Thèse soutenue

Déploiement régulé de structures spatiales : vers un modèle unidimensionnel de mètre ruban composite

FR
Auteur / Autrice : François Guinot
Direction : Bruno CochelinChristian HochardStéphane Bourgeois
Type : Thèse de doctorat
Discipline(s) : Mécanique des Solides
Date : Soutenance le 05/01/2011
Etablissement(s) : Aix-Marseille 1
Ecole(s) doctorale(s) : Ecole doctorale Sciences pour l'Ingénieur : Mécanique, Physique, Micro et Nanoélectronique (Marseille ; 2000-....)
Jury : Président / Présidente : Michel Potier-Ferry
Examinateurs / Examinatrices : Bruno Cochelin, Christian Hochard, Stéphane Bourgeois, Michel Potier-Ferry, Pierre-Alain Boucard, Sébastien Neukirch, Bernard Maurin
Rapporteurs / Rapporteuses : Pierre-Alain Boucard, Sébastien Neukirch

Résumé

FR  |  
EN

Dans un contexte où l'utilisation de structures déployables s'est généralisée, le département Recherche de la société Thales Alenia Space étudie un nouveau concept de télescope spatial dont le miroir secondaire est déployé grâce au déroulement de six mètres rubans. Des études antérieures ont permis la mise au point d'un prototype constitué de rubans métalliques dont le déploiement s'est avéré trop violent. Dans ce travail de thèse nous proposons d'une part un nouveau type de ruban à la vitesse de déroulement maîtrisable et d'autre part un modèle original décrivant le comportement dynamique de tels rubans, permettant de mieux appréhender les phénomènes complexes pouvant intervenir lors de scénarios de pliage, de déploiement ou de déroulement. La solution envisagée pour contrôler la vitesse de déroulement repose sur l'exploitation des propriétés mécaniques d'une couche de matériau viscoélastique collée à la surface du ruban. Ces propriétés variant avec la température permettent de garantir un maintien de la position enroulée à froid et assurent un déroulement régulé grâce à un réchauffage localisé. Ces phénomènes ont été mis en évidence expérimentalement et numériquement. La lourdeur des méthodes classiques de modélisation et le manque de richesse des méthodes simplifiées nous ont conduit à développer un modèle de poutre à section fortement déformable permettant de décrire le comportement dynamique des rubans en grands déplacements. Partant d'un modèle de coque, l'originalité de la méthode repose essentiellement sur l'introduction d'une cinématique de type elastica pour décrire les grandes variations de forme de la section. Un modèle énergétique 1D est obtenu en intégrant dans la section et le problème est résolu à l'aide du logiciel de modélisation par éléments finis COMSOL. On propose finalement un modèle continu 1D à 4 paramètres cinématiques qui permet de rendre compte d'une large gamme de phénomènes intervenant dans des scénarios complexes de pliage, de déroulement et de déploiement dynamique.