe complex biological systems by hybrid sys-
tems and composition of models, with the goal of modeling by reuse, reconciliation
and composition of models.

We formalize the theory of hybrid systems to combine continuous and discrete
models, with the inclusion of stochastic and non-deterministic behaviors, and to
allow two types of descriptions: with coe�cient switches and with strong switches
(section 3.3). The implementations of these descriptions with the new improved
version of the BioRica framework are presented in the next chapter (4). We �nish
by summarizing the main contributions of this work.

3.1 Reusing and reconciling models by

composition

An important need to develop science is to be able to reuse it. The advance of
science is based on the reuse, the application and the improvements of the scienti�c
discoveries. In the last years research on reusability of models is vigorous ([109]),
searching how to de�ne and simulate composed models in an unambiguous way is
the goal we are approaching now.

By accepting that biological systems are modular (section 1.2), the composition
of di�erent modules allows us to build complete descriptions. Modularity allows us,
between many things, to connect regulation and controlled models.

Here, we compose models by connecting them by events synchronizations or
input-output relations. Event synchronizations connect the discrete dynamics of the
models, that is to say the stochastic transition systems. The composition of such
systems, explained in section 2.3.1, allow us to combine di�erent discrete dynamics
and to synchronize transitions. The input-output connections allow us to separate
extensive continuous models into simpler models to solve them easier, or to combine
the models of di�erent processes to describe more general behaviors.

When a scienti�c area is attractive it is common that di�erent models are devel-
oped, each one constructed to meet particular needs and to �t speci�c data. We call
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reconciliation of models the case in which di�erent models independently developed
to describe a system, are analyzed to merge the best between them according to
observable factors.

The reconciliation process has three steps. In the �rst step we have the original
models, which one can execute separately. In the second step, we can execute them
in parallel using a single platform, and in the third we can control which model we
use according to the factor conditions, for obtaining the best agreements to reality.
For each system, we implement the last step of the reconciliation process in di�erent
ways in function of the strength of the transformations induced by the switches. If
it is possible to model those transformations as changes in the values of coe�cients,
we rewrite all the possible models in a same base and identify common elements. In
particular for ODE models, we rewrite the models into polynomial form. When the
changes are stronger than changes in coe�cients, we use our approach with strong
switches in the continuous dynamics.

K

Model
 1... N

Model  NModel 2Model 1

Model NModel 2Model 1

K

First step: Independent models Second step: Controlled  models Final step: A controller for  
     homogenized equations 

Joining  Homogenizing

...

...

Figure 3.1: Reconciliation process. First we have the original models, then we
control them to run them in parallel, �nally we control the selection of models
to chose the best one in function of factor conditions.

The diversity of models to explain connected processes makes it necessary to
de�ne theory and tools to integrate them in a composed model. To compose models
we use the non-ambiguous semantics of BioRica, which is based on the AltaRica
framework ([7, 8]) and the use of Stochastic Transition Systems ([29]).

3.2 Modeling biological systems as Hybrid systems

Due to the special conditions that one observes in biological systems: complexity of
behaviors, dependence of environmental conditions, and modularity (section 1.3) we
approach biological systems from the perspective of hybrid systems. We decompose
the system into di�erent modules to represent individual processes. Each module is
separately modeled, and we model the interactions between them by composition.

In practice, the modeling process follows both directions. One starts by mod-
eling individual biological processes, which can be modeled by decomposing into
simpler modules and can be composed with other modules to describe more general
processes. Each module is described by a model. Discrete controllers and controlled
models de�ne Hybrid systems, and the composition of all these models is itself a
hybrid system (section 3.4).
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Figure 3.2: Modeling schema of Complex Biological Systems using Hybrid
models. First one identi�es the discrete and continuous interacting dynamics,
then one separates the continuous dynamics into two interacting models: the
X MODEL that describes the dynamics of X, and the residual model.

The possibility of composing models gives a way to improve and extend models,
to obtain more and more complete descriptions of biological processes depending
on the level of details that is wished and the quantity of available information. In
absence of information, one can build models with open speci�cations by de�ning
stochastic or non-determinist modules.

This approach allows us to combine di�erent types of models to describe complex
processes and to represent behavior changes provoked by environmental conditions.
In particular, given a set of available models we can choose the `best' model ac-
cording to the environmental conditions (section 5), and we can combine signaling
pathways with Gene Regulatory Networks as in case of our model of cell fate deci-
sions to form bone or not (section 6).

3.3 Describing hybrid systems

As we explained before (section 2.1), Hybrid Systems can be seen from two points
of view: function ([18, 100], [104]) and implementation ([50, 60]). The �rst one,
called Switched Systems, focuses in human comprehension, the second type is more
general and focuses in automatic interpretation. This second approach uses tools of
Automata theory and is easy to understand in terms of Transition systems theory
([7, 29]).

Our approach uses elements of both approaches. Most of continuous models are
given by sets of ordinary di�erential equations, but we allow other type of continuous
models, which can be speci�ed externally by using the SBML speci�cation ([56]).

Continuous variables evolve according to continuous models, but at any time
mode changes can change the de�nition of the continuous model. These changes
are called mode transitions and are considered to be transitions in the sense of
Transition Systems theory. Given an action producing a mode transition, the next
mode is chosen according to transition probabilities and system schedule laws. The
conditions that provoke mode transitions are called guards. For each mode, the
system evolves in function of its continuous dynamics.
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Our use of Stochastic transition systems ([29]) to describe mode transitions,
allows us to extend the notion of Hybrid system (section 2.1) to include stochastic
and non-deterministic behaviors. To model hybrid systems, we consider that the
continuous dynamics is given by ordinary di�erential equations or other models,
while the discrete dynamics is described by Stochastic transition systems as de�ned
in section 2.2 with general temporal distributions for mode transitions (not only
exponential ones). Using modular representation is possible to include logic based
functions to de�ne hybrid systems. Input/output connections, switches, control and
hierarchical relations relate modules.

3.3.1 Formalization

According to the theory of stochastic transition systems (section 2.2), the transitions
may have stochastic and non-deterministic behaviors. Given an action producing
a transition, in this case a mode change, the following mode is chosen randomly
according to transition probabilities.

Formally, the model is represented as systems whose continuous model has tran-
sitions given by the following equations 3.1,3.2, and 3.3 above:

At any time t, we denote P (ev|(x(t), u(t),mode(t)) the probability of choosing
the event ev when the values of the state variables x are x(t), the values of the
continuous control variables u are u(t) and the value of the mode variable mode is
mode(t); time((x(t), u(t),mode(t)), ev) denotes the delay time of the event ev that
is modeled to have distribution Distev{pevent,1, . . . , pevent,m}.

P (ev|(x(t), u(t),mode(t)) =
wev∑

e∈A(x(t),u(t),mode(t))

we
, (3.1)

time((x(t), u(t),mode(t)), ev) ∼ Distev{pevent,1, . . . , pevent,m}, (3.2)

where we is the probability weight assigned to the event e, and A(x(t), u(t),mode(t))
is the set of available actions when x takes the value x(t), u the values u(t) and the
mode variable mode the value mode(t) (equation 3.3).

A(x(t), u(t),mode(t)) = {ev ∈ EV ENTS : Gev(x(t), u(t),mode(t)) = TRUE} ,(3.3)

and EV ENTS is the set of events considered.

3.3.2 Two types of hybrid systems: with coe�cient switches

and with strong switches

Systems are described here as Hybrid systems, whose modules are described by mod-
els. We consider two classes of switches: coe�cient switches and strong switches.

We call Hybrid system with coe�cient switches those hybrid systems in which the
structure of the model is conserved and only speci�c coe�cient values are controlled
by the mode transitions. The continuous model is composed of an unique controlled
model X MODEL that interacts with the controller CONTROL (Figure 3.3(A)). We
de�ne Hybrid systems with strong switches as hybrid systems that allow di�erent
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types of models. In such a case, each type of continuous model is represented by
two interacting modules: MODEL i and CONTROLi (Figure 3.3(B)).

In the case of Switched Systems, where one assumes continuous dynamics based
on di�erential equations, the global dynamics comes from the interaction of the
continuous and the discrete dynamics, a�ecting the di�erential equations. Mode
transitions provoke changes in the continuous dynamics without changing the struc-
ture of the module, but only values of coe�cients (Figure 3.3(A)).

X MODEL (Controlled model)

u

x

x

mode

CONTROL (Continuous Control)

u

Discrete model

Continuous 
model

(A)

 Model 1  Model j  Model N

CONTROL
1

CONTROL
j

CONTROL
N

x modeu x modeu x modeu

(B)onoffMODE MODE 1 off on MODE j off on

...

...

...

...

MODE N off on... ...

Figure 3.3: Abstraction of Hybrid systems. (A) The module X MODEL de-
scribes the continuous model of the state variables x. It interacts with two
other modules: CONTROL and MODE. CONTROL computes the values
of the continuous control variables u, MODE decides the values of the mode
variables. Arrows denote input-output relations. (B) Strong switches between
N models. The j−th model is represented by its continuous dynamics Model
j, that interacts with two modules: the controller CONTROLj , and MODE
j that decides if the model is active or not.

For strong switches, the system takes the form of Figure 3.3(B). By means of the
modules MODE i, the system switches between di�erent modules that represent
di�erent types of continuous models. At the same time, each module Model j can
interact with its continuous controller and evolves over time.

When each continuous dynamics has a di�erent type of formalism, software
or type of mathematical description, the possible continuous models can not be
uniquely represented considering switches as changes in its coe�cients.

When one has access to all the models, considering the models as structurally
di�erent or not is a modeling decision. Let's suppose for example that we know
that given an speci�c condition a variable xi responses linearly with respect to
other variable xj, but in other condition this dependence is quadratic. One must
decide to join the models, by linear combination of both dependences and choosing
the coe�cients in function of the conditions, or to consider them separately.

If one decides to join di�erent models, to use Hybrid systems with coe�cient
changes, one must rewrite the models to represent them within an unique structure
by identifying types of dependences and by grouping them. However, in general
cases rewriting is not the best option. The rewriting of models can help to interpret
the results, but it consumes time, increases the possibility of mistakes, and it is not
practical to have to rewrite models whenever we want to reuse them. Moreover, if
one does not have access to one model but to the state variables values computed
by it (e.g: executing a software), this option is not possible. Such a model is seen
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as a black box with a di�erent structure, and the system is modeled with strong
switches.

If we consider the approach strong switches (Figure 3.3(B)) and group all the
mode modules in an unique module MODE and consider the control modules in-
cluded in each model, this corresponds to the case when many models are used to
describe the same system and we reconcile the models into an unique one (Figure
3.4): a reconciled model where module MODE considers the associated mode vari-
able active if the factor values belong to the optimal conditions, chosen according to
the calibration of the model or validating on new data. From the de�nition of Hy-
brid systems (section 2.1), one observes that the system resulting from reconciling
models is a Hybrid system.

... ...

... ...

X(1)

X(j)

X(N)

mode 1

mode j

mode N

Model j  Model N Model 1

MODE

onoff

off on

onoff

...

...

mode 1:

mode j:

mode N:

Figure 3.4: Abstraction of the reconciliation of models as hybrid system with
strong switches. The j−th model is represented by its continuous dynamics
Model j, that interacts with two modules: the controller CONTROLj , and
MODES that decides if the model is active or not by means of the mode
variable mode j.

With this approach it is possible to describe Hybrid systems with coe�cient
switches and with strong switches within a single formalism. This approach is
independent of the type of continuous dynamics. The modeler can chose which
models to join in an common module and which ones to consider as di�erent modules
according to common characteristics and accessibility of the models.

3.4 Guarantees

We obtain some assume-guarantee rules with respect to properties of Hybrid systems
and compositions of them.

The stability (in the sense of Lyapunov) of Switched systems is not direct from
the stability of each model con�guration, one has to study the interactions between
the continuous and discrete dynamics. As a result, stability is assured given the
conditions of Theorem 6 in [18], which establishes the required properties of the so
called switching sequences (initial states values and mode-time pairs of switches):
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`existence of Lyapunov-like functions that satisfy the non increasing condition, and
mode variables forming a compact set'. Other hybrid systems properties are pre-
sented in [50]. It de�nes decidability properties of veri�cation tasks such as reacha-
bility, emptiness and trace inclusion problems on hybrid systems or subsets of them.

The theory presented here allows us to obtain two properties that are closed
with respect to the composition of hybrid systems: the de�nition itself, and the
re�nement of hybrid systems.

From section 2.3 is clear that the composition of hybrid systems, by event syn-
chronizations or input-output connections, is a hybrid system. Compositions of the
associated stochastic transition systems are stochastic transition systems, and the
result of joining continuous models by inputs/outputs connections is a continuous
model.

As we explained in section 2.3.1, the re�nement of a module forming part of a
composed system results in a re�nement of the composed system. That is to say, if
one speci�es the behavior of one module by restricting its behavior (its model) as
result one speci�es the composed model. So, the process of improving models can
be carried out by improving the individual models of the composed system.

Our approach assures the consistency of composed models with respect to the
state variables. That is to say, given a composed model and a variable that is used by
many sub-models, one can control how the changes on this variable are perceived by
the sub-models. It is obtained by associating a �ow variable to each shared variable,
and imposing assertions of equality between the versions of that �ow variable on
di�erent modules.

3.5 General contributions

In this chapter we have presented the development of an approach with theoretical
substance and good results in practice. It allows modeling, implementation and
simulation of real biological applications. Concrete examples will be seen in later
chapters.

This approach takes its place in themes of current research: composition and
reusing of models, and coupling of metabolic pathways and Gene Regulatory Net-
works. Composition of validated models is considered a way to build complete
descriptions of complex biological systems ([109, 33]). Our approach and the BioR-
ica framework allow us to combine di�erent types of models, by implementing the
notion of composition and importing SBML models. Metabolic coupling in Gene
Regulatory Networks ([12]) has been considered as a way to obtain indirect interac-
tion between genes, to obtain better descriptions of underlying behaviors.

We further considered formalization of the Hybrid Systems theory by using
Stochastic Transition Systems ([29]) to describe stochastic and non-deterministic
changes of the continuous dynamics. This allows us to include general temporal
distributions of mode transitions, which are responsible of model changes according
to two possible types of transformations: coe�cient switches and strong switches.
For coe�cient switches the structure of the model is conserved, and mode transi-
tions provoke changes in their coe�cients. For strong switches, the system switches

51



Chapter 3. Our approach: Modeling biological systems

between di�erent modules that represent di�erent types of continuous models. With
this theory one can consider di�erent levels of model changes according to the mod-
eling decisions, coe�cient switches are done by modifying the models, while with
strong switches the models are directly reused.

We obtain some assume-guarantee rules with respect to properties of Hybrid
systems and compositions of them. The stability (in the sense of Lyapunov) of
Switched systems is assured given the conditions of Theorem 6 in [18]. Compositions
of Hybrid systems are Hybrid systems, and re�ning of a module forming part of a
composed system results in a re�nement of the composed system. The consistency
of composed models, with respect to shared variables, is assured too. More details
in section 3.4.

We have identi�ed implementation challenges: sti�ness, di�erent timescales, and
transitions happening in not considered times; and we have proposed solutions:
the current use of modules with independent solvers, and the future possibility of
including solvers based on the QSS (Quantized States Systems, [68]) approach.

The development of the theoretical basis of our approach was complemented with
the improving of the BioRica framework. We identi�ed problems of the previous
BioRica version, and proposed solutions that contributed to the development of
important improvements included in the current version with the aim of modeling
real biological systems, composing models and allowing hybrid systems. More details
can be seen in section 4.3.2.
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Chapter 4

Our implementation: Simulating
biological systems

In the previous section (3), we explained how to describe complex biological systems
by using hybrid systems. This theory allows us to describe interaction of di�erent
processes, which are separately modeled by using di�erent types of dynamics. The
inclusion of hierarchical relations, combination, reusing, and reconciliation of models
gives the possibility of building complete descriptions of biological systems.

Here we focus on the implementation of these ideas and theories, we go from
the theory to the practice. To take advantage of all the qualities of the theory, the
implementation must allows general de�nitions of hybrid systems, and reusing exist-
ing models. We need a framework able to solve systems with continuos, di�erential
equations systems, and discrete interacting dynamics.

We start by discussing the requirements of the implementation, and describing
the di�erent steps to solve hybrid systems to obtain a general schema of the solution
process. After that, we argue our decision of implementing these steps with the
BioRica framework, which we contributed to improve and extend to work with
hybrid systems.

4.1 Requirements of the implementation

We describe the main requirements are necessary to implement our approach. Some
needs are related with the way of solving and coding hybrid systems, others with
the possibility of composing and reusing models.

1. Able to solve continuous models. In particular, we need to solve systems of
di�erential equations with di�erent complexity degrees (sti�ness, section 1.2.2)
and work with di�erent timescales.

2. Able to solve discrete models given by stochastic transition systems (2.2),
which are used by our de�nition of hybrid systems. We require de�ne mode
transitions with inclusion of stochastic and non-deterministic decisions, which
are associated with the chosen transition, action and the spent time.
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3. Previous points are related with the ability to solve a wide range of models. In
addition, we must be able to use them in the same framework. The framework
must be capable of integrating di�erent types of solvers, which are adapted to
solve speci�c models, without being a compendium of di�erent programming
languages.

4. Able to implement composition. The combination of di�erent types of models
by means of input-output connections (assertions), event synchronizations is
fundamental in our modeling approach.

5. Able to incorporate hierarchical relations between models. It allows us to
de�ne control relations between processes, and to go from macroscopic to
microscopic descriptions levels.

6. Able to implement reusing of models. The framework must allow the reuti-
lization of validated models without rewriting them.

4.2 Solving hybrid systems

Here we describe the solving process of hybrid system. The process is independent
of which framework is used to implement our approach.

Figure 4.1 shows the computation steps to solve a hybrid system with state
variables x and mode variables mode. The process begins reading inputs: initial
conditions IC and parameters values P . The time is initialized to zero, and the
initial values of the mode variables mode(0) are computed in function of the input
values. Then the initial de�nition of the modelMODEL(mode(0)) is obtained. The
next steps of the diagram are the main part of the process: solving and updating.
At any given time the model is solved, and the model is updated when detecting
one of the the M guard conditions associated to each possible new value of mode
(denoted by GUARD(x,mode, u, time) in Figure 4.1). The process �nishes when
END(x,mode, time) is veri�ed and the results are printed.

This general schema (Figure 4.1) allows both types of hybrid systems we de�ned
in section 3. According to the e�ect of the assignationMODEL(mode) after updat-
ing a mode, we can be solving hybrid systems with coe�cient switches which just
change coe�cient values, or with strong switches by changing of model in function
of the value of mode (Figure 3.3). As we anticipated, to implement this solution
schema we used BioRica.

As we explained in section 3, the type of hybrid system chosen is a modeling
decision. Given a system, one uses coe�cient switches to conserve a basic structure
of the model and using mode transitions to do changes in their coe�cients. On
the other hand, for strong switches, one considers that the system switches between
di�erent types of continuous models to allow the reusing of models. The combination
of many models favor the use of the strong switches approach.
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START

TIME= 0
mode (0 )= mode ( IC, P )

MODEL= MODEL (mode(0))

     (IC,P)=READ INPUTS

x= SOLVE (MODEL,TIME, IC, P)
TIME= INCREMENT (TIME)

END

Update mode
MODEL= MODEL (mode)

END (x, mode, u, TIME)?GUARD (x, mode, u, TIME)?

YES

NO

NO YES
PRINT

Figure 4.1: Computation steps to solve an hybrid system, options used for
wine fermentation shown in red. The process begins reading inputs: initial
conditions IC and parameters values P . It is initialized the time in 0, and
computed the initial values of the mode variables. Then, one obtains the initial
de�nition of the model MODEL(mode(0)). At any time the model is solved,
it is updated when detecting the guard condition GUARD(x,mode, u, time),
and the process �nishes when it is veri�ed END(x,mode, u, time).

4.3 Improving the BioRica framework for

simulating biological systems

The implementation of our ideas is based on the BioRica framework. The improved
version of BioRica (section 4.4) satis�es the requirements of section 4.1. Modules
are described by BioRica nodes, which interact to model the emergent properties of
the system. The current version of BioRica was developed by Alice Garcia in the
MAGNOME team and is distributed under an open source license. It allows one to
describe hybrid systems, solving di�erential equations and simulating stochastic and
non-deterministic behaviors, together with reusing and combining existing models.

4.3.1 The BioRica prototype

The creation of BioRica was motivated by the idea of applying the ideas of AltaRica
Data�ow language ([7, 8]) to biological systems. This �rst extension looks for de-
scribing stochastic transition systems (section 2.2, [29]) by incorporating stochastic
and timed behaviors, and data�ow links to include composition. A prototype, used
internally by the MAGNOME team was developed ([101]).

Each BioRica node is composed by the speci�cation of its �elds: state, �ow,
sub, event, trans, assert, init and extern. In the �eld state, one declares the state
variables and their domains. In �ow, one includes inputs (or outputs) from (to) other
BioRica nodes and the �eld sub de�nes other node objects the node use (hierarchy
notion). In event one declares the names of the possible actions, and the transitions
provoked by these events (when they happen and the e�ects) are described within
the key trans. In assert, one imposes relations between �ows and/or states, and
in init one de�nes the initial values of the state variables. Finally, the �eld extern
allows the inclusion of external directives about distributions of event delays and
priority between events.
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BioRica de�nes a global semantics to compose interacting modules. It is based on
the automata semantics of AltaRica ([7, 8]), and the theory of Stochastic Transition
Systems ([29]) that allow the inclusion of randomness and non-determinism. Given
a BioRica node, one computes the probability of the state dynamics and considers
non-deterministic decisions solved by random schedulers. The simulation generates a
trace giving the values of the system variables at each times. The resulting semantics
it is preserved with respect to �ow relations and event synchronizations.

Although they constituted the �rst theoretical ideas about BioRica as composi-
tional tool for stochastic transition system (requirements 2, 4 and 5 of section 4.1),
the usability of this framework would require many improvements and extensions.

4.3.2 Improving BioRica

During this work we have contributed to the development of the new implementation
of BioRica by suggesting extensions, discussing implementations, and proveding ap-
plications. This version includes important improvements to be capable of modeling
real biological systems. We detected the problems of the previous version, proposed
and checked possible solutions. As result, with the new version we are capable of
describing biological systems as hybrid systems that integrates continuous, discrete,
deterministic, stochastic and non-deterministic behaviors. Here we present our main
contributions.

• Identi�cation of the need to recode and redesign the BioRica prototype, to
build an uni�ed, structured and usable tool of mathematical modeling of bi-
ological systems. The implementation of the old version used many di�erent
programming languages, and its applicability was limited to discrete models
with integer variables.

• Identi�cation and modeling of biological systems not implementable with the
BioRica prototype. For discrete systems, we established the need to de�ne
transition computations using not only the basic algebraic operations and
integer variables. To describe more general systems it was necessary to include
continuous elements, which carried to the use of hybrid systems.

• A decision to abandon Matlab as external numerical tool to compute not basic
algebraic operations and to solve di�erential equations. The bridge between
the BioRica prototype and Matlab, by means of the engine library of C + +,
worked too slowly and complicated signi�cantly the implementations.

• A decision to adopt the Python libraries to compute general algebraic oper-
ations and to solve systems of di�erential equations, and the possibility to
include new libraries to solve other types of equations. The new implementa-
tion of BioRica by using Python makes it easy to use all the Python libraries
which are available free and have permanent development.

• Modeling and BioRica speci�cation of Hybrid Systems by composing their con-
tinuous parts and discrete controllers, assuring integrity of individual models
and including hierarchical relations.
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• Development of an approach to reconciliate competing models based on Hybrid
Systems theory. Modeling and BioRica speci�cation of that approach.

• Development of a general modeling and BioRica implementation of Switched
Systems, particular type of Hybrid System in which continuous models are sys-
tems of di�erential equations, by using two types of model changes: coe�cient
switches and strong switches.

• Proposition of a new BioRica syntax to allow descriptions of general hybrid
systems with other continuous models or external implementations. By using
other Python libraries one would solve hybrid systems in which the continuous
model is described by models such as di�erential algebraic equations or partial
di�erential equations.

4.4 Implementing and simulating hybrid systems

with BioRica

We code and simulate the computations steps needed to solve hybrid systems (Figure
4.1) with BioRica. So, modules are implemented by BioRica nodes. The BioRica
syntax is su�ciently general to describe these types of systems with many interacting
components, the implementation here explained satis�es all the requirements of
section 4.1.

To de�ne BioRica nodes we use the structure of Figure 4.2 that implements
the abstractions of Figure 3.3. When mode transitions only change the values of
coe�cients of the continuous model, we use the approach of Figure 4.2(A). If the
changes are stronger than simple changes in coe�cients values, we consider the
approach of Figure 4.2(B) for strong switches. Each node Model j represents a
continuous model, while the nodes MODE i control if each model is active by
deciding the value of the mode variables associated. In case of reconciliation of
models, the mode variables are grouped and each continuous model is represented
by only one module.

In Figure 4.2 we do not include all the possible �elds, such as temporal laws or
synchronizations between events. Event synchronizations can be used to reduce the
number of assignments in input-output connections, improving the computing time.
So, for example for coe�cient switches, the node X updates the value of mode just
if mode transitions happen in the node MODE (Figure 4.2). In simple cases, the
discrete and continuous dynamics can be included in the same node (Figure 4.3).
For see examples of extensive models go to application chapters (sections 5 and 6).

The process can continue. This implementation approach allows the reuse of the
combined models. So, the notion of compositions is implemented allowing combi-
nation, reusing and reconciling of models.

4.4.1 Syntax and semantics of BioRica for hybrid systems

BioRica allows the interaction between continuous and discrete dynamics. The
current version of BioRica considers continuous dynamics given by sets of ordinary
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state _mode:{1,...,N};

flow x1,...,xn,,u1,...,uk:FLOAT:in; mode:{1,...,M}:out;
event mode_transition;
trans

GUARD1(x1,...,xn,u1,...,uk,mode,time)|-mode_transition -> _mode=1;

node MODE

.

.

.

   law ...
edon

GUARDN(x1,...,xn,u1,...,uk,mode,time)|-mode_transition -> _mode=M;

node MODEj

  trans

  assert 
    mode=_mode;
  init
    _mode:=mode(0);  
  law ...
edon

node MAIN
 sub
   Mod1:MODE1;...;ModN:MODEN;
   model1:M1;...;modelN:MN;
   C1:CONTROL1;...;CN:CONTROLN;
   assert
    Mod1.x1=model1.x1;...;Mod1.xn=model1.xn;...;ModN.x1=modelN.x1;...;ModN.xn=modelN.xn;
    model1.mode=Mode1.mode;...;modelN.mode=ModeN.mode;
    Mod1.u1=C1.u1;...;Mod1.un=C1.uk;...;ModN.u1=CN.u1;...;ModN.un=CN.uk;
    model1.u1=C1.u1;...;model1.uk=C1.uk;...;modelN.u1=CN.u1;...;modelN.uk=CN.uk;
    C1.x1=model1.x1;...;C1.xn=model1.xn;...;CN.x1=modelN.x1;...;CN.xn=modelN.xn;
edon

state _mode:{0,1};
flow x1,...,xn,,u1,...,uk:FLOAT:in; mode:{0,1}:out;
event mode_transition;

on(x1,...,xn,u1,...,uk,modej,time)|-mode_transition -> _mode=1;
off(x1,...,xn,u1,...,uk,modej,time)|-mode_transition -> _mode=0;

X MODEL (Controlled model)

u

x

x

mode

CONTROL (Continuous Control)

u

Discrete model

Continuous 
model

onoffMODE

CONTROL
1

CONTROL
j

CONTROL
N

x modeu x modeu x modeu

MODE 1 off on MODE j off on

...

...

...

...

MODE N off on... ...

 Model 1  Model j  Model N

    init

node MAIN

sub 

modelX:X;

Mode:MODE;

assert

Mode.x1=modelX.x1;...;Mode.xn=modelX.xn; 

modelX.mode=Mode.mode;

modelX.u1=Control.u1;...;modelX.uk=Control.uk;;

edon

assert
mode=_mode;

Control:CONTROL;

Mode.u1=Control.u1;...;Mode.uk=Control.uk;

_mode:=mode(0);

Control.x1=modelX.x1;...;Control.xn=modelX.xn;;

(A) (B)

Figure 4.2: Implementation of hybrid systems with BioRica. (A) The node X
describes the continuous model of the state variables x. It interacts with two
other modules: CONTROL and MODE. CONTROL computes the values
of the continuous control variables u, MODE decides the values of the mode
variables. The node MAIN de�nes their interactions. (B) Strong switches
between N continuous models. The j−th model is described by the node Mj,
that interacts with two modules: the controller CONTROLj, and MODEj
that decides if the model is active or not. The node MAIN de�nes their
interactions.

di�erential equations (switched systems), which are de�ned in the �eld eqdi�.
So, given a BioRica node (module), BioRica numerically solves the continuous

model between transitions, computes the probability of the discrete dynamics and
considers non-deterministic decisions solved by random schedulers.

A common speci�cation of biological models is SBML ([56]), maybe the most
popular abstraction for biochemical reactions models governed by temporal di�er-
ential equations. The development by Alice Garcia includes a SBML parser that
translates SBML models into BioRica models. So, it is possible to reuse and compose
models previously speci�ed in SBML to obtain more general models.

Models are composed by using assertions between �ow variables of di�erent nodes
(input-output connections), and event synchronizations. The BioRica framework al-
lows us to control the consistency of composed models, and local clocks and solvers
allow us to manipulate diverse types of dynamics. Given a composed node and a
variable that is used by many sub-nodes, one controls how the changes on this vari-
able are perceived by the sub-nodes by associating to that variable a �ow variable,
and imposing assertions of equality between the versions of that �ow variable on
di�erent nodes.
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The BioRica compiler reads a speci�cation of the hierarchical model and com-
piles it into an executable simulator. The compiled code uses the Python runtime
environment and can be run stand-alone on most systems. The co-existence of mul-
tiple dynamics is assured by a pre-computation of each speci�ed sub-model. Once
computed, each part acts as a component that can be queried, but also modi�ed by
trajectory modi�cation induced by discrete parts of the model.

(A)

(D)(C)

(B) node RADIATOR
state T:FLOAT;K:{15,25};
event turn_on,turn_off;
eq:diff

dT=-T+K;
trans

  #B.1: deterministic 
  T<=18 |- turn_on -> K:=25;

       T>=20 |- turn_off -> K:=15;
  #B.2: non-deterministic

T>=18 & T<=20 |- turn_on->K:=25;
T>=18 & T<=20 |- turn_off->K:=15;

   init
     T:=15,K:=25;

  #B.3: stochastic
extern

choice<turn_on>:2;
edon

dT/dt=-T+15

off

dT/dt=-T+25

on

Turn on

Turn off

Figure 4.3: The radiator. (A)Schema of the Hybrid system. (B)Three models.
(B.1) deterministic: it is turned on if the temperature T is lower than 18◦C
and turned o� if it is bigger than 20◦C, (B.2) non-deterministic: both events
can happen if 18 6 T 6 20, and (B.3) stochastic giving probability 2

3 to turn
on. (C)Evolution of the temperature for the model (B.1), and (D) for (B.3).

With this approach we can compose processes that have di�erent timescales
and complexity levels (sti�ness), see section 1.2.2. The use of modules solves in
part this problem, each module has an speci�c timescale and solver, and improve
the precision and the computation time. The processes with small timescales are
observed at small time steps, while in case of long timescales we use longer time
steps to reduce the number of simulations. Sti� equations are strongly manipulated
just at the pertinent module.

As example, we consider the behavior of a radiator that controls the temperature
of a room. A thermostat is activated when the temperature is detected to be low
and it is regulated, if the temperature is high the system is turned o� (Figure 4.3).
This behavior can be modeled in di�erent ways: deterministic, non-deterministic
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const v1=3;v2=4;w=6;r1=2;r2=2;
node TANK

state x1,x2:FLOAT;K:{0,1};
event to_1,to_2;
eqdiff

dx1=K*w-v1;
dx2=(1-K)*w-v2;

trans
x1<=r1 |- to_1 -> K:=1;
x2<=r2 |- to_2 -> K:=0;

init
x1:=10,x2:=14,K:=1;

edon

(C)
(D)

(B)

r1 r2

v1 v2

w

(D)

Figure 4.4: (A) Diagram of a Zeno's water tank. (B) Switched model of the
behavior. (C) BioRica code and (D) Simulation. The rule to decide into which
tank water must be sent considers that the water level of tank 1 must be
higher than r1 and that the tank 2 higher than r2. At x1 and x2, arriving to
r1 = r2 = 2, the simulations run an increasing number of mode transitions to
try to verify x1 > r1 and x2 > r2.

or stochastic. In Figure 4.3, the state T represents the temperature and the mode
variable is K.

4.4.2 Simulations

BioRica works with switched systems that considers two types of models to de�ne the
system dynamics: di�erential equations and event transitions. To do that, it divides
the time into intervals (ti−1, ti] with i between 1 and the number of iterations, and
estimates the values of the states variables at each time ti by using numerical solvers
of di�erential equations and checking the possibility to have mode transitions.

With respect to di�erential equations, the current version of BioRica uses Runge-
Kutta to numerically solve di�erential equations systems, and include techniques of
memory-less to reuse a priori computed expressions.

Given a BioRica node, the continuous model is solved and, at each time, the
simulation checks the guard conditions. If the guard is veri�ed, the transition hap-
pens and the resolutions in all the nodes are restarted from this time. The variables
values over time are stored and displayed as trace and pictures are automatically
done. The simulation is stopped when the maximal time (or iteration number 1000)
is reached.

A necessary condition of simulations is that given a �nite time interval, the
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number of mode transitions that are chosen is �nite. When models present the so
called Zeno's paradox, with in�nite possible mode transitions in a �nite time interval,
they can be simulated but the number of mode transitions depends on the temporal
accuracy that is allowed. That is the case of the water tanks system in Figure
4.4. This system decides between two tanks 1 and 2 that are continuously �lled,
with the constraint that the levels must not be lower than r1 and r2 respectively.
The continuous dynamics of x1 and x2, representing the water level of each tank, is
modeled by a system of di�erential equations. The mode variable is K: if its value is
1 then the system sends water to the �rst tank, and if it is 0 then to the second one.
The simulation of the model produces many mode transitions in a �nite interval of
time.

4.5 Conclusion

In this chapter we established the requeriments to go from the theoretical ideas to the
practice, de�ned a general schema for solving hybrid systems which is independent of
the implementation, and showed how to implement hybrid systems with the BioRica
framework.

The notions of hybrid systems, composition, hierarchy and reusing of mod-
els must be implemented by a framework that allows the integration of di�erent
types of models: continuous dynamics, discrete dynamics with stochastic and non-
deterministic decisions and timed behaviors. In particular we need to solve systems
of di�erential equations and, according to our modeling approach (section 3), we
need to implement hybrid systems with coe�cient switches, and strong switches
that allows the reusing of models.

We built a general schema for solving hybrid systems, which is adapted for both
types of hybrid systems. It shows the computation steps based on two actions: solv-
ing and updating. At any given time the continuous model is solved, and the model
is updated when detecting a guard condition that changes the value of the mode
variable, which updates the model (Figure 4.1). We chose the BioRica framework
to implement our approach. As explained here, it allows us to implement hybrid
systems including composition and reusing of models, satisfying all our requirements
speci�ed in section 4.1. During this work we contributed to improving BioRica.
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Chapter 5

Application: Reconciling competing
models, particular case of wine
fermentation kinetics

When a given systems is investigated by many teams, it is common that competing
models are developed, each one constructed to meet particular needs and to �t
speci�c data. Reconciling models into one combined model allows us to respond
to particular needs and obtain more general models. We use the theory of hybrid
systems and the BioRica framework to investigate how one might be able to integrate
and reuse groups of models and generalize them.

In this chapter we use the reconciliation between models of wine fermentation
kinetics to study examples of hybrid systems de�ned by coe�cient switches or by
strong switches as explained in section 3.2. Some model compositions can be done
by changing the coe�cients of the di�erential equations, while the reconciliation of
more divergent models needs to use strong switches between alternate continuous
models. This hybrid model results from the reconciliation of three wine fermentation
models ([10]): Coleman ([28]), Scaglia ([94]) and Pizarro ([85], [92]). For each factor
con�guration, one chooses the model that best �ts the experimental data of three
papers: [85], [75] and [79] used as training.

The reconciliation of wine fermentation kinetic models gives us a better predic-
tion of the dynamics than any of the original models. In function of the initial
conditions one chooses the model and arriving at the stable fermentation phase, the
model is updated to obtain the best predictions. The e�ect that produces the level
of nutrients on the behavior of the system is successfully described by switching
the model to include competence coe�cients when the resources are scarce. The
resulting model can be used to predict problems such as stuck (with residual sugar)
and sluggish (very slow) fermentations ([17]).

5.1 Modeling wine fermentation kinetics

The application of biotechnology to the wine fermentation process is fundamental
because the production of ethanol is the result of the action of the yeasts to metabo-
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kinetics

lize the sugar in an anaerobic way. The wine market is enormous and improvements
of the process can reduce losses; stuck or sluggish fermentations ([17]), for example,
cause worldwide losses estimated at 7 billion AC annually. Modeling the kinetics of
the process may give us the means to predict the best conditions to ferment, and to
detect stuck and sluggish fermentation in time to save them.

The fermentation process transits by di�erent steps, among other factors they
depend on the quantity of organisms and of the nutrients they consume. As time
passes these conditions change and consequently the laws of the dynamics change
too. When few yeasts have high concentrations of sugar available the behavior is
di�erent than when many yeasts compete to consume low concentrations of nutri-
ents. Consequently, it is understable that a change of follows change of conditions
of factors such as concentration of yeasts and nutrients.

We consider three models to reconcile: Coleman ([28]), Scaglia ([94]) and Pizarro
models ([85], [92]). Here we give a brief description of the models, see more details
in [10]. Table 5.1 recalls the meaning of the variables and our notation as compared
with the nomenclature of the original papers.

The Coleman model ([28]) consists of a 5 coupled ODEs (equations 5.1- 5.5),
combined with 4 one-dimensional regression models to estimate parameters. The
variables that are represented in di�erential equations are concentrations of: biomass
(X), active biomass (XA), nitrogen (N), ethanol (EtOH) and sugar (S). It consid-
ers biomass concentration controlled by the growth rate (µ) with nitrogen nutrition
and without competition (Monod's equation, [80], see Table 5.1), the lower is the
remaining nitrogen the lower the growth rate, and the death rate (τ) is propor-
tional to the ethanol concentration. The other fermentation variables are obtained
by estimating production rates (for EtOH) or consumption rates (for N and S)
per biomass unit. The Scaglia model uses only 4 fermentation variables: X, S,
CO2 (carbonic dioxide gas concentration) and EtOH, equations 5.6- 5.9. In the
cell growth expression (equation 5.6), the quadratic coe�cient of population, β,
models the competition for available resources. They consider that the lower is the
remaining sugar the lower the growth rate, and the faster the decrease of substrate
concentration the larger the increase in the cellular death rate. The carbon diox-
ide concentration (CO2, equation 5.9) is estimated with a emission rate coe�cient
per biomass unity νCO2 , and the rate of an additional coe�cient that we called
CO2Form. The ethanol production rate is obtained by dividing ethanol produced
by carbon dioxide emitted (equation 5.7, see the coe�cient YCO2/EtOH in Table
5.1). The sugar consumption rate (equation 5.8) is composed by a term acting on
biomass and a quadratic term associated to competition between organisms. The
main di�erence between Coleman and Scaglia models is that the latter includes the
competition for available resources. Coleman model has the advantage of including
the temperature as a variable.

The Pizarro model ([85], [92], equations 5.10- 5.14) uses essentially the same dif-
ferential equations as Coleman model, but it adds the variable glycerol Gly and does
not consider active biomass concentration. Although the three models use di�er-
ential equations, the Pizarro process combines them with an iterative optimization
approach using FBA. It is built through an iterative process where intracellular net-
work �uxes are bounded according to extracellular conditions, and for each iteration
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a maximization (of growth or glucose consumption rate) is performed to obtain up-
takes and consumption rates that are used to predict extracellular concentrations
of metabolites.

dX

dt
= µ ·XA (5.1)

dXA

dt
= (µ− τ) ·XA (5.2)

dN

dt
= −νN ·XA (5.3)

d[EtOH]

dt
= νEtOH ·XA (5.4)

dS

dt
= −νS ·XA (5.5)

dX

dt
= (Fµ · µ− Fτ · τ) ·X − Fµ · β ·X2 (5.6)

d[EtOH]

dt
= 1

YCO2/EtOH
· dCO2

dt
(5.7)

dS

dt
= −

(
(νS + νS0) ·X − 0.00002

YX/S
·X2

)
(5.8)

dCO2

dt
= νCO2 ·X + d(C02Form)

dt
(5.9)

dX

dt
= µ ·X (5.10)

dN

dt
= −νN ·X (5.11)

d[EtOH]

dt
= νEtOH ·X (5.12)

dS

dt
= −νS ·X (5.13)

d[Gly]

dt
= νGly ·X (5.14)

5.2 Experimental data and exploratory analysis

In our study we considered experimental data of three papers: [85], [75] and [79].
The experimental measures of the Pizarro team correspond to a wide range of data.
We used laboratory results that were obtained with the strain Prise de Mousse
EC1118, and industrial results for Industrial Cabernet Sauvignon, wine fermen-
tations that were monitored during the 2003 vintage at a commercial winery in
Chile. Sugar pro�les for six batch fermentations at 28 ◦C with high/low nitrogen
and other two at 12 ◦C and 17 ◦C with high conditions of nitrogen were used to
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calibrate the model, and consequently we expect a better adjustment of this model
for sugar in this conditions. By direct communication with [75], we obtained data of
biomass pro�les in two particular conditions: moderate temperature (24 ◦C), high
level of sugar (280 g/l) and moderate/high levels of nitrogen (approximately 220
mg/l and 551 mg/l respectively). The data set available in Mendes-Ferreira study
([79]) used the strain Saccharomyces cerevisiae PYCC4072 that was supplied by the
Portuguese Yeast Culture Collection. The paper describes experimental biomass,
ethanol and sugar (and other indexes) results for two experimental conditions, fer-
mentation maintained at 20 ◦C with moderate initial sugar concentration (200 g/l)
and initial nitrogen concentration high (267 mg/l) or low (66 mg/l). The acidity
conditions were adjusted to pH 3.7, nitrogen is supplied by ammonium phosphate
and sugar corresponds to glucose.

The observation of experimental data gave us some ideas about the pro�les of
fermentation variables. In the three variables (biomass, ethanol and sugar concen-
trations) we observed two phases, transient and stable. Before a particular time,
that we call stabilization time, fermentation variables change exponentially over
time. After stabilization these are statistically constant. We veri�ed the exponen-
tial behavior of biomass pro�les statistically by means of linearization and linear
regression (Figure 5.1), the growth rate can be assumed to be constant over time.
In the case of biomass, in the �rst phase it increases exponentially until the cells
stop their growth. Ethanol concentration increases while the yeast cells are active,
after the stabilization time the production stops. Sugar concentration decays in
an exponential way until it is completely consumed. Di�erent samples show di�er-
ent uptake (for biomass and ethanol) and consumption rates (for sugar). For the
Coleman ([28]) and Pizarro ([85]) models, fermentation variables evolve in time ac-
cording to uptake (biomass, ethanol and glycerol) or consumption (sugar, nitrogen)
factors per concentration unity of yeast cell (biomass). They assume that these co-
e�cients change in time depending of the fermentation or environmental variables
and do not depend only on initial conditions. When solving these models one ob-
tains exponential behaviors whose rates change over time, according to the value of
the fermentation variables or environmental conditions, �nishing in a stable phase.
According to the sign of the factors we have exponential growth (positive sign) or
decay (negative sign) followed by stabilization. Biomass pro�les resemble the solu-
tions of the logistic di�erential equation, which is widely used in ecology to model
population growth. These types of di�erential equations were derived by Verhulst
in 1838 to describe the self-limiting growth of a biological population (Verlhurst's
model; see [82]). Population starts to grow in an exponential phase, as it gets closer
to the carrying capacity the growth slows down and reaches a stable level. The
equations (5.6-5.9) that de�ne the Scaglia model ([94]) include logistic components
but they are more complex, and one observes relations between one-order di�erential
expressions of variables.
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Symbol Configuration

  LHH
 xxxxxxxxxx   MMM
  ++++++++   HMM
 xxxxxxxxxx   HMH

  ........

Figure 5.1: Fermentation variables pro�les for some initial conditions con�gu-
rations. For Biomass and Sugar one shows experimental results in LHH (low
temperature: 12 ◦C, high initial sugar: 268 g/l, high initial nitrogen: 300
mg/l), HMM (28◦C, sugar: 238 g/l, nitrogen: 50mg/l) and HMH (28 ◦C,
sugar: 233 g/l, nitrogen: 300 mg/l) con�gurations. For Ethanol we show data
for MMM con�guration (20 ◦C, sugar: 200 g/l, nitrogen: 66 mg/l) instead
of LHH. Log-Biomass pro�les are shown too, we obtained linear correlations
in transient phase of 0.98, 0.99 and 0.97 respectively.
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Temperature Sugar Nitrogen Biomass Ethanol        Sugar
Low Moderate Moderate (50-240 [mg/l])

(0-19 °C) (160-240 [g/l]) High (240-551 [mg/l]) 1
High Moderate

(240-308 [g/l]) High 2 3

Moderate Moderate Moderate 1 1 1
(20-27 °C) High 1 1 6 1

High Moderate 1
High 1 2

High Moderate Moderate 1 1 1
(28-35 °C) High 2 1 2

High Moderate
High 1

 Pizarro data ([22])
 Malherbe data ([15])
 Mendes-Ferreira data ([16])

Table 5.2: Origin of experimental data. For each Initial Temperature-Sugar-
Nitrogen con�guration, and fermentation variable it is showed the origin of
available data.

Biomass Ethanol Sugar
Temperature Sugar Nitrogen Transient Stable Transient Stable Transient Stable

Low Moderate Moderate (50-240 [mg/l])
(0-19 °C) (180-240 [g/]) High (240-551 [mg/l]) Pizarro Pizarro

High Moderate
(240-308 [g/l]) High Indiferent Pizarro Scaglia/Pizarro Scaglia/Pizarro

Moderate Moderate Moderate Coleman/Pizarro Coleman Coleman Indifferent Coleman/Pizarro Coleman
(20-27 °C) High Scaglia/Pizarro Pizarro Indifferent Pizarro Scaglia/Pizarro Pizarro

High Moderate Scaglia Pizarro
High Scaglia Scaglia Scaglia Coleman

High Moderate Moderate Coleman Coleman Pizarro Coleman Pizarro Pizarro
(28-35 °C) High Coleman Pizarro Indifferent Pizarro Coleman Pizarro

High Moderate
High Pizarro Scaglia/Pizarro

Worst Best
Quality

Table 5.3: Criterion of selection of best models in function of initial condi-
tions. For each combination variable-phase is written the best model, colors
represent the quality of the adjustment when comparing between all the initial
conditions.
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5.3 Statistical classi�cation of the results

We considered as factors of the fermentation process the initial conditions and time.
We studied the fermentation variables: X (biomass concentration), EtOH (ethanol
concentration) and S (sugar concentration). Initial conditions were determined by
ranges of initial temperature, sugar and nitrogen concentration, and we divided in
transient and stable phase. The levels of initial conditions were ranges of initial
temperature, sugar and nitrogen concentrations. We considered that the tempera-
ture is low when it is lower than 19 ◦C, is moderate for values between 20 ◦C and
27 ◦C, and high for larger values. Initial sugar concentration was called moderate
for values less than 240 g/l and high for superior values. Initial nitrogen concentra-
tion was moderate for values less than 240 mg/l and high for those superior values.
For each initial conditions con�guration, we separated the pro�les in transient and
stable phase by analyzing the experimental results.

In Table 5.2 we show the origin of experimental data for di�erent initial condition
levels and fermentation variables. This classi�cation allowed us to cover a wide
range of con�gurations. In spite of this, for some combinations we do not have
experimental data because conditions of fermentation are di�cult. This is the case
for low initial temperature, sugar and nitrogen concentrations. For high temperature
and sugar with insu�cient levels of nitrogen source, we have the same situation.
Part of the data have superior statistical quality. While the number of samples that
describe an initial condition con�guration is larger, the quantity of information that
validates our assertions about the adjustment of each model in this con�guration is
also larger. In particular the Pizarro sample forHMM (high temperature, moderate
initial sugar level and moderate initial nitrogen level) and HMH con�gurations
give us standard deviations for variable pro�les. Mendes-Ferreira ([79]) samples for
MHM (moderate temperature, high initial sugar level and moderate initial nitrogen
level) and MHH supply means and standard deviations of measures too.

We evaluated the three studied models according to how well they agree with
the experimental results (Figure 5.2). For each sample we reviewed the adjustment
in the transient and the stable phase. For the local criterion, at each point we built
con�dence intervals of experimental results, and computed the p-values associated
to the decision of considering simulated value equal to experimental result. Because
we observe exponential behavior, for the global criterion we computed the correla-
tion between the logarithm of simulations and the data over the time (Table 5.4).
In general, an adjustment was considered Very good if the local criterion and the
global one are very favorable (p-value> 0.1, correlation> 0.98); Good if a crite-
rion is very favorable and the other one is only favorable (0.05 6p-value< 0.1 or
0.95 6correlation< 0.98); Little wrong if a criterion is unfavorable (p-value< 0.05
or correlation< 0.95) and the other one is favorable or superior; and Wrong if both
criteria are unfavorable. The cases near to the limits were checked especially. In
case the local criterion is absolutely unfavorable (p-value= 0) we quali�ed inWrong,
if local criterion is unfavorable (but not absolutely) and global criterion is optimum
(correlation= 1) we considered it Good.
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Biomass Ethanol Sugar

Temperature Sugar Nit rogen Coleman Pizarro Coleman Pizarro Coleman Pizarro

Transient Stable Transient Stable Transient Stable Transient Stable Transient Stable Transient Stable Transient Stable Transient Stable Transient Stable

Low Moderate Moderate

High W LW LW LW G VG

High Moderate

High W W W W W G LW LW G VG G VG

Moderate Moderate Moderate G LW LW W G W G W W W W W G LW LW W G W

High LW W G G VG G W G LW G G LW G G LW G VG

High Moderate LW LW VG W G G

High LW W G VG LW G LW G G LW LW LW

High Moderate Moderate VG VG LW W LW G LW G LW W G W LW W G LW VG VG

High VG W G W G LW VG LW VG G VG VG VG W G G G VG

High Moderate

High W W LW G VG G

 Very good (VG)
 Good (G)
 Lit t le wrong (LW)
 Wrong (W)

Scaglia Scaglia Scaglia

Figure 5.2: Summary of results of adjustment according to initial conditions.
Quality of adjustment of each model for each initial conditions con�guration
and phase (transient and stable).

5.4 Reconciled model of wine fermentation kinetics

The reconciliation process in [10] produces a model that describes the dynamics of
X, EtOH and S by the di�erential equations bellow:

dX

dt
= µA ·XA + µ(1) ·X − µ(2) ·X2 (5.15)

d[EtOH]

dt
= εA ·XA + ε(1) ·X + εCO2 · dCO2

dt
(5.16)

dS

dt
= −

(
σA ·XA + σ(1) ·X − σ(2) ·X2

)
(5.17)

In such model one separates the possible values of temperature, sugar and nitrogen
in three categories: low (L), moderate (M), and high (H) and choses the models
with best adjustment to experimental data on the transient and the stable temporal
phase of fermentation. Temperatures between 0◦C and 19◦C are considered to be
low, between 20◦C and 27◦C is moderate, and between 28◦C and 35◦C is high. The
concentration of sugar is considered to be moderate for values between 160[g/l] and
240[g/l], and high for values between 240[g/l] and 309[g/l]. Finally, we say that the
level of nitrogen is moderate if its value is between 50[mg/l] and 240[mg/l], and
high if it is between 240[mg/l] and 551[mg/l].

These equations capture the three models and the variables XA and CO2 are
those computed by the Coleman and Scaglia models respectively. The coe�cients
µA, εA and σA correspond to coe�cients of the Coleman model to represent linear
e�ect of XA on X. The linear coe�cient of X on EtOH, ε(1), is associated to the
Pizarro model; µ(1) is composed by contributions of the Pizarro and Scaglia mod-
els, and quadratic e�ects (coe�cients µ(2) and σ(1)) are obtained from the Scaglia
model. The coe�cients are active or not in function of initial con�guration and time
(Table 5.5) to �t the experimental data of three papers: [85], [75] and [79].
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kinetics

5.5 Results

We model reconciled models of wine fermentation kinetics ([10]) by using both
approaches: coe�cient switches and strong switches (Figure 3.3). The computation
steps needed to solve these systems (Figure 4.1) were implemented with BioRica. We
describe how to use the reconciled models to predict stuck and sluggish fermentations
in vivo.

5.5.1 Reconciled models and simulations

In the reconciliation process, we considered four factors: initial levels of tempera-
ture, sugar and nitrogen, and temporal phase: transient and stable. The possible
values of temperature, sugar and nitrogen are classi�ed in three categories: low (L),
moderate (M), and high (H). Coleman, Scaglia and Pizarro models ([28], [94], [85])
show di�erent levels of precision in function of the factor values. We chose for each
con�guration of factors, the combination of models that obtains the best adjust-
ments of experimental results of three papers: [85], [75] and [79]. The reconciled
model is given by equations 5.15-5.17 with coe�cients in Table 5.5 (section 5.1).
We decide which model to use to start the model in function of the con�guration,
while at changing temporal phase we update this selection. In order to consider the
experimental variability, we model the transition time as a random variable. That
is to say, the time at which the system changes from transient to stable phase is
simulated as a gaussian variable whose mean and standard deviation are computed
for each con�guration of temperature, sugar and nitrogen. For example, according
to the computations summarized in Table 5.5, for con�guration MHH the mean
(TTime_MHH) is 121 and the standard deviation 18.55, and for the con�guration
HHH these values are 105.5 and 19.125 respectively. Consequently, the resulting
system is a hybrid system with stochastic mode transitions. According to which
models are needed, we use coe�cient switches or strong switches.

The di�erential equations systems of Coleman [28] and Scaglia [94] are solved in
BioRica, but the Pizarro model is externally solved due to its superior complexity.
The maximization problem makes not viable the direct implementation in BioRica
at this moment, and there are more appropiate tools to solve this model. So,
Coleman and Scaglia models use the eq:di� syntax and Pizarro model eq:extern.
Consequently, if the reconciliation of models does not include the Pizarro model we
use Hybrid systems with coe�cient switches, but if the reconciliation considers it
we use the approach with strong switches.

We begin with an example modeled with coe�cient switches. Let us consider the
con�guration MHH: moderate temperature 23◦C, high sugar 308.6[g/l], and high
nitrogen 280[mg/l]. Here, we observed an initial e�ect of competition to consume
resources. For the biomass concentrationX, the model is given by Scaglia equations.
For sugar consumption the Scaglia model is active in the transient phase, while the
Coleman model is used in the stable phase. Pizarro model is not active. The time
at which the system changes from transient to stable phase is modeled as a gaussian
variable with mean TTime_MHH = 121 and standard deviation sd_MHH =
18.55 The code and simulation results are shown in Figure 5.3. The simulations for
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5.5. Results

node MODEL
state S,X,XA,CO2,E: FLOAT;
flow mode_S,mode_C:FLOAT:in;
eqdiff

dS = -(mode_S*((nu_S_Scaglia+F)*X-
sigma_2*X^2)+mode_C*nu_S_Coleman*XA);
dXA= (mu-kd)*XA;
dX = F1*X*(1-X/F2)+F3*(C*X*dS-D*X);
dCO2 = H1*X+H*mu*X*(dS*H2+dX*H3)+dX;
dEtOH = (1/Y_CO2E)*dCO2;

init
X:=Xinit,XA:=XAinit,S:=Sinit,CO2:=CO2init,
EtOH:=Einit;

edon

node MODES
state _mode_S,_mode_C: FLOAT; stable:BOOL;
flow mode_S,mode_C:FLOAT:out;
event change_phase;
trans

stable=False | change_phase
-> stable=True,mode_S=0,mode_C=1;

assert
mode_S=_mode_S,mode_C=_mode_C;

init mode_S:=1,mode_C:=0,stable:=False;

extern law<change_phase>:Normal{TTime_MHH,sd_MHH};
edon

node RECONCILED_MODEL_OF_SUGAR_CONFIG_MHH
sub M:MODEL;Mo:MODES;
assert
   M.mode_S=Mo.mode_S,M.mode_C=Mo.mode_C;

edon

const Xinit=0.2;XAinit=0.2;Sinit=308.6;CO2init=0;Einit=0;T=23;

const 
 a=1.508;b=1.508;c=1.4445;d=1.0;e=1.4445;A=12.072;
 B=93.023;C=0.047;D=0.0001;E=0.0000215;F=0.0081;
 G=10.864;H=241.44;I=0.01;mu=0.111;KS=2.15;
 beta=0.0005;CO2_95=78;Y_XS=0.029;Y_CO2E=1.0443;
 max_mu=0.111;;K_S=10.278;Y_EtOHS=0.55;
 KN=exp(-4.73);mu_max=exp(log_mumax);
 kprim_d=exp(-9.810-0.00108*T+0.00478*T^2);
 
 sd_MHH=18.55;TTime_MHH=121;

formula 
  max_nu_EtOH=exp(-2.30+0.0771*T);
  F1 = (exp(-(CO2-CO2_95))/(exp(CO2-CO2_95)+exp(-(CO2-    

  CO2_95))))*A*mu*S/(S+KS*B^a); 
  F2 = A*mu*S/((S+KS*B^a)*beta);
  F3 = 1-(exp(-(CO2-CO2_95))/(exp(CO2-CO2_95)+exp(-(CO2-
       CO2_95))));
  G1 = max_mu*S/(S+KS*B^b);
  H1 = G*mu*S/(S+KS*B^c);
  H2 = (S^2*(KS*B^e+KS*B^d)+2*S*(KS^2*B^d*B^e))/       

  ((S+KS*B^d)^2*(S+KS*B^e)^2);
  H3 = (S^4+S^3*(KS*B^e+KS*B^d)+S^2*(KS*B^d*B^e))/
       ((S+KS*B^d)^2*(S+KS*B^e)^2);

  nu_S_Scaglia= (1/Y_XS)*G1;
  sigma_2= (1/Y_XS)*E;
  nu_EtOH= max_nu_EtOH*S/(K_S+S);
  nu_S_Coleman= nu_EtOH/Y_EtOHS;
  mu=mu_max*N/(KN+N);kd=kprim_d*E;

(A)

(B)

Figure 5.3: Reconciled model of wine kinetics for con�gurationMHH: temper-
ature 23◦C, sugar 308.6[g/l], and nitrogen 275[mg/l]. (A)Codes: MODEL de-
scribes the continuous part, MODES decides if the mode associated to Scaglia
(mode_S) or the associated to Coleman (mode_C) is active, and RECON-
CILED MODEL OF SUGAR CONFIG MHH combines the results of the ac-
tive models at each time. The change from transient to stable phase, trig-
gered by a su�ciently low concentration of sugar and high concentrations of
biomass and ethanol, is modeled to happen at time given by a gaussian variable
with mean TTime_MHH = 121 and standard deviation sd_MHH = 18.55
(B)Simulation of sugar concentration.
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kinetics

the con�gurationMHH �t the biomass and sugar consumption dynamics correctly.
Equations 5.15, 5.17 take the form of the equations 5.18, 5.19. One observes

that the main factor is the linear e�ect of X. In the transient phase there exists
a quadratic e�ect of X, and XA only a�ects the sugar consumption in the stable
phase.

dX

dt
= µ(1) ·X − µ(2) ·X2 (5.18)

dS

dt
= −

(
1t6121 · (σ(1) ·X − σ(2) ·X2) + 1t>121 · σA ·XA

)
(5.19)

In this case, we use the structure of Figure 3.3(A). The X MODEL is coded
in the node MODEL, with state variables X (biomass concentration), XA (active
biomass), S (sugar concentration), CO2 (carbon dioxide) and EtOH (ethanol). It
interacts with the node MODES that computes the values of the mode variables
mode_S and mode_C. These last ones are coe�cients associated to the Scaglia
(active only in the transient phase) and Coleman models that is activated at ar-
riving to the stable phase. This corresponds to a hybrid system with coe�cient
switches. The continuous model is uniquely represented, and the e�ect of switching
is modeled by changing the mode variables values present in MODEL. The node
RECONCILED_MODEL_OF_SUGAR_MHH links the continuous and dis-
crete dynamics by using the outputs of the node MODES (the modes) as inputs
of MODEL. Whenever a mode variable is modi�ed in MODES, it is modi�ed in
MODEL.

As illustrative example of strong switches, we show the reconciled model to
predict sugar consumption if temperature and initial concentrations of sugar and
nitrogen are high (Figure 5.4). That is to say, temperature between 28◦C and 35◦C,
sugar between 240[g/l] and 308[g/l], and nitrogen between 240[mg/l] and 551[mg/l].
In this case, the time at which the system changes from transient to stable phase
is modeled as a gaussian variable with mean TTime_HHH = 105.5 and standard
deviation sd_HHH = 19.125. The simulations e�ectuated for the con�guration
HHH �t the sugar consumption dynamics correctly (Figure 5.4(B)).

For those conditions Coleman model is not active, Scaglia is considered active
only in the stable phase (after 105.5 hours approximately) and Pizarro model is
always active. The model of sugar consumption can be rewritten as the equation
5.20

dS

dt
= −

(
σ(1) ·X − 1t>105.5 · σ(2) ·X2

)
(5.20)

The approach with strong switches (Figure 3.3(B)) allows us to integrate the
Pizarro model in the reconciled model for the con�guration HHH. Each individ-
ual model is modeled in BioRica by a node, with S (sugar concentration) output
variable. The Coleman and Scaglia models, with dynamics given by di�erential
equation, use the syntax eq : diff and are solved directly in BioRica. On the con-
trary, the Pizarro equations are externally solved and we used the syntax eq : ext.
The node MODES codes the dynamics of the mode variables mode_C, mode_S
and mode_P that de�ne when each model is considered active to compute the
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node Scaglia
state _S,X,CO2,E: FLOAT; 
flow X,E,S:FLOAT:out;
eq:diff

dS = (1/Y_XS)*(-X*(G1-E*X))-F*X;
dX = F1*X*(1-X/F2)+F3*(C*X*dS-D*X);
dCO2 = H1*X+H*mu*X*(dS*H2+dX*H3)+dX;
dE = (1/Y_CO2E)*dCO2;

assert
S=_S;

init X:=Xinit, _S:=Sinit, CO2:=CO2init, E:=Einit;
edon

node Pizarro
state X,N,E,_S,Gly: FLOAT;
flow S:FLOAT:out;
eq:extern
assert S=_S;
init      

X:=Xinit,N:=Ninit,E:=Einit,_S:=Sinit,Gly:=Glyinit;
edon 

node MODES
state _mode_C,_mode_S,_mode_P:FLOAT;stable:BOOL;
flow 

mode_C,mode_S,mode_P:FLOAT:out;

event change_phase;
trans stable=False ꞁ change_phase 

-> _mode_S=1,stable=True; 
assert mode_C=_mode_C,mode_S=_mode_S,mode_P=_mode_P;
init   

_mode_C:=0,_mode_S:=0,_mode_P:=1,stable:=False;

extern law<change_phase>:Normal{TTime_HHH,sd_HHH};
edon

node RECONCILED_MODEL_OF_SUGAR_CONFIG_HHH

flow S:FLOAT;
sub Co:Coleman; Sc:Scaglia; Pi:Pizarro;Mo:MODES;
assert
   S=(Co.S*Mo.mode_C+Sc.S*Mo.mode_S+Pi.S*Mo.mode_P)/

(Mo.mode_C+Mo.mode_S+Mo.mode_P);
edon

const Xinit=0.2;XAinit=0.2;Einit=0;Sinit=245.45;
 Ninit=0.28;CO2init=0;Glyinit=0;T=34; 
 sd_HHH=19.125; TTime_HHH=105.5;

const KN=exp(-4.73);KS=exp(2.33);Y_ES=exp(-0.598);
mu_max=exp(-3.92+0.0782*T);
kprim_d=exp(-9.810-0.00108*T+0.00478*T^2);
Y_XN=exp(3.50-3.61*10^(-3)*T);
beta_max=exp(-2.30+0.0771*T);

formula mu;kd;beta; # SEE EXPRESSIONS IN COMPLETE CODE

node Coleman
        state X,XA,N,E,_S: FLOAT;

   flow 
X,E,S:FLOAT:out;

        eq:diff
                dX = mu*XA;
                dXA = (mu-kd)*XA;
                dN = -(mu/Y_XN)*XA;
                dE = beta*XA;
                dS = -(beta/Y_ES)*XA;
        assert

 S=_S;
   init

 X:=Xinit, XA:=XAinit, E:=Einit, _S:=Sinit,
 N:=Ninit;

edon

const a;b;c;d;e;A;B;C;D;E;F;G;H;I;mu,KS,beta,CO2_95;
 Y_XS;Y_CO2E;max_mu;  # VALUES IN COMPLETE CODE

formula max_nu_EtOH=exp(-2.30+0.0771*T);
F1 = (exp(-(CO2-CO2_95))/(exp(CO2-CO2_95)+exp(-(CO2-  

  CO2_95))))*A*mu*S/(S+KS*B^a); 
F2 = A*mu*S/((S+KS*B^a)*beta);
F3 = 1-(exp(-(CO2-CO2_95))/(exp(CO2-CO2_95)+exp(-(CO2-  

          CO2_95))));
G1 = max_mu*S/(S+KS*B^b);
H1 = G*mu*S/(S+KS*B^c);
H2 = (S^2*(KS*B^e+KS*B^d)+2*S*(KS^2*B^d*B^e))/       

((S+KS*B^d)^2*(S+KS*B^e)^2);
H3 = (S^4+S^3*(KS*B^e+KS*B^d)+S^2*(KS*B^d*B^e))/

((S+KS*B^d)^2*(S+KS*B^e)^2);

(A)

(B)

Figure 5.4: Reconciled model of wine kinetics for high initial conditions HHH:
temperature 34◦C, sugar 245.45[g/l], and nitrogen 280[mg/l]. (A)Codes: One
BioRica node per original model, MODES decides if each model is active
or not, and RECONCILED_MODEL_OF_SUGAR_CONFIG_HHH
combines the results of the active models at each time. The change from
transient to stable phase, triggered by a su�ciently low concentration of sugar
and high concentrations of biomass and ethanol, is modeled to happen at time
given by a a gaussian variable with mean TTime_HHH = 105.5 and standard
deviation sd_HHH = 19.125. (B)Simulation of sugar concentration.
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sugar consumption. Initially only the Pizarro model is active, and in the stable
phase Scaglia model becomes active by the transition change_phase. The node
RECONCILED_MODEL_OF_SUGAR_HHH links the continuous and dis-
crete dynamics by computing S as a linear combination of the Coleman, Scaglia and
Pizarro models with weights given by the mode variables.

As only the Scaglia model includes a competition e�ect in the sugar consumption
equation ([10]), this reconciled system coincides with the expected behavior: initially
the substrates are abundant, competition does not exist, but it appears when the
resources become scarce in the stable phase.

5.5.2 Detecting sluggish and stuck fermentations

The reconciled models can be used to evaluate the fermentation process, according
how the process in vivo agrees with the model. They can be used to detect sluggish
(very slow) and stuck (with residual sugar) fermentations in time to save them.
As is known, sluggish fermentations are promoted by insu�cient temperatures and
nitrogen levels, while the risk of stuck fermentations is increased by high levels of
sugar and temperature ([17]). We consider that all the fermentations used to build
the models do not present problems, excepting the con�guration MMM which one
observes sluggish fermentations because the moderate temperatures (20◦C) and the
limiting level of nitrogen (66[mg/l]) became the process slow. So, with this excep-
tion, our model simulates normal fermentations. We give some methods to evaluate
the fermentation processes in vivo to detect sluggish and stuck fermentations. In-
su�cient levels of temperature and nitrogen promote slower fermentation rates and
consequently the risk of sluggish fermentation, while the risk of stuck fermentation
is increased when the levels of temperature and sugar concentrations are high.

If we consider fermentations with initial conditions in con�guration MHH, the
expected time to arrive to the stable phase is around 121 hours (Figure 5.3). Con-
sequently, if before arriving to this transition time, the in vivo measures of sugar
consumption are consistently slower than that expected in our model, we predict
a risk of sluggish fermentation. This problem could be also detected by observing
slow growth rates of the fermenting yeasts (biomass X). For con�guration LHH or
LMH one can do the same analysis to detect sluggish fermentations in time to save
them.

On the contrary, for the con�guration HHH (Figure 5.4), our dynamics esti-
mations can be used to predict stuck fermentations in vivo. Since according to our
results the transition to the stable fermentation phase happens at 105.5 hours (with
standard deviation 19.125), one can evaluate the fermentation process by measuring
the quantity of residual sugar. If the quantity of sugar even available is high when
the process is arriving to the stable phase we have a risk of stuck fermentation. This
problem could be detected in time to save the fermentations if one takes samples of
the quantity of residual sugar to deduce that it becomes stable before the expected
transition time.
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5.6 Conclusions and discussion

Continuous dynamics are described by di�erent types of models: di�erential equa-
tions, di�erential algebraic equations (DAEs), or other continuous models. The use
of modules allows us to connect di�erent models to describe complex behaviors by
using input-output relations and mode transitions. To model discrete dynamics we
considered transition systems theory. The discrete dynamics of the system are mod-
eled by mode transitions, that can be deterministic, non-deterministic or stochastic.
Both types of dynamics interact. So, changes in the continuous dynamics of the
system are generated by mode transitions switching the continuous model, and the
mode transitions can be provoked by speci�c conditions of the continuous variables.
The mode transitions, transform the continuous model by changing only the val-
ues of coe�cients (coe�cient switches) or by modifying strongly the model (strong
switches).

To model hybrid systems we used two abstraction schemas: the �rst one can
models Hybrid systems with switches of coe�cient values, and the second one models
those with strong switches (Figure 3.3). Both are theoretically solved with the
process in Figure 4.1, which is implemented with BioRica. We approached the
reconciliation of competing model as an application case, and we illustrated it with
the example of reconciliation of three wine fermentation kinetic models: Coleman
([28]), Scaglia ([94]) and Pizarro ([85, 92]).

We built a general method to combine models in function of con�gurations of
factors. The method was applied to fermentation process modelling to explain the
pro�les of fermentation variables: concentration of yeast biomass, ethanol and sugar;
by considering four factors: initial temperature, sugar and nitrogen, and growth
phase. Our method starts with a symbolic step to homogenize the notation, for ODE
models by rewriting into polynomial form and by identifying main and interaction
e�ects. It continues with a statistical step to evaluate the models, as a function of
experimental data (Pizarro et al. [85], Malherbe et al. [75], and Mendes-Ferreira
et al. [79]). We de�ned discrete levels for each factor; for each con�guration of
factors and fermentation variable we statistically compared the results of the three
kinetic fermentation models ([28, 85, 94]) with the experimental results and we
obtained quality indexes of each model (Figure 5.2). After that we built a combined
model, which selects the best resolution method for each fermentation variable and
con�guration of factors (Table 5.3). Finally, the reconciled models are described
by Hybrid systems with coe�cient switches for the con�guration MHH (Figure
5.3) and strong switches for con�guration HHH (Figure 5.4). This last reconciled
model agrees with the expected result for sugar consumption with high temperature:
initially the nutrients are abundant and competition does not exist, but it appears
when the resources become scarce.

We described how to use the reconciled models to predict stuck and sluggish
fermentations in time to save them. The models can be used as expected dynamics
of normal fermentations, with the exception of con�guration MMM that is consid-
ered sluggish fermentations. So, if for high temperatures and sugar concentrations
(for example the con�guration HHH) one detects that if the in vivo measures of
residual sugar become stable before the expected transition time then one predicts
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stuck fermentations. On the contrary, for lower levels of temperature (such as con-
�gurations LHH, LMH and MHH), if before arriving to the expected transition
time the in vivo measures of sugar consumption are consistently slower than the
expected in our model (that is to say the residual sugar concentration is higher)
then we predict sluggish fermentations.

Another challenge to obtain better approaches of the reality is to construct and
to calibrate fermentation models that consider interacting yeast populations com-
peting for resources. Although it has been observed that Saccharomyces cerevisiae
is dominant in the majority of spontaneous alcoholic fermentations ([37, 93]) and
it is the most popular yeast in inoculated cultures, there exist many strains and
other yeasts as Candida cantarellii that participate in the process ([84, 116]) and
that in�uence the aroma ([90]). The intervention of lactic acid and acetic bacte-
ria in fermentations is also documented ([35, 34]). One can consider competition
between individuals of the same population, modelled by logistic-like models, and
interactions between di�erent populations. A usual way to model the presence of
two or more populations competing by resources is the Lotka-Volterra-like models
([98]). Di�erent strains of Saccharomyces cerevisiae can present di�erent levels of
tolerance to ethanol, acidity, growth and death rate between other coe�cients, An-
other fermenting yeast Candida cantarellii present di�erent rates of growth, ethanol
and glycerol yields [107]. In future works we will introduce the dependency of these
rates with respect to yeast strains or species, and pH conditions.

Though BioRica syntax allowed to code in a clear form both types of Hybrid
systems (Figures 5.3 and 5.4), our approach is independent of the implementation
and it is possible to include models that are externally implemented.
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Chapter 6

Application: modeling cell fate,
particular case of bone precursors
di�erentiation

In this chapter we explore cell fate decisions associated with the formation of speci�c
cells. We want to model such decisions by considering the mechanisms that control
them, to predict in silico the production of speci�c cell lineages and the formation
of tissues. We focus in the case of bone and fat formation by modeling the dynamics
of the di�erentiation of progenitor cells into osteoblasts and adipocytes.

Diseases such as osteoporosis a�ect a high percentage of the human population:
one third of women and one twelfth of men over the age of 50 years su�er from
osteoporosis, and the current treatments to increase bone mass or reduce resorption
have many limitations and side e�ects ([54]). Moreover, obesity reduces bone density
and is inversely associated with bone formation in osteoporosis ([26]), and there is a
notorious decrease of the bone/fat formation ratio with the aging ([102, 19]). In this
scenario, understanding the regulatory signaling pathways that are relevant during
control of bone formation (e.g. Wnt-mediated signaling) has emerged as a critical
component for treating in the future this and other bone disorders ([26, 69, 99, 70,
59, 54]). Moreover, it has become necessary to de�ne their contribution within the
regulatory processes that control the cell fate decisions responsible for going from
bone precursor cells to bone tissue.

Many processes interact to control cell division, to regulate apoptosis, and to
decide which cell lineages are produced. Despite the existing models for each indi-
vidual process, models for the cross-talks and functional interactions between them
have not been developed.

Here we describe in silico interactions between di�erent regulatory processes
leading to bone and fat tissue formation. Our combined model allow us to predict
changes in bone or fat formation by stimulating (or inhibiting) the Wnt signaling
pathway, the PPARγ pathway, the division of progenitor cells, and the apoptosis
of progenitor or osteoblast cells. Based on this, we can analyze in silico the physi-
ological responses to treatments of bone mass disorders based on the Wnt signaling
pathway, and to explore the e�ciency of new medical strategies before testing them
in animal models.
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Motivated by the recent model proposed by [96] and the results of [26], we de�ned
the expression of RUNX2 as associated with the osteogenic di�erentiation ([69]),
while PPARγ as associated with adipogenesis ([26]). Both transcription factors are
mutually exclusive and autoregulated. This inter-regulated system is described by
our main osteo-adipo switch model.

We describe the di�erentiation from osteo-adipo progenitor cells into osteoblasts
and adipocytes by associating the main osteo-adipo switch model with a well-
described model of the Wnt/β-catenin pathway ([62]) to stimulate the osteoblast
lineage, and with a probabilistic model that describes the activation of the PPARγ
pathway during stimulation of the adipocyte di�erentiation ([69], [26]). To accom-
plish this, we consider stimuli coe�cients of the main osteo-adipo switch model as
functions of the pathways activation. Finally, we include well-established validated
models that re�ect how cell division [108]) and apoptosis ([63]) are controlled.

Individual validated models are based on gene regulatory networks ([39, 31]),
while stimulus interactions are described by the switched systems theory ([18, 100,
104]). Composition allows us to combine and reuse validated models, to give more
complete descriptions of cell fate decisions, and to study the responses of the com-
plete model to local variations, such as pathways activations or changes in cell death
rates.

We implement our approach by using an available SBML models ([56]) of cell
division ([108]), apoptosis ([63]), and Wnt pathway ([62]).

We use the BioRica framework to implement di�erentiation and apoptosis regu-
lation of osteoblast cells. BioRica allowed us to translate SBML models into BioR-
ica, to simulate switched systems, and to compose the di�erent models in a non-
ambiguous semantics. BioRica de�nes a global semantics for the composition of
interacting modules, which it is preserved with respect to �ow relations and event
synchronization. Local clocks and solvers allow us to consider diverse types of mod-
els.

In the last section we discuss other models to consider. We describe the dif-
ferentiation between red and white blood cells by reusing the model by Huang et
al. ([55]) with BioRica, and composing them with a separated model that con-
trols the stimulation of each cell lineage over time. The analysis of this system has
applications in control of diseases and sports medicine.

6.1 Mechanisms of regulation

In multi-cellular organisms, inter and intra-cellular processes control metabolism
([44, 20]). The basic functioning of a cell can be explained by four essential processes:
growth, division, di�erentiation and apoptosis ([2]). These processes are responsible
for going from an unique cell to several specialized cell lineages. The cell decision
between self-renewal, di�erentiation and apoptosis de�nes the cell fate ([110]).

The cell cycle is comprised by several events that leads to cell division itself
(mitosis and cytokinesis). It is regulated by several proteins named cyclins and
cyclin dependent kinases ([2]).

The process by which an undi�erentiated cell acquires specialized functions is
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called di�erentiation. During this process the undi�erentiated precursor cell, called
progenitor, can di�erentiate into di�erent speci�c lineages. Thus, hematopoietic
(blood) cells di�erentiate from a common progenitor into red blood cells, to trans-
port oxygen, or into white blood cells that have defensive functions in the organism
([55]). Osteoblasts (bone cells) and adipocytes (fat cells) share a common precursor
derived from the bone marrow stromal cells ([26]).

The Wnt/β-catenin pathway plays an important role in the stimulation of bone
formation ([69]). It promotes osteoblat di�erentiation, proliferation and mineraliza-
tion, and blocks apoptosis and osteoclastogenesis. Consequently, it is fundamental
during bone remodeling and repair, constituting a potential target for the treatment
of bone mass disorders such as osteoporosis or to reduce adiposity or fracture risk
([59, 54]). As example, it has been shown that loss of function of LRP4 and LRP5
(Wnt receptors, [69]) is associated with osteoporosis ([71, 41]). The presence of
some Wnt ligands activates the canonical Wnt pathway induces the accumulation of
β-catenin in the nucleus of the cell, which interacts with a TCF/LEF transcription
factor to activate the expression of the so called Wnt target genes ([53]). Some
proteins that stimulate bone formation, such as Runx2 considered here, are Wnt
targets ([69]).

Apoptosis, programmed cell death, can occur during cell-cycle or of di�erenti-
ation. It is controlled by a diverse range of cell signals, which may originate after
either intrinsic or extrinsic inducers. Intracellular apoptosis begins in response to
a stress such as heat, radiation, nutrient deprivation, viral infection, or membrane
damage ([57]). Extracellular lethal signals include toxins, hormones, growth fac-
tors, nitric oxide or cytokines. In the case of bone cells, it has been shown that
homocysteine strongly induces apoptosis in bone precursors and osteoblasts via the
mitochondria pathway ([63]).

6.2 Gene Regulatory Networks and Switched

Systems

In the Gene Regulatory Networks approach, for a given gene, we associate logic
relations to de�ne what other genes promote its expression and which additional
genes inhibit it. These modulations depend on the expression of all of these genes:
if the expression of a gene is su�ciently high (the gene is active) it promotes (or
inhibits) the expression of its target gene ([39, 31]).

Here, we use ordinary di�erential equations to model Gene Regulatory Net-
works ([39], [31]). Many approximations are needed to use this type of model:
mRNA molecules and proteins are represented by the same variables, and post-
transcriptional regulations (common in eukaryotes) are not included. Nevertheless,
this approach allows the study of a wide range of systems and to integrate microarray
results.

Promotion and inhibition functions are described by Hill functions ([51]), sig-
moidal curves used to describe in�uences between elements of a system. They
measure the in�uence of an element on a target, depending on the concentra-
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tion of the a�ecting element x, an exponent m to control the curve steepness,
and on the mean point of in�uence θ (h+(x, θ,m) = xm

xm+θm
for activation and

h−(x, θ,m) = 1 − h+(x, θ,m) for inhibition). Although Hill functions have their
origin in biochemistry to describe the cooperative binding of oxygen to hemoglobin
([51]), they have applications in diverse areas from pharmacology ([43]) to thermo-
dynamics ([72]).

Currently the metabolic control of gene regulatory networks is being considered
as a way to obtain indirect interaction between genes, to obtain better descriptions
of the underlying behaviors. In [12], it is divided between enzymatic e�ects and
complex formations that are fast processes, and proteins synthesis and degradation
are considered slow. So, the e�ect of metabolic processes is included within the
gene regulatory networks by implicit functions that describe the fast dynamics of
the metabolites and enzymes. In the theory, this idea works �ne, but in practice one
can obtain only boolean answers: at each time genes are expressing or not. With
our approach, we look for connecting the activation of metabolic pathways with
gene regulatory networks to obtain continuous models of the genes activity. One of
the key elements of the model is how to include the activation of the pathways with
the regulatory model, we consider stimulus coe�cients that change their values to
stimulate the expression of speci�c target genes as answer to the activation of the
associated pathway.

We describe regulatory systems by composing continuous models, given by or-
dinary di�erential equations, with discrete models that control instantaneous co-
e�cients changes. To include possible stochastic or non-deterministic changes of
the di�erential equations and to allow the interaction between di�erent regulatory
systems, we use Switched systems (section 3). Continuous dynamics are described
by di�erential equations ([18, 100, 104]), while stochastic transition systems ([29])
generate changes on the continuous model by changing coe�cients associated with
the mode variables into the continuous models.

The dependent variables of the model are called state variables (in analogy with
Transition Systems), while continuous and discrete factors are considered controllers.
These systems are described using a mixture of continuous, discrete dynamics and
logical relations to allow multiple interacting components. In switched systems, the
continuous dynamics are described by ordinary di�erential equations whose solution
over time depends on the initial conditions. The discrete dynamics are given by
the evolution of the mode variables. The changes in their values are called mode
transitions. These are transitions in the sense of Transition Systems theory ([7])
and can be deterministic, non-deterministic or stochastic.

6.3 Approach

Our approach is based on reusing and composing validated models of cell division,
di�erentiation and apoptosis to build a consolidated model that explains interactions
that lead to bone and fat formation.
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6.3.1 Reused models

We reuse a very well known model that simulates how cell division is regulated
([108]). In this model, cell division is triggered when a su�ciently high concentration
of the active complex MPF (maturation promoting factor) complex is reached in
the cell. As shown in 6.4, division occurs when the variable M (that represents the
concentration of the active complex) reaches its threshold values.

With respect to apoptosis, we reuse the model proposed by [63] that explains
how homocysteine strongly induces apoptosis of bone precursors and osteoblasts in
a mitochondria-mediated manner.

In the case of cell di�erentiation, we reuse the osteo-chondro switch model pro-
posed by [96] (Figure 6.1), but replacing chondrocyte lineage variable by adipocyte
lineage. To simulate the induction of di�erentiation, we combined this model with
other speci�c models that describe an engagement to the osteoblast lineage (by ac-
tivation of the Wnt/β catenin pathway) or to the adipocyte lineage (by activation
of the PPAR/γ oathway). Hence, we call the main osteo-adipo switch model the dif-
ferentiation model before specifying the stimulus models, and the osteo-adipo switch
model the model that includes the speci�c inductions to osteoblast and adipocyte
lineages.

Figure 6.1: The osteo-chondro switch di�erentiation model by [96]. The ex-
pression of two mutually exclusive genes (RUNX2 and SOX9 ) is associated
with the bone and cartilage formation, respectively. The gene Tweak is the
bio-marker for the progenitor state. Initially, an unknown stimuli that favors
bone or cartilage formation is considered. Then, the outcomes are modeled by
stochastic switches in the coe�cients values of the model.

To simulate the activation of the Wnt/β-catenin pathway, we reuse the model
by [62] performing the analyses under both control conditions and considering the
activation of the Wnt pathway for a period of 500 − 1000 minutes. On the other
hand, the activation of the PPARγ-pathway is stochastically simulated.
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6.3.2 The main osteo-adipo switch model

Based on the osteo-chondro di�erentiation model by [96] (Figure 6.1) and the results
described in [26], we developed the osteo-adipo switch system shown in Figure 6.2.

Progenitor cells di�erentiate into osteoblasts (bone cells) or adipocytes (fat cells).
We associate two mutually exclusive genes (Runx2 ) and (PPARγ) with engagement
to the osteogenic or the adipogenic di�erentiation, respectively. Expression of pro-
genitor bio-markers (e.g. OCT4, SOX2 or both, [73]) is associated with maintenance
in the uncommitted state that prevents the expression of Runx2 and PPARγ. The
concentration of mRNA associated with the progenitor state is denoted xP , the
mRNA concentration of the osteogenic state is denoted xO and that associated with
the adipogenic di�erentiation is denoted xA.

To incorporate the extracellular pro-di�erentiation, pro-osteogenic and pro-
adipogenic stimuli, we considered three inputs: zD, zO and zA with positive value.
The e�ects that promote or inhibit expressions of regulated genes are incorporated
by using variants of the common Hill functions. The model is represented by the
equations 6.1-6.3, shown below. We have not considered the white noise introduced
in the osteo-chondro switch model reported by [96].

ẋP (t) =
aP · xnP + bP

mP + zD + cPP · xnP
− kP · xP , (6.1)

ẋO(t) =
aO · xnO + bO + zO

mO + cOO · xnO + cOA · xnA + cOP · xnP
− kO · xO, (6.2)

ẋA(t) =
aA · xnA + bA + zA

mA + cAA · xnA + cAO · xnO + cAP · xnP
− kA · xA, (6.3)

With n = 2, aP = 0.2, bP = 0.5, mP = 10, cPP = 0.1, kP = 0.1, aO = aA = 0.1,
bO = bA = 1, mO = mA = 1, cOO = cAA = cOA = cAO = 0.1, cOP = cAP = 0.5,
kO = kA = 0.1 known parameters.

6.3.3 The osteo-adipo switch model: including the Wnt

pathway as a stimulus for bone cell di�erentiation

Activation of the Wnt/β-catenin pathway stimulates the expression of Runx2 ([69])
and therefore, bone cell di�erentiation. We introduced in the main osteo-adipo
switch model (equations 6.1-6.3) the activation of the canonical Wnt pathway as
positive stimulus for bone formation (Figure 6.1) and the activation of the PPARγ
pathway that favors the adipocyte lineage. We build a composed model in which the
coe�cient zO represents the activated state (it takes value 1) when the concentration
of β-catenin is su�ciently high, and zA represents the activated state when the
PPARγ pathway is turned on.

As shown in Figure 6.2, the Wnt pathway can be externally activated by incu-
bation of cells with lithium as well as by other treatments ([21, 54, 9]).
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Figure 6.2: Osteo-adipo switch di�erentiation model. The expressions of two
mutually inhibiting genes (RUNX2 and PPARγ) are associated to the os-
teoblast and adipocyte lineage decision respectively, and a third bio-marker
(OCT4 or SOX2 ) detects osteo-adipo progenitor cells. If the canonical Wnt
pathway is active, stimulated by lithium, β−catenin goes to the nucleus of the
cell and promotes the expression of RUNX2, which favors the bone formation.
The activation of the PPARγ stimulates the formation of adipocytes.

6.3.4 Composing models

The di�erentiation stimuli into speci�c lineages are separately modeled and con-
nected with the main osteo-adipo switch model by considering stimuli coe�cients
of the main di�erentiation model as functions of the activation of the pathways. We
build the osteo-adipo switch model connecting by composition the canonical Wnt
pathway model and a probabilistic model for the PPARγ−pathway with the main
osteo-adipo switch model, hence simulating in the system the presence of a bio-
logical stimulus that produces either bone or fat cells (Figure 6.2). We considered
that the concentration of the β-catenin/TCF complex is su�ciently high to promote
osteoblast lineage when it reaches 1.1 times its normal value (8.81nM−1). That is
to say, if the concentration of the β-catenin/TCF overcomes that threshold, then
zO = 0.8 in the main di�erentiation model.

Finally, we propose a consolidated model that describes cell fate decisions of
bone precursor cells by considering division, di�erentiation and apoptosis models.
We designate this as the cell fate decisions model (Figure 6.7). It connects the
dynamic models of division and di�erentiation described here, with lineage-stimuli
and apoptosis models (Figure 6.3). We consider as apoptosis stimulus the increase
of homocysteine (Hcy) that leads to apoptosis of progenitors and osteoblasts ([63]).
According to results obtained in HS-5 osteoblastic lineage and primary human bone
marrow stromal cells (both lines from ATCC, Manasas, VA, USA), when the con-
centration of Hcy is 10µM the apoptosis rates of osteoblasts (kO) and precursors
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Figure 6.3: Composed model of cell fate. A progenitor cell can divide into new
progenitor cells, or can die (apoptosis), or can di�erentiate into more speci�c
lineages. Each one of these possibilities is controlled by a regulatory system.
Apoptosis is stimulated by inducers, here quanti�ed by increases of Hcy pro-
tein. Division is induced if the cell carries a su�ciently high level of maturation
(called MPF , [108] model). Di�erentiation is stimulated by inhibitions of the
progenitor maintenance role (associated to speci�c genes), after which that
the cell decides its lineage. Each speci�c lineage is stimulated by signals: the
activation of the canonical Wnt pathway (model in [62]) stimulates bone for-
mation (osteoblast lineage), and the pathway of PPARγ the formation of fat
(adipocyte lineage).

(kP ) are increased in 47% and 41% respectively on the osteo-adipo switch model
(equations 6.1-6.3).

Therefore, our model for osteo-adipo progenitor cell di�erentiation is the re-
sult of the interaction of multiple regulatory models. The DIFFERENTIATION
MODEL de�nes the dynamics in the concentrations of progenitor xP , osteoblast
xO, and adipocytes xA by a system of ordinary di�erential equations. The STIM-
ULI MODEL de�nes the switches of the di�erentiation model by giving the values
of the input parameters to DIFFERENTIATION MODEL (Figure 6.7).

Transitions in the STIMULI MODEL are controlled by the di�erent models
that regulate cell division, apoptosis and di�erentiation considered here. Each one
of these regulatory models describes the dynamics of the signals that trigger these
decisions. First, the cell division rate of progenitor cells aP (input of the main osteo-
adipo di�erentiation model) is obtained by simulating the cell division models and
computing the period between divisions. Apoptosis of osteo-adipo progenitor cells
and osteoblasts are stimulated by increases of Hcy (homocysteine) that promote
apoptosis of osteoblasts by switching kO to 1.47 · kO, and of progenitor cells by
switching kP to 1.41 ·kP . Di�erentiation begins after an exponential time with mean
of 100 minutes (zD is switched to 1). The activation of the canonical Wnt pathway
stimulates osteoblast lineage in the period of 500 − 1000 minutes after the process
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is initiated (zO is switched to 0.8), and the activation of the pathway of PPARγ
(exponential distribution with mean 1333 minutes) stimulates the adipocyte lineage
(zA switched to 0.8).

6.3.5 Adjusting the model to human cells

In our cell fate decisions model (Figure 6.7), we adjusted parameters to represent
the behavior of adult human bone precursor cells by assuming normal conditions
according to literature. We considered that the doubling time of precursor cells is
86 hours ([32]), for osteoblasts is 72 hours (observed in HS-5 cells, [97]) and for
adipocytes is 78 hours (observed in liposuctioned adipose tissue, [32]). With respect
to apoptosis coe�cients, we considered that precursor cells have a lifespan between
6 and 9 months, osteoblasts have lifespan of 3 months ([76]) and the relative rate of
adipocytes death is 10% per year (mean age of 10 years, [5]).

6.4 Results

We present implementations and simulations of regulatory models for cell division
and di�erentiation. We analyze the results of our osteo-adipo switch model and cell
fate model explained previously.

const k1=0.015; k2=0.0; k3=200; k4=180; k4prim=0.018; k5=0.0;k6=1.0;k7=0.6;
const  k8=1000000.0;k9=1000.0;
formula CT= C2+CP+pM+M; YT=Y+yP+pM+M; F=k4prim+k4*(M/CT)^2;

node main
state C2,CP,pM,M,Y,yP:FLOAT;
flow yt:FLOAT:out;

   eqdiff
     dC2 = k6*M -k8*C2 + k9*CP;
     dCP = -k3*CP*Y + k8*C2 -k9*CP;
     dpM = k3*CP*Y + -pM*F + k5*M;
     dM  = pM*F -k5*M -k6*M;
     dY  = k1 - k2*Y -k3*CP*Y;
     dyP = k6*M -k7*yP;

assert
yt=YT;

init 
C2:= 0.0,M:= 0.0,CP:= 0.75,pM:= 0.25,Y:= 0.0,yP:= 0.0;

edon Time [min]

Threshold
to trigger division

Period

Figure 6.4: BioRica code and simulation of [108] model of regulation of cell
division. Code is obtained from SBML models. Cell mitosis are predicted to
happen when the maturation promoting factor MPF (variable M) reaches its
threshold. Total cyclin yt andM are expressed as relative concentrations with
respect to the total cdc2 CT . Period is the temporal di�erence between two
divisions.

6.4.1 Cell division

Our results (Figure 6.4) are in agreement with those obtained in the original pub-
lication ([108]). Cell division occurs when the variable M (that represents the con-
centration of the active complex) reaches its threshold values. We observed regular
oscillations of the variables according to the repetitions of the cell-cycle. According
to the original parameter values, the time period for a mitosis is around 35 minutes.
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const n=2;ap=0.2;bp=0.5;mp=10;cpp=0.1;kp=0.1;ao=0.1;ac=0.1;bo=1;
const n=2;ap=0.2;bp=0.5;mp=10;cpp=0.1;kp=0.1;ao=0.1;ac=0.1;bo=1;
const bc=1;mo=1;mc=1;coo=0.1;ccc=0.1;coc=0.1;cco=0.1;cop=0.5;
const ccp=0.5;ko=0.1;kc=0.1;

node DIFF
state xp,xo,xc:FLOAT;
flow zd,zo,zc:[0,1]:in;
eqdiff 

dxp=(ap*xp^n+bp)/(mp+zd+cpp*xp^n)-kp*xp;
dxo=(ao*xo^n+bo+zo)/(mo+coo*xo^n+coc*xc^n+cop*xp^n)

-ko*xo;
dxc=(ac*xc^n+bc+zc)/(mc+ccc*xc^n+cco*xo^n+ccp*xp^n)

-kc*xc;
init

xp:=12,xo:=0,xc:=0;

edon

node STIMULUS
state _zd,_zo,_zc:FLOAT;on_d,on_o,on_c:BOOL;
flow zd,zo,zc:FLOAT:out;
event to_diff,to_osteo,to_chondro;
trans

on_d=False |-to_diff -> _zd=1,on_d=True;

on_o=False |-to_osteo -> _zo=0.8,on_o=True;
on_c=False |-to_chondro -> _zc=0.8,on_c=True;

init

_zd:=0,_zo=0,_zc=0,on_d:=False,ond_o=False,on_c=False;

extern
law<to_diff>:Exponential{0.01};
law<to_osteo>:Exponential{0.002};
law<to_chondro>:Exponential{0.001};

edon

node MAIN
sub 

D:DIFF;
S:STIMULUS;

assert
D.zd=S.zd;
D.zo=S.zo;

D.zc=S.zc;
edon

assert
zd=_zd;
zo=_zo;
zc=_zc;

Stimulus to differentiation
(Exp(0001))

 ZD -> 1

Stimulus to osteoblast lineage
(activation of Wnt, Exp(0.002))

      ZO -> 0.8

Stimulus to chondrocyte
lineage (Exp(0.001))

         ZC -> 0.8

Time [min]

Figure 6.5: BioRica code and simulations of the osteo-chondro switch dif-
ferentiation model in [96]). Stimuli are included by a probabilistic scenario
externally modeled. Variable D.xp denotes the concentration of the progeni-
tor bio-marker, D.xo of the osteoblast lineage and D.xc of the chondrocytes
lineage. The pro-di�erentiation stimulus happens at time exponential with
expected value t = 100 minutes, the pro-osteogenic stimulus happens at time
exponential with expected value t = 500 minutes, and the pro-chondrogenic
stimulus with expected value t = 1000 minutes.

6.4.2 Cell di�erentiation

The osteo-chondro switch and the osteo-adipo switch models (Figures 6.5 and 6.6)
were implemented by de�ning a BioRica node to describe the di�erential model
(DIFF ) and another one to describe the stimuli (STIMULUS ) by computing the
values of the parameters z. The nodeMAIN describes the input-output connections
between both nodes.

For the scenarios analyzed in the osteo-chondro switch model described in [96]
(Figure 6.1), we obtained similar results, but the BioRica representation provides
�exibility to the model. For example, in Figure 6.5 we consider another scenario,
where pro-di�erentiation, pro-osteogenic and pro-chondrogenic stimuli occur with
exponential probabilities over time (Poisson process, [112]). This corresponds to a
switched system, in which delay times have random behaviors. We considered three
possible switches. The system can be stimulated to favor the di�erentiation of pro-
genitor cells, and to decide one or another lineage speci�cation. In the simulation
(Figure 6.5), near 100 minutes after initiated the process di�erentiation is activated.
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node STIMULUS

state _zd,_zo,_za:FLOAT;

flow zo:FLOAT:in; zd,za:FLOAT:out;

event to_diff,to_adipo;

trans

_zd=0 |-to_diff -> _zd=1;

node WNT

# FROM SBML CODE
# SEE SUPPLEMENTARY MATERIAL

edon

node DIFF

# FROM FIGURE 5, SCHITTLER SWITCH MODEL

edon 

_za=0 |-to_adipo -> _za=0.8;
    init

extern
law<to_diff>:Exponential{0.01};
law<to_adipo>:Exponential{0.001};

edon

node MAIN
sub 

D:DIFF;

S:STIMULUS;

assert
D.zd=S.zd;

D.zo=S.zo;

D.za=S.za;

edon

assert
zd=_zd;
za=_za;

W:WNT;

S.zo=WNT_ACTIVE;

_zd:=0,_za=0;

β-cat./TCF
high

Differentiation
    ZD -> 1

   Bone
Formation
ZO -> 0.8

   Fat
Formation
ZA -> 0.8

Time [min]

Figure 6.6: BioRica code and simulations of our osteo-adipo switch model.
Node DIFF is the same of the osteo-chondro switch model, replacing xC by
xA. The activation of the canonical Wnt pathway (model by [62]) is a stimulus
to the osteoblast lineage, The activation of the PPARγ pathway, stimulates
the adipocyte lineage, and it is simulated by an exponential probability distri-
bution with mean 1000 minutes. In case of Wnt activation, the pro-osteoblast
di�erentiation coe�cient zO increases to 0.8. For PPARγ it increases zA.

The concentration of progenitor cells decreases and the concentrations of osteoblasts
and chondrocytes increase. At approximately 250 minutes the formation of chon-
drocytes is stimulated, the concentration of SOX9 (xC) strongly increases, decreases
the formation of osteoblasts (xO) and the concentration of osteoblasts becomes sta-
ble. After approximately 1000 minutes the formation of osteoblasts is stimulated,
its concentration increases and decreases the concentration of chondrocytes. After
these transitions, the concentrations became stable.

We incorporate to the osteo-adipo switch model, with equations 6.1-6.3, the
activation of the Wnt pathway as stimulus to bone formation (Figure 6.2). We
automatically translate the SBML model by [62] (BioRica node WNT ) to use the
activation of the canonical Wnt pathway as stimulus to express Runx2 to favor
di�erentiation into osteoblasts. We detect its activation by measuring the concen-
tration of nuclear β-catenin/TCF. We consider that the pathway is active if it is
su�ciently high (1.1 times its normal value of 8.81nM−1). The activation of the
PPARγ-pathway is simulated by a Poisson process ([112]) with mean 1000 minutes.

As shown in Figure 6.6, the system responds to the di�erentiation stimuli by

91



Chapter 6. Application: modeling cell fate, particular case of bone precursors di�erentiation

DIFFERENTIATION MODEL

State variables:  xP, xO, xA
Constants:  n, aA, bP, mP, cPP, aO, bO, mO, cOO, cOA, cOP, 

aA, bA, mA, cAA, cAO, cAP, kA

Input parameters:  zD, zO, zA, kP ,kO, kA ,aP

Dynamics:

STIMULI MODELnormal_β/TCF=8.81

Transitions:

DIFF. STIMULUS |-  DIFFERENTIATE  ->  zD=1.0

β/TCF = 1.1 * normal_β/TCF |- ACTIVE  WNT -> zO=0.8

ADIPOCYTE STIMULUS |-  ACTIVE PPARγ  ->  zA=0.8

period(M)|- PROGENITOR DIVISION -> aP
APOPTOSIS SIGNAL |- INC. PROG. DEATH -> kP=1.41* kP
APOPTOSIS SIGNAL |- INC. OSTEO. DEATH -> kO=1.47* kO

 APOPTOSIS
by Hcy

TIME~ Exp(0.0005)

TYSON WNT

M β/TCF

  zD, zO, zA, kP ,kO, kA, aP

DIFF.
STIMULUS

TIME~ Exp(0.01)

PPARγ
TIME~ Exp(0.0005)

APOPT.
SIGNAL

ADIPO.
STIMULUS

DIFF.
STIMULUS

TIME [min]

Activation 
osteoblast
 lineageActivation

 adipocyte
 lineage

Activation of 
differentiation

Progenitors
rel. to initial number
[%] Activation of differentiation

Increase of progenitor death

β-cat./TCF
high

TIME [min]

Osteoblasts
rel. to initial
Progenitors
[%]

TIME [min]

Activation of osteoblast lineage

Adipocytes
rel. to initial
Progenitors
[%]

TIME [min]

Activation of adipocyte lineage

Figure 6.7: The cell fate decisions model: composed model of cell fate for
osteo-adipo progenitor cells. Boxes and circles represent models here used,
coded by BioRica nodes. Edges represent input-output relations. The DIF-

FERENTIATION MODEL de�nes the dynamics of xP , xO and xA describing
progenitors, osteoblasts, and adipocytes respectively. The STIMULI MODEL

de�nes the transitions of the di�erentiation model by giving the update values
to DIFFERENTIATION MODEL. The models in circles represent the mod-
els to regulate division and apoptosis. Apoptosis of precursor and osteoblast
cells is stimulated by increasing Hcy ([63]) at exponential time with mean
2000 minutes. Division happens if the cell carries the maximal level of mat-
uration, maximizing M ([108]). Di�erentiation is simulated to happen after
an exponential time with mean 100 minutes. The activation of the canoni-
cal Wnt pathway (model in [62]) stimulates osteoblast lineage in the period
500− 1000 minutes, and the activation of the pathway of PPARγ (simulated
by an exponential distribution of mean 1000 minutes) the adipocyte lineage.
In simulations we show the percentages of each type of cells with respect with
the initial quantity of progenitors.
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changing its behavior. Initially, the expression patterns of progenitor-, osteoblast-
and adipocyte-state bio-markers increase (variables xP , xO, xA). After near 100 min-
utes the di�erentiation is stimulated: xP decreases until becoming stable while xO
and xA increase with the same rate. After that (near 500 minutes) the Wnt signal
(β-catenin/TCF complex su�ciently high) is received to stimulate the bone forma-
tion: xO increases its growth while xA decreases. Finally, near 700 minutes the
PPARγ-pathway is activated: xA increases while xO decreases until both concen-
tration becoming stable.

6.4.3 Consolidated models

We next estimated the dynamics of osteo-adipo progenitor cells, osteoblasts and
adipocytes, in response to division stimuli, favoring each lineage speci�cation (bone
or fat formation), as well as to apoptosis stimuli. We show percentages of osteoblasts,
adipocytes and progenitors relatives to the initial quantity of progenitors (Figure
6.7).

It was considered that initially there is a high presence of progenitors and absence
of adipocytes and osteoblasts. As shown in Figure 6.7, the decrease of progenitor
cells due to the di�erentiation stimulus is favored, arriving to the end, by the apop-
totic action of Hcy. Adipocytes exhibit higher growth rates than osteoblasts, but
bone formation is favored by the activation of the Wnt pathway during 500 min-
utes. The formation of fat is stimulated following around 600 minutes of the PPARγ
pathway activity.

6.5 Conclusions and discussion

We have modeled the dynamics of cell fate decisions when going from osteo-adipo
progenitor cells to bone (osteoblasts) and fat (adipocytes) cells. Bone and fat forma-
tion is controlled by many complex processes. Progenitor cells divide, di�erentiate
into osteoblasts or adipocytes, or die, depending on regulatory processes. With the
models here presented we can predict the changes in bone and fat formation by
stimulating (or inhibiting) the Wnt pathway, the PPARγ pathway, the division of
progenitor cells, and the apoptosis of progenitor or osteoblast cells. This allows
us to simulate the physiological responses to treatments of bone mass disorders in
silico, and to explore the e�ciency of new medical strategies before testing them in
mice or other animals in vitro or in vivo.

With respect to the theoretical basis, we used validated models of individual
processes based on regulatory networks, switched systems to include stimuli e�ects,
and composition between components to describe the interactions between the reg-
ulatory processes. We code, simulate and compose models using the BioRica frame-
work (BioRica). BioRica allows us to describe switched systems, to reuse models
described by the popular SBML format ([56]) providing higher �exibility to make
future improvements and to reuse models.

To begin with cell di�erentiation, we have proposed the osteo-adipo switch model.
Here, we consider the gene RUNX2 as bio-marker for the osteoblast lineage and
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PPARγ for the adipocyte lineage (Figures 6.2 and 6.6). Moreover, we introduced
the canonical Wnt pathway to externally simulate a stimulus to the osteoblast lin-
eage commitment, while the adipocyte lineage was stochastically simulated. As
a result, we obtained a way to estimate the stimulatory e�ect of Wnt/β-catenin
and PPARγ on bone and fat formation in silico. By means of these stimuli, we
can switch the di�erentiation process to favor bone or fat formation and to analyze
treatments developed to prevent or reduce bone mass disorders such as osteoporosis.
Importantly, we can adjust this model to simulate the e�ect of other factors, such as
aging, on the di�erentiation processes. While children show high tendency to regen-
erate bone, this process is slower in adults, who in turn form fat tissue with higher
facility ([19, 102]). Therefore, this paradox could be assessed by incorporating the
aging factor in the control functions z of our main osteo-adipo switch model.

Finally, we have considered a more complete description of the process of bone
formation: the cell fate decisions model. We propose (Figures 6.3 and 6.7) a com-
posed model that includes four essential cell processes: cell growth, cell division, cell
di�erentiation and apoptosis. Our consolidated model integrates the [108] model
that explains how cell division is regulated, the Wnt pathway-mediated (([62]) stim-
ulation of the osteoblast lineage commitment, stochastic models to stimulate generic
di�erentiation of the adipocyte lineage, and programmed cell death ([63]).

As a primary step, we have initially considered only a limited set of regulatory
events during cell fate commitment. There are many other factors that a�ect life
and death of bone cells ([76, 16]). Also, in the case of apoptosis, it is well known that
factors such as the protein sclerostin (a bone morphogenetic protein that functions
as a BMP antagonist) produce marked increase in caspase activity and apoptosis of
human mesenchymal stem cells [103]. The tumor suppressor protein p53 is involved
in apoptosis too. In addition, we do not consider in our simulations the process of
bone remodeling. Osteoclasts, in contrast to osteoblasts, are responsible of bone
resorption. Osteoblasts form bone by di�erentiating into osteocytes or lining cells
([76]). As reported earlier ([69]) the canonical Wnt pathway has a also a regulatory
role in all these aspects of bone remodeling.

Macarthur and colleagues ([73]) have presented an alternative model to explain
di�erentiation towards osteoblasts, chondrocytes and adipocytes. They de�ne a
pluripotency circuit (provided by OCT4, SOX2 and NANOG) to regulate precursor
cells, which interacts with a mutually inhibiting network (provided by RUNX2,
SOX9 and PPARγ) to regulate each lineage. In that case, stimuli are simulated by
switching coe�cients of the model and it is possible the same inclusion of stimuli
models performed here.

In our model, we adjusted parameter values for adult human cells according
to data in the literature ([76, 32, 97, 5]). Hence, for speci�c culture conditions
of osteo-adipo progenitor cells, it may be necessary to re-adjust these parameters
with stricter accuracy to allow the interacting models e�ectively describe its behav-
ior. We may have to adjust the normal proportion of cells that di�erentiate into
osteoblasts with respect to adipocytes and the ability of the Wnt pathway to selec-
tively stimulate the expression of Runx2. Also, by taking advantage of reagents like
RGZ (rosiglitazone) that have been shown to activate the PPARγ pathway and in-
duce adipocyte formation ([111]), it will be possible cross-link the e�ects generated
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by the activation of both signaling pathways.

6.6 Other cell division and di�erentiation models

We describe, code and simulate another models to control cell division and di�er-
entiation not used in our application for bone formation: the [40] model to regulate
cell division, and the model by [55] for di�erentiation of blood cells.

(A) (B)
const vm1=3.0;vm3=1.0;vi=0.025;

vd=0.25;Kd=0.02;
kd=0.01;k1=0.005;
k2=0.005;k3=0.005;
k4=0.005;kc=0.5;
v2=1.5;v4=0.5;

node GOLDBETER
state c,m,x:[0,1];

eqdiff 
dc=vi-vd*x*(c/(Kd+c))-kd*c;
dm=(c/(kc+c))*vm1*((1-m)/(k1+(1-m)))

-v2*(m/(k2+m));
dx=m*vm3*((1-x)/(k3+(1-x)))-v4*(x/(k4+x));

init
c:=0.01,m:=0.01,x:=0.01;

edon

const vm1=3.0;vm3=1.0;vi=0.025;vd=0.25;Kd=0.02;
kd=0.01;k1=0.005;k2=0.005;k3=0.005;
k4=0.005;kc=0.5;v2=1.5;v4=0.5;

node GOLDBETER_affine
         state c,m,x:[0,1];km1,km2,kx1,kx2:{0,1};
         event on_km1,off_km1,on_km2,off_km2,on_kx1,off_kx1, on_kx2,off_kx2;
         eqdiff 

dc=vi-vd*x*(c/(Kd+c))-kd*c;
dm=(c/(kc+c))*vm1*min(((1-m-(k1/5))/(8*(k1/5)))*km1,1)-
        v2*min(((m-(k2/5))/(8*(k2/5)))*km2,1);
dx=m*vm3*min(((1-x-(k3/5))/
        (8*(k3/5)))*kx1,1)-v4*min(((x-(k4/5))/(8*(k4/5)))*kx2,1);
trans

m< (1-(9*k1/5)) |- on_km1 -> km1:=1;
m>= (1-(k1/5)) |- off_km1 -> km1:=0;
m> 9*k2/5 |- on_km2 -> km2:=1;
m<= k2/5 |- off_km2 -> km2:=0;
x< (1-(9*k3/5)) |- on_kx1 -> kx1:=1;
x>= (1-(k3/5)) |- off_kx1 -> kx1:=0;
x> 9*k4/5 |- on_kx2 -> kx2:=1;
x<= k4/5 |- off_kx2 -> kx2:=0;

init
c:=0.01,m:=0.01,x:=0.01;

edon

Time [min] Time [min]

Figure 6.8: BioRica codes and simulations of the Goldbeter model ([40]) of
regulation of cell division. (A) The Goldbeter model. (B) The Goldbeter model
simpli�ed by piecewise-a�ne approximations of Hill functions (h+(C,Kd, 1)
and h+(C,Kc, 1) are the original ones) by using the thresholds θ1 = θ

5 and

θ2 = 9θ
5 . Cell mitosis are predicted to happen each time that the variable M

(concentration of the maturation promoting factorMPF ) reaches the threshold
value. The observed period between mitosis is 25 minutes approximately.

6.6.1 Regulation of cell division by Goldbeter model

The Goldbeter model is a contemporary alternative to [108]. It ([40]) gives a minimal
mathematical model for the so-called mitotic oscillator describing the interactions
between cyclin and cdc2 kinase that control the maturation process arriving to
the cell division. The model is formed by a regulatory network (equations 6.4-6.6)
between C the cyclin concentration, M the active cdc2 kinase concentration, X the
active cyclin protease concentration, 1 −M the inactive (i.e. phosphorylated)cdc2
kinase concentration and 1−X the inactive (i.e. dephosphorylated) cyclin protease
concentration.

Ċ(t) = vi − vd ·X · h+(C,Kd, 1)− kd · C, (6.4)

Ṁ(t) = h+(C,Kc, 1) · VM1 · h+(1−M,K1, 1)− V2 · h+(M,K2, 1), (6.5)

Ẋ(t) = M · VM3 · h+(1−X,K3, 1)− V4 · h+(X,K4, 1), (6.6)
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with original parameters vi = 0.025, vd = 0.25, Kd = 0.02, kd = 0.01, Kc = 0.5,
VM1 = 3, K1 = K2 = K3 = K4 = 0.005 and VM3 = 1 known parameters, and
initial conditions C = M = X = 0.01. Hill functions given by h+(C,Kd, 1) = C

Kd+C
,

h+(C,Kc, 1) = C
Kc+C

, h+(1−M,K1, 1) = 1−M
K1+(1−M)

, h+(M,K2, 1) = M
K2+M

, h+(1−
X,K3, 1) = 1−X

K3+(1−X)
, and h+(X,K4, 1) = X

K4+X
. Here we show the simulation

results with BioRica, considering the original parameter values (Figure 6.8). One
observes that the period between mitosis is around 25 minutes.

Moreover, we use a piecewise-a�ne reduction to approximate h+(1−M,K1, 1),
h+(M,K2, 1), h+(1 − X,K3, 1), and h+(X,K4, 1). With this approximation, the
concentration levels change but not the period (Figure 6.8(B)). Though, in com-
parison with [108] (Figure 6.4) this model gives an smaller period between mitosis
(25 minutes compared with 35 minutes), one can modify the parameters values of
both models to obtain the same period. Only the concentration levels are di�erent
in essence.

6.6.2 Cell di�erentiation of blood cells

Another di�erentiation system is that in which progenitor cells decide between white
and red blood cells (Figure 6.9). The motivation to analyze this process is the control
of diseases and sports medicine. One requires a bigger production of white blood
cells to combat diseases, and an increase of oxygen transport (red blood cells) to
realize sports activities.

Here we considered the di�erentiation model in [55], that describes the di�eren-
tiation by using the bio-markers GATA1 and PU.1, for red blood cells and white
blood cells formation respectively. The regulatory system is described by consid-
ering ordinary di�erential equations with Hill functions (equations 6.7-6.8). The
mRNA concentration of the red blood cells marker is denoted xR and the associated
to the white blood cells is denoted xW .

ẋR(t) = aR · h+(xR, θaR , n) + bR · h−(xW , θbR , n)− kR · xR, (6.7)

ẋW (t) = aW · h+(xW , θaW , n) + bW · h−(xR, θbW , n)− kW · xW , (6.8)

in which the coe�cients aR and aW are related to the auto-stimulation rates, bR
and bW introduce cross-inhibition, kR and kW are decay activity coe�cients. The
exponent n = 4, and the θs coe�cients are in�uence thresholds. We model some
scenarios in which one introduces an asymmetric dependence over time of each auto-
stimulation rate (aR for red blood cells and aW for white blood cells). So, the stimuli
for each lineage are given by modeling these parameters with the equations 6.9, 6.10.

ȧR(t) = −λR · aR, (6.9)

ȧW (t) = −λW · aW , (6.10)

with initial auto-stimulation rate aR(0) = aW (0) = 1.0, rates of exponential decrease
λR and λW di�erent according to the studied scenarios (Figure 6.9). For λR = 0.7
and λW = 0.5 (Figure 6.9, case (C)), the auto-stimulation rate of white blood cells
becomes bigger than whose of red blood cells. That is to say, one introduces a
stimulus to produce red blood cells (Figure 6.9).
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const n=4; kR=1.0; kW=1.0; thetaW=0.5; thetaR=0.5; bW=1.0;
const bR=1.0; aW_0=1.0; aR_0=1.0;
const lambdaR=0.5; lambdaW=0.5; # case (A) 

# const lambdaR=0.5; lambdaW=0.7; # case (B)
# const lambdaR=0.7; lambdaW=0.5; # case (C)  

formula hposR=pow(xR,n)/(pow(thetaR,n)+pow(xR,n));
formula hnegR=pow(thetaR,n)/(pow(thetaR,n)+pow(xW,n));
formula hposW=pow(xW,n)/(pow(thetaW,n)+pow(xW,n));
formula hnegW=pow(thetaW,n)/(pow(thetaW,n)+pow(xR,n));
node DIFF

state xR,xW:FLOAT;
flow aR,aW:FLOAT:in;GATA1_REL,PU1_REL:FLOAT:out;
eqdiff 

dxR=aR*hposR+bR*hnegR-kR*xR;
dxW=aW*hposW+bR*hnegW-kW*xW;

init
xR:=1.5,xW:=0.2;

assert
GATA1_REL=xR/1.5;
PU1_REL=xW/0.2;

edon

node STIMULUS
state _aR,_aW:FLOAT;
flow aR,aW:FLOAT:out;
eqdiff

d_aR=-lambdaR*_aR;
d_aW=-lambdaW*_aW;

init
_aR:=1.0,_aW:=1.0;

assert
aR=_aR;
aW=_aW;

edon

node main
sub

S:STIMULUS;
D:DIFF;

assert
D.aR=S.aR;
D.aW=S.aW;

edon Time [hour]
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Figure 6.9: BioRica code and simulations of an red-white blood cells di�er-
entiation model in [55]). The pro-di�erentiation stimuli for each cell lineage
(red and white blood cells) are modeled by considering the auto-stimulation
coe�cients as functions over time whose rate of exponential decrease λ dif-
fer. In case (A) both values are equal λR = λW = 0.5, in (B) λR = 0.5
and λw = 0.7, and in (C) λR = 0.7 and λw = 0.5. Parameters are n = 4,
kR = kW = bR = bW = 1, and the θ's coe�cients have value 0.5. As in [55],
we show the relative quantities of xR (GATA1) and xW (PU.1) over time.
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Chapter 7

Conclusions and discussion

7.1 Conclusions

In this work we have used the theory of Hybrid systems and composition to model
biological systems, and we have presented abstractions capable of modeling di�erent
levels of changes in the behavior laws of the system, reusing and reconciling models.
Continuous models describe the dynamics of variables of the system with gradual
changes over time, and switches are used to change the laws of the behavior or for
combining di�erent models.

We formalized the theory of hybrid systems by including stochastic and non-
deterministic model changes, and de�ning two types of model transformations: with
coe�cient switches and with strong switches (section 3.3). During this work we have
contributed to the development of the new implementation of BioRica, which in-
cludes important improvements to be capable of modeling real biological systems.
We detected the problems of the previous versions, proposed and checked possible
solutions. As result, with the new version we are capable of describing biologi-
cal systems as hybrid systems that integrates continuous, discrete, deterministic,
stochastic and non-deterministic behaviors. As result, we developed an approach
with theoretical substance and good results in practice that allows modeling, im-
plementation and simulation of real biological applications such as the case of wine
fermentation kinetics, and cell fate decisions in bone formation.

We described three steps of our approach: modeling, solving and implementing.
We summarize them here.

In the modeling step, we began by formalizing some aspects of the hybrid sys-
tems theory. The continuous dynamics are described by di�erent types of models:
di�erential equations, di�erential algebraic equations (DAEs), or other continuous
models. The use of modules allows us to connect di�erent models to describe com-
plexes behaviors by using input-output relations and the mode transitions. To
model discrete dynamics we considered Transition Systems theory. The discrete dy-
namics of the systems are modeled by mode transitions that can be deterministic,
non-deterministic or stochastic. Both types of dynamics interact. So, changes in
the continuous dynamics of the system are generated by mode transitions switch-
ing the continuous model, and the mode transitions can be provoked by speci�c
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conditions of the continuous variables. Mode transitions transform the continu-
ous model by changing only the values of coe�cients (coe�cient switches) or by
modifying strongly the model (strong switches). With this theory one can consider
di�erent levels of model changes according to the modeling decisions, one uses coef-
�cient switches and modi�es the models to include coe�cients associated to mode
transitions, or one uses strong switches and the models are directly reused.

In the solving step we presented the computation steps needed to solve hybrid
systems (Figure 4.1). After preprocessing the initial conditions and parameters of
the system, begin a solving/updating process of the model. At any given time the
model is solved, and the model is updated (by modifying coe�cients values or strong
switches) when detecting the guard condition GUARD(x,mode, time). The process
�nishes when the condition END(x,mode, time) is veri�ed. In the third step we
implemented and simulated the models with BioRica.

These considerations allow us to model a wide range of biological systems: from
processes where the information levels are high to those in which it is very poor,
from continuous models without changes over time to other ones in which the be-
havior changes force to change completely of model type. From the theoretical point
of view, we obtained some assume-guarantee rules with respect to properties of Hy-
brid systems and compositions of them. The stability of Switched systems is assured
given the conditions of Theorem 6 in [18]. Compositions of Hybrid systems are Hy-
brid systems, and re�nements of a module forming part of a composed system result
in re�nements of the composed system. With our approach and the implementation
in BioRica we assure the consistency of composed models with respect to the values
of shared variables.

The development of the theoretical basis of our approach was complemented
with the improving of the BioRica framework. We identi�ed problems of the previ-
ous BioRica version, and proposed solutions that contributed to the development of
important improvements included in the current version with the aim of modeling
real biological systems, composing models and allowing hybrid systems. We iden-
ti�ed and modeled biological systems no-implementable with the previous BioRica
version. For discrete systems, we established the need to de�ne transitions com-
putations using not only the basic algebraic operations and integer variables. To
describe more general systems was necessary to include continuous elements, which
carried to the use of hybrid systems. We gave a BioRica speci�cation of Hybrid
Systems and the reconciliation of competing models that assures the integrity of
individual models, obtained a general implemented of Switched Systems by using
two types of model changes: coe�cient switches and strong switches, and proposed
a new BioRica syntax to code general Hybrid Systems.

We approach themes and application of current interest: composition and reusing
of models, and coupling of metabolic pathways and Gene Regulatory Networks.
Composition of validated models is a known way to build complete descriptions of
complex biological systems ([109, 33]). Our approach and the BioRica framework
allow us to solve this need, to combine di�erent types of models by implementing
the notion of composition and importing SBML models. The connection between
metabolic changes and Gene Regulatory Networks ([12]) has been recently consid-
ered as a way to obtain indirect interaction between genes, to obtain better descrip-
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tions of underlying behaviors. Here we approach that problem to model cell fate
decisions leading to bone formation by considering a Gene Regulatory Network and
speci�c pathways to stimulate the expression of target genes. We developed two
biological applications: reconciliation of competing models in case of wine fermen-
tation, and modeling of cell fate decisions leading bone and fat formation.

We approached the reconciliation of competing model as an application case of
Hybrid System, and we illustrated it with the example of reconciliation of three
wine fermentation kinetic models: Coleman ([28]), Scaglia ([94]) and Pizarro ([85,
92]). We built a general method to combine models in function of con�gurations
of factors. The method was applied to fermentation process modeling to explain
the pro�les of fermentation variables: concentration of yeast biomass, ethanol and
sugar; by considering four factors: initial temperature, sugar and nitrogen, and
growth phase. We described how to use the reconciled models to predict stuck and
sluggish fermentations in time to save them. The models can be used as expected
dynamics of normal fermentations, with the exception of con�guration MMM that
is considered sluggish fermentations.

Switched systems and gene regulatory networks allowed us to build good de-
scriptions of basic cell processes by de�ning interactions between components and
the possibility of diverse types of behaviors. We showed how to build extension
of models by using the composition of the cell di�erentiation models with models
that control the stimuli, such as the canonical Wnt pathway to favor the osteoblast
lineage. BioRica allowed us to describe switched systems, coding di�erential equa-
tions to model the continuous dynamics and transitions for the discrete dynamics,
and integrating models in the SBML format ([57]). We proposed (Figure 6.3) a
composed model to integrate four essential cell processes: growing, division, di�er-
entiation and apoptosis. It integrates the Tyson model to regulate the division and
generic pathways to stimulate formation of cell lineages. In the case of osteo-adipo
progenitor cells, we use this model and considers the Wnt pathway to stimulates the
osteoblast lineage.

7.2 Future work

To continue we discuss some possible extensions and improvements of our approach.
Extensions are related with the type of Hybrid Systems that we can model and
simulate, and the Transition Systems theory. The improvements are related with
the BioRica implementation and the numerical solution of di�erential equations,
currently we use Runge-Kutta (4, 5) implemented by the Scipy library of Python,
and the inclusion of other continuous models.

Our approach is based on the use of Stochastic Transition Systems ([29]) to mod-
eling the mode transitions (the changes in the form of the model). The recent years
the theory of Transition Systems has been extended to include continuous spaces of
events and more general types of schedulers ([25, 113]). These works give insights
about how extend our approach (section 2.2). As we explained here, the approach
is valid for general Hybrid Systems, with di�erent types of continuous models. To
implement them with BioRica, we propose to review some speci�c Python libraries
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to solve di�erential algebraic equations and partial di�erential equations. The in-
clusion of bridges to other software such as Matlab has not showed satisfactory
results.

There are two known simulating problems that we considered: sti�ness and
mode transitions not happening at the considered times. For di�erential equations
that appear in Switched Systems as continuous models, the classic methods to nu-
merically approximate their solutions present problems with stability in sti� equa-
tions. One requires many iterations, incrementing the computation time, to obtain
good approximations of the solutions. We solved in part this problem by considering
separation into modules. So, sti� models can be isolated to spend more time or to
use strong solvers just in their solutions. However the selection of the best solvers
to avoid these problems is a key point.

Moreover, the presence of the mode variablesmode adds another problem: What
do we do if at time t it changes the value of mode but t does not belong to
{t0, t1, . . . , tk, tk+1, . . .}? It is not the aim of this work to face these simulation prob-
lems with BioRica. Between the classic methods, we use Runge-Kutta (4, 5) that
has good responses to the sti�ness problem and we did not observe such problems.
To consider mode transitions that happen between the discrete times, BioRica inter-
polates the state variable values at the transition time, do the transition and restart
the continuous dynamics. In future works we will explore the QSS approach ([68]),
that promises to avoid both problems taking advantage of piecewise de�nitions.

To �nish we want to discuss about the basis, the goals and the scopes of our
approach. One of the arguments of our approach was `Biology is modular', that
supports the use of modules and composition of them to model biological systems.
We argued that this is an open question, but practice shows that it would be true.
However, if that is true or not is not really important. The fact is that the human
understanding of Biology, the description of biological systems, is modular.

The main goal of this work was to build an approach, theoretical, sustainable,
and usable. We considered applicability of the approach as the �nal aim. So, we use
the theory here presented as basis and the BioRica framework as tool to be capable
of modeling, implementing and simulating real biological systems, to do in silico
analysis that captures emerging properties not observed before. Composition and
hybrid systems theory gave us the theoretical sustenance to integrate diverse types
of models describing a biological systems with a non-ambiguous semantics. BioRica
allowed us to implement these descriptions, to simulate the systems behaviors and
to analyze them.

We showed that our approach has real applications in Biotechnology and
Medicine. We built usable models to describe the wine fermentation kinetics and
the cell fate decisions leading to bone and fat formation form precursor cells.

In the case of wine fermentation, we reused and reconciled known models that
describe over time the responses of yeasts cells to di�erent temperatures, quanti-
ties of resources and toxins. We chose, depending on the initial conditions and
fermentation variable, the model with best adjustment to experimental data. The
importance of this application is that the resulting model can be applied to predict
process problems as stuck and sluggish fermentations, to avoid them ([10]). It is
clear that this idea can continue being developed to consider more models with bet-
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ter adjustments in di�erent conditions such as di�erent types of fermenting yeasts.
With respect to our application on modeling cell fate decisions leading to bone

and fat formation, the idea is very ambitious. By considering accurate models to
predict the bone and fat formation in response to activation of pathways (such
as the Wnt pathway), and factors a�ecting these functions (such as increments of
Homocysteine), one can analyze in silico the responses to treatments for osteoporosis
and other bone mass disorders. We think that we are giving a �rst step to do that.
With a more extensive inclusion of factors associated to bone and fat formation and
stricter experimental adjustments, continuing the work here exposed, it is possible
to obtain accurate models that give in silico evaluations of medical treatments of
bone mass disorders before testing them in vitro or in vivo.

With respect to future works, we think that an important point to explore is
modeling metabolic processes as hybrid systems, and combining them with gene
regulatory networks. The dynamics of metabolic processes could be the key to
obtain more precise models of biological systems. In the case of wine fermentation
kinetics, the glycolysis of yeast has a key role to produce ethanol. The dynamics
of this process depends on the type of yeast (species, strain), and environmental
conditions such as levels of sugars, ethanol, carbon dioxide and temperature. As we
explained before (section 6.2, [12]), metabolic control of gene regulatory networks is
used to obtain indirect interaction between genes, to obtain better descriptions of
the underlying behaviors. We think that our approach, as applied in section 6, is
an appropriate way to include interactions between metabolic processes and genic
regulation.

Two known approaches to model the dynamics of metabolic processes are Dy-
namic Flux Balance Analysis (DFBA, [14, 74]), and the use of discrete event for-
malisms ([13, 27]). DFBA approach considers time steps, and starting with the
initial conditions at each time uses FBA to predict the growth, nutrient uptake
and by-product secretion rates to calculate the new nutrient concentrations that
limit the next FBA solution. In [4] the discrete event formalisms DEVS ([115]) is
used to model glycolysis considering reactions as event transitions. We wish to use
our approach to incorporate important aspects to these approaches: randomness,
non-determinism, e�ect of environmental conditions and composition of processes.
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