Thèse soutenue

Etude du transport incohérent de lumière en milieu anisotrope : application à l'étude des fluides complexes
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Nadjim Moumini
Direction : Michel LebouchéChristophe Baravian
Type : Thèse de doctorat
Discipline(s) : Mécanique et énergétique
Date : Soutenance le 16/04/2010
Etablissement(s) : Nancy 1
Ecole(s) doctorale(s) : EMMA
Partenaire(s) de recherche : Laboratoire : LEMTA
Jury : Président / Présidente : Jean-Paul Decruppe
Examinateurs / Examinatrices : Michel Lebouché, Christophe Baravian, Christian Wagner, Jean-Paul Decruppe, Laurent Michot, Jérôme Crassous, Alan Parker
Rapporteurs / Rapporteuses : Christian Wagner, Jérôme Crassous

Résumé

FR  |  
EN

Pour construire le lien entre l'organisation structurale des milieux dispersés concentrés et leurs propriétés mécaniques, il est nécessaire de pourvoir identifier leur structure à l'échelle microscopique. En particulier, il faut être capable mesurer la taille des particules ou des amas de particules, leur concentration et les éventuelles anisotropies liées à une déformation ou une orientation (globale ou partielle) dans le cas de particules anisotropes (fibres par exemple) ou déformables (émulsions, globules rouges,...). La difficulté majeure est que ces systèmes composés de particules micrométriques sont généralement opaques à la lumière visible (produits agroalimentaires tels que les laitages, fluides biologiques tels que le sang, matériaux liés au bâtiment tels que les ciments, les argiles ou les peintures,...). Nous avons ainsi mis au point une technique optique basée sur la diffusion multiple de la lumière. Dans le cadre de cette thèse, nous nous intéressons plus particulièrement à la caractérisation des milieux constitués d'objets anisotropes. Sous l'action d'un champ de cisaillement, on observe une orientation privilégiée ou une déformation globale des particules. L'objectif de cette thèse est donc à la fois d'étudier les mécanismes qui sont à l'origine de la déformation et/ou l'orientation des particules et également de mesurer ces anisotropies à l'échelle microscopique. On s'appuie pour mener cette étude sur un dispositif développé au laboratoire basé sur le transport incohérent de lumière couplé à un rhéomètre. Il s'agit d'un dispositif constitué d'une source laser focalisée à la surface d'un échantillon et d'une caméra CCD permettant l'acquisition d'une image rétrodiffusée loin du point d'impacte du laser. Parallèlement, une base de données de simulation de Monte Carlo est en cours de réalisation permettant par analyse des images rétrodiffusées anisotropes, de remonter à l'information sur l'anisotropie réelle des particules (facteur de forme) leur champ d'orientation (paramètre d'ordre). En effet, en confrontant les données expérimentales aux données numériques, nous sommes en mesure de déterminer le taux d'orientation moyen de particules très anisotropes ou de caractériser la déformation des particules. Une application à la déformation des rouges sous cisaillement pour du sang en concentration physiologique (40 à 50% en volume) sera présentée. D'autres applications, notamment à l'endommagement des plastiques et à l'orientation de suspensions de fibres seront discutées