Thèse soutenue

Modélisation moléculaire de ladsorption et de la diffusion de molécules polaires dans un solide nanoporeux de type zéolithique

FR  |  
EN
Auteur / Autrice : Cyril Abrioux
Direction : François Henn
Type : Thèse de doctorat
Discipline(s) : Chimie théorique, physique, analytique
Date : Soutenance le 02/12/2010
Etablissement(s) : Montpellier 2
Ecole(s) doctorale(s) : École doctorale Sciences Chimiques Balard (Montpellier ; 2003-2014)
Partenaire(s) de recherche : Laboratoire : Institut Charles Gerhardt (Montpellier ; 2006-....)
Jury : Président / Présidente : Jean-Louis Bantignies
Examinateurs / Examinatrices : François Henn, Carlos Nieto, Jean-Marc Douillard
Rapporteurs / Rapporteuses : Marie Jardat, Bogdan Kuchta

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les zéolithes sont des matériaux aluminosilicates nanoporeux largement utilisés dans l'industrie pour la filtration de l'eau, la séparation de gaz et le craquage des bruts pétroliers. Leurs propriétés d'adsorption et de catalyse sont reliées à la géométrie de leur réseau poreux d'une part et aux cations qui sont présents à leur surface d'autre part. Dans cette thèse, nous étudions par simulation moléculaire l'adsorption de molécules polaires, i.e. l'eau et le méthanol, dans deux zéolithes sodiques de type Faujasite. L'objectif de ce travail est d'étudier l'effet de la présence de molécules adsorbées sur la position et la dynamique des cations sodium et inversement l'effet des cations sur l'adsorption et la diffusion des molécules d'adsorbat. Nous nous sommes tout d'abord attachés à simuler par la méthode Monte Carlo le processus d'adsorption en fonction de plusieurs paramètres: i) répartition et densité des substitutions Si/Al, ii) valeur des charges électriques portées par le réseau zéolithique et iii) nature des potentiels d'interaction. Nous avons ainsi pu simuler les isothermes et les chaleurs d'adsorption d'une part et d'autre part la redistribution cristallographique des cations en fonction du nombre de molécules adsorbées, Nous nous avons ensuite porté notre intérêt à l'aide de la méthode de Dynamique Moléculaire, aux propriétés dynamiques (diffusion, transport) du système molécules adsorbées/cations/zéolithe. L'originalité de ce projet réside dans l'utilisation de ces deux techniques complémentaires qui permettent d'accéder aux propriétés thermodynamiques, structurales et dynamiques de tels systèmes. Les résultats de ces simulations sont comparés, en particulier, à ceux obtenus expérimentalement par Spectroscopie de Relaxation Diélectrique.