Thèse soutenue

Reconnaissance automatique des émotions par données multimodales : expressions faciales et des signaux physiologiques

FR  |  
EN
Auteur / Autrice : Faiza Abdat
Direction : Alain PruskiChoubeila Maaoui
Type : Thèse de doctorat
Discipline(s) : Automatique
Date : Soutenance le 15/06/2010
Etablissement(s) : Metz
Ecole(s) doctorale(s) : École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....)
Partenaire(s) de recherche : Laboratoire : LASC - Laboratoire d'Automatique humaine et de Sciences Comportementales - EA 3467
Jury : Président / Présidente : Guy Bourhis
Examinateurs / Examinatrices : François Cabestaing, Isabelle Magnin, Norbert Noury

Résumé

FR  |  
EN

Cette thèse présente une méthode générique de reconnaissance automatique des émotions à partir d’un système bimodal basé sur les expressions faciales et les signaux physiologiques. Cette approche de traitement des données conduit à une extraction d’information de meilleure qualité et plus fiable que celle obtenue à partir d’une seule modalité. L’algorithme de reconnaissance des expressions faciales qui est proposé, s’appuie sur la variation de distances des muscles faciaux par rapport à l’état neutre et sur une classification par les séparateurs à vastes marges (SVM). La reconnaissance des émotions à partir des signaux physiologiques est, quant à elle, basée sur la classification des paramètres statistiques par le même classifieur. Afin d’avoir un système de reconnaissance plus fiable, nous avons combiné les expressions faciales et les signaux physiologiques. La combinaison directe de telles informations n’est pas triviale étant donné les différences de caractéristiques (fréquence, amplitude de variation, dimensionnalité). Pour y remédier, nous avons fusionné les informations selon différents niveaux d’application. Au niveau de la fusion des caractéristiques, nous avons testé l’approche par l’information mutuelle pour la sélection des plus pertinentes et l’analyse en composantes principales pour la réduction de leur dimensionnalité. Au niveau de la fusion de décisions, nous avons implémenté une méthode basée sur le processus de vote et une autre basée sur les réseaux Bayésien dynamiques. Les meilleurs résultats ont été obtenus avec la fusion des caractéristiques en se basant sur l’Analyse en Composantes Principales. Ces méthodes ont été testées sur une base de données conçue dans notre laboratoire à partir de sujets sains et de l’inducteur par images IAPS. Une étape d’auto évaluation a été demandée à tous les sujets dans le but d’améliorer l’annotation des images d’induction utilisées. Les résultats ainsi obtenus mettent en lumière leurs bonnes performances et notamment la variabilité entre les individus et la variabilité de l’état émotionnel durant plusieurs jours