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“One must work and dare if one really wants to live.”

Letter to Theo van Gogh
Nuenen, April 11 th, 1885

Vincent van Gogh
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Title

Contributions to Symbolic Effective Qualitative Analysis of Dynamical Systems; Appli-
cation to Biochemical Reaction Networks

Abstract

The goal of my research is to make algorithmic, as much as possible, the study of mod-
els composed by parametric differential equations. I focus on the algorithms based on
expanded Lie point symmetries for medium size (about twenty variables) models. I
present two exact simplification methods: the reduction of the number of variables of a
model and its reparametrization in order to distinguish the roles of its parameters. Sim-
plified systems are equivalent to the original ones by implicit or explicit relationships
(according to the chosen method). These algorithms, thanks to some computational
strategies and restriction of studied objects, are of polynomial time complexity in the
input size. They are implemented in the MABSys and the ExpandedLiePointSymmetry

packages. Simplified models resulting from these methods allow to perform more easily
various studies such as symbolic or numerical qualitative analysis. I illustrate my work
on a family of genetic networks with a single self-regulated gene by a complete symbolic
qualitative analysis. Even if my principal application example belongs to genetic regu-
latory networks field, the methods presented in my work are not limited to intracellular
biology.

Titre

Contributions à l’analyse qualitative symbolique effective des systèmes dynamiques;
l’application aux réseaux de réactions biochimiques

Résumé

Le but de mes travaux de recherche est de rendre, autant que possible, algorithmique
l’étude des modèles composés par des équations différentielles paramétriques. Je me
concentre aux algorithmes basés sur les symétries de Lie étendues pour les modèles de
taille moyenne (environ vingt variables). Je présente deux méthodes de simplification
exacte : la réduction du nombre des variables d’un modèle et sa reparamétrisation
pour distinguer le rôle de ses paramètres. Les systèmes simplifiés sont équivalents aux
systèmes originaux par des relations implicites ou explicites (suivant la méthode choisie).
Ces algorithmes, grâce aux stratégies de calcul utilisées et aux restrictions sur les objets
étudiés, ont une complexité temporelle polynomiale en la taille de l’entrée. Ils sont
implémentés dans les paquetages MABSys et ExpandedLiePointSymmetry. Les modèles
simplifiés issus de ces algorithmes facilitent diverses études comme l’analyse qualitative
symbolique ou numérique. J’illustre mes travaux sur une famille de réseaux génétiques
avec un seul gène autorégulé en faisant une analyse symbolique complète. Mon exemple
principal appartient au domaine des réseaux de régulation génétique mais l’application
des méthodes que je présente n’est pas limitée à la biologie intracellulaire.
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Résumé

Le but de mes travaux de recherche est de rendre, autant que possible, algorithmique
l’étude des modèles composés par des équations différentielles paramétriques. Mon
exemple principal appartient au domaine des réseaux de régulation génétique mais
l’application des méthodes présentées dans ce document n’est pas limitée à la biolo-
gie intracellulaire. Les modèles mathématiques considérés sont des systèmes d’équations
différentielles paramétriques et non linéaires (polynomiales). Ces systèmes peuvent être
obtenus, par exemple, à partir de réseaux de réactions biochimiques généralisées en
utilisant la loi d’action-masse (voir [55]). Je me concentre aux algorithmes de calcul
formel développés pour les modèles de taille moyenne (environ vingt variables). Je con-
sidère principalement deux types d’algorithmes consacrés aux traitements de modèles :
l’approximation quasi-stationnaire (basée sur la théorie de l’élimination différentielle) et
les simplifications exactes (basées sur la théorie des symétries de Lie). Ces dernières cor-
respondent à la réduction du nombre de variables d’un modèle et à sa reparamétrisation
pour distinguer le rôle de ses paramètres. Les modèles simplifiés issus de ces algorithmes
facilitent diverses études comme l’analyse qualitative symbolique ou numérique, les sim-
ulations numériques, etc. Par exemple, l’analyse qualitative symbolique est, dans le pire
des cas, au moins de complexité exponentielle en le nombre de variables. La réduction du
nombre des variables d’un modèle ou de ses expressions dérivées est utile pour faciliter
son analyse.

Idées principales

La méthode de reparamétrisation que je propose est une méthode de simplification exacte
basée sur un nouvel algorithme qui utilise la théorie classique des symétries de Lie. Elle
améliore l’analyse préliminaire des modèles et facilite leur analyse qualitative. Pour
établir la liaison entre le système original et le système simplifié, toute l’information
relative à la simplification est aussi fournie. De plus, des stratégies de calcul comme
la restriction de l’ensemble des symétries de Lie auquel on s’intéresse permettent à ce
nouvel algorithme d’avoir une complexité polynomiale en la taille de l’entrée.

La méthode de réduction présentée dans ce document est une application classique
de la théorie des symétries de Lie. La méthode de réduction classique (voir [24, 86]) et
la méthode de réduction basée sur le repère mobile (voir [37, 38]) sont adaptées pour
que la complexité temporelle soit polynomiale en la taille de l’entrée. Même dans ces
cas, ils généralisent, entre autres, l’analyse dimensionnelle (voir ch. 1 de [6], [17]) pour
laquelle il n’y a pas de résultat de complexité (voir [64]). De plus, nos algorithmes ne
nécessitent pas de spécifier les dimensions des variables mais se basent sur des hypothèses
de positivité. Ce processus est aussi appliqué partiellement aux systèmes dynamiques
discrets. A notre connaissance, même si ces systèmes sont déjà traités à l’aide des
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symétries de Lie (voir [70, 117]), aucune méthode algorithmique avec une complexité
polynomiale en la taille de l’entrée n’est disponible.

La limitation à des types particuliers des symétries de Lie explique essentiellement le
gain de complexité de nos algorithmes. L’algèbre linéaire sur un corps numérique et la
factorisation des polynômes univariés sont suffisantes pour les opérations nécessaires. Les
travaux existants sur ce sujet (voir par exemple [42, 59, 88]) considèrent essentiellement
les symétries de Lie écrites sous forme générale. Le calcul de ces symétries générales
nécessite des calculs de base de Gröbner et/ou la résolution des équations différentielles
partielles. Leur complexité est donc en général au moins exponentielle.

Les algorithmes que je présente dans ce document sont disponibles dans les logi-
ciels MABSys et ExpandedLiePointSymmetry (voir le paragraphe suivant pour plus de
détails). Ces implémentations permettent de traiter les exemples de taille moyenne.
L’étude préliminaire et l’analyse qualitative symbolique d’un tel exemple sont données
dans le chapitre 1. Cet exemple illustre l’utilisation simultane d’une méthode de simpli-
fication inexacte (l’approximation quasi-stationnaire, voir [10]) et des méthodes de sim-
plifications exactes (réduction et reparamétrisation). Ces algorithmes de réduction et de
reparamétrisation adaptent la théorie des symétries de Lie au contexte de modélisation
en biologie (voir [78] pour un point de vue sur les systèmes algébriques en biologie).

Contributions

Je propose des méthodes pour la gestion des modèles de taille moyenne et l’implémenta-
tion pilote de deux logiciels. Les détails de mes contributions ainsi que mes publications
sont donnés ci-dessous.

Gestion des modèles de taille moyenne (environ vingt variables). Traiter ces modèles
manuellement demande beaucoup de temps pour un résultat incomplet et peu fiable. Je
propose des méthodes, aussi algorithmique que possible, de simplification et d’analyse.
Je manipule à la fois des algorithmes nouveaux et des algorithmes connus. Tous ces
algorithmes sont implémentés dans les logiciels MABSys et ExpandedLiePointSymmetry.

Logiciel : MABSys (Modeling and Analysis of Biological Systems). J’ai conçu et
développé MABSys avec F. Lemaire. Ce logiciel inclut les méthodes de simplification
exactes basées sur la théorie des symétries de Lie et l’approximation quasi-stationnaire
qui a été rendue algorithmique par les auteurs de [10]. La théorie classique des symétries
de Lie est adaptée d’une façon originale au contexte de la modélisation en biologie. De
plus, ces fonctionnalités sont assemblées avec des outils classiques de l’analyse qualitative
symbolique.

Logiciel : ExpandedLiePointSymmetry. J’ai contribué au développement du logiciel
ExpandedLiePointSymmetry, initié par A. Sedoglavic. Les premières versions de ce
logiciel ont été conçues pendant mon stage de master recherche [109, 110]. Il manipule
le calcul des symétries de Lie et la réduction de modèle en complexité polynomiale en la
taille de l’entrée.
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Publications. J’ai contribué aux deux articles suivants.

1. L’article [12] appartient à la conférence internationale “Algebraic Biology”. Ce pa-
pier illustre l’utilisation des méthodes de calcul formel pour déduire les conditions
d’oscillation d’une famille de réseaux de régulation génétiques avec un seul gène
auto-régulé. Cet exemple historique est traité manuellement.

2. L’article [15] appartient au numéro spécial “Symbolic Computation in Biology”
du journal “Mathematics in Computer Science”. Ce papier présente la première
version d’un schéma algorithmique dédié au problème de réduction de modèle. Les
modèles en question sont composés des équations différentielles ordinaires et poly-
nomiales. Ces équations peuvent être obtenues à partir des systèmes de réactions
chimiques généralisées. Cette publication montre le progrès accompli depuis la
parution de [12] et illustre les travaux des trois dernières années de l’équipe Cal-
cul Formel dans le domaine de la modélisation en biologie. Dans [15], on arrive
aux mêmes résultats que ceux obtenus manuellement dans [12] en utilisant le plus
possible les fonctionnalités de MABSys.

Les conclusions de ces articles ont poussées des chercheurs dans le domaine de la
géométrie réelle à adapter leur méthodes (voir [106]) ou à interagir avec les auteurs
de [12] (voir [97]). De plus, dans la prépublication [68], les auteurs présentent des
stratégies de calcul en utilisant la représentation explicite (infinitésimale) des données
dans le processus de la réduction de systèmes dynamiques. Le but est d’obtenir une
complexité polynomiale en la taille de l’entrée. Ces stratégies mènent à des algorithmes
efficaces utilisés dans les implémentations [102, 69].

Structure de document

Le premier chapitre, constituant avec l’introduction la première partie, est consacré à la
présentation de mes résultats à travers un exemple historique, traité à l’aide du logiciel
MABSys. La dernière section de ce chapitre discute de mes contributions en se basant sur
cet exemple.

La deuxième partie constituée du deuxième chapitre est une introduction aux mé-
thodes de réduction et de reparamétrisation. Les idées principales et les algorithmes
utilisés dans le logiciel MABSys y sont décrits. La dernière section de ce chapitre posi-
tionne mes travaux par rapport à ceux existants.

La troisième partie de ce document généralise les algorithmes précédents. Les as-
pects techniques de mes travaux sont détaillées dans les chapitres 3, 4 et 5. Le troisième
chapitre définit les notations et le cadre géométrique. Les propriétés des objets con-
sidérés et leur codage y sont également présentés. Le quatrième chapitre est entièrement
consacré aux symétries de Lie étendues, à leur définition et à leur calcul dans le logiciel
ExpandedLiePointSymmetry. Le dernier chapitre traite les processus de réduction et de
reparamétrisation ainsi que leur implémentation.

L’annexe A présente quelques outils de l’analyse qualitative symbolique relatifs à la
bifurcation de Hopf. L’annexe B détaille les réseaux biochimiques et leur codage dans
MABSys ainsi que leur modélisation en système différentiel ordinare.
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The goal of my research is to make algorithmic, as much as possible, the study of
models composed by parametric differential equations. The methods presented through-
out this document are not limited to intracellular biology but my principal application
example belongs to genetic regulatory networks field. Considered mathematical models
are systems of nonlinear (polynomial) parametric differential equations. They may be
obtained for instance from generalized biochemical reaction systems by application of
the mass-action law (see [55]). I focus on the algorithms developed in the computer
algebra discipline for medium size (about twenty variables) models. I work with mainly
two different types of algorithms devoted to models treatment: quasi-steady state ap-
proximation (based on differential elimination theory) and exact simplification (based
on Lie symmetry theory) methods. These methods involve the reduction of the num-
ber of variables of a model and its reparametrization in order to distinguish the roles
of its parameters. Simplified models resulting from these algorithms allow to perform
more easily various studies such as symbolic or numerical qualitative analysis, numerical
simulations, etc. For instance, the symbolic qualitative analysis methods are of at least
exponential complexity in the number of variables in worst cases. Thus reducing the
number of variables of the models or some expressions derived from them is useful to
ease their analysis.

Leading Ideas

The reparametrization method that I propose is an exact simplification method based on
a new algorithm that uses the classical Lie symmetry theory. It improves the preliminary
analysis of models and facilitates their qualitative analysis. All the information related
to the simplification is kept in order to establish the link between the original and the
simplified systems. Moreover, this new algorithm is of polynomial time complexity in
the input size thanks to some computational strategies such as the restriction of the set
of Lie symmetries of interest.

The reduction method presented in this document is a classical application of the
Lie symmetry theory. The classical reduction method (see [24, 86]) and the moving
frame based reduction method (see [37, 38]) are adapted so that the time complexity of
our algorithms is polynomial in the input size. Still, they generalize, for example, the
dimensional analysis (see ch. 1 of [6], [17]) for which one does not have any complexity
result (see [64]). Furthermore, our algorithms do not require to specify the dimension of
the variables but only some assumptions about their positivity. This processus is also
partially applied to discrete dynamical systems. To our knowledge, even if such systems
are already treated with Lie symmetries (see [70, 117]), no algorithmic method with
polynomial time complexity in the input size is available.

The gain of the complexity of our algorithms arises mostly from the limitation to
special kind Lie symmetries. The linear algebra over a number field and univariate poly-
nomial factorization are thus sufficient for the required operations. The existing works
about this subject (see for example [42, 59, 88]) consider Lie symmetries mostly with
their general form. The computation of such general symmetries necessitates Gröbner
bases computation and/or solving partial differential equations. Thus their complexity
in general cases is at least exponential.
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The algorithms that I present in this document are available in the software MABSys

and ExpandedLiePointSymmetry (see the next paragraph for more details). Thanks to
these implementations, medium size examples can be tackled. In the chapter 1, the
preliminary study and the complete symbolic qualitative analysis of such a realistic
example are given. This example illustrates also the usage of inexact (quasi-steady
state approximation, see [10]) and exact (reduction and reparametrization) simplification
methods together. Remark that the reduction and the reparametrization algorithms
adapt the Lie symmetry theory to the context of modeling in biology (see [78] for an
opinion about algebraic systems biology).

Contributions

I propose methodical ways of managing medium size models and the pilot implementa-
tions of two software. Details of these contributions along with my publications follow.

Management of medium size models (about twenty variables). Dealing with such
models manually can be time-consuming, patchy and unreliable. I propose methodical
and algorithmic (as much as possible) ways of simplification and analysis. For this issue,
I manipulate some new and some known algorithms together. These algorithms are
implemented in MABSys and ExpandedLiePointSymmetry packages.

Software: MABSys (Modeling and Analysis of Biological Systems). I conceived and
developed MABSys with F. Lemaire. This software involves the exact simplification meth-
ods based on the Lie symmetry theory and the quasi-steady state approximation which
is made fully algorithmic by the authors of [10]. The classical Lie symmetry theory is
adapted in an original way to the context of modeling in biology. Moreover, these tools
are successfully coupled with each other and also with some classical symbolic qualitative
analysis tools.

Software: ExpandedLiePointSymmetry. I contributed to the development of the
software ExpandedLiePointSymmetry initiated by A. Sedoglavic. First sketches of this
software were conceptualized during my master thesis [109, 110]. It handles Lie sym-
metries computations and model reductions in polynomial time complexity in the input
size.

Publications. I contributed to the following two publications.

1. The article [12] is an article of the international conference “Algebraic Biology”.
This paper illustrates the usage of computer algebra methods to prove that gene
regulatory networks can (or can not) oscillate. An historical example of a family of
genetic networks with a single self-regulated gene is treated manually. It concludes
that under some conditions, oscillations may be observed for the studied model.

2. The article [15] is in the journal “Mathematics in Computer Science” special issue
“Symbolic Computation in Biology”. This paper presents the first version of an
algorithmic scheme dedicated to the model reduction problem, in the context of
polynomial ordinary differential equation models derived from generalized chemical
reaction systems. It shows the progress made w.r.t. the computations made in [12].
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It required three years work in the domain of modeling in biology in the Computer
Algebra team. In [15], the same results obtained in [12] manually are reached by
using as much as possible the functionalities of MABSys.

The conclusions of these articles led some researchers in real geometry domain to
adapt their methods (see [106]) or to interact with the authors of [12] (see [97]). Fur-
thermore in the preprint [68], authors present the computational strategies using non
explicit (infinitesimal) data representation in the reduction process of dynamical systems
in order to obtain a polynomial time complexity in the input size. These strategies lead
to efficient algorithms used in the implementations of [102, 69].

Document Structure

The first chapter, which is in the first part, is devoted to the presentation of my results
through an historical example that is treated by the help of the software MABSys. The
last section of this chapter discusses my contributions in the view of this example.

The second part, composed of the second chapter, is an introduction to the reduc-
tion and the reparametrization methods. We give the main ideas and the associated
algorithms used in the software MABSys. Its last section points out the differences of my
work w.r.t. the existing ones.

The third part of this document generalizes the previous algorithms. The technical
aspects of my work are detailed in the chapters 3, 4 and 5. The third chapter defines the
notations and the geometrical framework. Beside the properties of the associated objects,
their encodings are also presented. The fourth chapter is completely devoted to the ex-
panded Lie point symmetries and their computation in the ExpandedLiePointSymmetry
package. The last chapter deals with the reduction and the reparametrization processes
along with their implementations.

The appendix A presents some symbolic qualitative analysis tools related to the Hopf
bifurcation. The appendix B details biochemical networks and their encoding in MABSys.
It tackles also their modeling by means of ordinary differential systems.
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Overview

The goal of this chapter is to present the results of my Ph.D. thesis through an historical
example. First the main structure of the software MABSys (Modeling and Analysis of
Biological Systems) is given. The family of genetic networks with a single self-regulated
gene is then treated by the help of MABSys. The model conception of this example,
the simplification of this model by exact simplification methods based on Lie symmetry
theory and its symbolic qualitative analysis are detailed. The aim is to show how one
can realize necessary computations in an algorithmic way as much as possible. This
chapter is concluded by a discussion.

1.1 Main Structure of the Software MABSys
This section details the main structure of the software MABSys (Modeling and Analysis
of Biological Systems). This is a pilot implementation (in Maple) that I conceived and
developed with F. Lemaire (see [69]). It gathers, as much as possible, some functions
to carry out the symbolic qualitative analysis of systems of ordinary differential equa-
tions (ODEs). It is oriented towards biochemical reaction networks. MABSys includes
three main parts: modeling of biochemical reaction networks by means of ODEs, sim-
plification of these dynamical systems and symbolic qualitative analysis tools to retrieve
informations about the behavior of the model.

The main structure of MABSys is given in figure 1.1 page 8. Every box corresponds
to a component composed of a set of functions. Solid arrows between two components
indicate that the outputs of the first component can be used as inputs of the second one.
Dotted arrows inside components show possible successions of computations.

In MABSys, biochemical reaction networks are denoted by the usual chemical notation
which is used to generate models of ODEs. For instance, the reaction A+B → C
between 3 chemical species is represented by its reactants (A,B), its product (C) and
the rate law of the reaction (see § B.1 page 151 for more details). Two intimately
related kinds of modeling by means of ODEs are available for these networks. On the
one hand, one can use directly the rate laws of the reactions to construct the so called
basic model (see § B.2.2 page 157). On the other hand, the new algorithm ModelReduce,
which performs quasi-steady state approximation (QSSA, see [10] and § B.2.3 page 158),
assures the modeling by reducing this basic model. The QSSA is preferable if the network
possesses two timescales, fast and slow reactions, since it can lead to a simpler model
than the basic one.

Any system of polynomial ODEs, coming from any scientific context, can be treated
by the exact simplifications part i.e. by the reduction and the reparametrization (see ch. 5
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Description of
Biochemical Reaction Networks

Modelization by means of ODEs

Rate Laws QSSA

Nonlinear ODEs

Simplification

Reduction
Reparamet-
rization

Symbolic Qualitative Analysis Tools

Figure 1.1: Main structure of MABSys.

page 103) methods. These simplifications are based on the classical Lie symmetry theory
which is adapted in an original way to the modeling in biology (see ch. 2 page 33). The
reduction of the parameter set of a model consists in eliminating some parameters thus
in decreasing their number. The reparametrization of a model consists in distinguishing
the roles of the parameters: the ones that decide the place of the steady points and
the ones that decide their nature. The goal of these simplifications is to reorganize the
model coordinates so that the resulting equivalent model can be more easily tractable.
Even if the simplification algorithms are fully automatic, the choice of the parameters
to eliminate, the assumptions to make, etc. still need human reflection.

The last part of MABSys involves some symbolic qualitative analysis tools for com-
puting steady points, Hopf bifurcation conditions (see ch. A page 141), etc. They are
implemented in coherence with the previous functionalities in order to complete, as much
as possible, the study of models.

1.2 A Family of Genetic Networks with a Single Self-Regulated Gene

This section is devoted to the presentation of a family of genetic networks with a single
self-regulated gene, borrowed from [12, 11, 15]. We give first the motivation and the
problem statement of this chapter, then detail the networks of interest.
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1.2.1 Motivation

The motivation of the choice of this family of genetic networks comes from the study
of the green alga ostreococcus tauri (see figure 1.2) discovered in 1994, in the south of
France.

This alga is one of the smallest known eukaryotes and its genome was published in
2006 (see [91]). Though very simple, this unicellular organism is endowed by a circadian
clock i.e. a clock of period about 24 hours (see [41] and references therein). This clock
permits the alga to raise itself at the top of water before sunrise. O. tauri is one of the
main study domain of the laboratory “Observatoire Océanologique de Banyuls-Sur-Mer
(OOB)” (see [2]).

Figure 1.2: Ostreococcus tauri. Unicellular green alga characterized by minimal cellular
organization. It possesses a nucleus (N) with a hole (Np), a chloroplast (P) with an
amide ball (Sg), a mitochondrion (Mt) and a Golgi apparatus (G).

Some Computer Algebra team members, including myself, participated in a pluridis-
ciplinary working group (see [79, 12, 11]) with biologists, computer scientists and physi-
cists led by F.-Y. Bouget from OOB and by M. Lefranc from the Nonlinear Dynamics
team of the Laboratory PhLAM (CNRS, UMR 8523). The issue was to model the gene
regulatory network controlling the circadian clock of O. tauri.

1.2.2 Problem Statement and Biological Results

This subsection states the problem carried out in this chapter and quickly discusses its
biological significance.

One of the main problems considered by the working group can be formulated as
follows: given a system of ODEs built using the mass-action law kinetics, does there exist
ranges of positive values for the model parameters and state variables which are associated
to oscillating trajectories (limit cycles)? This issue is theoretically very difficult, in part
because:

• systems of ODEs which oscillate may do so only for very restricted ranges of
parameters values;

• the number of parameters arising in biochemical models can quickly become very
large.

These difficulties led us to consider a related but easier problem: searching for param-
eters and state variables positive values which give rise to Hopf bifurcations (see § A.2
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page 145). In general, a Hopf bifurcation may cause oscillating behaviors appear or
disappear.

We consider a family of networks to tackle this problem. The networks of this family
are indexed by the integer n that indicates the polymerization order of some protein
(see § 1.2.3). The study of the associated model shows that Hopf bifurcations can occur
if, and only if, n is greater than 9. It should be stressed that for a biological system, a
cooperativity of order 9 is not unrealistic. In particular, gene regulation by an octamer
has been reported (see [103]). Moreover, an effective cooperativity of order 9 may also
be obtained as a consequence of reducing a higher-dimensional model.

1.2.3 Presentation of the Considered Family of Genetic Networks

In this subsection, the networks of figure 1.3 are presented. They feature a single gene
regulated by an order n polymer of its own protein.
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Figure 1.3: Family of networks of a single gene regulated by a polymer of its own protein.

These systems are indexed by n. One obtains different networks for different values
of n. That is why the figure 1.3 is associated to a family of networks, not to a unique
network. The variables G andH represent two states of the gene. This gene is transcribed
into an mRNA, denoted by M , which is translated into a protein P . This regulatory
protein forms polymers of order n. The system includes also the degradation of the
mRNA and the protein. These networks involve a negative feedback loop, one of the
core ingredients for generating oscillations (see ch. 9 of [36]). Greek letters and k−i , k

+
i

for all i in {1, . . . , n − 1} represent parameters. Each parameter near an arrow stands
for the associated mass-action law rate constant.

These abstract models are closely related to models studied in [47, 48, 49]. In par-
ticular, in [49] a model of a gene regulated by a polymer formed of n copies of its own
protein is considered. Contrarily to this model, in this document, gene activation is not
assumed to be faster than the other reactions. Only the polymerization reactions are
supposed to be fast. Still, the results are consistent with those of [49].
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1.3 Model Conception

This section is about constructing a model, as simple as possible, that represents the
dynamic of the networks in figure 1.3 page 10. First, considered biochemical reactions
are represented by MABSys in order to apply automatically in the sequel the modeling
procedures. The networks are modeled by two methods. By using directly mass-action
law one gets the basic model and by quasi-steady state approximation one gets the raw
reduced model. The table 1.1 recapitulates the number of equations in these differential
systems and the parameters of their parameters. As one can see, the raw reduced model
involves less equations and parameters than the basic model. Finally we explain why

Number of differential
equations

Number of parameters of
the differential system

Basic Model n+ 3 2n+ 5

Raw Reduced
Model

3 n+ 8

Table 1.1: Recapitulation of the basic and the raw reduced models.

the raw reduced model is a good approximation of the basic one.

1.3.1 Definition of the Biochemical Reactions in MABSys
Let us see now how one can use MABSys to represent the biochemical reactions of the
networks given in figure 1.3 page 10. These 2n+ 5 reactions are listed in figure 1.4.

G + Pn H
α

θ

H H + M
ρb

M ∅
δM

G G + M
ρf

M M + P
β

M ∅
δP

P + Pi Pi+1

k+
i

k−i

1 ≤ i ≤ n− 1

Figure 1.4: Reactions of the networks given in figure 1.3 page 10.

Unfortunately, neither the representations nor the computations can be performed
by keeping a symbolic value for n. This is a classical restriction of symbolic computation
methods. In the sequel the following arbitrary choice for n is made:

� �
> n := 5;

n := 5
� �

Observe that, however, all the parameters and state variables are handled symbolically.
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Remark 1.3.1. Because the packages MABSys and ExpandedLiePointSymmetry are de-
veloped in Maple, in the whole document, piece of codes are detailed by respecting the
Maple syntax. Each line in code frames that begins with the symbol “>” stands for
the commands sent to Maple. If a command ends with a semicolon then its output is
displayed, but if it ends with a colon then its output is hidden. Each line without the
symbol “>” stands for an output. The symbol “#” indicates a comment. Also, keywords
that belong to MABSys or ExpandedLiePointSymmetry are written in bold so that one
can distinguish them from standard Maple commands. y

In MABSys, a biochemical reaction network is a list of biochemical reactions. A
one-way biochemical reaction is defined by the constructor NewReaction (see § B.1.2
page 153). It takes as input the reactants, the products and the rate law of a reaction.

A fourth optional argument permits to set the speed of the reaction. The default
value is slow (fast=false). This information is only used by the ModelReduce function
(QSSA). In this example, the polymerization reactions are supposed to be faster than
the other ones. Thus, the option fast=true is specified. The following commands
define the biochemical reaction network for n = 5 that is composed of the reactions
given in figure 1.4 page 11. Remark that the cat command of Maple concatenates its
arguments in order to produce new identifiers and the seq command creates a sequence
of expressions.

� �
> RS := [

> NewReation(G+cat(’P’,n),H,MassAtionLaw(alpha )),
> NewReation(H,G+cat(’P’,n),MassAtionLaw(theta )),
> NewReation(G,G+M,MassAtionLaw(rhof)),
> NewReation(H,H+M,MassAtionLaw(rhob)),
> NewReation(M,M+P1 ,MassAtionLaw(beta)),
> NewReation(M,0,MassAtionLaw(deltaM )),
> NewReation(P1 ,0,MassAtionLaw(deltaP )),
> seq (NewReation(cat(’P’,i)+P1,cat(’P’,i+1),
> MassAtionLaw(cat (’k_ ’,i)), fast=true), i=1..n-1),

> seq (NewReation(cat(’P’,i+1), cat(’P’,i)+P1 ,
> MassAtionLaw(cat (’km_ ’,i)), fast=true), i=1..n-1)

> ];

RS := [Reation([G, P5], [H], MassAtionLaw(alpha ), false),Reation([H], [G, P5], MassAtionLaw(theta ), false),Reation([G], [M, G], MassAtionLaw(rhof), false ),Reation([H], [H, M], MassAtionLaw(rhob), false ),Reation([M], [M, P1], MassAtionLaw(beta), false),Reation([M], [], MassAtionLaw(deltaM ), false),Reation([P1], [], MassAtionLaw(deltaP ), false),Reation([2 P1], [P2], MassAtionLaw(k_1), true),Reation([P2, P1], [P3], MassAtionLaw(k_2 ), true),Reation([P3, P1], [P4], MassAtionLaw(k_3 ), true),Reation([P4, P1], [P5], MassAtionLaw(k_4 ), true),Reation([P2], [2 P1], MassAtionLaw(km_1), true),Reation([P3], [P2, P1], MassAtionLaw(km_2), true),Reation([P4], [P3, P1], MassAtionLaw(km_3), true),Reation([P5], [P4, P1], MassAtionLaw(km_4), true )]
� �

1.3.2 Basic Modeling

The basic modeling is obtained by the direct application of the mass-action law (see
§ B.2.2 page 157). We apply it to the family of genetic networks given in figure 1.4
page 11.
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The basic model of the biochemical reactions of figure 1.4 page 11 follows:




Ġ = θ H − αGPn,

Ḣ = −θH + αGPn,

Ṁ = ρf G+ ρbH − δMM,

Ṗ = βM − δP P + 2A1 +A2 + · · ·+An−1,

Ṗi = −Ai−1 +Ai with 2 ≤ i ≤ n− 1,

Ṗn = −An−1 + θH − αGPn.

(1.1)

In this model Ai := k−i Pi+1 − k+
i Pi P for all i in {1, . . . , n − 1} are introduced to lighten

up notations. Capital letters G,H,M,P = P1, P2, . . . , Pn represent state variables and Ẋ
represents the derivative of the variable X w.r.t. the independent variable t (time). They
all correspond to species concentrations except G and H which should rather be viewed
as rates of gene transcription. This system involves n+ 3 nonlinear (because of the
multiplications between its coordinates) ODEs depending on 2n+ 5 parameters. For
interesting values of n, for instance for n = 9 (see § 1.5 page 22), this is a medium size
system.

The basic model (1.1) can be obtained automatically for a given n by calling the func-
tion ReactionSystem2ODEs. In its current version, MABSys cannot compute directly the
general form of the basic model. However it can be applied for many different values of n
and the general formulas can be inferred. The arguments of the ReactionSystem2ODEs

function are the reaction system and an order on the set of the involved species, given
by a list. The commands for n = 5 follow.

� �
> # The order of the chemical species

> X := [G,H,M,seq (cat(’P’,n-i+1),i=1..n)];

X := [G, H, M, P5 , P4, P3 , P2 , P1]

> # The basic model

> BasicModel := ReationSystem2ODEs(RS , X);

BasicModel :=

d

[-- G(t) = -alpha G(t) P5(t) + theta H(t),

dt

d

-- H(t) = alpha G(t) P5(t) - theta H(t),

dt

d

-- M(t) = rhof G(t) + rhob H(t) - deltaM M(t),

dt

d

-- P5(t) = -alpha G(t) P5(t) + theta H(t) + k_4 P4(t) P1(t) - km_4 P5(t),

dt

d

-- P4(t) = k_3 P3(t) P1(t) - k_4 P4(t) P1(t) - km_3 P4(t) + km_4 P5(t),

dt

d

-- P3(t) = k_2 P2(t) P1(t) - k_3 P3(t) P1(t) - km_2 P3(t) + km_3 P4(t),

dt

d 2

-- P2(t) = k_1 P1(t) - k_2 P2(t) P1(t) - km_1 P2(t) + km_2 P3(t),

dt

d 2

-- P1(t) = beta M(t) - deltaP P1(t)- 2 k_1 P1(t) - k_2 P2(t) P1(t) + km_2 P3(t)

dt

- k_3 P3(t) P1(t) - k_4 P4(t) P1(t) + 2 km_1 P2(t) + km_3 P4(t) + km_4 P5(t)]
� �



14 Overview

1.3.3 Quasi-Steady State Approximation

The function ModelReduce attempts to construct a raw reduced model that represents
the biochemical reaction networks behavior with less chemical species thus simpler than
the basic modeling. It applies the quasi-steady state approximation (QSSA) and it is
based on differential elimination theory (see [10, 8, 7, 118]). In fact, this process takes
into account the speed of the reactions. In the sequel, it is applied to our family of
genetic networks.

The QSSA requires for the network to have two different timescales. In our case,
these timescales are provided by the speed of the reactions (fast and slow). For the
networks of figure 1.3 page 10, the n− 1 polymerization reactions are assumed to be
fast compared to the other ones. That means that the rate constants k−i , k

+
i for all i

in {1, . . . , n− 1} are supposed to be greater than the remaining parameters.

According to the technique sketched in [10] (see § B.2.3 page 158), one gets an
approximation of the system (1.1) page 13 by replacing each Ai by a new dependent
variable Fi for all i in {1, . . . , n − 1} and by augmenting this system by the n− 1 following
algebraic equations:

k+
i P Pi − k−i Pi+1 = 0 with 1 ≤ i ≤ n− 1. (1.2)

It is sufficient to eliminate the Fi from the so obtained differential-algebraic system to
get the raw reduced model.

In order to clarify the model presentation, a few extra manual changes are done.
G and H are two variables that are bound by the relation G+H = γ0 where the new
positive parameter γ0 is equal to the total quantity of the gene. That is why H is
replaced by γ0 −G manually. Finally n new parameters Ki are introduced for legibility
with the convention K0 = 1:

Ki =
k+
1 · · · k+

i

k−1 · · · k−i
· (1.3)

The obtained raw reduced model writes:




Ġ = (γ0 −G) θ − αKn−1GP
n,

Ṁ = (γ0 −G) ρb + ρf G− δMM,

Ṗ =
(γ0 −G)n θ − nαKn−1GP

n − δP P + βM
n−1∑

i=0

(i+ 1)2Ki P
i

· (1.4)

The system resulting from the quasi-steady state approximation contains also n− 1
ODEs on the derivatives of Pi with 2 ≤ i ≤ n− 1 depending only on P . Removing these
equations does not influence the dynamics of G,M and P .

The subs command of Maple substitutes subexpressions into an expression and the
map command applies a procedure to each operand of an expression. The function subs

performs the extra changes done for user convenience. Following commands show how
one can obtain the system (1.4) for n = 5. The generic formula valid for any n can be
deduced from several applications of ModelReduce to different values of n.
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� �
> RawReducedModel := ModelRedue(RS ,X) [1 ,1]:

> RawReducedModel :=

> subs(H(t)=gamma0 -G(t),

> P1(t)=P(t),

> seq(cat(’k_ ’,i)=cat(’km_ ’,i)* cat(’K_’,i)/ cat(’K_’,i-1),i=1..n-1),

> K_0 =1,

> [RawReducedModel [1], RawReducedModel[3], RawReducedModel [ -1]]):

> RawReducedModel := map(simplify , RawReducedModel);

d 5

RawReducedModel := [-- G(t) = theta gamma0 - theta G(t) - P(t) K_4 alpha G(t),

dt

d

-- M(t) = rhof G(t) + rhob gamma0 - rhob G(t) - deltaM M(t),

dt

5

d 5 theta gamma0 -5 theta G(t)+ beta M(t)-deltaP P(t)-5 P(t) K_4 alpha G(t)

-- P(t)= ------------------------------------------------------------------------]

dt 4 3 2

25 P(t) K_4 + 16 P(t) K_3 + 1 + 9 P(t) K_2 + 4 K_1 P(t)
� �

1.3.4 Basic Model vs Raw Reduced Model

In the sequel we prefer to keep the approximative raw reduced model to study the
behavior of the networks of figure 1.3 page 10. The figure 1.5 shows the comparison
between the basic model (1.1) page 13 and the raw reduced model (1.4) page 14, for
different values of the parameters k−i , k

+
i for all i in {1, . . . , n − 1}. We take the same

value for all these parameters i.e. k = k−1 = · · · = k−n−1 = k+
1 = · · · = k+

n−1.

Figure 1.5: Comparison between the basic model (1.1) page 13 and the raw reduced
model (1.4) page 14 for different values of the parameters k−i , k

+
i for all i in {1, . . . , n − 1}.

We vary the value of k = k−1 = · · · = k−n−1 = k+
1 = · · · = k+

n−1 and we take: θ = 10,
α = 1, ρf = 10, ρb = 5, δM = 5, δP = 10, β = 50, γ0 = 1, K1 = 1, K2 = 1, K3 = 1,
K4 = 1, P (0) = 1, M(0) = 1, G(0) = 0.5, H(0) = 0.5, P2(0) = 1, P3(0) = 1, P4(0) = 1
and P5(0) = 1. On the graphics, the letters P , M and G represent the state variables
of the basic model and the letters P ′, M ′ and G′ represent these of the raw reduced

model. We trace
√

((|P ′ − P |) /P )2 + ((|M ′ −M |) /M )2 + ((|G′ −G|) /G)2, in func-

tion of log(k). The comparison shows that more the value k of the parameters k−i , k
+
i

has greater value, more the approximative raw reduced model approaches the basic
model. y
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In the figure 1.5 page 15, the horizontal axes represent the logarithm of the values
of k. The vertical axes represent the absolute value of the difference between the values
of the state variables of the basic model (1.1) page 13 and these of the raw reduced
model (1.4) page 14. Observe that, as expected, when the value of k increases the raw
reduced model tends to the basic one. See [11] for more details and another standpoint
of this comparison.

The next section is devoted to the simplification of the parameter set of the raw
reduced model (1.4) page 14. Observe that, in principle, one should not have introduced
the parametersKi since this operation should be performed in the next section. However,
the MABSys package does not find this particular change of coordinates but a slightly
more complicated one. In this document, these new parameters Ki are kept for the sake
of legibility and in order to conserve the coherence with the article [15].

1.4 Exact Simplification of the Raw Reduced Model

This section is devoted to the simplification of the parameter set of the raw reduced
model (1.4) page 14. Two intimately related but different exact methods, reduction
and reparametrization (see ch. 2 page 33 and ch. 5 page 103) are presented. For each
algorithm the result of the simplification, the change of coordinates that led to this result
and the MABSys function that performs these computations are given.

The reduction and the reparametrization algorithms are based on the classical Lie
symmetry theory. In MABSys, the symmetries are restricted to scalings for several reasons.
Indeed parameters and state variables of a model representing a biochemical reaction
network are supposed to be positive and scalings preserve this property. Furthermore
the special form of scalings permits to find these new coordinates without solving any
differential system.

The following computations are not fully automatic: the choice of parameters to get
rid of, the parameters and variables to adjust, etc. remain under the control of the user.
One has many possibilities for such choices. Here, we choose to make a simplification
slightly different than that of [15]. This slightly simplifies the qualitative analysis (see
remark 1.5.2 page 24).

1.4.1 Reduction of the Parameter Set

The objective of the reduction method is to eliminate some parameters by constructing
new coordinates and thus to decrease their number. In this subsection first we give
the reduced system of ODEs written in a new coordinate set and the explicit relations
between the raw reduced model (1.4) page 14 and this one. Second we detail the function
that performs this reduction automatically in MABSys.

There are many ways to choose the parameters to eliminate but their maximum num-
ber is limited by the number and the structure of the Lie symmetries of the system (see
th. 5.1.1 page 103). In this chapter I decided to state the reduction of the parameters α
and θ because the resulting reduced system is more interesting for the symbolic qualita-
tive analysis (see remark 1.5.2 page 24) than the one treated in [15]. The reduction of
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the parameters α and θ from the model (1.4) page 14 (in [15], β and δP are eliminated)
leads to the following system of ODEs:





Ġ = γ0 −G−Kn−1GP
n
,

Ṁ =
(
γ0 −G

)
ρb + ρf G− δMM,

Ṗ =

(
γ0 −G

)
n− nKn−1GP

n − δP P + βM
n−1∑

i=0

(i+ 1)2Ki P
i

·
(1.5)

This system is written in a new coordinate set where each new coordinate is overlined.
Remark that this model involves, as expected, two less parameters than the raw reduced
model. The relation between the coordinates of (1.4) page 14 and these of (1.5) can be
expressed by the following change of coordinates:

t = t θ, G =
Gα

θ
, M = M, P =

P α

θ
,

β =
β α

θ2
, γ0 =

γ0 α

θ
, ρb =

ρb

α
, ρf =

ρf

α
,

δM =
δM
θ
, δP =

δP
θ
, Ki =

Ki θ
i

αi

(1.6)

for all i in {1, . . . , n− 1}.
This reduced model and the associated change of coordinates can be obtained easily

by using MABSys. The arguments of the function InvariantizeByScalings (see § 2.2.1
page 41) are the model to reduce and some indications to guide this reduction:

• the parameters to remove from the model by priority order;
• the coordinates to keep unchanged;
• a boolean that indicates if the time variable can be scaled or not during the reduc-

tion.

The algorithm takes each parameter in the first list and tries to eliminate it before
considering the next one. It may happen that some of these parameters cannot be
eliminated. Associated MABSys commands for n = 5 follow.

� �
> # Reduction

> ParametersToRemove := [alpha ,theta ]:

> RemainingCoords := [G,M,P,seq(cat(’K_ ’,i), i=1..n-1),

> beta , deltaM , deltaP , gamma0 , rhob , rhof]:

> out := InvariantizeBySalings(RawReducedModel , ParametersToRemove ,

> RemainingCoords , scaletime =true ):

> IntermediateModel1 := out [1];

IntermediateModel1 :=

d 5

[-- G(t) = gamma0 - G(t) - P(t) K_4 G(t),

dt

d

-- M(t) = rhof G(t) + rhob gamma0 - rhob G(t) - deltaM M(t),

dt
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5

d 5 gamma0 - 5 G(t) + beta M(t) - deltaP P(t) - 5 P(t) K_4 G(t)

-- P(t) = --------------------------------------------------------------]

dt 4 3 2

25 P(t) K_4 + 16 P(t) K_3 + 1 + 9 P(t) K_2 + 4 K_1 P(t)

> ChangeOfCoord1 := out [2];

G alpha P alpha beta alpha

ChangeOfCoord1 := [t = t theta , G = -------, P = -------, beta = -----------,

theta theta 2

theta

gamma0 alpha deltaM deltaP rhob rhof

gamma0 = ------------, deltaM = ------, deltaP = ------, rhob= -----, rhof= -----,

theta theta theta alpha alpha

2 3 4

K_1 theta K_2 theta K_3 theta K_4 theta

K_1 = ---------, K_2 = ----------, K_3 = ----------, K_4 = ----------]

alpha 2 3 4

alpha alpha alpha
� �

The output contains two elements: the reduced model and the associated change of
coordinates. Remark that in the implementation, the new coordinates are also denoted
as the old ones for the sake of legibility and computational simplicity. The output must
be interpreted as in (1.5) page 17 and (1.6) page 17.

1.4.2 Reparametrization

The objective of the reparametrization method is to make some parameters to appear
as factors in the right-hand side of ODEs. This property simplifies the expressions of
the associated steady points and permits to distinguish the roles of the parameters. For
example, some parameters matter to decide just the nature (attractor or repellor) of
steady points. Other ones are involved for the place and the nature of steady points.
In this subsection first we give the reparametrized system of ODEs written again in a
new coordinate set and the exact relations between the model (1.5) page 17 and this
one. Second, we detail the function that performs this reparametrization automatically
in MABSys.

The reparametrization of the system (1.5) page 17 leads to the following system of
ODEs: 




˙̂
G = γ̂0 − Ĝ− Ĝ P̂n,

˙̂
M =

(
(ρ̂f − 1) Ĝ+ γ̂0 − M̂

)
δ̂M,

˙̂
P =

((
M̂ − P̂

)
ρ̂b +

(
γ̂0 − Ĝ− Ĝ P̂n

)
n
)
δ̂P

(
n2 K̂n−1 P̂

n−1 +

n−2∑

i=0

(i+ 1)2 K̂i K̂
−i
n−1 P̂

i

)
ρ̂b

·
(1.7)

This system is written in a new coordinate set where each new coordinate is endowed
with a hat. The relation between the coordinates of (1.5) page 17 and these of (1.7) can
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be expressed by the following change of coordinates:

t̂ = t, Ĝ =
GK

(1/n)
n−1 ρb β

δM δP
, M̂ =

M K
(1/n)
n−1 β

δP
, P̂ = P K

(1/n)
n−1 ,

β̂ = β, γ̂0 =
γ0K

(1/n)
n−1 ρb β

δM δP
, ρ̂b =

ρb β

δM
, ρ̂f =

ρf

ρb

,

δ̂M = δM, δ̂P = δP, K̂n−1 = K
(1/n)
n−1 , K̂i = Ki

(1.8)

for all i in {1, . . . , n− 2}. Remark that, thanks to the positivity assumption of the
parameters, the rational fraction powers of coordinates used in this change of coordinates
remain real.

The reparametrization simplifies the steady points equations. The steady points of
the reduced system (1.5) page 17 depend on 6 parameters. After the reparametrization,
the steady points of (1.7) page 18 depend on only 1 parameter, namely ρ̂f (see (1.12)
page 22 for the equations of the steady points but remark that the coordinates are not
endowed with a hat). The complexity of computations on the steady points decreases
(see § 1.5.1 page 22).

This reparametrized model and the associated change of coordinates can be obtained
relatively easily by using MABSys. The function CylindrifySteadyPoints (see § 2.2.2
page 45) needs the model to reduce and some indications to guide this reparametrization.
One must specify:

• the coordinates considered as strictly positive. Their order has an influence on the
form of the change of coordinates;

• remaining coordinates that are supposed to be positive or null;
• a boolean that indicates if the algorithm must or must not use the regular chains

(see [67]).

The resulting change of coordinates is a sequence of expressions of the form V̄ = F V
where V belongs to the second list and F is an expression involving elements of the first
list only. In practice state variables are given in the second list. This implies that state
variables are not multiplied together and that parameters are always transformed into
parameters. The use of regular chains increases the complexity of the computation but
sometimes permits to find more symmetries. Associated MABSys commands for n = 5
follow.

� �
> # Reparametrization

> Positive := [seq(cat(’K_ ’,n-i), i=1..n-1),

> beta , deltaM , deltaP , rhob , rhof , gamma0 ]:

> RemainingCoords := [G,M,P]:

> out := CylindrifySteadyPoints(IntermediateModel1 , Positive , RemainingCoords ,

> triangularization=true):

> IntermediateModel2 := out [1 ,1];

IntermediateModel2 :=

d 5

[-- G(t) = gamma0 - G(t) - P(t) G(t),

dt
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d

-- M(t) = deltaM (rhof G(t) + gamma0 - G(t) - M(t)),

dt

3 5

d K_4 deltaP ((M(t) - P(t)) rhob + 5 gamma0 - 5 G(t) - 5 P(t) G(t))

-- P(t) = ---------------------------------------------------------------------]

dt 4 4 3 3 2 2

rhob (25 P(t) K_4 +K_4 +16 P(t) K_3 +9 P(t) K_2 K_4 +4 K_1 P(t) K_4 )

> ChangeOfCoord2 := out [1 ,3];

1/5 1/5

K_4 G rhob beta K_4 M beta (1/5)

ChangeOfCoord2 := [ G = ------------------, M = -------------, P = K_4 P,

deltaM deltaP deltaP

1/5

K_4 gamma0 rhob beta rhob beta rhof

gamma0 = -----------------------, rhob = ---------, rhof = ----,

deltaM deltaP deltaM rhob

(1/5)

K_4 = K_4 ]
� �

In the output one can find mainly the reparametrized model and the associated change of
coordinates. As for the reduction, in the implementation the notation of the coordinates
does not change even if the output must be interpreted as in (1.7) page 18 and (1.8)
page 19.

1.4.3 Final Model and associated Change of Coordinates

The task of the simplification procedures is achieved. In the sequel, we finalize the model
that is going to be used for the symbolic qualitative analysis, compute the global change
of coordinates and show the associated MABSys commands.

We choose to make two extra change of coordinates on the model (1.7) page 18 for
the sake of readability of the result and in order to keep the coherence with [15]. They
do not correspond to any scaling. A final new coordinate set is constructed where new
coordinates are endowed with a tilde. For n greater than or equal to 2, one has:

δ̃P =
1

δ̂P
, ρ̃b =

1

ρ̂b
(1.9)

and all other coordinates remain the same (the case n = 1 is slightly different). The
global change of coordinates that is applied to the system of ODEs (1.4) page 14 is the
composition of the three changes of coordinates (1.6) page 17, (1.8) page 19 and (1.9):

t̃ = t θ, G̃ =
GK

(1/n)
n−1 α(1/n) ρb β

θ(1/n) δP δM
, M̃ =

MK
(1/n)
n−1 α(1/n) β

θ(1/n) δP
, P̃ =

P K
(1/n)
n−1 α(1/n)

θ(1/n)
,

β̃ =
β α

θ2
, γ̃0 =

γ0K
(1/n)
n−1 α(1/n) ρb β

θ(1/n) δP δM
, ρ̃b =

δM θ

ρb β
, ρ̃f =

ρf

ρb
,

δ̃M =
δM
θ
, δ̃P =

θ

δP
, K̃n−1 =

K
(1/n)
n−1 θ((n−1)/n)

α((n−1)/n)
, K̃i =

Ki θ
i

αi

(1.10)

for all i in {1, . . . , n− 2}.
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Removing afterward the tildes to help the legibility, one gets the simplified system
of ODEs:





Ġ = γ0 −G−GPn,

Ṁ = ((ρf − 1)G+ γ0 −M) δM,

Ṗ =
M − P + (γ0 −G−GPn)n ρb(

n2Kn−1 P
n−1 +

n−2∑

i=0

(i+ 1)2KiK
−i
n−1 P

i

)
δP

· (1.11)

MABSys commands that compute above system for n = 5 and the final change of coordi-
nates follow.

� �
> # Interactive change of coordinates

> if n=1 then

> ChangeOfCoord3 := [deltaP =1/ deltaP ,rhob=deltaM /(rhob *beta )]:

> else

> ChangeOfCoord3 := [deltaP =1/ deltaP ,rhob =1/ rhob ]:

> end if:

> # The final model

> FinalModel := ApplyChangeOfCoord( IntermediateModel2 , ChangeOfCoord3);

d 5

FinalModel := [-- G(t) = gamma0 - G(t) - P(t) G(t),

dt

d

-- M(t) = (rhof G(t) + gamma0 - G(t) - M(t)) deltaM ,

dt

3 5

d K_4 (M(t) - P(t) + 5 rhob gamma0 - 5 rhob G(t) - 5 rhob P(t) G(t))

-- P(t) = ------------------------------------------------ ---------------------]

dt 4 4 3 3 2 2

deltaP (25 P(t) K_4 +K_4 +16 P(t) K_3 +9 P(t) K_2 K_4 +4 K_1 P(t) K_4 )

> # The final change of coordinates is the composition of the three

> # computed above.

> FinalChangeOfCoord := ComposeChangeOfCoord (ChangeOfCoord1 ,

> ChangeOfCoord2 ,

> ChangeOfCoord3);

FinalChangeOfCoord :=

1/5 1/5 1/5 1/5

K_4 alpha G rhob beta K_4 alpha M beta

[t = t theta , G = ---------------------------, M = ----------------------,

1/5 1/5

theta deltaM deltaP theta deltaP

1/5 1/5 1/5 1/5

K_4 alpha P rhof K_4 alpha gamma0 rhob beta

P = -----------------, rhof = ------, gamma0 = --------------------------------,

1/5 rhob 1/5

theta theta deltaM deltaP

deltaM theta beta alpha deltaM theta

rhob = ------------, beta = ----------, deltaM = ------, deltaP = ------,

rhob beta 2 theta deltaP

theta

2 3 1/5 4/5

K_1 theta K_2 theta K_3 theta K_4 theta

K_1 = ---------, K_2 = ----------, K_3 = ----------, K_4 = ---------------]

alpha 2 3 4/5

alpha alpha alpha
� �
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1.5 Symbolic Qualitative Analysis of the Considered Model

This section discusses Hopf bifurcation conditions at steady points found via the Routh-
Hurwitz criterion (see th. 13.4 of [51] and § A.2.3 page 147). We are in fact interested
in the oscillations of the model (1.11) page 21 associated to a Hopf bifurcation. Dur-
ing this analysis, the MABSys package functions are used, as much as possible, to ease
computations. This section aims to prove the following proposition (see [15]).

Proposition 1.5.1. For positive values of state variables and parameters, the system of
ODEs (1.11) page 21 can exhibit a Hopf bifurcation if, and only if, n is greater than or
equal to 9. y

1.5.1 Steady Points

For a system of ODEs, a steady point is a point where the derivatives vanish (see § A.1.1
page 142). Here we explicit the steady points of the model (1.11) page 21, their properties
and how we can compute them with the help of MABSys.

Thanks to Gröbner basis (see [20]) computations, the steady points of (1.11) page 21
are defined explicitly by:

γ0 =
P (1 + Pn)

Pn + ρf
, M = P, G =

P

Pn + ρf
· (1.12)

As shown above, they depend on only 1 parameter ρf . The following paragraph details
the choices made to find the expressions (1.12) but it is not essential to understand the
main ideas of this section.

One computes a Gröbner basis of the ideal generated by the algebraic system defining
steady points of (1.11) page 21 w.r.t. the lexicographical ordering G > M > γ0. Other
variables and parameters are considered as algebraically independent elements of the base
field of the equations. Observe that one does not need to distinguish the roles of variables
from the ones of the parameters at this step. In general, one cannot compute a Gröbner
basis if a symbolic n is left as an exponent, but in our case, a generic Gröbner basis
exists. The ordering was chosen carefully in order to achieve two important properties:
the leading monomials are plain variables and the right-hand sides of the Gröbner basis
equations are positive. The first property implies that the quotient ring defined by
the Gröbner basis is a polynomial ring. The second property implies that there are no
constraints on the values that can be assigned to the variables and parameters occurring
in the right-hand sides of the Gröbner basis equations.

Computation of steady points expressions for n = 5 follows. Gröbner basis operations
are performed by using Groebner package of Maple. The normal command of Maple

normalizes a rational expression.
� �
> SteadyPoint := SteadyPointSystem(FinalModel );

5

SteadyPoint := [gamma0 - G - P G, (rhof G + gamma0 - G - M) deltaM ,
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3 5

K_4 (-M + P - 5 rhob gamma0 + 5 rhob G + 5 rhob P G)

- --------------------------------------------------------------------]

4 4 3 3 2 2

deltaP (25 P K_4 + K_4 + 16 P K_3 + 9 P K_2 K_4 + 4 K_1 P K_4 )

> SteadyPointOrder := plex(G, M, gamma0 ):

> SteadyPoint := Groebner :-Basis (SteadyPoint , SteadyPointOrder);

6 5 5

SteadyPoint := [-P - P + (rhof + P ) gamma0 , M - P, -P + (rhof + P ) G]

> SteadyPoint :=

> seq(Groebner :- LeadingMonomial(SteadyPoint [i], SteadyPointOrder) =

> normal (Groebner :- NormalForm

> (Groebner :-LeadingMonomial(SteadyPoint [i], SteadyPointOrder),

> SteadyPoint ,

> SteadyPointOrder)),

> i = 1.. nops(SteadyPoint ));

5

P (1 + P ) P

SteadyPoint := gamma0 = ----------, M = P, G = ---------

5 5

rhof + P rhof + P
� �

1.5.2 Linearization

In order to study the Hopf bifurcations of the system (1.11) page 21 using lineariza-
tion (see § A.1.2 page 143), one needs to consider the Jacobian matrix of that system
evaluated over its steady points. Thanks to the striking properties of the steady points
equations, in the next subsection, evaluating the Jacobian matrix at the steady points
just amounts to replacing each element of the generic Jacobian matrix by its normal
form. The following paragraphs detail this matrix and how one can reach it by the help
of MABSys.

The Jacobian matrix writes:

J =




−1− Pn 0 − nPn

Pn + ρf
(ρf − 1) δM −δM 0

−(1 + Pn)n ρb

B

1

B
−n

2 ρb P
n + Pn + ρf

(Pn + ρf)B




(1.13)

where B =

(
n2Kn−1 P

n−1 +
n−2∑

i=0

(i+ 1)2KiK
−i
n−1 P

i

)
δP.

The parameters δP and Ki only occur in B. It is thus possible to assign arbitrary
positive values to B without disturbing the values of other expressions involved in the
matrix elements. One can consider B as a new parameter.

Computations that lead to this final form of the Jacobian matrix for n = 5 follow.
� �
> J := JaobianMatrix(FinalModel , statevars =[G,M,P]):

> J0 := map (normal , subs(SteadyPoint , J)):
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> denominator := subs(K_0 = 1,

> n^2*P(t)^(n -1)* cat(K_ ,n -1)+

> add ((i+1)^2* cat(K_ ,i)*cat (K_ ,n-1)^( - i)*P(t)^i,

> i=0..n -2))* deltaP :

> J0 := map(normal ,subs(K_1 = solve(B - subs(P(t)=P,denominator ), K_1), J0 ));

[ 5 ]

[ 5 5 P ]

[ -1 - P 0 - --------- ]

[ 5 ]

[ rhof + P ]

[ ]

J0 := [( rhof - 1) deltaM -deltaM 0 ]

[ ]

[ 5 5 5 ]

[ 5 (1 + P ) rhob 25 rhob P + P + rhof]

[- --------------- 1/B - ----------------------]

[ B 5 ]

[ B (rhof + P ) ]
� �

Remark 1.5.2. This Jacobian J involves one less parameter than that computed in [15].
This improvement is due to the difference of the simplification part. In [15], the param-
eters β and δP are eliminated from the raw reduced model whereas in this document the
parameters α and θ are eliminated (see § 1.4.1 page 16). y

1.5.3 Hopf Bifurcation Detection

The last part of our symbolic qualitative analysis requires the computation of Hopf
bifurcation (see § A.2.2 page 146) conditions and their verification. First, we compute
these conditions thanks to the Routh-Hurwitz criterion (see § A.2.3 page 147). Then we
verify the proposition 1.5.1 page 22 by using some basic heuristics and supposing that
all variables are positive. Finally we specify a set of positive numerical values for models
variables that give birth to oscillations in order to illustrate our assertions.

If a Hopf bifurcation occurs for a given system of ODEs then one can expect the
existence of parameters and state variables values for which the system oscillates. The
proposition 1.5.1 page 22 implies that no Hopf bifurcation arises for positive values of
state variables and parameters whenever n is less than or equal to 8 for the model (1.11)
page 21. In order to prove that, it is sufficient to show that three Hurwitz determi-
nants c0,0, c1,0 and c2,0 are positive, thanks to theorem A.2.3 page 146 and theorem A.2.5
page 147. These polynomials are deduced from the characteristic polynomial of the above
Jacobian matrix. Showing that some polynomial is always positive is an example of the
real geometry problems which has an exponential complexity in the number of variables
of the polynomial in the worst case (see [106, 97]). That is one of the reasons also why
the simplification of the parameter set of a system of ODEs, thus associated Jacobian
matrix, is very important for the symbolic qualitative analysis. Remark that the slightly
different simplification of (1.4) page 14 comparing to [15] (see remark 1.5.2) permits to
have one less parameter in the Hurwitz determinants. The following commands compute
these Hurwitz determinants for n = 5.

� �
> CP := normal ( LinearAlgebra:- CharacteristicPolynomial (J0 ,x)):

> HD := HurwitzDeterminants(CP ,x):
> c[0,0] := HD[1];

c[0, 0] := 1
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> c[1,0] := collect (HD[2],[P,rhof ]);

c[1, 0] :=

10 5

B P + (1 + deltaM B + 25 rhob + B + B rhof) P + B rhof + rhof + deltaM B rhof

--------------------------------------------------------------------------------

5

B (rhof + P )

> c[2,0] := HD [3]:
� �

One can compute the Hurwitz determinants as above for different values of n and then
get the generic form of it or work directly with a symbolic exponent n as done in [14].
From now on, in computations a symbolic exponent n is used. Moreover the output of
function calls are not detailed because of their hugeness (see following paragraphs for
their size).

Positivity of Hurwitz Determinants

Recall that in this paragraph, all parameters and state variables are supposed to be
positive because they represent biological quantities. The first determinant is equal to 1
thus positive. The second determinant

c1,0 =
B P 2 n +

(
1 + n2 ρb + δMB +B + ρf B

)
Pn + (1 + δMB +B) ρf

(Pn + ρf)B
(1.14)

is also positive since the numerator and the denominator of its generic form are linear
combinations of power products of positive state variables and parameters, with positive
coefficients. Such a reasoning is possible thanks to simplifications that keep the positivity
assumption of the coordinates. Now, let us simplify as much as possible the third Hurwitz
determinant c2,0. The denominator B (Pn + ρf)

2 of this rational fraction is positive so
it can be removed. The numerator is a sum of more than 50 monomials, only two of
which have negative coefficients. This is a polynomial in Pn. One performs a change
of coordinates that consists of renaming Pn as P . At this step, one can try again the
simplification techniques on this numerator but there is no more possible simplification.
In the sequel, we show the positivity of this final polynomial denoted by c̃2,0, as in [15].
The following proposition is the main heuristic used while studying the positivity of c̃2,0.

Lemma 1.5.3. A linear combination of power products of positive quantities with posi-
tive coefficients is always positive. y

The polynomial c̃2,0 has the form:

d0 ρ
2
b + d1 ρb + d2 (1.15)

where d0 and d1 are positive thanks to the lemma 1.5.3. Thus, c2,0 is positive for
each ρb > 0 if and only if d2 is nonnegative. One thus studies the non-negativity of d2,
factoring out the positive term P + ρf . This polynomial has the form:

d2

P + ρf
= e0 ρf + e1 (1.16)
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where e1 is positive thanks to the lemma 1.5.3 page 25. Thus, d2 is nonnegative for ρf > 0
if and only if e0 is nonnegative. One thus studies the non-negativity of e0, which has
the form:

e0 = f0 P
2 + f1 P + f2 (1.17)

where f0 and f2 are positive again thanks to the lemma 1.5.3 page 25. Thus e0 is
nonnegative if and only if e0 (viewed as a univariate polynomial in P ) has no positive
root. Since f2/f0 is the product of roots, two roots have the same sign and are nonzero.
In these conditions, both roots are positive if and only if f1 is negative (since it is the
opposite of the sum of the roots) and the discriminant of e0 is positive w.r.t. P (in order
to have real roots). These polynomials write:

q1 = δ2 + 2B δ + 2 δ − n δ + 1 + 2B,
q2 = δ4 − 2n δ3 − 4B n δ2 − 4n δ2 + n2 δ2 − 2 δ2 − 4B n δ − 2n δ + 1

(1.18)

with δ = δMB. One has e0 nonnegative if and only if one does not have q1 < 0 and q2 > 0
at the same time. Let B1 and B2 vanish q1 and q2 respectively. Remark also that
the coefficient of B in q1 is always positive and that in q2 is negative. Finally, one
has e0 nonnegative if and only if conditions 0 < B < B1 and 0 < B < B2 are not satisfied
simultaneously i.e. if and only if B1 and B2 are not positive simultaneously. For this
argument, one gets rid of denominators of B1 and B2 because they are positive. Also,
denoting λ = δ + 1/δ, one must not have simultaneously:

{
−λ+ n− 2 > 0,
λ2 − 2nλ+ n2 − 4n− 4 > 0.

(1.19)

For the first inequality to hold, it is necessary that n > λ+ 2. For the second inequality
to hold, it is necessary that n < λ+ 2− 2

√
λ+ 2 or n > λ+ 2 + 2

√
λ+ 2. Thus, for both

conditions in (1.19) to hold, it is necessary that n > λ+ 2 + 2
√
λ+ 2. Since λ = δ + 1/δ

with δ > 0, one has λ ≥ 2 whence n ≥ 9. Thus c2,0 is positive if and only if n ≤ 8. This
concludes the proof of the left to right implication of the proposition 1.5.1 page 22.

Oscillations

Let us prove now right to the left implication of the proposition 1.5.1 page 22 by finding
numerical values for (1.11) page 21 with n greater than or equal to 9 that give birth
to a Hopf bifurcation. Let n be an integer strictly greater than 8. According to the
theorem A.2.3 page 146, one gets a Hopf bifurcation if the following conditions, deduced
from the characteristic polynomial, are satisfied: c0,0 > 0, c1,0 > 0, c2,0 = 0 and c2,1 < 0.
Remember that all state variables and parameters are assumed to be positive.

Take δ = 1. The conditions 0 < B < B1 and 0 < B < B2 permit to take B = 1/10.
Since one has δ = δMB, take δM = 10. Then the polynomial e0 has two positive roots
(in the P variable). One can take the value P = −11 + 5n/2, which is enclosed between
the two roots of e0, in order to ensure that e0 < 0. Now, the curve d2 = 0 is a de-
creasing function of n, bounded by (say) 600. Taking ρf = 600 thus ensures that d2 < 0
(for 9 ≤ n ≤ 230, for greater values of n, one must take greater values of ρf). The positive
root of d0 ρ

2
b + d1 ρb + d2 = 0 provides a value of ρb which cancels c2,0.
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In summary, for the model (1.11) page 21 has a Hopf bifurcation, one can take for

any n ≥ 9, the parameters values δM = 10, B = 1/10, P = (−11 + 5n/2)1/n, ρf = 600
(for n ≤ 230) and

ρb =
−75n2 − 17670n +

√
625n4 + 2690500n3 + 588647300n2 − 2483789440n

40 (−22 + 5n)n2
·

These values ensure that c0,0 > 0, c1,0 > 0, c2,0 = 0 and c2,1 < 0 i.e. that a Hopf bifur-
cation occurs. Figure 1.6 corresponds to an oscillation in the neighborhood of a Hopf
bifurcation for n = 15. This concludes the proof of the proposition 1.5.1 page 22.

Figure 1.6: An oscillation between state variables P (t) (horizontally) and G(t) (verti-
cally) obtained by simulating the system of ODEs (1.11). Parameter values for n = 15
are δM = 10, ρf = 600, δP ≃ 0.666 × 10−5, ρb ≃ 0.086, γ0 ≃ 0.055, Ki = 1 for all i in
{1, . . . , n− 1} and initial conditions are P (0) ≃ 1.244, M(0) ≃ 1.244, G(0) ≃ 0.002. y

Way Back to the Raw Reduced and Basic Model

Because the simplified model (1.11) page 21 can have a Hopf bifurcation for n greater
than or equal to 9, one can conclude also that the raw reduced model (1.4) page 14 can
have a Hopf bifurcation for equivalent numerical values. This is possible thanks to the
structure of the reduction and the reparametrization methods. Indeed, it is sufficient to
apply the inverse of the change of coordinates (1.10) page 20 on the above state variables
and parameters values to get these that cause a Hopf bifurcation to the raw reduced
model (1.4) page 14. For example, when n = 15, parameter values δM = 10, θ = 1,
ρf ≃ 69751.35, ρb ≃ 116.25, γ0 ≃ 705.4, α = 1, Ki = 1 for all i in {1..n − 1}, β = 1,
δP = 150155.7 and initial conditions P (0) ≃ 1.25, G(0) ≃ 25.55, M(0) ≃ 186820.68 lead
to a limit cycle (oscillation).

Because the raw reduced model is an approximation of the basic model and the
behavior of the system do not change (under fast polymerization assumption). The
above numerical values and k+

i = k−i = 1012 for all i in {1, . . . , n− 1} cause a Hopf
bifurcation for the basic model and oscillations are observed.
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1.6 Contributions Summary

The aim of this section is to discuss, in the view of the motivating example, this con-
tribution of this document to the study of medium size models composed of parametric
differential equations and some related topics.

The table 1.2 summarizes the simplification of the medium size example treated by
the help of MABSys in this chapter (see § 1.2.3 page 10). The basic model of the considered

Number of differential
equations

Number of parameters
of the differential

system

Number of parameters
of steady points

Basic Model n + 3 2 n + 5 2n + 5

Raw Reduced
Model

3 n + 8 8

After reduction 3 n + 6 6

After
reparametrization

3 n + 6 1

Table 1.2: Recapitulation of the simplification done to the model of the considered family
of networks (see figure 1.3 page 10).

genetic networks involves n+ 3 nonlinear ODEs depending on 2n + 5 parameters. The
quasi-steady state approximation leads to a raw reduced model composed of 3 ODEs
with n+ 8 parameters and associated steady points depend on 8 parameters. After
application of exact simplification methods, one obtains a model that involves 3 ODEs
with n+ 6 parameters and associated steady points depend on only 1 parameter. This
concrete example shows that the approximative and exact methods detailed in this
document simplify noticeably the system of ODEs of interest and thus their symbolic
qualitative analysis.

In MABSys several computer algebra techniques with new and known algorithms are
combined successfully. Quasi-steady state approximation, reduction and reparametriza-
tion are the key methods that permit the model simplification. The example of this
chapter shows that many steps of the model simplification process are automated.

In the treatment of medium size models, there is an obvious progress since the
article [12]. In [15] manual computations are replaced, as much as possible by the
functions of MABSys. These functions demand to the user no knowledge about the Lie
symmetry theory. Thanks to MABSys, most of the computations are systematic, human
free and more reliable. As a result, the user can try many different simplifications
relatively easily.

MABSys and ExpandedLiePointSymmetry are two packages written in Maple ver-
sion 12. A computer with AMD Athlon(tm) Dual Core Processor 5400B, 3.4 GiB mem-
ory and Ubuntu 8.04 Hardy Heron as operating system is used for the computations.
The execution of all the commands of the sections 1.3 page 11, 1.4 page 16 and 1.5
page 22 with the numerical simulations takes less than one minute. That means that
the presented algorithms and the associated functions are practical to use on medium
size models.
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There exist software packages such as AUTO (vers. 0.6 of Jan. 13, 2009, see [32]) or
XPPAUT (see [35]) which locate Hopf bifurcations by means of numerical calculations.
They give evidence about the existence of Hopf bifurcations but do not prove their
absence. Theoretically, the existence or the absence of Hopf bifurcations can be decided
algebraically (see [50, 63, 43, 115, 84]). There are computer algebra libraries that tackle
this kind of problems and much more. For instance, GNA (Genetic Network Analyzer) is
the implementation of a method for the qualitative modeling and simulation of genetic
regulatory networks (see [61, 93, 3]). The input of GNA consists of a model of the
regulatory network in the form of a system of piecewise-linear differential equations,
supplemented by inequality constraints on the parameters and initial conditions. From
this information GNA generates a state transition graph summarizing the qualitative
dynamics of the system. RAGlib (see [97]) is a library for real solving polynomial
systems of equations and inequations based on critical points algorithms. For systems
of reasonable size (up to 7,8 coordinates) it can work quite well. Unfortunately the
complexity of these algorithms is exponential on the number of coordinates (in the
worst case) which makes difficult their application in more general cases. That is also
why exact simplification methods are very useful. Using RAGlib, one can show some of
the above results for different values of n. Regular quantifier elimination of QEPCAD
(see [19]) or REDLOG (see [33]) with their default settings (versions of August 08) was
unable to decide the positivity of the polynomial c̃2,0 for different values of n (see § 1.5.3
page 24). However, the new concept of positive quantifier elimination, designed thanks
to the conclusions of the article [12], gives useful results. In [106] authors show, for a
given n, if a Hopf bifurcation may arise or not for the single gene networks of figure 1.3
page 10 modeled as in the article [12]. Remark that these methods do not let have a
generic conclusion as in the previous section. One must perform similar computations
for every given n. With these libraries, even if one can decide the existence of a Hopf
bifurcation for a particular value of n, one can not proof it for any n as done in this
document.

I also contributed to the development of the software ExpandedLiePointSymmetry

which has a more mathematical standpoint. It treats the Lie symmetry theory for alge-
braic systems, systems of ODEs and systems of ordinary recurrence equations (OREs).
Some additional kinds of symmetries, more complicated than scalings and also the mov-
ing frame based reduction process which permits to avoid high complexity computations
are available. The usage of this software does not appear in this chapter. However,
MABSys uses some functionalities of the package ExpandedLiePointSymmetry for the
computation of scalings. The conception of these softwares requires the acquisition of
an important mathematical background detailed in the part III page 57.

However, despite all these improvements, there is still need to many progress in
model simplification domain. On the one hand, some non-algorithmic computations, for
instance manual addition of some changes of coordinates (see equation (1.3) page 14 for
parameters Ki) can be avoided. This problem requires to find more scalings that take
into account such cases. The extension of the set of symmetries to other symmetries
than scalings can also help the automation of these computations. On the other hand,
many progresses require long-term research. For example, argument choices for these
simplifications are for now in the control of the user. Deciding which parameters to
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eliminate, how to reorganize the coordinates, etc. is a difficult task because of the huge
number of coordinates. In the future maybe dynamical programming with a cost function
that indicates the level of the simplification can be used. This could help to extend these
methods to larger examples.



“Nature is a thing about which one can learn a great deal.”

Letter to Theo van Gogh
Nuenen, early July 1884

Vincent van Gogh

II Exact Model Simplification in MABSys
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2

Introduction to Reduction and

Reparametrization

The reduction and the reparametrization methods implemented in MABSys aim to sim-
plify the parameter set of a system of ODEs or the associated algebraic system that
defines its steady points. In MABSys, both exact simplification methods are based on the
same three main instructions that can be summarized as below:

1. find the scalings associated to the system of ODEs or to the algebraic system that
defines its steady points;

2. deduce a new coordinate set from these scalings;

3. rewrite the system of ODEs in these new coordinates in order to obtain the sim-
plified system of ODEs.

In this chapter, we assume that the scalings are given. The user splits the set of coordi-
nates in two parts: the ones which are strictly positive and the ones which may be also
zero or negative. In the sequel, we give an answer to the following question: how do
the reduction and the reparametrization algorithms of MABSys use these data to perform
their tasks?

The first section gives some mathematical preliminaries. We survey scaling type Lie
symmetries and now new coordinates are deduced from them. These notions are essential
in the forthcoming explanations. In the second section we summarize the reduction and
the reparametrization algorithms as they were conceived in MABSys. The third section
is devoted to the algorithm which construct new coordinates from some given scalings.
Finally we compare these methods with existing ones..

The following example illustrates the inputs and the outputs of these exact model
simplification methods.

Example 2.0.1. Let us consider the following system of ODEs defined on the coordinate
set Z = (t, x, y, k1, k2, a, b):

{
dx
dt = a− k1 x+ k2 x

2 y,

dy
dt = b− k2 x

2 y.
(2.1)

This is a two-species oscillator (see § 7.4 of [83] and [99]). The evolution of the state
variables x and y w.r.t. time t depend on 4 parameters, namely a, b, k1 and k2. These
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parameters are all supposed to be strictly positive because they correspond to some
biological quantities. The steady points of (2.1) page 33 are defined by the algebraic
system {

a− k1 x+ k2 x
2 y = 0,

b− k2 x
2 y = 0

(2.2)

thus they depend also on these 4 parameters. The reduction and the reparametrization
algorithms of this chapter transform the system of ODEs (2.1) page 33 into the following
equivalent system of ODEs with less parameters:





dex
det = 1− x̃+ x̃2 ỹ,

dey
det =

(
b̃− x̃2 ỹ

)
k̃2

(2.3)

written in a new coordinate set Z̃ =
(
t̃, x̃, ỹ, k̃2, b̃

)
. Remark that the parameters a and k1

are eliminated from the system (2.1) page 33. The steady points of this new system are
defined by the algebraic system

{
1− x̃+ x̃2 ỹ = 0,

b̃− x̃2 ỹ = 0
(2.4)

that involves just 1 parameter b̃ (k̃2 is strictly positive). These algorithms provide
also the exact relations between the original and the simplified systems of ODEs. The
following relations define the new coordinates of Z̃ in function of the old ones in Z:

t̃ = t k1, x̃ =
x k1

a
, ỹ =

y a k2

k2
1

, k̃2 =
k2 a

2

k3
1

, b̃ =
b

a
· (2.5)

y

2.1 Mathematical Preliminary

In this section, mathematical notions that are important to understand the reduction
and the reparametrization algorithms are presented. We are interested in expanded Lie
point symmetries (see [104] and ch. 4 page 87) and more specifically in scalings. First,
we explain such symmetries and show their representation. Second, we give the idea of
how to deduce a change of coordinates (thus new coordinates) from some given scalings
in order to perform the exact simplification methods.

2.1.1 Lie Symmetries; Special Case of Scaling

The aim of this section is to survey the notion of Lie symmetries on which the reduction
and the reparametrization algorithms rely. We focus on the special case of scalings.
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Definition of Lie Symmetries

For a system of ODEs or an algebraic system, a symmetry expresses an invariance w.r.t. a
transformation of the variables (see § 1.2 of [86]). The formal definition of Lie symmetries
requires a detailed mathematical background that is available in the part III page 57.

In this document, Lie symmetries are studied by an infinitesimal approach (see [86,
104, 101]). They can be represented by differential operators that act on the coordi-
nates Z = (z1, . . . , zn) of the system as follows:

δS =

n∑

i=1

ξzi
(Z)

∂

∂zi
(2.6)

where the coefficients ξzi
are expressions in Z with real coefficients i.e. are in R(Z).

Observe that the coordinate set involves the time variable, the state variables and the
parameters. Such differential operators are called infinitesimal generators (see § 3.2.1
page 64).

Forthcoming examples illustrate Lie symmetries, associated transformation groups
and their influence on the system of interest.

Example 2.1.1. Let us consider the system of ODEs (2.1) page 33 defined on the
coordinate set Z = (t, x, y, k1, k2, a, b). These equations are invariant under the one-
parameter ν1 invertible transformation group (the group law being the composition of
two transformations):





t→ t, x→ x ν1, y → y ν1,

k1 → k1, k2 →
k2

ν2
1

, a→ a ν1,

b→ b ν1.

(2.7)

If one applies (2.7) over any equation of (2.1) page 33, one gets the same equation,
possibly up to some nonzero multiplicative factor. The transformation (2.7) is said to
be a Lie symmetry (see ch. 4 page 87) of (2.1) page 33. It can be represented by the
differential operator

δS1
= x

∂

∂x
+ y

∂

∂y
− 2 k2

∂

∂k2
+ b

∂

∂b
+ a

∂

∂a
· (2.8)

The transformation (2.7) transforms the solutions of (2.1) page 33 into other solutions
of (2.1) page 33. This means that the application of the transformation does not change
the expressions verified by the state variables x and y. y

Example 2.1.2. The system of ODEs (2.1) page 33 possesses also a second symmetry
with one-parameter ν2 transformation group defined by:





t→ t

ν2
2

, x→ x ν2, y → y ν2,

k1 → k1 ν
2
2 , k2 → k2, a→ a ν3

2 ,

b→ b ν3
2 .

(2.9)
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This symmetry can be represented by the differential operator

δS2
= −2 t

∂

∂t
+ x

∂

∂x
+ y

∂

∂y
+ 3 a

∂

∂a
+ 3 b

∂

∂b
+ 2 k1

∂

∂k1
· (2.10)

y

Example 2.1.3. The algebraic system defined on Z = (x, y, k2, b)

{
1− x+ k2 x

2 y = 0,
b− k2 x

2 y = 0
(2.11)

is invariant under the following one-parameter ν3 transformation group that is given
with the associated differential operator:





x→ x, y → y ν3,

k2 →
k2

ν3
, b→ b

and δS3
= y

∂

∂y
− k2

∂

∂k2
· (2.12)

That means that δS3
is a differential operator that represents a symmetry of (2.11). y

Every linear combination of symmetries, with real coefficients, is also a symmetry.
The set of symmetries thus forms a vector space over R (and even a Lie algebra, see
§ 1.4 of [86] and § 3.3 page 68). One can associate a matrix representation (see § 12.4
of [112]) to a set of symmetries as follows.

Definition 2.1.4 (Matrix Representation). Let B = {δ1, . . . , δr} be a set of infinitesimal
generator expressed on the canonical basis {∂/∂z1, . . . , ∂/∂zn}. For all i in {1, . . . , r}
one has δi =

∑n
j=1 ξ

i
zj
zj∂/∂zj with ξi

zj
in R(Z). The matrix representation associated

to B is the following matrix with n columns and r rows:

M :=
(
ξi
zj

)
1≤i≤r, 1≤j≤n

· (2.13)

y

Scalings

The MABSys software is restricted to particular type of Lie symmetries, namely scalings.

Definition 2.1.5 (Scaling). Let Σ be a system of ODEs or an algebraic system defined
on the coordinate set Z = (z1, . . . , zn). A scaling of Σ is a Lie symmetry that can be
represented by differential operators acting on the coordinates of the system as follows:

δS :=

n∑

i=1

αi zi
∂

∂zi
(2.14)

where αi are in R. y

Example 2.1.6. The differential operator δS1
given in the equation (2.8) page 35 of the

example 2.1.1 page 35 is a scaling of the system (2.1) page 33 defined on the coordinate
set Z = (t, x, y, k1, k2, a, b). y
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Semi-rectified symmetries (see § 2.2 of [104] for normal forms of infinitesimal gener-
ators) are particular cases of scalings such that all coefficients αi are zero except one.

Definition 2.1.7 (Semi-Rectified Symmetry). A semi-rectified symmetry is a Lie sym-
metry that can be represented by a differential operator that acts on just one coordinate z
as follows:

δS := α z
∂

∂z
(2.15)

with α in R. y

In the forthcoming reduction and reparametrization algorithms, the scalings of the
system of interest are handled all together thanks to the associated matrix of scaling.
This matrix is a special case of the matrix representation (see definition 2.1.4 page 36).

Definition 2.1.8 (Matrix of Scaling). Let B = {δ1, . . . , δr} be a set of scalings ex-
pressed on the canonical basis {z1∂/∂z1, . . . , zn∂/∂zn}. For all i in {1, . . . , r}, one
has δi =

∑n
j=1 α

i
j zj∂/∂zj with αi

j in R. The matrix of scaling associated to B is de-

fined thanks to the coefficients αi
j :

M :=
(
αi

j

)
1≤i≤r, 1≤j≤n

· (2.16)

y

Example 2.1.9. The differential operators δS1
given in the equation (2.8) page 35

and δS2
given in the equation (2.10) page 36 are two scalings defined on the coordinate

set Z = (t, x, y, k1, k2, a, b). The matrix of scaling associated to the set B = {δS1
, δS2
}

follows:

M =

(
0 1 1 0 −2 1 1
−2 1 1 2 0 3 3

)
· (2.17)

More precisely, this matrix represents the Lie algebra generated by B. y

In the sequel, the matrix of scaling is used to deduce a new coordinate set in which
the system can be rewritten in a simpler form (see § 2.1.2).

2.1.2 Change of Coordinates associated to Scalings

In this section we present a way of constructing a new coordinate set in a particular form
just for scalings, not for other type Lie symmetries. This new coordinate set is used by
the reduction and the reparametrization methods. It defines an invertible change of
coordinates which transforms the system of interest to its reduced or reparametrized
form. Moreover, the differential operators of interest are transformed into semi-rectified
symmetries when they are rewritten in these new coordinates.

Remark 2.1.10. The new coordinates presented in this section are based on the notion
of invariants and semi-invariants defined in § 2.3.3 page 54. y
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Change of Coordinates Associated to One Scaling

In this paragraph, we are looking for a change of coordinates deduced from one scaling.
One can write a scaling δS as given in (2.14) page 36 i.e.:

δS = α1 z1
∂

∂z1
+ α2 z2

∂

∂z2
+ · · ·+ αn−1 zn−1

∂

∂zn−1
+ αn zn

∂

∂zn
(2.18)

but with the coefficients αi in Z.

Remark 2.1.11. In practice, if the coefficients αi are rational fractions then one can
multiply the whole scaling by the least common multiple (lcm) of their denominators.
This operation (multiplication by a constant in R) does not modify its algebraic structure
(see remark 2.3.6 page 54). y

Suppose that the first coordinate z1 is the parameter w.r.t. which the simplifications
need to be performed. Thus α1 is assumed not to vanish. We want to avoid, in the change
of coordinates, powers with rational fractions for coordinates that can be negative. While
using δS , we suppose that z1 is strictly positive and only this parameter is allowed to
have a power with rational fraction.

If α1 is not equal to 1 then because of forthcoming new coordinates form, one

can get expressions with rational powers. Thus introducing a coordinate z̃1 = z
1/α1

1

helps to avoid non integer power problems for other coordinates. Remark that z̃1 veri-
fies δS z̃1 = z̃1. As a consequence, the infinitesimal generator (2.18) can be rewritten in
the form:

δS = z̃1
∂

∂z̃1
+ α2 z2

∂

∂z2
+ · · ·+ αn−1 zn−1

∂

∂zn−1
+ αn zn

∂

∂zn
· (2.19)

In this special case, one can choose n− 1 supplementary new coordinates as follow:

z̃1 = z
1/α1

1 , z̃i =
zi
z̃αi
1

∀i ∈ {2, . . . , n} (2.20)

where δS z̃i = 0 for all i in {2, . . . , n} by construction.

In these conditions, the inverse of the change of coordinates always exists and one
does not see non integer powers of variables appear, except for z1. Only z1 must be
taken on R⋆

+, remaining coordinates belong to R.

Let us recall that, in these new coordinates, the differential operator δS is written as
a semi-rectified symmetry equal to z̃1∂/∂z̃1.

Example 2.1.12. Let us find these particular new coordinates for the differential op-
erator δS1

given in (2.8) page 35 defined on Z = (t, x, y, k1, k2, a, b). Let us assume that

the parameter a is strictly positive. The new coordinates Z̃ =
(
t̃, x̃, ỹ, k̃1, k̃2, b̃, ã

)
are

given by:

t̃ = t, x̃ =
x

a
, ỹ =

y

a
, k̃1 = k1, k̃2 = k2 a

2, b̃ =
b

a
, ã = a. (2.21)
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They verify δS1
t̃ = δS1

x̃ = δS1
ỹ = δS1

k̃1 = δS1
k̃2 = δS1

b̃ = 0 and δS1
ã = ã by definition.

The differential operator δS1
in these coordinates is equal to:

δS1
= ã

∂

∂ã
(2.22)

meaning that it becomes a semi-rectified symmetry. Since δS1
is a symmetry of (2.1)

page 33, rewriting this system in the new coordinate set (2.21) page 38 eliminates the
parameter a (see example 2.2.2 page 41 for the reduction of the parameters a and k1 at
the same time). y

Change of Coordinates Associated to Many Scalings

In this paragraph we present, through an example, how to find such new coordinates if
many scalings are present. The formal version of this algorithm can be found in § 2.3
page 49.

Example 2.1.13. Let us consider the system of ODEs:

{
dx
dt = b y − a,
dy
dt = ax+ b

(2.23)

defined on Z = (t, x, y, a, b). The goal of this example is to find the new coordinate

set Z̃ =
(
t̃, x̃, ỹ, ã, b̃

)
associated to the following two scalings:

δ1 = x
∂

∂x
− y∂

∂y
− a∂

∂a
, δ2 = a

∂

∂a
+ b

∂

∂b
(2.24)

in order to reparametrize the system (2.23). Let us suppose that a and b are strictly pos-
itive parameters. The coordinate set Z must be reorganized by putting these parameters
at the beginning of the list i.e. Z = (a, b, t, x, y). The matrix of scaling

M =

(
−1 0 0 1 −1
1 1 0 0 0

)
(2.25)

written w.r.t. this new order, helps to handle the two scalings (2.24) at the same time.
The unique reduced row echelon form

R =

(
1 0 0 −1 1
0 1 0 1 −1

)
(2.26)

of the matrix M represents the same vector space of scalings as M .

The change of coordinates (thus the new coordinate set) that we are looking for
transforms the scalings represented by R into semi-rectified symmetries. Because the
parameters a and b are strictly positive, we are looking for the semi-rectified symmetries
of the form:

δ1 = ã
∂

∂ã
, δ2 = b̃

∂

∂b̃
· (2.27)
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These scalings are represented by the following matrix of scaling:

D =

(
1 0 0 0 0
0 1 0 0 0

)
(2.28)

written w.r.t. the new coordinates Z̃ =
(
ã, b̃, t̃, x̃, ỹ

)
.

Recall that a right multiplication on a matrix of scaling performs a change of co-
ordinates (see § 2.3.1 page 50). Thus looking for a new coordinate set is equivalent to
searching an invertible matrix C such that:

RC = D. (2.29)

This implies R = DC−1. Because of the special form of the matrix D (1s at the diagonal
and 0s elsewhere), one can deduce the matrix C−1 easily:

C−1 =




1 0 0 −1 1
0 1 0 1 −1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



. (2.30)

Its inverse

C =




1 0 0 1 −1
0 1 0 −1 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




(2.31)

encodes the new coordinates that we are looking for. Its elements indicate the powers
of the old coordinates in the new coordinates expressions. Every column of the matrix
defines one new coordinate. For example, consider the 4th column from which one can
deduce the expression of the new coordinate x̃:

x̃ = aC1,4 bC2,4 tC3,4 xC4,4 yC5,4

= a1 b−1 t0 x1 y0

=
ax

b
·

(2.32)

The complete change of coordinates follows:

ã = a, b̃ = b, t̃ = t, x̃ =
ax

b
, ỹ =

b y

a
· (2.33)

Rewriting the system (2.23) page 39 in this new coordinate set Z̃ leads to the following
system of ODEs: 




dex
det = ea2(ey−1)

eb ,

dey
det =

eb2(ex+1)
ea ·

(2.34)
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Remark that both parameters ã and b̃, strictly positive, are in factor in the right-hand
side of the differential equations and do not appear in the algebraic system that defines
associated steady points i.e. in: {

ỹ − 1 = 0,

x̃+ 1 = 0.
(2.35)

These expressions do not depend on parameters. y

Remark 2.1.14. This process of getting a change of coordinates from a matrix of scaling
is used for both exact simplification methods (the reduction and the reparametrization)
presented in the following section. y

2.2 Exact Simplification Method Algorithms

This section is devoted to two closely related exact model simplification methods for
systems of ODEs, reduction and reparametrization. In the sequel, one can find details and
illustrations of associated algorithms. The generalizations of some of these simplification
methods along with their advantages and disadvantages are discussed in the part III
page 57 of this document.

Remark 2.2.1. In MABSys, only scaling type Lie symmetries are considered. Their struc-
ture permits to easily get the exact relations associated to model simplifications and to
respect the positivity property of biological quantities when the system models a bio-
logical phenomenon. Moreover, biological models created by using the mass-action law
possess very frequently scaling type Lie symmetries. More complicated symmetries are
also useful for the model simplifications and can help to eliminate more coordinates but
finding the associated exact relations require the resolution of systems of PDEs (or to
use moving frame based reduction process as in the ch. 5 page 103). However, such
symmetries do not guarantee systematically the positivity assumption of the system
coordinates. y

2.2.1 Reduction of Parameters

Here, we give the idea of the reduction of parameters from a system of ODEs through
an example. Then we detail the reduction algorithm implemented in MABSys.

Idea of Reduction

The reduction algorithm of this section aims to eliminate some parameters from a system
of ODEs by rewriting it in a new coordinate set. This new coordinate set is deduced
from the scalings of the same system. There exists then a bijection between positive
solutions of the system of ODEs and these of the reduced one.

Example 2.2.2. Let us illustrate the reduction process on the two-species oscillator
that models the dynamics of a system of biochemical reactions:

{
dx
dt = a− k1 x+ k2 x

2 y,

dy
dt = b− k2 x

2 y.
(2.36)
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This system has two state variables x, y and depends on 4 parameters: a, b, k1 and k2.
The idea is to look for the system properties that allow the system to be rewritten with
less parameters. For this issue, one can search for the scalings of (2.36) page 41. The
scalings (according to the algorithms of ch. 4 page 87) of the system are δS1

and δS2

(given also in the equations (2.8) page 35 and (2.10) page 36):

δS1
= x

∂

∂x
+ y

∂

∂y
− 2 k2

∂

∂k2
+ b

∂

∂b
+ a

∂

∂a
,

δS2
= −2 t

∂

∂t
+ x

∂

∂x
+ y

∂

∂y
+ 3 a

∂

∂a
+ 3 b

∂

∂b
+ 2 k1

∂

∂k1
·

(2.37)

Assuming that the system parameters are strictly positive, these scalings permit to
rewrite the system in a new coordinate set where the system depend on only 2 parameters
instead of 4. The necessary change of coordinates can be found by applying the idea
given in § 2.1.2 page 37 (see example 2.3.3 page 52 for detailed computations). The

new coordinate set Ẑ =
(
t̂, x̂, ŷ, k̂1, k̂2, â, b̂

)
is defined by (the parameters a and k1 are

strictly positive):

t̂ = t k1, x̂ =
x k1

a
, ŷ =

y k1

a
, k̂1 = k1, k̂2 =

k2 a
2

k3
1

, â = a, b̂ =
b

a
· (2.38)

It is sufficient to inverse this change of coordinates and apply it to the model (2.36)
page 41 to reduce its parameters. The inverse of (2.38) is given by:

t =
t̂

k1
, x =

x̂ a

k1
, y =

ŷ a

k1
, k1 = k̂1, k2 =

k̂2 k
3
1

a2
, a = â, b = b̂ a. (2.39)

The application of (2.39) gives:





d
“

bx a
k1

”

d
“

bt
k1

” = â− k̂1
x̂ a

k1
+
k̂2 k

3
1

a2

x̂2 a2

k2
1

ŷ a

k1
,

d
“

by a
k1

”

d
“

bt
k1

” = b̂ a− k̂2 k
3
1

a2

x̂2 a2

k2
1

ŷ a

k1
·

(2.40)

Thus, in these new coordinates, the system (2.36) page 41 can be rewritten as:




dbx
dbt = 1− x̂+ k̂2 x̂

2 ŷ,

dby
dbt = b̂− k̂2 x̂

2 ŷ.
(2.41)

Remark that the parameters a and k1 are eliminated from the system. However, this
new system (2.41) is equivalent to the system (2.36) page 41 thanks to the exact rela-
tions (2.38). There is a bijection between positive solutions of these two systems. y

This method can be generalized to more complicated symmetries, to the reduction of
state variables and also to systems of ordinary recurrence equations i.e. to discrete dy-
namical systems (see § 5.4 page 114) by using moving frame based methods. These gener-
alizations are implemented in ExpandedLiePointSymmetry package (see ch. 5 page 103).
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Reduction Algorithm used in MABSys
The algorithm of the reduction procedure is summarized in the algorithm 1. The function
InvariantizeByScalings of MABSys implements this algorithm. It aims to facilitate the
usage of Lie symmetries for the model reduction without any particular knowledge of
them.

Proposition 2.2.3. The reduction of a system of ODEs detailed in the algorithm 1 has
a polynomial complexity in the input size. y

The algorithm 1 follows the classical reduction process (see § 5.2 page 105). One
also computes explicitly the new coordinates in function of the old ones. Thanks to
the restriction of the method to scalings and some computational strategies (see § 4.2
page 93) its complexity is polynomial in the input size.

The algorithm 1 has 4 inputs. The first one is a parametric system of first-order
ODEs. The second one is a list of parameters, assumed to be strictly positive, that one
would like to eliminate by priority order. The third input is a list of coordinates to

Algorithm 1 Algorithm of the function InvariantizeByScalings.

Input: The parametric system of first-order ODEs Σ defined on Z = (z1, . . . , zn).
The list of parameters E = (θ1, . . . , θe) that one would like to eliminate by priority or-
der. Remark that for all i in {1, . . . , e}, there exists j in {1, . . . , n} such that θi = zj.
These parameters are assumed to be strictly positive.
The list of remaining coordinates P = (p1, . . . , pn−e−1) except the time variable.
The optional list of coordinates U = (u1, . . . , uf ) to keep unchanged. Remark that
for all i in {1, . . . , f}, there exists j in {1, . . . , n} such that ui = zj .
The optional boolean named “scaletime” that indicates if the time variable can be
changed or not during the reduction. The default value is true.

Output: The reduced system of ODEs, denoted by Σ̃, written in a new coordinate
set Z̃ = (z̃1, . . . , z̃n).
The change of coordinates defining the new coordinate set Z̃ thanks to the scalings
of Σ.
The list of parameters that were eliminated from the system of ODEs Σ.

1: #Computation of scalings
2: S := ELPSymmetries(Σ, sym = scaling,

fixedcoord = if(scaletime, U, [t, u1, . . . , uf ]));
3: #Computation of change of coordinates.
4: Z := [θ1, . . . , θe, t, p1, . . . , pn−e−1] ;
5: M := MatrixOfScaling (S,Z) ;
6: C,pivots := GetChangeOfCoordinates (M,E,P ) ;
7: #Computation of the reduced system
8: Σ̃ := ApplyChangeOfCoordinates (Σ, C) ;

9: return
[
Σ̃, C,pivots

]
;

keep unchanged. One computes scalings that do not act on these coordinates. Thus,
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in the final change of coordinates, these coordinates are not modified. The last input
is an optional boolean that indicates if the time variable can be changed or not during
the reduction. The default value is true. The output is composed of three objects: the
reduced system of ODEs, the change of coordinates deduced from used scalings and the
list of parameters that were eliminated.

The first step of the algorithm 1 page 43 is the computation of the scalings of the
system of ODEs by respecting given conditions on the coordinates. One can use the
function ELPSymmetries of the ExpandedLiePointSymmetry package for this issue. The
second step aims to compute a change of coordinates associated to the computed scalings.
In order to find a change of coordinates (thus a new coordinate set) which allows to
eliminate required parameters by respecting the priority order, the coordinates to be
eliminated are put at the beginning of Z. The matrix of scaling (see definition 2.1.8
page 37) is created to handle scalings all together. Then one deduces the change of
coordinates and the list of parameters that are going to be eliminated by it. The detailed
algorithm of the function GetChangeOfCoordinates is given in § 2.3 page 49. The third
step of the algorithm consists in applying the found change of coordinates to the system
of ODEs in order to get the reduced one.

Example 2.2.4. Let us reproduce the reduction of the parameters a and k1 of the
example 2.2.2 page 41 by following the algorithm 1 page 43. Here are the inputs and
the outputs of the function InvariantizeByScalings of MABSys.

� �
> # Model

> ODEs := [diff(x(t),t)=a-k1*x(t)+k2*x(t)^2*y(t), diff(y(t),t)=b-k2*x(t)^2*y(t)];

d 2 d 2

ODEs := [-- x(t) = a - k1 x(t) + k2 x(t) y(t), -- y(t) = b - k2 x(t) y(t)]

dt dt

> # Reduction

> out := InvariantizeBySalings(ODEs ,[a,b,k1 ,k2],[x,y]):
> ReducedODEs := out [1];

d 2 d 2

ReducedODEs := [-- x(t) = 1 - x(t) + k2 x(t) y(t), -- y(t) = b - k2 x(t) y(t)]

dt dt

> ChangeOfCoord1 := out [2];

2

k2 a x k1 y k1

ChangeOfCoord1 := [b = b/a, k2 = -----, t = t k1, x = ----, y = ----]

3 a a

k1

> EliminatedParams := out [3];

EliminatedParams := [a, k1]
� �

Remark that the output notation in the code example does not differentiate the new
coordinates from the old ones for the sake of computational simplicity. The outputs
must be interpreted exactly as in the example 2.2.2 page 41.

The system of ODEs (2.36) page 41 is the first input. The user asks for the elimination
of the parameters a, b, k1 and k2, in this order, which are thus supposed to be strictly
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positive. Every coordinate of the system is allowed to be modified so the third argument
is an empty list.

The function ELPSymmetries of the ExpandedLiePointSymmetry package (see ch. 4
page 87) computes the scalings given in (2.37) page 42. Because the parameters are
assumed to be strictly positive, the coordinates need to be reorganized i.e. one must
take Z = (a, b, k1, k2, t, x, y). The associated matrix of scaling follows:

M =

(
1 1 0 −2 0 1 1
3 3 2 0 −2 1 1

)
. (2.42)

The change of coordinates (2.38) page 42 can be deduced from the matrix M by following
the idea given in § 2.1.2 page 37. The application of this change of coordinates to the
system (2.36) page 41 leads to the reduced system given in (2.41) page 42. Remark that
the parameters a and k1 are eliminated. The structure of the scalings of the considered
system of ODEs prevents the elimination of b at the same time of a. y

2.2.2 Reparametrization

Here, we give the idea of the reparametrization of a system of ODEs through an example.
Then we detail the reparametrization algorithm implemented in MABSys.

Idea of Reparametrization

The reparametrization algorithm of this section aims to eliminate some parameters from
the algebraic system that defines the steady points of a system of ODEs. As for the
reduction algorithm, the system of ODEs must be rewritten in a new coordinate set. The
original idea is to tackle the scalings of the algebraic system that defines the steady points
of the system of ODEs of interest. Such scalings are independent from the scalings of the
system itself. Indeed, every scaling of a system of ODEs is also a scaling of the algebraic
system that defines its steady points but the contrary is false. Their complementary
information allows to improve the exact simplification done by the reduction algorithm.
There exists also a bijection between positive solutions of the system of ODEs and these
of the reparametrized one.

Example 2.2.5. Let us illustrate the reparametrization process on the reduced two-
species oscillator given in (2.41) page 42. The algebraic system that defines its steady
points is: {

1− x̂+ k̂2 x̂
2 ŷ = 0,

b̂− k̂2 x̂
2 ŷ = 0

(2.43)

and it depends on two parameters b̂ and k̂2. The system of ODEs (2.41) page 42 does not
have any more scalings but this algebraic system does. The scaling in question can be
represented by the differential operator δS3

(given also by the equation (2.12) page 36):

δS3
= ŷ

∂

∂ŷ
− k̂2

∂

∂k̂2

· (2.44)
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This scaling permits to put in factor the parameter k̂2, which is assumed to be strictly
positive, in the right-hand side of the differential equations of (2.41) page 42. The new

coordinate set Z̃ =
(
t̃, x̃, ỹ, k̃1, k̃2, ã, b̃

)
is defined by the relation

ỹ = ŷ k̂2 (2.45)

and all other coordinates remain the same (see example 2.3.4 page 53 for detailed com-
putations). Introducing the inverse of these new coordinates i.e.:

t̂ = t̃, x̂ = x̃, ŷ =
ỹ

k̂2

, k̂1 = k̃1, k̂2 = k̃2, â = ã, b̂ = b̃ (2.46)

to the model (2.41) page 42 completes the reparametrization process. The system of
ODEs can finally be rewritten as:





dex
det = 1− x̃+ x̃2 ỹ,

dey
det =

(
b̃− x̃2 ỹ

)
k̃2

(2.47)

and the algebraic system that defines its steady points as:

{
1− x̃+ x̃2 ỹ = 0,

b̃− x̃2 ỹ = 0
(2.48)

by supposing that k̃2 is strictly positive. Remark that the steady points of the reduced
system defined by (2.43) page 45 depend on 2 parameters b̂ and k̂2 but the steady
points defined by (2.48) depend on just 1 parameter b̃. Also, the new system (2.47) is
equivalent to the reduced system (2.41) page 42 and thus to the original system (2.36)
page 41 thanks to the exact relations (2.45) and (2.38) page 42. y

I think that this method can be generalized to more complicated symmetries. This
thought is among my current research subjects.

Reparametrization Algorithm used in MABSys
The algorithm of the reparametrization procedure is summarized in the algorithm 2
page 47. The function CylindrifySteadyPoints of MABSys (see remark 5.5.8 page 132
for nomenclature choice) implements this algorithm. The user does not need any par-
ticular knowledge about the Lie symmetries but some assumptions on the coordinates
positivity are required.

Proposition 2.2.6. The reparametrization of a system of ODEs detailed in the algo-
rithm 2 page 47 has a polynomial complexity in the input size. y

The algorithm 2 page 47 reparametrizes a given system of ODEs and computes
explicitly the new coordinates in function of old ones. Thanks to the restriction of
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the reparametrization method to scalings and some computational strategies (see 4.2
page 93) its complexity is polynomial in the input size.

The algorithm 2 has 4 inputs. The first one is a parametric system of first-order
ODEs. The second one is a list of parameters that are supposed to be strictly positive
by priority order. The algorithm tries to put these parameters in factor in the right-hand
side of the differential equations. The third input is a list of coordinates that can also
be zero or negative. The last input is an optional list of coordinates to keep unchanged.
One computes scalings that do not act on these coordinates. Thus, in the final change
of coordinates, these coordinates are not modified. Each coordinate of the system of
ODEs, except for the time variable t, must appear in one of these lists. The output is
composed of 4 elements: the reparametrized system of ODEs, the algebraic system that
defines its steady points, the change of coordinates deduced from used scalings and the
list of parameters that were eliminated from the expressions of the steady points.

Algorithm 2 Algorithm of the function CylindrifySteadyPoints.

Input: The parametric system of first-order ODEs Σ defined on Z = (z1, . . . , zn).
The list of parameters E = (θ1, . . . , θe) that are supposed to be strictly positive.
Remark that for all i in {1, . . . , e}, there exists j in {1, . . . , n} such that θi = zj.
The list of remaining coordinates P = (p1, . . . , pn−e−1) except the time variable.
The optional list of coordinates U to keep unchanged.

Output: The reparametrized system of ODEs, denoted by Σ̃, written in a new coordi-
nate set Z̃ = (z̃1, . . . , z̃n).
The algebraic system, written in Z̃, that defines the steady points of Σ̃.
The change of coordinates defining the new coordinate set Z̃ thanks to the scalings
of the algebraic system that defines the steady points of Σ.
The list of parameters that were eliminated from the expressions of the steady points.

1: #Computation of scalings
2: Ω := SteadyPointSystem (Σ) ;
3: S := ELPSymmetries (Ω, sym = scaling,fixedcoord = U) ;
4: #Computation of change of coordinates
5: Z̄ := [θ1, . . . , θe, p1, . . . , pn−e−1] ;
6: M := MatrixOfScaling

(
S, Z̄

)
;

7: C,pivots := GetChangeOfCoordinates (M,E,P ) ;
8: #Computation of reparametrized system
9: Σ̃ := ApplyChangeOfCoordinates (Σ, C) ;

10: Ω̃ := ApplyChangeOfCoordinates (Ω, C) ;

11: return
[
Σ̃, Ω̃, C,pivots

]
;

The first step of the algorithm 2 is the computation of the scalings of the algebraic
system that defines the steady points of the given system of ODEs. One can use the
function ELPSymmetries of the ExpandedLiePointSymmetry package. In the second
step, one computes a change of coordinates associated to the computed scalings. In
order to find a change of coordinates (thus a new coordinate set) which allows to put
in factor these parameters in the right-hand side of differential equations by respecting
the priority order, the coordinates which are strictly positive are put at the beginning



48 Introduction to Reduction and Reparametrization

of Z. The matrix of scaling (see definition 2.1.8 page 37) is created to handle scalings all
together. The change of coordinates and the list of parameters that are going to be put in
factor are computed. The detailed algorithm of the function GetChangeOfCoordinates

is given in § 2.3 page 49. The third step of the algorithm consists in applying the found
change of coordinates to the system of ODEs and the associated algebraic system in
order to get reparametrized ones.

Example 2.2.7. Let us reproduce the reparametrization of the system of ODEs (2.41)
page 42 done in the example 2.2.5 page 45 by following the algorithm 2 page 47. Here
are the inputs and the outputs of the function CylindrifySteadyPoints of MABSys.

� �
> ReducedODEs ;

d 2 d 2

[-- x(t) = 1 - x(t) + k2 x(t) y(t), -- y(t) = b - k2 x(t) y(t)]

dt dt

> out := CylindrifySteadyPoints(ReducedODEs , [b,k2], [x,y]):

> out := out [1]:

> ReparametrizedODEs := out [1];

d 2 d 2

ReparametrizedODEs := [-- x(t)=1 - x(t) + x(t) y(t), -- y(t)=(b - x(t) y(t)) k2]

dt dt

> ReparametrizedAlgSys := out [2];

2 2

ReparametrizedAlgSys := [1 - x + x y, b - x y]

> ChangeOfCoord2 := out [3];

ChangeOfCoord2 := [y = y k2]

> FactorizedParams := out [4];

FactorizedParams := [k2]
� �

Remark that, as for the reduction process, the output notation in the code example does
not differentiate the new coordinates from the old ones for the sake of computational
simplicity. The outputs must be interpreted exactly as in the example 2.2.5 page 45.

The system of ODEs (2.41) page 42 is the first input. The user indicates that the
two parameters b̂ and k̂2 are supposed to be strictly positive thus the algorithm tries
to put them both in factor in the right-hand side of differential equations. In the new
coordinates expressions, they can appear with rational powers and in denominators. In
our case, the state variables are just assumed to be positive i.e. in R+.

The function ELPSymmetries of the ExpandedLiePointSymmetry package (see ch. 4
page 87) computes the scalings of the algebraic system (2.43) page 45 that defines the
steady points of the model (2.41) page 42. There is one scaling, it is given in (2.44)
page 45. In order to take into account the positivity assumption of the arguments, one

needs to organize the coordinates and take Ẑ =
(
b̂, k̂2, x̂, ŷ

)
. Remark that the time

variable t does not appear in the coordinates because we are interested in scalings of an
algebraic system. The associated matrix of scaling follows:

M =
(
0 −1 0 1

)
. (2.49)
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The change of coordinates (2.46) page 46 can be deduced from M by following the idea
given in § 2.1.2 page 37. The application of this change of coordinates to the algebraic
system (2.43) page 45 leads to the reparametrized algebraic system (2.48) page 46.
Its application to the system (2.41) page 42 leads to the reparametrized system (2.47)
page 46. The steady points of the system of ODEs (2.41) page 42 can be freed from the
parameter k2 only. Since there is no scaling that acts on b, it is impossible to free the
steady points from it. y

Triangularization

For the reparametrization, another boolean option, namely triangularization, is also
available. It calls the Triangularize function of the RegularChains package (see [67])
of Maple. This option improves the reparametrization method by finding more scal-
ings useful to simplify the expressions of steady points. The disadvantage is that the
complexity of the associated computations is not polynomial in the worst case.

Example 2.2.8. Let us consider an algebraic system defined by:
{

(x− a)2 = 0,

(x− a) + (x− a)3 = 0.
(2.50)

The algorithms used in the ExpandedLiePointSymmetry package cannot find a scaling
for this system (see ch. 4 page 87). Thus the reparametrization algorithm cannot re-
move x or a from the solutions of (2.50). However, in the polynomial ring composed
by x and a, the solutions of (2.50) are equivalent to the solutions of:

x− a = 0. (2.51)

This equivalence is found thanks to the triangularization. Using the symmetries of (2.51),
one can simplify also the solutions of (2.50). Indeed, the differential operator

δ = x
∂

∂x
+ a

∂

∂a
(2.52)

is a symmetry of (2.51). According to § 2.1.2 page 37, if a is assumed strictly positive,
one can deduce the change of coordinates x̃ = x/a and ã = a. Its application on (2.50)
leads to the following simplified algebraic system:

{
(x̃− 1)2 = 0,

(x̃− 1) + (x̃− 1)3 = 0.
(2.53)

Remark that the solutions of (2.53) depend on only x̃. y

2.3 Change of Coordinates Algorithm associated to Scalings

This section presents a systematic way to find new coordinates to perform the previous
exact simplification methods for many scalings at the same time. In these new coordi-
nates, the system of interest or some expressions derived from it can be rewritten with
less parameters.
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First, let us recall the left and the right multiplication on a matrix of scaling thus
on the set of scalings it represents. Second, we see the algorithm of deducing a new
coordinate set from a matrix of scaling. Finally, we define the invariants and the semi-
invariants that are, in fact, main objects of these new coordinates.

2.3.1 Left and Right Multiplication on a Matrix of Scaling

The left multiplication of a matrix of scaling performs a linear combination of the asso-
ciated scalings. The right multiplication of a matrix of scaling rewrites the associated
scalings in a new coordinate set defined by the second factor.

Lemma 2.3.1. Let us denote by B1 = {δ1, . . . , δr} a set of scalings acting on the co-
ordinate set Z = (z1, . . . , zn) and M associated matrix of scaling of dimension (r × n).
Let also P be any invertible matrix of dimension (r × r) in R. Then the matrix P M is
associated to a set of scaling B2 that generates the same vector space as B1. y

Proof. The scalings of B1 form a vector space thus performing left multiplication on M
amounts to perform linear combination on the elements of B1. Since P is invertible, the
vector space defined by B1 and that defined by B2 are equal. y

Lemma 2.3.2. Let B = {δ1, . . . , δr} be a set of scalings of a system Σ defined on a
coordinate set Z = (z1, . . . , zn) with

δi =
n∑

j=1

αi
j zj

∂

∂zj
∀i ∈ {1, . . . , r} , αi

j ∈ R (2.54)

and M associated matrix of scaling. Let C be a (n× n) invertible matrix, with coefficients
in Q, that defines a change of coordinates on Z in order to obtain a new coordinate
set Z̃ = (z̃1, . . . , z̃n) where

z̃j =

n∏

k=1

z
Ck,j

k ∀j ∈ {1, . . . , n} . (2.55)

The matrix M C is a matrix of scaling of the system Σ rewritten in Z̃, denoted by Σ̃. y

Proof. Let us denote by

δ̃i =
n∑

j=1

ξ̃i
j

∂

∂z̃j
∀i ∈ {1, . . . , r} (2.56)

the scaling δi rewritten in the new coordinate chart Z̃. According to paragraph “Vector
Fields” in ch. 1 of [87], one has:

ξ̃i
j =

n∑

k=1

αi
k zk

∂z̃j
∂zk

=
n∑

k=1

αi
k Ck,j z̃j =

(
n∑

k=1

αi
k Ck,j

)
z̃j = βi

j z̃j . (2.57)

By definition βi
j are in R. So the coefficients of the scalings obtained from the change

of coordinates (2.55) are given by M C and in addition they correspond to scalings of Σ̃
by definition. y
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2.3.2 Deducing a Change of Coordinates from a Matrix of Scaling

The algorithm that deduces a change of coordinates, thus a new coordinate set from a
set of scalings, in which the system of interest can be rewritten in a simpler form, is
summarized in the algorithm 3.

The algorithm 3 has 3 inputs. The matrix of scaling of dimension (r × n) represents r
scalings that act on the n coordinates in Z. Each column ofM is indexed by a coordinate.
The second input is the list of parameters that are supposed to be strictly positive given
by priority order. By convention, they are supposed to be at the beginning of Z. The
final argument corresponds to the list of remaining coordinates. The output has 2

Algorithm 3 Change of coordinates deduced from a matrix of scaling. Algorithm of
the function GetChangeOfCoordinates.

Input: The matrix of scaling M of dimension (r × n) constructed w.r.t. the coordinate
set Z = (z1, . . . , zn) in which the associated scalings act. Every column of M is
indexed by a coordinate.
The list of parameters E that are supposed to be strictly positive given by priority
order. By convention, they are supposed to be at the beginning of Z.
The list of remaining coordinates.

Output: The change of coordinates that defines a new coordinate set Z̃ = (z̃1, . . . , z̃n)
on which some given scalings are rewritten as semi-rectified scalings.
The list of parameters on which these semi-rectified scalings act.

1: R := ReducedRowEchelonForm (M) ;
2: #Removing unnecessary symmetries
3: Q← the first e lines of R where e is the number of symmetries that act at least on

one strictly positive parameter;
4: #Getting the parameters w.r.t. which the exact simplification is done.
5: pivots := [p1, . . . , pe]← the list of column indices (in N) of the first not zero elements

in each line of Q;
6: #Construction of the inverse of the matrix C that encodes new coordinates.
7: #C−1

i,j is (i, j)th element of C−1.

8: C−1 ← matrix of size (n× n) defined by:
9: C−1

pi,j
= Qi,j ∀i ∈ {1, . . . , e} ,∀j ∈ {1, . . . , n};

10: ∀i ∈ {1, . . . , n} such that i 6= pj ∀j ∈ {1, . . . , e}
11: C−1

i,j = 0 with i 6= j

12: C−1
i,i = 1;

13: ℓ1, . . . , ℓn ← lcm of denominators in each row of C−1;
14: C−1

i,j := C−1
i,j ∗ ℓi ∀i ∈ {1, . . . , n} ,∀j ∈ {1, . . . , n};

15: #Computing new coordinates expressions.

16: return
[
seq
(
z̃j =

∏n
k=1 z

Ck,j

k , j = 1..n
)]
, [zp1

, . . . , zpe ] ;

elements: the change of coordinates that defines a new coordinate set Z̃ in which some
given scalings are rewritten as semi-rectified symmetries and the list of parameters on
which these semi-rectified symmetries act (these parameters are put in factor in the
right-hand side of differential equations).
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The instructions that permit to deduce in a unique way the change of coordinates
thus the new coordinate set for the exact simplification methods (see § 2.2.1 page 41 and
§ 2.2.2 page 45) follow.

The matrix M of dimension (r × n) encodes the vector space of the scalings of in-
terest. In order to obtain a unique representation of it, one can use the modified LU
decomposition. One has:

M = P LU1R (2.58)

where R is the unique reduced row echelon form (see [27]) of dimension (r × n). By
definition, the first non-zero entries in each row of R is equal to 1. Thanks to lemma 2.3.1
page 50, one can conclude that M and R represent the same vector space of scalings.

The reduction or the reparametrization methods must be performed w.r.t. the list
of parameters that are supposed to be strictly positive. Thus the symmetries that do
not act on one of these parameters are useless. Removing these unnecessary symmetries
correspond to keeping the first e lines of R where e is the number of scalings that act
at least on one strictly positive parameters. Let us denote this matrix by Q. The first
not zero elements in each line of Q are indexed by the parameters, called pivots, w.r.t.
which the exact simplification is done.

Let us recall that rewriting the scalings of a system in a new coordinate set, as
explained in § 2.1.2 page 37, transforms these scalings into semi-rectified symmetries.
Let us denote by D the matrix of scaling of these semi-rectified symmetries, written in
a new coordinate set. It is composed only of the first non-zero entry of each line of Q
and 0s elsewhere. We are looking for a matrix C (see lemma 2.3.2 page 50) that encodes
the change of coordinates between the matrix Q and D i.e.:

QC = D ⇒ Q = DC−1. (2.59)

Thanks to the special form of D, one can deduce the elements of C−1 by using Q.
C−1 is a square matrix of dimension n which is constructed by inserting lines with one
not zero element into Q so that its diagonal has only 1s. Every pivot must stay on
the diagonal. One must also get rid of the denominators in C−1 so that the change of
coordinates does not contain any non integer power. Each line must be multiplied by
the least common multiple of its elements. These scalars can be kept in the matrix D.

Finally, the inverse of this matrix C−1 i.e. the matrix C encodes the change of
coordinates necessary to transform the scalings represented by the matrix Q into semi-
rectified symmetries (represented by the matrix D).

Example 2.3.3. Let us apply the algorithm 3 page 51 on the reduction of the two-
species oscillator example modeled by (2.36) page 41. The scalings to use, δS1

and δS2
,

are given in (2.37) page 42. One assumes that the parameters a, b, k1 and k2 are strictly
positive. Thus the coordinates are organized as follow: Z = (a, b, k1, k2, t, x, y). The
associated matrix of scaling M is defined in (2.42) page 45. The reduced row echelon
form of M is:

R =

(
1 1 0 −2 0 1 1
0 0 1 3 −1 −1 −1

)
. (2.60)
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In this case, the matrix Q is equal to R because the two scalings represented by R
act at least on one of the parameters. The first not zero elements of each line of R
correspond to parameters a and k1 so the reparametrization will be done w.r.t. them.
The semi-rectified symmetries that we are looking for thus have the form:

δS1
= â

∂

∂â
and δS2

= k̂1
∂

∂k̂1

· (2.61)

The associated matrix of scaling

D =

(
1 0 0 0 0 0 0
0 0 1 0 0 0 0

)
(2.62)

is written in the new coordinate set Ẑ =
(
â, b̂, k̂1, k̂2, t̂, x̂, ŷ

)
. Let us construct now the

matrix C−1 by using the matrices Q and D:

C−1 =




1 1 0 −2 0 1 1
0 1 0 0 0 0 0
0 0 1 3 −1 −1 −1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




. (2.63)

The inverse of C−1 encodes the change of coordinates that transforms the scalings given
in (2.37) page 42 into these given in (2.61):

C =




1 −1 0 2 0 −1 −1
0 1 0 0 0 0 0
0 0 1 −3 1 1 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




. (2.64)

The elements of C correspond to powers of the coordinates Z in the new coordinates
expressions. The resulting change of coordinates is defined in (2.38) page 42. y

Example 2.3.4. Let us apply now the algorithm 3 page 51 on the reparametrization of
the reduced two-species oscillator example modeled by (2.41) page 42. The only scaling
to use is δS3

given in (2.44) page 45. The parameters b̂ and k̂2 are assumed to be strictly

positive thus the coordinates are organized as follow: Ẑ =
(
b̂, k̂2, x̂, ŷ

)
(the symmetry

belongs to an algebraic system so the time parameter t̂ is not among the coordinates).
The associated matrix of scaling M is defined in (2.49) page 48. The reduced row echelon
form of M is:

R =
(
0 1 0 −1

)
. (2.65)

In this case, the matrix Q is equal to R because the associated scaling acts on the
parameter k̂2. The first not zero elements of R correspond to k̂2 meaning that it can be
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removed from the equations of the steady points of (2.41) page 42. The semi-rectified
symmetry that we are looking for has the form:

δS1
= k̃2

∂

∂k̃2

· (2.66)

The associated matrix of scaling D written in the new coordinate set Z̃ =
(
b̃, k̃2, x̃, ỹ

)

follows:
D =

(
0 1 0 0

)
. (2.67)

Let us construct now the matrix C−1 by using the matrices Q and D:

C−1 =




1 0 0 0
0 1 0 −1
0 0 1 0
0 0 0 1


 . (2.68)

The inverse of C−1 encodes the change of coordinates that transforms the scaling given
in (2.44) page 45 into that given in (2.66):

C =




1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1


 . (2.69)

The elements of C correspond to powers of the coordinates Z in the new coordinates
expressions. The resulting change of coordinates is defined in (2.45) page 46. y

2.3.3 Invariants and Semi-Invariants

The reduction (see § 2.2.1 page 41) and the reparametrization (see § 2.2.2 page 45)
methods consist in looking for a new coordinate set in which the system can be rewritten
in a simpler form. In fact, these new coordinates are invariants and semi-invariants
(see [92, 86, 59, 58]) of the scalings of the system.

Definition 2.3.5 (Invariants and Semi-Invariants). Let δS be a differential operator
representing a Lie symmetry with coefficients in R(Z). A smooth real-valued func-
tion ζ : R(Z)→ R is an invariant (resp. a semi-invariant) of δS if, and only if, δSζ = 0
(resp. δSζ = α ζ with α in R) for all Z in Rn. y

Remark 2.3.6. The invariants of a symmetry form a field and the semi-invariants of
a symmetry form an algebra. Thus, there are infinitely many invariants and semi-
invariants for a given Lie symmetry. y

Example 2.3.7. Let us reconsider the differential operator δS1
given in (2.8) page 35.

Among all of its invariants, assuming that a does not vanish, one can cite:

ζ1 = t, ζ2 =
x

a
, ζ3 =

y

a
, ζ4 = k1, ζ5 = k2 a

2, ζ6 =
b

a
(2.70)
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because δS1
ζi = 0 for all i in {1, . . . , 6}. Also remark that each coordinate on which δS1

acts is a semi-invariant of it because of the definition of scalings. One has:

δS1
x = x, δS1

y = y, δS1
k2 = −2 k2, δS1

b = b, δS1
a = a. (2.71)

y

2.4 Comparison with Existing Works

There are lots of work done about the model simplification. This section is devoted to
present some of them and to point out the differences of my work w.r.t. the existing
ones.

I propose two exact simplification methods, meaning that the exact relationships
between the original and the simplified systems are available. There exist widely used
general strategies for the model simplification (see [85, 6]), including inexact methods.
For instance, the lumping (see [116]), the sensitivity analysis (see [108, 94, 71]) and the
time-scale analysis (see [16, 113]) rely on different methods but they all decrease the
number of variables. The lumping transforms the vector of the original variables to a
lower dimensional one by bringing some variables together. The sensitivity analysis seeks
to determine and to eliminate the insignificant variables on the basis of their impact on
designated important variables; only a subset of the original variables remain in the
reduced model. The time-scale analysis is used to determine the dynamic behavior of
the reaction systems with multiple time-scales; some fast reactions are considered nearly
instantaneous relative to the remaining slow ones. These three methods cause a loss of
information about individual original variables.

The reduction and the reparametrization methods presented in this document have
polynomial time complexity in the input size. Medium size nonlinear systems of ODEs
are thus relatively easily tractable. In addition, there is no need to specify the dimen-
sion of the variables, which is not always obvious to define. In modeling domain, it is
common and practical to introduce some parameters with undefined physical or biolog-
ical meaning in the models. For the simplifications of this chapter, only the assumption
about the positivity of some variables is required. The dimensional analysis (see [21, 17])
is a classical reduction method based on the units of variables. It simplifies large-scale
problems by using dimensionless parameters (see [76] for its applications in biology).
There is no complexity result for such an analysis (see [64]). Also, in general cases,
the complexity of inexact reduction methods is more complicated than the polynomial
time complexity in the input size. For example, the time-scale analysis is based on the
quasi-steady state approximation. In [10], authors present a new algorithm (see § 1.3.3
page 14 and B.2.3 page 158) for this approximation that is based on the differential
elimination (see [118, 8]). This last method has an exponential complexity in general
cases. Indeed, the dimensional analysis is based on the scaling type Lie symmetries (see
§ 1.2 of [5] and th. 3.22 of [86]) on which I am working. The reduction of the variables of
a differential system through the dimensional analysis is a special case of the reduction
using scalings (see ch. 1 of [6]) so a special case of my work.

The reduction and the reparametrization methods that I present in this document
are based on the classical Lie symmetry theory with new algorithmic ideas. In my
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work, I propose a computation of Lie symmetries with polynomial time complexity in
the input size (see [101]) thanks to our computational approaches. In particular, I
restrict myself to special kind Lie symmetries (scalings and more complicated ones).
The required operations are thus restricted to linear algebra over a number field and
univariate polynomial factorization. The classical (see [24]) and the moving frame based
(see [37, 38]) reduction methods are mostly applied to differential equations (see also [86,
88]). Various applications of invariants (deduced from Lie symmetries) in the study of
dynamical systems are available (see [42]). In [59], authors show how to compute a
complete set of invariants given a rational group action. All these works consider Lie
symmetries mostly with their general form. Their computation is based on Gröbner
bases which has exponential complexity in the general cases. Moreover, the reduction
and the reparametrization algorithms are also of polynomial time complexity in the input
size thanks to some computational strategies. There is no need of solving any partial
differential equation contrarily, for example, the classical reduction method.

In this document, one of the newness is that the exact simplification methods are
adapted to the context of modeling in biology. Their polynomial complexity is essential
to treat realistic examples. Practical examples showed that the positivity assumption
of the variables is very important in our algorithms. Fortunately, this information is
usually available.

The reparametrization method is an original way of using the Lie symmetries which
leads to a new algorithm that improves the preliminary analysis of models and facilitates
their qualitative analysis. We extend the classical reduction based on the Lie symmetries
of a differential system. We use also the Lie symmetries of the associated algebraic system
that defines its steady points. As a result, the steady points of the reparametrized
system depend on less parameters. This phenomena eases the computation and all
further analysis of steady points. Another new point of this method is the possibility of
combining Lie symmetries and regular chains (see [67]). Clearly, if this option is chosen,
the complexity of the algorithm increases. However, this triangularization helps to find
some extra Lie symmetries that can be used for the exact simplification.
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3

Geometrical Framework and Notations

This chapter presents the geometrical framework for understanding the generalizations
of the exact simplifications algorithms. Algebraic systems, systems of first-order ordi-
nary differential equations (ODEs), systems of first-order ordinary recurrence equations
(OREs) and Lie algebras are the main mathematical objects used in this document.
Along this chapter, first I detail the descriptions and the syntax of the these objects
implementation in my work. Then I explain the associated geometry useful in the forth-
coming chapters. Finally, I give the corresponding data structures, manipulated in the
MABSys and/or in the ExpandedLiePointSymmetry packages.

3.1 Algebraic Systems

In this document, an algebraic system is described in the n-dimensional affine Euclidean
space Rn where n is a fixed integer. In this section, we present the definition of such sys-
tems, the associated geometrical objects and finally their implementation in the package
ExpandedLiePointSymmetry.

3.1.1 Representation

This subsection is devoted to the definition of algebraic systems as they are considered
in this document.

Definition 3.1.1 (Algebraic System). Let F = (f1, . . . , fk) = (p1/q1, . . . , pk/qk) be a
finite set of rational functions over the field R where pi and qi are polynomials in R[Z]
i.e. in variables Z = (z1, . . . , zn) with coefficients in R. An algebraic system associated
to F is defined by the following equalities and inequalities:





p1(z1, . . . , zn) = 0,
...

pk(z1, . . . , zn) = 0

and





q1(z1, . . . , zn) 6= 0,
...

qk(z1, . . . , zn) 6= 0.

(3.1)

y

Example 3.1.2. Below system of equations is an algebraic system defined on a space
of 6 variables, namely Z = (P,Q, a, b, c, ℓ):

{
(1− cP ) + bQ+ 1 = 0,
a P − ℓQ+ 1 = 0.

(3.2)

y
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3.1.2 Semi-Algebraic Set

Here, we give the definition of a semi-algebraic set (see [28]) generated by an algebraic
system (see definition 3.1.1 page 59) and the associated regularity property along with
examples.

Definition 3.1.3 (Semi-Algebraic Set). A semi-algebraic set V is defined by a generating
set of finite number of rational functions F = (f1, . . . , fk) = (p1/q1, . . . , pk/qk) where pi

and qi are polynomials in Q[Z]:

V := {Z ∈ Rn | pi(Z) = 0 and qi(Z) 6= 0 ∀i ∈ {1, . . . , k}} . (3.3)

y

Hypothesis 3.1.4. For the sake of simplicity, instead of working with semi-algebraic
sets, we restrict ourselves to semi-algebraic varieties in this document. Indeed, a semi-
algebraic set is not necessarily irreducible contrarily to a semi-algebraic variety (see [28]).
For instance, the algebraic system defined by the equation x3 − p x = 0 is a union of two
varieties x = 0 and x2 − p = 0. y

Definition 3.1.5 (Regular Algebraic System). An algebraic system F = (f1, . . . , fk) and
the associated semi-algebraic variety V are called regular (a.k.a. smooth) if the system F
is of maximal rank k, meaning that the Jacobian matrix (∂fi/∂zj) is of rank k at every
solution Z in V of the system (see [34]). y

Hypothesis 3.1.6. I restrict the algebraic systems of this document, thus the semi-
algebraic varieties they define, to regular ones.

The hypothesis 3.1.6 is essential, for instance, when one wants to look for the expanded
Lie point symmetries of an algebraic system as in the theorem 4.1.1 page 88. The
following two examples illustrate regular and non-regular algebraic systems.

Example 3.1.7. The algebraic system defined by f(x, y) = x4 + x2 y2 + y2 − 1 is regu-
lar. One can verify this property by computing the associated Jacobian matrix:

(
4x3 + 2x y2, 2x2 y + 2 y

)
. (3.4)

This matrix has rank 0 if, and only if, x = y = 0. This is not a solution of f(x, y) = 0
hence the maximal rank condition is satisfied. y

Example 3.1.8. Contrarily to the previous example, the algebraic system defined
by g(x) = x2 − 2x+ 1 is not regular. The solution of g(x) = 0 is a point x = 1. The
associated Jacobian matrix: (

2x− 2
)

(3.5)

vanishes on this solution, hence the maximal rank condition is not satisfied. y
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3.1.3 Implementation of an Algebraic System

This section is devoted to the data structure AlgebraicSystem that represents an alge-
braic system in the ExpandedLiePointSymmetry package.

This object created by the NewAlgebraicSystem constructor is identified by the key
word AlgebraicSystem and the following elements:

• a list of rational functions (f1, . . . , fk); if one of these rational functions is a con-
stant then the system is reduced to a list of unique element 1 i.e. to the simplest
inconsistent system 1 = 0;

• a list of coordinates (z1, . . . , zn) defining the space on which the corresponding
semi-algebraic set is considered;

• a list of inequalities (q1, . . . , qk) i.e. not null polynomials issue from the rational
functions denominators (see definition 3.1.1 page 59), if they exist.

Remark 3.1.9. Gröbner basis computations are very frequent in computer algebra sys-
tems. In the future, if such algorithms are needed to be used effectively on algebraic
systems, one can add fields to this data structure that corresponds to an ordering and
Gröbner basis. y

Remark 3.1.10. Our implementation does not display as output the real object repre-
sentation but a simpler notation based only on the associated equations for the sake of
simplicity. y

The following example constructs an object of type AlgebraicSystem and details its
components.

Example 3.1.11. The algebraic system given in the example 3.1.2 page 59 may be han-
dled in our framework by the following commands. An object of type AlgebraicSystem
is defined by the NewAlgebraicSystem constructor.

� �
> # Creation of an algebraic system

> AlgSys := NewAlgebraiSystem([(1-c*P)*P+b*Q+1,a*P-l*Q+1]);
AlgSys := [(1 - c P) P + b Q + 1, a P - Q l + 1]

> # Details of the AlgebraicSystem data structure

> lprint (AlgSys );AlgebraiSystem([(1- c*P)*P+b*Q+1, a*P-Q*l+1],[P, Q, a, b, c, l],[])

> # Type check

> type(AlgSys , AlgebraiSystem );
true

� �

Remark 3.1.12. Maple procedures use Maple types to direct the flow of control in the
algorithms or to decide whether an expression is a valid input. There is a new way of
defining the types since its version 12 but it is not used in the implementations presented
in this document. y
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3.2 Systems of ODEs and OREs

This section is devoted to systems of ODEs and OREs that are frequently used in
modeling domains. We define them explicitly, discuss the geometrical objects they define
and show their implementation.

3.2.1 Algebraic Representations and Pseudo-derivations

We define separately systems of ODEs and systems of OREs and then recall a unified
framework, pseudo-derivations. In this document, this last is used to apply the Lie
symmetries theory almost in the same manner for these two kinds of systems.

Systems of ODEs

In this paragraph, we define systems of first-order ODEs as used in this document.

Definition 3.2.1 (System of ODEs). Let d · /dt be a derivation w.r.t. the continuous
independent variable t. We consider two sets X := (x1, . . . , xk) and Θ := (θ1, . . . , θℓ).
The associated coordinate set is defined by Z := (z1, . . . , zn) = (t, x1, . . . , xk, θ1, . . . , θℓ)
and its cardinal is n = 1 + k + ℓ. With these notations, a system of first-order ordinary
differential equations (ODEs) is a system where:





dt
dt = 1,

dxi

dt = fi(z1, . . . , zn) with fi ∈ R(Z) ∀i ∈ {1, . . . , k} ,
dθj

dt = 0 ∀j ∈ {1, . . . , ℓ}
(3.6)

and the set F := (f1, . . . , fk) specifies the evolution of the state variables of ODEs. The
elements of the set X := (x1, . . . , xk) are called state variables, these of Θ := (θ1, . . . , θℓ)
parameters. y

Remark 3.2.2. The definition of the systems of ODEs are given in R(Z) but the tran-
scendent elements of R are difficult to handle in the computations. Thus, in the sequel,
the computations are done in the effective field Q. y

Remark 3.2.3. The first differential equation dt/dt = 1 of (3.6) defines the independent
variable t. By definition, a system of ODEs has just one independent variable. That is
why, in the sequel, this equation is omitted in the explicit systems definitions. y

Remark 3.2.4. Every system of ODEs may be written as a system of first-order ODEs
by introducing new indeterminates and equations. As a classical example, let us look at
the Van der Pol oscillator (see [111]). It involves a second-order ODE that verifies:

d2y

dt2
− µ

(
1− y2

) dy

dt
− y = 0,

dµ

dt
= 0. (3.7)

An equivalent but a first-order system can be constructed by introducing a new variable x
equal to the first-derivative of y i.e. x = dy/dt. With this new variable, one can write
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the Van der Pol oscillator in the following form:





dx
dt = µ

(
1− y2

)
x− y,

dy
dt = x,

dµ
dt = 0.

(3.8)

y

Remark 3.2.5. The ExpandedLiePointSymmetry package includes also a state space
representation type. This type is not treated in this document but for more information
see associated help pages [102]. y

Here follows an example of a system of ODEs that is used in the sequel.

Example 3.2.6. Let us consider the Verhulst’s logistic growth model with a linear
predation (see § 1.1 in [83]). This is a simple model where the state variable x represents
a population. The parameter a is the difference between its growth and predation rate
and the parameter b corresponds to the receive capacity of the environment:

dx

dt
= (a− b x) x, da

dt
=

db

dt
= 0. (3.9)

y

Systems of OREs

Now, let us look at systems of first-order OREs that are defined in a similar way of
the systems of first-order ODEs. The main difference is that systems of OREs encode
discrete evolutions.

Definition 3.2.7 (System of OREs). Let τ be a discrete independent variable. We
consider two sets X := (x1, . . . , xk) and Θ := (θ1, . . . , θℓ). The cardinal of the coordi-
nate set Z := (z1, . . . , zn) = (τ, x1, . . . , xk, θ1, . . . , θℓ) is equal to n = 1 + k + ℓ. In addi-
tion, zi

τ represents the expression of zi at step τ . With these notations, a system of
first-order ordinary recurrence equations (OREs) is a system where:

{
xi

τ+1 = fi(z1
τ , . . . , zn

τ ) with fi ∈ R(Z) ∀i ∈ {1, . . . , k} ,
θj

τ+1 = θj
τ ∀j ∈ {1, . . . , ℓ}

(3.10)

and the set F := (f1, . . . , fk) specifies the evolution of the state variables of OREs. The
elements of the set X := (x1, . . . , xk) are called state variables, these of Θ := (θ1, . . . , θℓ)
parameters. y

Remark 3.2.8. The definition of system of OREs (see definition 3.2.7) is similar with the
system of difference equations with a fixed and regular lattice defined in [117]. y

Remark 3.2.9. As for the systems of ODEs, the definition of the systems of OREs are
given in R(Z). For the same reasons (see remark 3.2.2 page 62), in the sequel, the
computations are done in the effective field Q. y
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Here is an academic example of systems of OREs used in the sequel.

Example 3.2.10. The following system is a simple example of systems of OREs with
two state variables x, y and one parameter c:

xτ+1 = cτ xτ , yτ+1 = yτ + xτ , cτ+1 = cτ . (3.11)

y

Pseudo-derivations

The goal of this paragraph is to recall a unified framework for the systems of ODEs and
OREs, pseudo-derivations (see ch. 1 of [26] and references therein). This framework gives
a generic standpoint for the forthcoming algorithms, more precisely for the computation
of their Lie point symmetries.

Definition 3.2.11 (Pseudo-derivation). A pseudo-derivation δ in the field R(Z) is a
linear operator δ : R(Z)→ R(Z) that has R in its kernel and that satisfies the twisted
Leibniz rule:

∀ (f1, f2) ∈ R(Z)2 , δf1f2 = f1δf2 + σ(f2) δf1 (3.12)

where σ is a R(Z)-endomorphism. y

Remark 3.2.12. The pseudo-derivations can be called Ore operator of an Ore algebra
(see [26]) denoted by OreR(Z). y

An infinitesimal generator is a derivation (a pseudo-derivation where σ is equal to
the identity function) that is closely related to the systems of ODEs (more precisely to
continuous dynamical systems). Following definitions describe an infinitesimal generator
and show how one can associate such a differential operator to a system of ODEs. They
are followed by an illustration example. For the link between a system of ODEs, the
associated vector field and the infinitesimal generator see § 1.3 of [86] and § 3.4 page 79
of this document.

Definition 3.2.13 (Infinitesimal Generator). An infinitesimal generator δ is a deriva-
tion i.e. a pseudo-derivation where the endomorphism σ is the identity map (see ch. 16
of [34]). In the canonical basis of elementary derivations {∂/∂z1, . . . , ∂/∂zn}, it is written
as:

δ =

n∑

i=1

ξzi
(Z)

∂

∂zi
(3.13)

where ξzi
is in R(Z) for all i in {1, . . . , n}. y

Definition 3.2.14 (Infinitesimal Generator associated to a System of ODEs). The in-
finitesimal generator associated to a system of ODEs, described in the definition 3.2.1
page 62, is defined with the same notations as follows:

δ =
∂

∂t
+

k∑

i=1

fi(Z)
∂

∂xi
· (3.14)

y
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Example 3.2.15. The infinitesimal generator associated to the system of ODEs given
in the example 3.2.6 page 63 is:

δ =
∂

∂t
+ ((a− b x)x) ∂

∂x
· (3.15)

y

Actually, a recurrence operator defines a system of OREs to which one can associate
a pseudo-derivation. The following definition shows how one can describe such operators.

Definition 3.2.16 (Recurrence Operator and its Pseudo-derivation). A recurrence op-
erator σ is a R(Z)-endomorphism that maps the expression of a coordinate zi at step τ
to its expression at step τ + 1. The recurrence operator associated to a system of OREs
described in the definition 3.2.7 page 63 follows:

{
στ = τ + 1, σxi = fi(Z) ∀i ∈ {1, . . . , k} ,
σθj = θj ∀j ∈ {1, . . . , ℓ} , σκ = κ ∀κ ∈ R.

(3.16)

A pseudo-derivation δ may be associated to every system of OREs defined in the terms
of its recurrence operator σ as follows:

∀f ∈ R(Z) , δf = σf − f. (3.17)

y

Remark 3.2.17. The recurrence operator σ of (3.16) is the same R(Z)-endomorphism
used in (3.12) page 64. y

The next example illustrates the pseudo-derivations associated to recurrence oper-
ators, with a notation as close as possible to that of systems of ODEs. Remark that
in this discrete case, one can not mention a basis of elementary derivations unlike the
continuous case. Thus the action of the pseudo-derivation must be given explicitly for
every coordinate.

Example 3.2.18. The recurrence operator σ and the pseudo-derivation δ associated to
the example 3.2.10 page 64 verify the following equalities:

{
στ = τ + 1, σy = y + x,
σx = c x, σc = c

and

{
δτ = 1, δy = x,
δx = (c− 1) x, δc = 0.

(3.18)

y

Remark 3.2.19. Some more general systems of OREs may be written as a system of
first-order OREs by introducing new indeterminates and equations. For example, let us
consider the system of second-order OREs:

{
σ2x = σx+ x− y,
σy = σx− y. (3.19)

An equivalent but first-order system can be constructed by introducing a new variable z
equal to σx. By the help of this new variable, one can write the system (3.19) in the
following form: 




σx = z,
σz = z + x− y,
σy = z − y.

(3.20)

y



66 Geometrical Framework and Notations

3.2.2 Implementation of Systems of ODEs and OREs

The InfinitesimalGenerator and the OrdinaryDifferentialEquations data struc-
tures correspond to the implicit representations of the systems of ODEs. Whereas the
RecurrenceOperator data structure corresponds to the systems of OREs. In this sub-
section, we detail these data structures and their implementation.

Systems of ODEs

The data structure InfinitesimalGenerator represents the systems of ODEs and this
notation is adapted especially to the Lie symmetries computations. The creation of this
object by the NewInfinitesimalGenerator constructor requires the coefficients of the
canonical basis of the elementary derivations and the list of the associated coordinates.
The result is defined by the key word InfinitesimalGenerator and the following ele-
ments:

• a list of coefficients (ξz1
, . . . , ξzn) of the elementary derivations as described in (3.13)

page 64);

• a list of coordinates (z1, . . . , zn) on which these elementary derivations are defined;

• a list of input coordinates i.e. variables used in the expression of coefficients but
not given in the list of coordinates. The default value is an empty list;

• the associated Lie derivation operator created by the NewLieDerivationOperator
constructor (see [102]).

Remark 3.2.20. Our implementation does not display as output the real object repre-
sentation for the InfinitesimalGenerator data structure. Instead of this, a functional
notation that corresponds to the Lie derivation operator is given. y

The construction of an object of type InfinitesimalGenerator and the details of
its components are illustrated in the following example.

Example 3.2.21. The example 3.2.6 page 63 may be translated in our framework with
the following commands. An object of type InfinitesimalGenerator is created by the
constructor NewInfinitesimalGenerator. The associated derivation operator can be
used directly via this object.

� �
> # Creation of a system of ODEs

> InfGen := NewInfinitesimalGenerator([1, (a-b*x)*x, 0, 0],[t,x,a,b]);

/d \ /d \

InfGen := F -> |-- F| + (a - b x) x |-- F|

\dt / \dx /

> lprint (InfGen );InfinitesimalGenerator([1, (a-b*x)*x, 0, 0],[t, x, a, b],[],

F -> diff(F,t)+(a-b*x)*x*diff(F,x))

> # Type check

> type(InfGen , InfinitesimalGenerator);
true
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> # Application of this infinitesimal generator

> InfGen (x);

(a - b x) x
� �

Systems of ODEs are also represented by the OrdinaryDifferentialEquations data
structure in order to create the link with other packages and to have a classical notation
when necessary. This type requires no knowledge about the infinitesimal generator
notion. There is no special constructor function, it is enough to write the ODEs in a list
with “diff” operator of Maple. This helps also the usage of the package MABSys by the
non specialists of the domain.

The main difference between the encoding of an ODE by InfinitesimalGenerator

and OrdinaryDifferentialEquations data structures is related to the fact that the
parameters can be encoded in two different ways:

• The first one includes one differential equation per parameter (considered as con-
stant functions). This is equivalent to the definition 3.2.1 page 62 and it is used
through the data structure InfinitesimalGenerator.

• The second one does not put any constraint on the parameters but they are sup-
posed to have values in R. The data structure OrdinaryDifferentialEquations

adopts the second option for the sake of coherence with the classical notations in
Maple and simplicity of its syntax.

The following code shows these two encodings associated to the example 3.2.6 page 63.
� �
> ODEs_1 := [diff(x(t),t)=(a(t)-b(t)*x(t))* x(t),diff(a(t),t)=0, diff(b(t),t)=0];

d d d

ODEs_1 := [-- x(t) = (a(t) - b(t) x(t)) x(t), -- a(t) = 0, -- b(t) = 0]

dt dt dt

> # Type check

> type(ODEs_1 , OrdinaryDifferentialEquations);
false

> ODEs_2 := [diff(x(t),t)=(a-b*x(t))*x(t)];

d

ODEs_2 := [-- x(t) = (a - b x(t)) x(t)]

dt

> # Type check

> type(ODEs_2 , OrdinaryDifferentialEquations);
true

� �

Remark 3.2.22. This nuance does not affect the forthcoming computations. y

In addition of these types and their constructors, some auxiliary functions are avail-
able such as the conversion between the data structures InfinitesimalGenerator and
OrdinaryDifferentialEquations, the manipulation of single infinitesimal generators
(for example, getting the parameters or the state variables) and some arithmetic func-
tions implementing the Lie algebra of infinitesimal generators (multiplication by a scalar,
addition of two infinitesimal generators, etc.; see § 3.3 page 68). For more information,
see associated help pages [102].
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Systems of OREs

A system of OREs (see definition 3.2.16 page 65) is represented by the data struc-
ture RecurrenceOperator. Its creation requires the coordinates of the system and
the image of these coordinates by the endomorphism associated to the recurrence op-
erator. The NewRecurrenceOperator constructor defines an object by the key word
RecurrenceOperator and the following elements:

• a list of the images of the coordinates (ξz1
, . . . , ξzn);

• a list of these coordinates (z1, . . . , zn);

• a list of input coordinates i.e. the variables that are used in the expression of the
images but not given in the list of the coordinates. The default value is an empty
list;

• the associated endomorphism operator created by the NewEndomorphism construc-
tor.

Remark 3.2.23. Our framework does not display the real object representation for the
type RecurrenceOperator. A functional notation that corresponds to the associated
endomorphism is given in the output. y

The following example illustrates the construction and the components of an object
of type RecurrenceOperator.

Example 3.2.24. The example 3.2.10 page 64 may be translated in our framework
with the following commands. An object of type RecurrenceOperator is created by the
constructor NewRecurrenceOperator. The associated endomorphism operator can be
used directly via this object.

� �
> # Creation of a system of OREs

> RecurOp := NewReurreneOperator([tau +1,c*x,y+x,c],[tau ,x,y,c]);
RecurOp := (tau , x, y, c) -> [tau + 1, c x, y + x, c]

> lprint (RecurOp );ReurreneOperator([tau +1, c*x, y+x, c],[tau , x, y, c],[],

(tau , x, y, c) -> [tau +1, c*x, y+x, c])

> # Type check

> type(RecurOp , ReurreneOperator);
true

> # Application of this recurrence operator

> RecurOp (x);

c x
� �

3.3 Lie Algebras of Infinitesimal Generators

In this document, Lie algebras are represented by a generating set of infinitesimal gen-
erators. First, we give the formal definition of a Lie algebra and discuss its base field
representation because it has an important role in our implementations. We define the
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structure constants associated to a Lie algebra. Then we focus on the corresponding Lie
algebra classifications. We survey also the Lie algebras of scalings that are frequently
used in the MABSys package. Finally, we close the section by explaining the implemen-
tation of a Lie algebra in the ExpandedLiePointSymmetry package.

3.3.1 Definition of Lie Groups and Lie Algebras

This subsection is devoted to the definition of Lie groups, Lie algebras and naturally to
the discussion Lie algebras base field.

Definition 3.3.1 (Lie Group). A Lie Group G is a differentiable manifold with group
structure where the applications

G×G → G
(g, h) → g · h (3.21)

and
G → G
g → g−1 (3.22)

are also differentiable i.e. compatible with the smooth structure. y

Before defining the Lie algebras, let us present the Lie bracket operation.

Definition 3.3.2 (Lie Bracket). The operation Lie bracket is defined by a bilinear map
on a set of infinitesimal generators g:

[ , ] : g× g → g,
(δ1, δ2) → δ1 δ2 − δ2 δ1.

(3.23)

This map is skew-symmetric and satisfies the relations:

∀ (δ1, δ2, δ3) ∈ g
3, [δ1, [δ2, δ3]] + [δ2, [δ3, δ1]] + [δ3, [δ1, δ2]] = 0 (3.24)

known as the Jacobi identity. y

Definition 3.3.3 (Lie Algebra). A Lie algebra g is an algebra constituted by a vector
space equipped with Lie bracket as additional operation. It is defined on an extended
field of R (see below). y

Hypothesis 3.3.4. In this document, unless stated otherwise, all considered Lie algebras
are supposed to be finite dimensional. y

Remark 3.3.5. To every Lie group, one can associate a Lie algebra (see theorem 1.54
of [86]) y

In our framework, the base field of a Lie algebra depends on the concept of constants.

Definition 3.3.6 (Constant). A constant ζ (a.k.a. invariant) in R(Z) of a pseudo-
derivation δ is an expression that verifies δζ = 0. y
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Remark 3.3.7. In this document, while computing a Lie algebra associated to the Lie
symmetries of a system, the base field is composed of numerical constants However, in
theory, one must extend this base field in order to take into account the informations
given by the system of study: algebraic relations for algebraic systems, constants for
systems of ODEs and OREs. The explicit computation of such a base field requires
to perform operations such as integration and elimination that have an exponential
complexity in the worst cases. An implicit definition of the extended base field of such
a Lie algebra is provided by the system itself. For example, if the system of study is
an algebraic system then the base field of the symmetries Lie algebra must verify also
the associated algebraic relations. If the system is a system of ODEs or OREs then the
constants of the associated pseudo-derivations must be considered. y

The utility of this extension on the computations can be seen in the following exam-
ple.

Example 3.3.8. Let us look at the following system of ODEs:

dx

dt
= ax,

da

dt
= 0 (3.25)

and the associated infinitesimal generator δD = ∂/∂t+ ax∂/∂x. Consider now, the Lie
algebra g generated by the infinitesimal generators δD, ∂/∂t, x∂/∂x. Remark that the
infinitesimal generators ∂/∂t and a∂/∂t are both in g. They are independent w.r.t. R

but dependent w.r.t. the extended base field R(a) meaning that they define the same
vector field because a is a constant i.e. δDa = ∂a/∂t = x∂a/∂x = 0. y

Definition 3.3.9 (Lie Subalgebra). A vector space g̃ ⊂ g is called a Lie subalgebra of g

if for any (δ1, δ2) in g̃
2, [δ1, δ2] is also in g̃. y

Definition 3.3.10 (Commutative Lie Algebra). A Lie algebra generated by the basis
of infinitesimal generators B = (δ1, . . . , δr) is commutative (a.k.a. abelian) if, and only
if, for all i, j in {1, . . . , r} the relation [δi, δj ] = 0 holds. y

3.3.2 Structure Constants of Lie algebras

The structure constants of a Lie algebra specify its structure (see ch. 9 of [39]). In the
sequel, we give their definition and we present their computation in our framework for
a given Lie algebra of infinitesimal generator.

Definition 3.3.11 (Structure Constants – Second Fundamental Theorem of Lie, see
th. 2.4.2-1 in § 2.4.2 of [6]). Let g be a finite-dimensional Lie algebra of infinitesimal
generator and B = {δ1, . . . , δr} be one of its basis. The Lie bracket of any two infinites-
imal generators of B is also an infinitesimal generator in g, in particular

[δi, δj ] =

r∑

k=1

ckijδk (3.26)

where the coefficients ckij, that are in the base field of g, are called structure constants.
According to the third fundamental theorem of Lie (see th. 2.4.2-2 in § 2.4.2 of [6]), the
following constraints exist on these structure constants, for all i, j and k in {1, . . . , r}:
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• the skew-symmetry implies ckij = −ckji and in particular ckii = 0;

• the Jacobi identity implies for all m in {1, . . . , r}:
r∑

k=1

(
ckijc

m
kl + cklic

m
kj + ckjlc

m
ki

)
= 0. (3.27)

y

Remark 3.3.12. The structure constants of a Lie algebra g permit to construct the
associated commutator series from which its decomposition can be guessed (see § 3.3.3
page 73). y

Any set of constants ckij that satisfy above properties are the structure constants
for some Lie algebra (see § 1.4 of [86]). Furthermore, if one chooses a new basis for
a Lie algebra then, in general, the structure constants change but they always remain
related to the old ones (see equation (1.45) in [86]). Let us denote this new basis
by B̄ =

(
δ̄1, . . . , δ̄r

)
. If δ̄i =

∑r
j=1 aijδj then

c̄kij =
r∑

l=1

r∑

m=1

r∑

n=1

ail ajm bnk c
n
lm (3.28)

where (bij) is the inverse matrix to (aij).

The most convenient way to display the structure constants of a given Lie algebra is
to write them in a tabular form. A commutator table is a r × r table for a Lie algebra
basis B = {δ1, . . . , δr} of dimension r where (i, j)th entry expresses the Lie bracket [δi, δj ].
The coefficient of the infinitesimal generator δk in the (i, j)th table entry is the structure
constant ckij .

The following examples illustrate on the one hand some Lie algebras and on the other
hand their commutator table thus their structure constants.

Example 3.3.13. Let us consider the Lie algebra composed by the 4 infinitesimal gen-
erators: 




δ1 =
∂

∂t
, δ2 = −x∂

∂x
+ b

∂

∂b
,

δ3 = t
∂

∂t
− x∂

∂x
− a∂

∂a
, δ4 = −x2∂

∂x
+ a

∂

∂b
·

(3.29)

This algebra corresponds to some Lie point symmetries (see lemma 4.1.14 page 92) of
the system of ODEs given in the example 3.2.6 page 63. The commutator table of this
Lie algebra is shown below.

δ1 δ2 δ3 δ4

δ1 0 0 δ1 0

δ2 0 0 0 −δ4
δ3 −δ1 0 0 −δ4
δ4 0 δ4 δ4 0

(3.30)

The structure constants are c113 = c442 = c443 = 1 and c131 = c424 = c434 = −1 with all other
elements ckij are being zero. y
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Example 3.3.14. Now, let us see a second example of a commutator table of a Lie
algebra composed by the 4 infinitesimal generators enumerated below:





δ1 = (b− y) ∂
∂a

+ (x− a) ∂
∂b
− y∂

∂x
+ x

∂

∂y
,

δ2 = (−2 b+ y)
∂

∂b
+ (2 a− x) ∂

∂x
+ (−2 b+ y)

∂

∂y
,

δ3 = (−a+ 2x)
∂

∂a
+ 3 b

∂

∂b
+ 3 ℓ

∂

∂ℓ
+ (−4 a+ 5x)

∂

∂x
+ (4 b+ y)

∂

∂y
,

δ4 = −a∂
∂a
− b∂

∂b
− ℓ∂

∂ℓ
− x∂

∂x
− y∂

∂y
·

(3.31)

The commutator table of this Lie algebra follows.

δ1 δ2 δ3 δ4

δ1 0 0 0 0

δ2 0 0 2δ2 − δ3 − 3δ4 0

δ3 0 −2δ2 + δ3 + 3δ4 0 0

δ4 0 0 0 0

(3.32)

The structure constants are c223 = −c232 = 2, c323 = −c332 = 1 and c423 = −c432 = 3 with all
other ckij are being zero. y

Remark 3.3.15. Under some conditions, structure constants are invariants (see prop. 4.1
in [114]). y

Computation of Structure Constants of a Given Lie Algebra of Infinitesimal

Generator

Here, some classical computational strategies concerning the structure constants are
presented. The goal is to find explicitly the values of the structure constants of a given
Lie algebra of infinitesimal generator knowing its basis.

Thanks to the definition of the structure constants (3.26) page 70 and to the fact that
the Lie bracket of two infinitesimal generators of a Lie algebra is again an infinitesimal
generator in the same algebra, one can write:

δk =

n∑

h=1

ξk
zh

∂

∂zh
, [δi, δj ] =

r∑

k=1

ckijδk =

r∑

k=1

ckij

(
n∑

h=1

ξk
zh

∂

∂zh

)
=

n∑

h=1

ξij
zh

∂

∂zh
· (3.33)

All the coefficients ξk
zh

and ξij
zh

in the above expressions are in R(Z) and they are either
known or can easily be computed. As a result, the following matrix form is deduced:



ξ1z1

· · · ξr
z1

...
...

ξ1zn
· · · ξr

zn






c1ij
...
crij


 =



ξij
z1

...

ξij
zn


 ⇔ M Cij = Nij. (3.34)

The resolution of this linear system leads to the structure constants associated to δi
and δj (details of a similar computation can be found in the algorithm 4 page 99 where
the indeterminates must be replaced by the structure constants).
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Remark 3.3.16. Since the infinitesimal generators used in the above expressions form a
basis, they are considered to be linearly independent. y

Remark 3.3.17. Computing the structure constants of a Lie algebra in R(Z) requires
the explicit knowledge of the associated base field. In practice such computation is
unavailable due to the classical computer algebra limitations. That is why in the
ExpandedLiePointSymmetry package, at first the structure constants are computed in R

but not in R(Z) (see § 3.3.5 page 76). If a structure constant is not in R then the as-
sociated algorithm tries to compute them in R(Z) by using formal computations with a
higher computational complexity. y

3.3.3 Lie Algebra Structure

This subsection is devoted to the Lie algebra structure, especially to the notion of solv-
ability. This notion is introduced to ensure the usage of as much as possible infinitesimal
generators of a Lie algebra by the exact simplification algorithms (see ch. 5 page 103).
First, let us define commutator series and then solvable Lie algebras.

Definition 3.3.18 (Commutator Series). The commutator series (also called derived
series) of a Lie algebra g is the sequence of the ideals g

(i) (also called derived ideals)
inductively defined by: {

g
(0) = g,

g
(i+1) =

[
g
(i), g(i)

] (3.35)

where [g1, g2] means the linear span of the elements of the form [δ1, δ2] in the base field
of g where δ1 is in g1 and δ2 is in g2. This sequence of subspaces is always decreasing
w.r.t. the inclusion and the dimension. Also, there exists κ in N such that g

(κ) = g
(κ+1)

(see § 2.5 of [86]):
g = g

(0) ⊃ g
(1) ⊃ · · · ⊃ g

(κ−1) ⊃ g
(κ). (3.36)

y

These commutator series are related to the non-commutativity of Lie algebras as
shown by the following proposition.

Proposition 3.3.19. With the above notations, if g
(i+1) =

[
g
(i), g(i)

]
for all i then the

quotient algebra g
(i)/g(i+1) is commutative. y

Proof. This proof is due to [90]. Let us consider the projection p : g
(i) → g

(i)/g(i+1)

which is a morphism of Lie algebras. By definition, p commutes with the Lie bracket.
For δ1 and δ2 in g

(i), p(δ1) and p(δ2) are two elements of g
(i)/g(i+1) that satisfy:

[p(δ1) , p(δ2)] = p([δ1, δ2]) . (3.37)

In addition, by definition, [δ1, δ2] is in g
(i+1) so p([δ1, δ2]) = 0. That implies also that

one has [p(δ1) , p(δ2)] = 0. So the quotient algebra g
(i)/g(i+1) is commutative. y
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Definition 3.3.20 (Solvable Lie Algebra). A Lie algebra g is called solvable when its
commutator series vanishes for some κ in N. In other words, g is solvable if there exists κ
in N and a chain of subalgebras such that:

g = g
(0) ⊃ g

(1) ⊃ · · · ⊃ g
(κ−1) ⊃ g

(κ) = {0} . (3.38)

y

Remark 3.3.21. The solvability is equivalent to the existence of a basis B = {δ1, . . . , δr}
of g (see § 2.5/Solvable Groups of [86]) such that:

[δi, δj ] =

j−1∑

k=1

ckijδk whenever i < j. (3.39)

y

Remark 3.3.22. Every commutative Lie algebra is solvable. y

Example 3.3.23. The Lie algebra g composed by the 4 infinitesimal generators given
in (3.29) page 71 is a solvable Lie algebra because one has:

g
(0) = span (δ1, δ2, δ3, δ4) ⊃ g

(1) = span (δ1, δ4) ⊃ g
(2) = {0} . (3.40)

It is obvious that g
(0) = g is generated by the infinitesimal generators δ1, δ2, δ3 and δ4.

One can see from the commutator table that g
(1) =

[
g
(0), g(0)

]
is generated only by δ1

and δ4. Again the same commutator table let us deduce that g
(2) is an empty set, thus g

is solvable. y

Example 3.3.24. The Lie algebra g composed by the 4 infinitesimal generators given
in (3.31) page 72 is not a solvable Lie algebra because one has:

g
(0) = span (δ1, δ2, δ3, δ4) ⊃ g

(1) = span (δ2, δ3, δ4) . (3.41)

It is obvious that g
(0) = g is generated by δ1, δ2, δ3 and δ4. From the commutator table,

one can deduce that g
(1) =

[
g
(0), g(0)

]
is generated by δ2, δ3 and δ4. Again the same

commutator table tells that for any κ in N greater then 1, g
(κ) is equal to g

(1). Thus,
there is no an empty subalgebra at the end of the chain of derived subalgebras given
in (3.38). y

Knowing the basis of a solvable Lie algebra and its structure constants lead to the
associated commutator series. For the reduction algorithm given in ch. 5 page 103 to
work efficiently, one actually may need this decomposition. In fact, the required order
of the reduction process can be found using these subalgebras. In the case of a solvable
Lie algebra, one can construct the commutator series to find an appropriate order of its
infinitesimal generators. If the Lie algebra is not solvable, then the Levi decomposition
(see [31, 30] and see references therein for more detailed information) may be used.

Remark 3.3.25. The solvability of Lie algebras yields the required order of infinitesimal
generators for the reduction process if the infinitesimal generators of g

(i) are Lie point
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symmetries of the infinitesimal generators of g
(i+1) (see ch. 4 page 87 for more details

on symmetries).

Sometimes, this property may not be satisfied. In this case, one can try to compute
a new basis in order to restore this property. For example, let us consider a Lie algebra g

generated by 3 infinitesimal generators δ1, δ2 and δ3 with the following commutator table:

δ1 δ2 δ3

δ1 0 0 δ2
δ2 0 0 δ1
δ3 −δ2 −δ1 0

(3.42)

One can deduce the associated commutator series:

g
(0) = span (δ1, δ2, δ3) ⊃ g

(1) = span (δ1, δ2) ⊃ g
(2) = {0} . (3.43)

Remark that δ3 is neither a symmetry of δ1 nor δ2 (i.e. [δ3, δ1] = λ δ1 or [δ3, δ2] = λ δ2
with any function λ are not satisfied). The following new basis remedies this situation:

δ̄1 = δ1 + δ2, δ̄2 = δ1 − δ2, δ̄3 = δ3. (3.44)

In this case, the associated commutator table is of the form:

δ̄1 δ̄2 δ̄3

δ̄1 0 0 δ̄1

δ̄2 0 0 −δ̄2
δ̄3 −δ̄1 δ̄2 0

(3.45)

The associated commutator series follows:

g
(0) = span

(
δ̄1, δ̄2, δ̄3

)
⊃ g

(1) = span
(
δ̄1, δ̄2

)
⊃ g

(2) = {0} . (3.46)

In addition, δ̄3 is a symmetry of δ̄1 and δ̄2. y

3.3.4 Properties of Lie Algebras of Scalings

In the MABSys package, the simplification algorithms are performed by using Lie algebras
of scalings. One of the advantages of this type of algebras is their solvability properties
that facilitate the computations.

Lemma 3.3.26. If g is a Lie algebra generated by a basis of scalings defined on a unique
coordinate set Z = (z1, . . . , zn) then g is a commutative thus solvable Lie algebra. y

Proof. Let δ1 and δ2 be two scalings of g defined on Z as follows:

δ1 =
n∑

i=1

αi zi
∂

∂zi
and δ2 =

n∑

i=1

βi zi
∂

∂zi
(3.47)
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where αi and βi are in R. By definition, the Lie bracket of such two infinitesimal
generators vanishes as shown below:

[δ1, δ2] = δ1 δ2 − δ2 δ1,
=

(
α1β1z1

∂

∂z1
+ · · ·+ αnβnzn

∂

∂zn

)
−
(
β1α1z1

∂

∂z1
+ · · ·+ βnαnzn

∂

∂zn

)
,

= 0.

(3.48)

That implies that g is commutative. Also, according to definition 3.3.20 page 74, g is a
solvable Lie algebra. y

Remark 3.3.27. Indeed, the lemma 3.3.26 page 75 tells that in the reduction and the
reparametrization algorithms presented in chapter 2 page 33, the order in which the
scalings were used does not influence the results. That is why, we treat all the scalings
at the same time using the associated matrix of scaling. y

3.3.5 Implementation of Lie Algebras

Lie algebras, treated in this document, are represented by the LieAlgebra data struc-
ture. Here we detail this data structure and its computation.

The constructor NewLieAlgebra creates such an object that is defined by the key
word LieAlgebra and the following elements:

• a basis given by a list of infinitesimal generators defined on the same coordinate
set;

• associated structure constants stored in a table that can be printed by the function
PrintCommutationTable (see § 3.3.2 page 70);

• associated base field of the Lie algebra (see § 3.3.1 page 69). The default value is
an empty list defining the numerical constant field;

• a short description of the Lie algebra structure encoded by a composition of un-
evaluated functions. By default, the description is equal to LieAlgebraOfDim(d)
where d is the dimension of the considered Lie algebra. It can be computed more
precisely by the LieAlgebraStructure function (see § 3.3.3 page 73).

Example 3.3.28. Let us illustrate how to construct a Lie algebra data structure from
the 4 independent infinitesimal generators given in the example 3.3.13 page 71.

� �
> # Infinitesimal generators

> Generators := [NewInfinitesimalGenerator([1,0,0,0],[ t,x,a,b]),
> NewInfinitesimalGenerator([0,-x,0,b],[t,x,a,b]),
> NewInfinitesimalGenerator([-t,x,a,0],[t,x,a,b]),
> NewInfinitesimalGenerator([0,- x^2,0,a],[t,x,a,b])];

d /d \ /d \

Generators := [F -> -- F, F -> -x |-- F| + b |-- F|,

dt \dx / \db /

/d \ /d \ /d \

F -> -t |-- F| + x |-- F| + a |-- F|,

\dt / \dx / \da /
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2 /d \ /d \

F -> -x |-- F| + a |-- F|]

\dx / \db /

> # Creation of a Lie algebra

> LieAlg := NewLieAlgebra(Generators );
LieAlg := LieAlgebraOfDim (4)

> # Type check

> type(LieAlg ,LieAlgebra);
true

� �

By definition, a Lie algebra g is stable w.r.t. the Lie bracket which implies that the Lie
bracket of any two infinitesimal generators in g is also an infinitesimal generator in g.
For example, the Lie bracket of δ2 and δ4 is equal to −δ4.

� �
> LieBraket(Generators [2], Generators [4]);

2 /d \ /d \

F -> x |-- F| - a |-- F|

\dx / \db /
� �

Some arithmetic functions are also available for infinitesimal generators.
� �
> AddInfinitesimalGenerator (Generators [1], Generators [2]);

/d \ /d \ /d \

F -> |-- F| - x |-- F| + b |-- F|

\dt / \dx / \db /

> MultiplyInfinitesimalGenerator (-1, Generators [4]);

2 /d \ /d \

F -> x |-- F| - a |-- F|

\dx / \db /
� �

The associated commutator table can be computed as follows where n stands for nth

infinitesimal generator:
� �
> # Computation of commutator table

> PrintCommutatorTable(LieAlg );
[0 0 -_1 0 ]

[ ]

[0 0 0 -_4]

[ ]

[_1 0 0 _4 ]

[ ]

[0 _4 -_4 0 ]
� �

This Lie algebra is solvable (see example 3.3.23 page 74).
� �
> # Computation of Lie algebra structure

> LieAlgBis := LieAlgebraStruture(LieAlg );
LieAlgBis := SemiDirectSum( AbelianLieAlgebraOfDim (2),

AbelianLieAlgebraOfDim (2))

> # Infinitesimal generators of the Lie algebra

> GeneratorsOf(LieAlgBis );
d 2 /d \ /d \ /d \ /d \

[F -> -- F, F -> -x |-- F| + a |-- F|, F -> -x |-- F| + b |-- F|,

dt \dx / \db / \dx / \db /

/d \ /d \ /d \

F -> -t |-- F| + x |-- F| + a |-- F|]

\dt / \dx / \da /
� �
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As one can see, the Lie algebra is composed of semi-direct sum of two commutative
(abelian) subalgebras of dimension 2. The function GeneratorsOf is used to display
infinitesimal generators of a Lie algebra. Remark also that the order of the infinitesimal
generators has changed according to the associated commutator series. The infinitesimal
generators δ1 and δ4 are put at first place because they construct the last subalgebra not
null in the commutator series; thus they must be used at the first place in the reduction
process. y

Changing the Base Field of a Lie Algebra

In our framework, while computing a Lie algebra associated to the Lie symmetries of a
system, first its base field is considered equal to R. Then one must extend this base field
according to the system of study (see § 3.3.1 page 69). Unfortunately, because of the
limitations of the computer algebra techniques (exponential complexity in the worst cases
of the integration and the elimination methods), one can not hope to express explicitly
such an extended base field. However, one may do some additional computations in
order to take into account, as much as possible, this extended base field as shown below
for systems of ODEs.

Let δD be the infinitesimal generator associated to a system of ODEs. Let δi and δj
be two infinitesimal generators in a set B := {δ1, . . . , δr} associated to the Lie algebra
composed by the expanded Lie point symmetries of δD. If there exists a constant ζ
in R(Z) such that δi = ζ δj then one of the infinitesimal generators can be discarded
from B. Similarly if there exists a linear relation in R between some infinitesimal gener-
ators then one can discard one of them. Remark that this method let us remove many
dependency relations in the extended base field but it is incomplete. For example, a
relation with two no numeric constants ζ1, ζ2 such that δi = ζ1δj + ζ2δk is ignored.

Remark that this approach, or similar ones used for algebraic systems or systems
of OREs, can miss some dependency relations. This missing relations produce in our
framework a Lie algebra that is generated by a list of infinitesimal generators that is not
a basis. This fact does not change the correctness of the further algorithms but it can
effect their efficiency. This point must be improved in the future. The following example
shows one of the cases where a dependency relation couldn’t be taken into account by
the present implementation.

Example 3.3.29. The following infinitesimal generators are the Lie symmetries of the
algebraic system f(x, y, r) = x2 + y2 − r2 computed by the ExpandedLiePointSymmetry
package:

δ1 = r
∂

∂y
+ y

∂

∂r
, δ2 = r

∂

∂x
+ x

∂

∂r
, δ3 = −x∂

∂x
− y∂

∂y
− r∂

∂r
· (3.49)

These three infinitesimal generators are independent in R that is assumed to be the base
field of the Lie algebra generated by them. Considering the information given by the
algebraic equation requires to extend this base field. Indeed, for non zero r values, one
has:

− y

r
δ1 −

x

r
δ2 = −x∂

∂x
− y∂

∂y
− x2 + y2

r

∂

∂r
≡ δ3 mod f (3.50)
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because x2 + y2 = r2. This problem can be remarked by looking at the associated com-
mutator table:

δ1 δ2 δ3

δ1 0 −x
r δ1 + y

r δ2 0

δ2
x
r δ1 −

y
r δ2 0 0

δ3 0 0 0

(3.51)

where the structure constants are not numerical. y

3.4 Group Actions

This subsection aims at discussing geometrical objects defined by systems of ODEs and
OREs that are going to be necessary in the next chapters. The Lie symmetry theory
deals with “infinitesimal transformation”. In order to present this notion, we develop
first the group action and then the concept of a vector field on a manifold. We present
finally continuous and discrete dynamical systems.

3.4.1 Definition of a Group Action

Here, we define a group action and the associated orbits.

Definition 3.4.1 (Group Action). A (left-)action of a group (G,+) on a manifold M
(see § 1.1, § 1.2 of [86] and ch. 2 of [75]) is an evolution function:

D : G×M → M,
ν × Z → D(ν, Z)

(3.52)

such that for all point Z in M :

• D(e, Z) = Z where e is the neutral element of G;

• for all (ν, ν̂) in G2, D(ν,D(ν̂, Z)) = D(ν + ν̂, Z). y

An orbit is a collection of points formed by a group action.

Definition 3.4.2 (Orbit). An orbit, given a group action D is a set of points passing
through a point Z and defined by:

Orb(D,Z) = {D(ν, Z) | ν ∈ G} . (3.53)

y

Definition 3.4.3. Let G be a r-dimensional local group of transformation acting on Rn.
The group action D is called regular if for all points Z and Z ′ in the same orbit, there
exists exactly one ν in G such that the relation D(ν, Z) = Z ′ holds. Remark that in
that case, G acts locally freely on Rn and the orbits of D are all of dimension r (see
definition 1.26 in § 1.2 of [86]). y

Hypothesis 3.4.4. In the sequel, every treated group action is supposed to be regular
in order to apply easily the forthcoming theorems about the exact simplification methods
(see ch. 5 page 103). y
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3.4.2 Vector Fields on a Manifold

Let us begin by defining tangent vectors in a tangent space which are used in the vector
field definition. Then we show how to associate a vector field to a system of ODEs. For
more detailed explications on vector fields, see § 1.3 of [86].

Definition 3.4.5 (Tangent Vector). Let C : R→M be a smooth C∞-curve on a man-
ifold M (identified to Rn) passing through the point C(t0) := Z. A tangent vector w
to C, namely a derivative, is a vector such that:

w =
dC(t)

dt

∣∣∣
t=t0
· (3.54)

y

Definition 3.4.6 (Tangent Space and Bundle). Let M be a manifold. The tangent
space TMZ is the set of all tangent vectors to M at Z. The tangent bundle TM is the
disjoint union of all the tangent spaces i.e. TM :=

∐
Z∈M TMZ . y

Definition 3.4.7 (Vector Field). Let M be a manifold. A vector field v on M is a map
that assigns to every point Z of M a tangent vector in the tangent space of M at Z
i.e. v : M → Rn and v(Z) is in TMZ . In local coordinates, we consider vector fields of
the form:

v : M → Rn,
Z = (z1, . . . , zn) → (ξz1

(Z) , . . . , ξzn(Z))
(3.55)

where ξzi
is in R(Z). y

The images ξzi
show changes regarding to coordinates when one wants to move on

a manifold along a given trajectory. Note that the vector field does not depend on the
chosen local coordinates, here Z = (z1, . . . , zn).

This vector field may be regarded as a derivation thus it can be defined for systems
of ODEs but not OREs (one can associate a pseudo-derivation to a system of OREs
but not a derivation). With the notations of definition 3.2.1 page 62, a vector field of a
system of ODEs is defined as follows:

v : Rn → Rn,

Z = (t, x1, . . . , xk, θ1, . . . , θℓ) → (1, f1(Z) , . . . , fk(Z) , 0, . . . , 0)
(3.56)

where fi are in R(Z). In this continuous case, a vector field shows the modifications due
to the continuous independent variable t in R by one infinitesimal step. The following
example illustrates such a vector field.

Example 3.4.8. The vector field of the system of ODEs given in the example 3.2.6
page 63 may be written as follows:

v : R4 → R4,

(t, x, a, b) → (1, (a− b x)x, 0, 0) .
(3.57)

y

Remark 3.4.9. Vector fields are closely related to infinitesimal generators. y
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3.4.3 Dynamical Systems and their Properties

This section is devoted to continuous and discrete dynamical systems as defined in this
document and to their properties.

Definition 3.4.10 (Dynamical System). A dynamical system (a.k.a. flow) is a one-
parameter group action (see definition 3.4.1 page 79). y

Remark 3.4.11. In the sequel, the notation D designates a dynamical system. y

Remark 3.4.12. A dynamical system associated to a system of ODEs (resp. OREs) is
called continuous (resp. discrete) because its independent variable belongs to the groupG
that can be identified to R (resp. is isomorphic to Z). y

The following examples of dynamical systems are obtained by resolving associated
systems of ODEs and OREs.

Example 3.4.13. The dynamical system associated to the system of ODEs given in the
example 3.2.6 page 63 follows:

D : (R,+)× R4 → R4,
(
t̂, (t, x, a, b)

)
→

(
t+ t̂, a x ea t̂

a−(1−ea t̂)b x
, a, b

)
.

(3.58)

The independent variable t̂ varies continuously thus the associated group can be identi-
fied to R. y

Example 3.4.14. The dynamical system associated to the system of OREs given in the
example 3.2.10 page 64 follows:

D : (Z,+)×
(
Z× R3

)
→ R4,

(τ̂ , (τ, x, y, c)) →
(
τ + τ̂ , x cτ̂ , cτ̂−1

c−1 x+ y, c
)
.

(3.59)

The time variable τ̂ is discrete thus the associated group is isomorphic to Z. y

Dynamical System Properties

Hypothesis 3.4.15. Evolution functions of dynamical systems presented in this docu-
ment are supposed to be at least of differentiability class C1 w.r.t. the initial conditions Z
in Rn. Thus, the following relation holds for ǫ in the neighborhood of 0 in R and for
all H in Rn:

D(ν, Z + ǫH) = D(ν, Z) + ǫ
∂D(ν, Z)

∂Z
H + O

(
ǫ2
)
. (3.60)

y

The following paragraphs treat continuous and discrete dynamical systems properties
separately. All the points denoted by Z belong to a smooth manifold M on which the
dynamical system is defined.
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Continuous Dynamical Systems. Let D be a continuous dynamical system based
on a local Lie group G identified to R and associated to a system of ODEs. Let δD be the
infinitesimal generator associated to this system of ODEs (see § 2.1 of [104]). D and δD
verify the following relation for all ν in G and ǫ in a neighborhood of neutral element e
of G:

D(ν + ǫ, Z) = D(ν, Z) + ǫ δDD(ν, Z) + O
(
ǫ2
)
. (3.61)

In particular, for the neutral element e of G, one can write:

D(e+ ǫ, Z) = Z + ǫ δDZ + O
(
ǫ2
)
. (3.62)

The derivative of a continuous dynamical system D w.r.t. the group element ν is the
tangent vector at the point D(ν, Z) in the associated vector field v (see first fundamental
theorem of Lie, § 2.2.1 of [6]) i.e.:

dD
dν

(ν, Z) = v(D(ν, Z)) . (3.63)

This relation can be written also in the form:

v(Z) = δDZ =
∂D(ν, Z)

∂ν

∣∣∣
ν=e
· (3.64)

These analytic remarks lead to the following algebraic relation in the framework of formal
power series:

D(ν, Z) = eνδDZ :=
∑

i∈N

νi δi
D Z

i!
· (3.65)

Remark 3.4.16. A one-dimensional Lie point symmetry is a continuous dynamical sys-
tem. y

In theory, the action of a one-dimensional group can be calculated explicitly by the
exponentiation of the associated infinitesimal generator (see equation (3.65)). Inversely,
given a one-parameter group action, one can deduce the associated infinitesimal gener-
ator (see equation (3.64)). The following examples illustrate these conversions.

Example 3.4.17. Consider a continuous dynamical system S generated by the following
infinitesimal generator:

δS = x
∂

∂x
+ y

∂

∂y
(3.66)

acting on a coordinate set Z = (t, x, y, a). The group action of δS i.e. S(ν, Z) is computed
by the following formula:

S(ν,Z) =

0

B

B

B

B

B

B

B

@

P

i∈N

νi δi

S
t

i!

P

i∈N

νi δi

S
x

i!

P

i∈N

νi δi

S
y

i!

P

i∈N

νi δi

S
a

i!

1

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

@

t + ν δSt

1!
+

ν2 δ2

S
t

2!
+ · · ·

x + ν δSx

1!
+

ν2 δ2

S
x

2!
+ · · ·

y + ν δSy

1!
+

ν2 δ2

S
y

2!
+ · · ·

a + ν δSa

1!
+

ν2 δ2

S
a

2!
+ · · ·

1

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

@

t + 0 + 0 + · · ·

x + νx
1!

+ ν2x
2!

+ · · ·

y + νy

1!
+ ν2y

2!
+ · · ·

a + 0 + 0 + · · ·

1

C

C

C

C

C

C

A

=

0

B

B

@

t

x eν

y eν

a

1

C

C

A

. (3.67)
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Thus, the action of S on the coordinates Z is:

t→ t, x→ λx, y → λ y, a→ a (3.68)

where λ is equal to eν . As one can see, the infinitesimal generator does not act on t
and a so these coordinates are not affected by the associated action. y

Example 3.4.18. Let us consider the system of ODEs:

dx

dt
= t,

dy

dt
= y − 2,

da

dt
= 0 (3.69)

which has following one-parameter ν local Lie group action S(ν, Z):

t→ t, x→ x eν , y → y, a→ a+ ν (3.70)

acting on a coordinate set Z = (t, x, y, a). The infinitesimal generator δS associated to
this action is computed by the following formula:

δSZ =
∂S(ν, Z)

∂ν

∣∣∣
ν=0

=




∂t
∂ν

∣∣
ν=0

∂(x eν)
∂ν

∣∣
ν=0

∂y
∂ν

∣∣
ν=0

∂(a+ν)
∂ν

∣∣
ν=0




=




0
x
0
1


 (3.71)

which implies that:

δS = x
∂

∂x
+ a

∂

∂a
· (3.72)

y

The problem of these conversions is their complexity. When the group action of
interest has a simple form as in these examples, the exponentiation or the derivation do
not show any difficulties. But one can not compute the group action as easily or even
can not compute at all if infinitesimal generator becomes more complicated. This is why
the classical reduction method (see § 5.2 page 105), that is based on these operations,
is not practical. Instead of trying to compute local group actions, the moving frame
based reduction method uses informations encoded by infinitesimal generators in an im-
plicit way (see § 5.4 page 114). This is the reason why we use systematically implicit
representation in our work (see § 3.4.4 page 84).

Discrete Dynamical Systems. Let D be a discrete dynamical system based on a
local group G identified to Z and associated to a system of OREs with σ as recurrence
operator. Let δD be the pseudo-derivation associated to this system of OREs.

The pseudo-derivation δD is related to the discrete dynamical system D for all ν in G
with the neutral element e by:

δDZ = (D(ν + 1, Z)−D(ν, Z))
∣∣∣
ν=e

. (3.73)
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Furthermore, the discrete exponential map is defined, for all ν in G, by iteration of
the recurrence operator σ:

D(ν, Z) = σ[ν]Z with σ[ν] = σ[ν−1] ◦ σ, σ[0] = I (3.74)

where I is the identity function.

3.4.4 Dynamical Systems: Pseudo-Derivation versus Evolution Func-

tion

Until now we talked about two different ways of representing systems of ODEs and
OREs. The first one is an implicit form based on the associated pseudo-derivations (see
definitions 3.2.14 page 64 and 3.2.16 page 65). The second one is an explicit form based
on the associated evolution function (see definition 3.4.10 page 81).

Remark 3.4.19. In theory, the integration of a pseudo-derivation expressions gives the
evolution functions of dynamical systems. Unfortunately, there is no general recipe for
integrating such systems. Furthermore, in my case, the implicit representations are
already the input of our algorithms. For these reasons, we prefer not to make extra
computations to reach the explicit representations. All the results that we are looking
for may be found by the implicit version. In the sequel, the use of the explicit form is
avoided for the computations. So, instead of evolution functions, the pseudo-derivations
are chosen. y

3.4.5 Invariants Definitions and Properties

This section is devoted to invariants that are important for understanding the forth-
coming exact simplification processes. We are not interested in their computation but
one needs to know them to seize main ideas.

An invariant, roughly speaking, is an element that does not change under a trans-
formation. They can be seen as constants (see definition 3.3.6 page 69). There exist
effective computations of invariants in polynomial or differential cases (see [59, 73]).
These computations (see [57, 74]) do not have polynomial complexities.

Proposition 3.4.20 (Invariant Function, see prop. 2.6 of § 2.1 in [86]). Let G be an r-
dimensional Lie group acting on Rn and {δ1, . . . , δr} a basis of infinitesimal generators
of the associated Lie algebra g. A smooth real-valued function ζ is an invariant function
for G if, and only if, the relations δjζ= 0 hold for all Z in Rn and j in {1, . . . , r}. In
other words, if it is a solution to the following first-order system of PDEs (using the
notation of the equation (3.13) page 64):

δjζ =
n∑

i=1

ξj
zi

(Z)
∂ζ(Z)

∂zi
= 0 ∀j ∈ {1, . . . , r} (3.75)

where ξj
zi and ζ are in Q(Z). y
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The invariants ζ1, . . . , ζs are functionally independent if there is no a smooth real-
valued function F such that F (ζ1, . . . , ζs) = 0. The classical necessary and sufficient
condition for these invariants to be functionally independent is that their s× n Jacobian
matrix (∂ζj/∂zi) is of rank s everywhere (see paragraph “Invariants and Functional De-
pendence” in § 2.1 of [86]). The following theorem states the exact number of functionally
independent local invariants associated to a local group action.

Theorem 3.4.21 (see th. 2.17 of § 2.1 in [86]). Let a local transformation group G
act regularly on the n-dimensional manifold Rn with r-dimensional orbits. If Z ∈ Rn,
then there exists precisely s := n− r functionally independent local invariants ζ1, . . . , ζs
defined in a neighborhood of Z. y

Remark 3.4.22. These invariants constitute a new coordinate chart. The procedure of
writing a system in such a new coordinate chart is called “reduction” (see § 5.2 page 105).

Remark 3.4.23. In particular, when one manipulates a one-dimensional Lie algebra as-
sociated to a symmetry group acting on a n-dimensional manifold, according to the
theorem 3.4.21, there exist n− 1 independent invariants. In practice, these invariants
can be deduced from the associated group action. They are not unique and they form a
field. y

Example 3.4.24. Let us find three invariants of the group action (3.68) of the exam-
ple 3.4.17 page 82. The associated infinitesimal generator is given in the equation (3.66)
page 82. Because t and a are not affected at all by the group action, they are two
easy invariant candidates. Indeed, ζ1 = t, ζ2 = a are invariants because δS t = δSa = 0.
The third one, for this simple case, is also straightforward; one can choose ζ3 = x/y
because δS (x/y) = 0. As said before, these invariants are not unique; one could, for
example, also choose x2/y2. y
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Lie Point Symmetry

This chapter is entirely devoted to expanded Lie point symmetries. First, we define
such continuous symmetries for algebraic and dynamical systems. General approaches
to compute Lie symmetries require resolution of systems of PDEs. Here, we present
some computational strategies to reach an algorithm of polynomial complexity in the
input size for computation of a large set of symmetries.

Roughly speaking, a Lie point symmetry of a system is a transformation that maps
every solution of the system to another solution of the same system. In other words, it
maps the solution set of the system to itself. The properties of these symmetries are at
the heart of the reduction and the reparametrization algorithms (see ch. 5 page 103).
The literature for this theory can be found, among others, in [86, 87, 6, 104, 117, 70, 101].

Definition 4.0.25 (Symmetry Group of Geometrical Objects). Let S be a continu-
ous dynamical system defined by a local Lie group G acting on a manifold M . A
subset U ⊂M is called G-invariant and G is called a symmetry group of U , if when-
ever Z ∈ U and ν ∈ G such that S(ν, Z) is defined, then S(ν, Z) ∈ U . y

There are many kinds of symmetries that are not treated in this document. For
example, contact transformation let coefficients of the transformations infinitesimal gen-
erator depend also on first derivatives of the coordinates or Lie-Bäcklund transformation
let them involve derivatives up to an arbitrary order. For Lie point symmetries, the co-
efficients of the infinitesimal generators depend only on the coordinates Z and, in this
document, they are assumed to be in Q[Z].

There exist many softwares on this subject (see ch. 17 of [53]). These procedures
do not respond to challenges of this document. For example, the package liesymm

of Maple provides some Lie symmetry methods for PDEs (see [23]). It manipulates
integration of determining systems and also differential forms. Despite its success on little
systems, it must be remarked that its integration capabilities for solving determining
systems automatically are limited by complexity issues. The DEtools package uses
the prolongation of vector fields for searching Lie symmetries of ODEs. Indeed, the
determining system to be solved is a system of PDEs. So finding Lie symmetries for
ODEs, in this general case, could be as complicated as solving the original system. We
recall that Lie symmetries are used to simplify these systems of ODEs and thus we are
going to avoid these methods.
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4.1 Definition of a Lie Point Symmetry

This section presents the definitions of expanded Lie point symmetries of algebraic sys-
tems as well as dynamical ones. We work in an expanded space meaning that we avoid,
as much as possible, the distinction between independent variable, state variables and
parameters (see [22] for another application of this standpoint). Nevertheless, for dynam-
ical systems, we analyze Lie point symmetries acting and not acting on the independent
variable separately. Lie point symmetries not acting on the independent variable can be
handled by a unique formula (see lemma 4.1.6 page 91) for both continuous and discrete
dynamical systems. Lie point symmetries acting on the independent variable are just
studied for continuous dynamical systems (see remark 4.1.10 page 91).

4.1.1 Symmetries of Algebraic Systems

In this subsection, we give the definition of Lie symmetries of algebraic systems along
with necessary and sufficient conditions to compute them.

A symmetry group of an algebraic system is a continuous dynamical system defined
on a local Lie group G acting on a manifold M . G transforms solutions of this algebraic
system to its other solutions (see § 2.1 of [86]).

The following theorem (see th. 2.8 in ch. 2, § “Infinitesimal Invariance” of [87]) gives
necessary and sufficient conditions so that a local Lie group G is a symmetry group of
an algebraic system.

Theorem 4.1.1. Let G be a connected local Lie group of a continuous dynamical system
acting on the n-dimensional manifold M = Rn. Let F : Rn → Rk with k ≤ n define a
regular system of algebraic equations (see definition 3.1.1 page 59):

fi(Z) = 0 ∀i ∈ {1, . . . , k} .

Then G is a symmetry group of this algebraic system if, and only if,

δfi(Z) = 0 ∀i ∈ {1, . . . , k} whenever f1(Z) = · · · = fk(Z) = 0 (4.1)

for every infinitesimal generator δ in the Lie algebra g of G. y

Example 4.1.2. Let us consider the algebraic system (see example 3.1.2 page 59) defined
on Z = (P,Q, a, b, c, ℓ) with:

{
f1(Z) = (1− cP ) + bQ+ 1,
f1(Z) = aP − ℓQ+ 1.

(4.2)

The infinitesimal generator

δS = a (a− 1)
∂

∂a
+ (ℓ+ b)

∂

∂b
+ (2 a c− c) ∂

∂c
+ (−aP + P )

∂

∂P
(4.3)

is associated to one of its symmetries. It acts on 4 variables, namely a, b, c and P . One
can easily verify that δf1 = f1 − f2 and δf2 = 0. Thus the relations δf1 = δf2 = 0 are
satisfied for any Z in Rn that vanishes the algebraic system. y
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Remark 4.1.3. In the sequel we restrict the set of symmetries defined by this theorem in
order to avoid the resolution of systems of PDEs while computing Lie symmetries (see
§ 4.2 page 93 for details).

4.1.2 Symmetries of Dynamical Systems

In this section, Lie symmetries of dynamical systems are considered. Let M be a mani-
fold. A unique notation, namely D, is used to express continuous and discrete dynamical
systems with:

D : G×M → M,
ν × Z → D(ν, Z) .

(4.4)

The existence of a symmetry group is independent of the choice of the coordinate set,
only its explicit form (the components of its infinitesimal generators) depend on this
choice. Thus, let us denote by S a continuous dynamical system and by δS the associated
infinitesimal generator with:

S : Ĝ×M → M,
ν̂ × Z → S(ν̂, Z) .

(4.5)

Lie Point Symmetries not Acting on the Independent Variable

Let us give the definition of Lie point symmetries of a dynamical system preserving the
independent variable and some of its properties. First, let us see that the linearization
of defining systems leads to determining systems composed of PDEs.

Definition 4.1.4 (Lie Point Symmetry of a Dynamical System). Let D be a dynamical
system. A continuous dynamical system S is a Lie point symmetry of D, if and only
if, S sends an orbit of D on another orbit of D. Hence, a Lie symmetry S of a dynamical
system D satisfies the following defining system for all ν in G and ν̂ in Ĝ:

D(ν,S(ν̂, Z)) = S(ν̂,D(ν, Z)) (4.6)

that is presented in figure 4.1 page 90. y

Figure 4.1 page 90 is drawn to illustrate the relation (4.6). The difference between
the continuous and the discrete systems would be the form of the orbits of D. In
the continuous case, the orbits are composed of complete horizontal (violet) lines. In
the discrete case, the orbits are a discrete set of points on these (violet) lines at each
intersection with an orbit of S drawn by vertical (green) lines. The order of application
of the dynamical systems D and S does not matter. Two ways reach the same point.

The differentiability hypothesis (see equation (3.60) page 81) and the continuity
of the group element (see equation (3.62) page 82) of the symmetry let us write the
following relations for all ν in G and ǫ in the neighborhood of the neutral element e of Ĝ
(below e = 0):

D(ν,S(ǫ, Z)) = D
(
ν, Z + ǫ δSZ + O

(
ǫ2
))
,

= D(ν, Z) + ǫ ∂D(ν,Z)
∂Z δSZ + O

(
ǫ2
)
.

(4.7a)
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S

D

Z D(ν, Z)

D(ν,S(ν̂, Z))

S(ν̂, Z) S(ν̂,D(ν, Z))

Figure 4.1: Diagram involving a dynamical system D and one of its Lie symmetries S
preserving the independent variable of D. y

S(ǫ,D(ν, Z)) = D(ν, Z) + ǫ δSD(ν, Z) + O
(
ǫ2
)
. (4.7b)

Hence, the relation (4.6) page 89 implies for all ν in G the following determining system:

∂D(ν, Z)

∂Z
δSZ = δSD(ν, Z) . (4.8)

Now, using pseudo-derivations, let us see the unified computational algebraic defini-
tion that corresponds to this determining system for continuous and discrete dynamical
systems.

Computational Algebraic Definition of Determining Systems. Lie point sym-
metries of continuous and discrete dynamical systems must verify the system (4.8). This
last can be expressed by a simple algebraic relation involving the associated pseudo-
derivations. This relation requires the use of bracket of two pseudo-derivations defined
in the Ore algebra OreR(Z) (see remark 3.2.12 page 64).

Definition 4.1.5 (Bracket on Ore Algebras). The operation bracket of two pseudo-
derivations is defined by the R-bilinear skew-symmetric map on OreR(Z):

[ , ] : OreR(Z)×OreR(Z) → OreR(Z) ,
(δ1, δ2) → δ1 δ2 − δ2 δ1 (4.9)

with same properties as the Lie bracket defined in definition 3.3.2 page 69. y

The following lemma is a result that allows to unify the symmetry (preserving the
independent variable) definitions and implementations of systems of ODEs and OREs.
It summarizes below computations of a Lie point symmetry with one simple algebraic
relation.



4.1. Definition of a Lie Point Symmetry 91

Lemma 4.1.6. Let D be a dynamical system and δD its associated pseudo-derivation.
A continuous dynamical system S is a symmetry of D with its infinitesimal generator δS
if the relation [δD, δS ] = 0 holds. y

At this step, one needs to discuss the continuous and the discrete cases separately in
order to specify associated determining systems.

First-order Ordinary Recurrence Equations. A discrete dynamical system D,
associated to a system of OREs, is defined on a group G that is supposed to be isomorphic
to a subgroup of (Z,+). The associated recurrence operator is denoted by σ and the
pseudo-derivation by δD.

Proposition 4.1.7. The recurrence operator σ associated to a system of OREs is com-
mutative (σδS ≡ δSσ) with the infinitesimal generator δS of its symmetry. y

Proof. The lemma 4.1.6 page 91 and the definition of pseudo-derivations (see 3.2.16
page 65) imply for all Z in Rn:

[δD, δS ] (Z) = 0,
δDδSZ = δSδDZ,

σδSZ − δSZ = δSσZ − δSZ,
σδSZ = δSσZ.

(4.10)

Thus, the recurrence operator σ and the infinitesimal generator δS commute. y

For a system of OREs, the relation (4.8) page 90 is equivalent to the following one
for all τ in G:

∂σ[τ ]Z

∂Z
δSZ = δSσ

[τ ]Z. (4.11)

Definition 4.1.8. Thanks to the proposition 4.1.7, the determining system of a Lie
point symmetry of a system of OREs is given for τ = 1 in the equation (4.11) i.e. by the
relation:

∂σZ

∂Z
δSZ = σδSZ. (4.12)

y

Remark 4.1.9. The formula (4.12) could be obtained in various framework; it appears
also in the equation (1.4) of [62] for analytic first-order discrete dynamical systems and
in the equation (2.21) of [60] for systems of ordinary difference equations. y

Remark 4.1.10. In [62], authors show that symmetries of discrete dynamical systems
always verify the lemma 4.1.6. Thus there is no need to treat Lie symmetries acting on
the independent variable for such systems. y

Example 4.1.11. The system of OREs given in the example 3.2.10 page 64 has its
associated recurrence operator in (3.18) page 65. A Lie point symmetry of this system
has:

δS = x
∂

∂x
+ y

∂

∂y
(4.13)

as infinitesimal generator. One can easily verify that the determining system (4.12) is
satisfied by these objects. y
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First-order Ordinary Differential Equations. A continuous dynamical system D,
associated to a system of ODEs, is defined on the group G that is supposed to be
isomorphic to a continuous subgroup of (R,+). The associated infinitesimal generator is
denoted by δD. If a continuous dynamical system S is the symmetry of such a system,
then they verify the relation (4.8) page 90. In addition, the continuity of the dynamical
system D let us make a second linearization, thus one can deduce following equalities
for ǫ in the neighborhood of the neutral element 0 of G:

∂D(ǫ,Z)
∂Z δSZ =

(
∂(Z+ǫ δDZ+O(ǫ2))

∂Z

)
δSZ,

= δSZ + ǫ ∂δDZ
∂Z δSZ + O

(
ǫ2
)
.

(4.14a)

δSD(ǫ, Z) = δS
(
Z + ǫ δDZ + O

(
ǫ2
))
,

= δSZ + ǫ ∂δSZ
∂Z δDZ + O

(
ǫ2
)
.

(4.14b)

Definition 4.1.12. The relations given in the system (4.14) establish the determining
system of a Lie point symmetry of a system of ODEs:

∂δDZ

∂Z
δSZ =

∂δSZ

∂Z
δDZ. (4.15)

y

Example 4.1.13. The system of ODEs given in the example 3.2.6 page 63 has its
associated infinitesimal generator in (3.15) page 65. A Lie point symmetry of this system
has:

δS = −x∂
∂x

+ b
∂

∂b
(4.16)

as infinitesimal generator. One can easily verify that the determining system (4.15) is
satisfied by these objects. y

Lie Point Symmetries Acting on the Independent Variable

This case is only studied for continuous dynamical systems so, in this section, D stands
for such systems. Contrarily to the previous case, for symmetries acting also on the
independent variable of D, the order of application of D and S does matter. The
associated geometrical definition is illustrated in figure 4.2 page 93. Remark that this is
a generalization of figure 4.1 page 90. This geometrical definition leads to the following
lemma.

Lemma 4.1.14. Let D be a continuous dynamical system and δD its infinitesimal gen-
erator. A continuous dynamical system S is a non-trivial symmetry of D with its in-
finitesimal generator δS , if the following relation (see § 3.3 of [104]) holds:

[δD, δS ] = λ δD (4.17)

where λ is any constant of δD and δS . These generators are linearly independent. y
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S

D

Z D(ν, Z)

D(ν̃,S(ν̂, Z))

S(ν̂, Z) S(ν̂,D(ν, Z))

Figure 4.2: Diagram involving a continuous dynamical system D and one of its Lie
symmetries S acting also on the independent variable of D. y

Remark 4.1.15. For continuous dynamical systems, specializing λ to 0 in (4.17) page 92
leads to the formula that computes Lie symmetries not acting on the independent vari-
able (see lemma 4.1.6 page 91). y

Remark 4.1.16. Following the lemma 2.3 in [114], with above notations, assume that one
has [δD, δS ] = λ δD where λ is any function and let ψ be a first integral of δS i.e. δSψ = 0
with δDψ 6= 0. Then [

1

δDψ
δD, δS

]
= 0. (4.18)

This statement allows to work with a symmetry S acting on the independent variable
of D as a symmetry preserving an independent variable if one can determine a first
integral of D. y

Remark 4.1.17. There is also another way of defining a Lie point symmetry of a con-
tinuous dynamical system similar to that given for algebraic systems. This involves the
notion of prolongation in a jet space where the studied differential system is considered
as an algebraic one (see th. 2.31 in § 2.3 of [86]). y

4.2 Computation of a Restricted Set of Lie Point Symmetries

In this section, we present the computation of Lie point symmetries as they were con-
ceived in the package ExpandedLiePointSymmetry. First, we detail the restrictions done
on the determining systems and on the set of symmetries in order to have an efficient
implementation. Then we show a probabilistic algorithm to solve resulting determining
systems. Thanks to our computational strategies, the complexity of this algorithm is
polynomial in the input size. But the complete set of symmetries are not obtained. Nev-
ertheless, in practice, almost all encountered symmetries could be obtained using these
strategies. Finally, associated implementation choices are given.



94 Lie Point Symmetry

In order to apply the reduction and the reparametrization methods to a given system
(see ch. 5 page 103), the first task to perform is to determine its symmetries. The
general approaches to compute Lie symmetries require the resolution of systems of PDEs
(see for example [86, 104]). Unfortunately there is no a general algorithm for solving
such systems. Our framework proposes an efficient implementation with polynomial
complexity in the input size to compute Lie symmetries. It uses the linear algebra over
a number field. In return, we need to perform the following restrictions:

• determining systems of Lie symmetries are restricted;
• set of symmetries of interest is adapted, according to needs, to classical geometric

transformations. The available symmetries (in October, 2009) are translations,
scalings, affine and quadratic type symmetries (see § 4.2.2 page 96).

4.2.1 Restriction of Determining Systems

In this subsection we show how to restrict the definitions of Lie symmetries in order to
have an efficient implementation.

Let us recall that, the general form of infinitesimal generators δS of symmetries is:

δS =

n∑

i=1

ξzi
(Z)

∂

∂zi
(4.19)

where ξzi
are functions in Z. In the sequel, Z = (z1, . . . , zn) stands for the coordinate

set and ξ = (ξz1
, . . . , ξzn) for the symmetry coefficients.

Determining Systems for Symmetries of Algebraic Systems

Let F = (f1, . . . , fk) be an algebraic system (see definition 3.1.1 page 59) and S a con-
tinuous dynamical system associated to the infinitesimal generator δS . According to the
theorem 4.1.1 page 88, S is a symmetry of F if δS leaves invariant the ideal spanned
by {f1, . . . , fk}. This definition requires the usage of elimination methods (see [20] for
computational methods and [46] for more geometrical cases) that we want to avoid be-
cause of their complexity problems in general cases (exponential complexity in the input
size, see [25]). In the ExpandedLiePointSymmetry package, we use the determining sys-
tem given in the following corollary to compute expanded Lie point symmetries of an
algebraic system.

Corollary 4.2.1. Let F = (f1, . . . , fk) be a regular algebraic system. A continuous
dynamical system associated to the infinitesimal generator δS is a symmetry of F if the
following relation, in vector-valued notations, holds:

δSF = ΛF (4.20)

for a matrix Λ with elements in Q. y
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Let us rewrite the determining system (4.20) page 94 by considering the explicit
form (4.19) page 94 of the infinitesimal generator δS . The relation to verify so that δS
can be associated to a symmetry of an algebraic system is:




∂f1

∂z1
· · · ∂f1

∂zn

...
...

∂fk

∂z1
· · · ∂fk

∂zn






ξz1

...
ξzn


−



λ11 . . . λ1k
...

...
λk1 . . . λkk






f1
...
fk


 =




0
...
0


 (4.21)

with λij in Q.

Corollary 4.2.1 page 94 provides a sufficient condition for the theorem 4.1.1 page 88.
Since for all i in {1, . . . , k}, δSfi is a linear combination of {f1, . . . , fk}, whenever these
functions vanish, δSfi vanishes also. On the other hand, remark that this is not a
necessary condition. The following example shows limitations of this corollary compared
with the theorem 4.1.1 page 88.

Example 4.2.2. For the regular algebraic system f(x, y) = x4 + x2 y2 + y2 − 1 (see ex-
ample 3.1.7 page 60), the ExpandedLiePointSymmetry package does not find any sym-
metry. However the infinitesimal generator δS = −y∂/∂x+ x∂/∂y is associated to a
rotation symmetry of it. One can compute δSf = −

(
2x y/x2 + 1

)
f . This is not a mul-

tiple of f in Q, which is why it is not detected by the corollary 4.2.1 page 94. But
whenever f vanishes δSf vanishes also thus the theorem 4.1.1 page 88 is satisfied. y

Determining Systems for Symmetries of Continuous Dynamical Systems

In the ExpandedLiePointSymmetry package, the computations of expanded Lie point
symmetries of a system of ODEs rely on the lemma 4.1.14 page 92 but λ is restricted
to values in Q. Let us rewrite the determining system (4.17) page 92 by considering
the explicit form (4.19) page 94 of the infinitesimal generator δS and the definition of a
system of ODEs (see definition 3.2.1 page 62). The relation to verify so that δS can be
associated to a symmetry of a system of ODEs is:




0 · · · 0
∂f1

∂z1
· · · ∂f1

∂zn

...
...

∂fk

∂z1
· · · ∂fk

∂zn

0 · · · 0
...

...
0 · · · 0






ξz1

...
ξzn


−




∂ξz1

∂z1
· · · ∂ξz1

∂zn

...
...

∂ξzn

∂z1
· · · ∂ξzn

∂zn







1
f1
...
fk

0
...
0




+ λ




1
f1
...
fk

0
...
0




=




0
...
0


 (4.22)

with λ in Q.

Remark 4.2.3. If one wants to work with the determining system given in (4.15) page 92,
it is enough to substitute λ = 0 in (4.22). y
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Determining Systems for Symmetries of Discrete Dynamical Systems

In the ExpandedLiePointSymmetry package, for systems of OREs, only expanded Lie
point symmetries not acting on the independent variable are considered. That is why,
the computations rely on the formula (4.12) page 91. Let us rewrite this formula by
considering the explicit form (4.19) page 94 of the infinitesimal generator δS and the
definition of a system of OREs (see definition 3.2.7 page 63). The relation to verify so
that δS can be associated to a symmetry of a system of OREs is:




0 · · · 0
∂f1

∂z1
· · · ∂f1

∂zn

...
...

∂fk

∂z1
· · · ∂fk

∂zn

0 · · · 0
...

...
0 · · · 0






ξz1

...
ξzn


−



σξz1

...
σξzn


 =




0
...
0


 . (4.23)

4.2.2 Restriction of Set of Symmetries

Even with all the restrictions done until now, the computation of a symmetry requires
integration of systems of PDEs. We need to focus on special kinds of symmetries. The
available set of symmetries in the ExpandedLiePointSymmetry package are translations,
scalings, affine and quadratic type symmetries as defined in the following definitions (see
also [101, 68] for the same point of view).

Definition 4.2.4 (Translation). A translation is a Lie point symmetry associated to
an infinitesimal generator of the form:

δS :=
n∑

i=1

αi
∂

∂zi
(4.24)

where αi are in Q. y

Definition 4.2.5 (Scaling). A scaling is a Lie point symmetry associated to an infinites-
imal generator of the form:

δS :=
n∑

i=1

αi zi
∂

∂zi
(4.25)

where αi are in Q. y

Definition 4.2.6 (Affine Type Symmetry). An affine type symmetry is a Lie point
symmetry associated to an infinitesimal generator of the form:

δS :=
n∑

i=1


αi +

n∑

j=1

βij zj


 ∂

∂zi
(4.26)

where αi and βij are in Q. y
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Definition 4.2.7 (Quadratic Type Symmetry). A quadratic type symmetry is a Lie
point symmetry associated to an infinitesimal generator of the form:

δS :=

n∑

i=1


αi +

n∑

j=1

βij zj +

n∑

k=j

n∑

j=1

γijkzjzk


 ∂

∂zi
(4.27)

where αi, βij and γijk are in Q. y

With these types of restrictions, the PDEs systems (4.21) page 95, (4.22) page 95
and (4.23) page 96 reduce to linear algebraic systems that could be solved efficiently. Let
us adapt them now w.r.t. these types of symmetries. First, let us introduce the following
notations of indeterminates:

A := (αi)1≤i≤n , B := (βij)1≤i≤n, 1≤j≤n , Z := (zi)1≤i≤n ,

Γi :=
(
(γijk)1≤j≤n, j≤k≤n

)
∀i ∈ {1, . . . , n} .

(4.28)

Remark that A and Z are vectors of indeterminates, B is a matrix of indeterminates
and Γi are upper triangular matrices of indeterminates. One must mainly adapt the
vector of coefficients ξ of the searched symmetry and the gradient matrix ∇ of it that
appear in the determining systems:

ξ := (ξi)1≤i≤n , ∇ :=

(
∂ξi
∂zj

)

1≤i≤n, 1≤j≤n

. (4.29)

The recapitulation of the notations for these specific kind of symmetries follows:

• for a translation

ξ = A, ∇ =




0 · · · 0
...

...
0 · · · 0


 ; (4.30)

• for a scaling

ξ =




α1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 αn



Z, ∇ =




α1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 αn




; (4.31)

• for an affine type symmetry

ξ = A+BZ, ∇ = B; (4.32)

• for a quadratic type symmetry

ξ = A+BZ +
(
tZ Γi Z

)
1≤i≤n

,

∇ = B + (∇ij)1≤j≤n,1≤i≤n where∇ij :=

i∑

l=1

γjlizl +

n∑

l=i

γjilzl.
(4.33)
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The following three equations are respectively final determining systems used, in
the ExpandedLiePointSymmetry package, to compute symmetries of algebraic systems,
continuous and discrete dynamical systems where ξ and ∇ must be replaced by their
above expressions.




∂f1

∂z1
· · · ∂f1

∂zn

...
...

∂fk

∂z1
· · · ∂fk

∂zn


 ξ −



λ11 . . . λ1k
...

...
λk1 . . . λkk






f1
...
fk


 =




0
...
0


 , (4.34a)




0 · · · 0
∂f1

∂z1
· · · ∂f1

∂zn

...
...

∂fk

∂z1
· · · ∂fk

∂zn

0 · · · 0
...

...
0 · · · 0




ξ −∇




1
f1
...
fk

0
...
0




+ λ




1
f1
...
fk

0
...
0




=




0
...
0


 , (4.34b)




0 · · · 0
∂f1

∂z1
· · · ∂f1

∂zn

...
...

∂fk

∂z1
· · · ∂fk

∂zn

0 · · · 0
...

...
0 · · · 0




ξ − σξ =




0
...
0


 . (4.34c)

Let us see now how these resulting determining systems are solved in the package
ExpandedLiePointSymmetry.

4.2.3 Solving Considered Determining Systems

The aim of this subsection is to detail the algorithmic choices made in order to solve
linear determining systems (equations (4.34)).

The algorithm 4 page 99 summarizes, using a Maple like syntax, the probabilistic
resolution of these determining systems defining the quadratic infinitesimal generators.
Solving determining systems for translations, scalings or affine type symmetries can
easily be deduced from this algorithm by ignoring unnecessary indeterminates (the Γi’s
and B’s for translations and scalings, the Γi’s for affine type symmetries).

The inputs of the algorithm 4 page 99 are the list of equations that correspond
to each line of the associated determining system, the vector of coordinates on which
the dynamical system of interest is defined and the list of indeterminates of Lie point
symmetries to compute. The output is a list of symmetry coefficients that defines the
associated infinitesimal generators.
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Algorithm 4 Solving determining systems (see equations (4.34) page 98) for quadratic
type symmetries

Input: A list L of equations which are linear w.r.t. indeterminates of A,B and (Γi)1≤i≤n.
A vector of coordinates Z.
A list of indeterminates U := (αi, βij , γijk) (see (4.28) page 97 for definitions).

Output: A list of quadratic infinitesimal generators defined as in (4.27) associated to
solutions of L.

1: #Rewrite L in the form N tU = 0
2: N := Matrix ([seq ([seq (coeff (ℓ, u) , ℓ ∈ L)] , u ∈ U)]);
3: r := −1; M := ∅;
4: repeat

5: C := {seq (RandomInteger () , i = 1 . . . n)};
6: s := r;
7: #Concatenate the matrix M with a specialization of the matrix N
8: M := StackMatrix (M, subs (Z = C,N));
9: r := Rank (M);

10: until r 6= s;
11: #Kernel computation of M
12: V := NullSpace (M);

13: return
[
seq
(
subs

(
u = v, ξ = A+B Z +

(
tZ Γi Z

)
1≤i≤n

)
, v ∈ V

)]
;

Let U := (αi, βij , γijk) be a list of n+ n2 + n3 indeterminates composing A,B and Γ
(see notations in (4.28) page 97). One can write the determining systems (4.34) page 98
in the matrix form N tU = 0 where N is a matrix of n rows (for the determining sys-
tem (4.21) page 95 associated to algebraic systems, k rows) and n+ n2 + n3 columns with
coefficients in Q(Z). As this system is under-determined, several specializations of the
coordinates Z to random values in Q are necessary to obtain at most n+ n2 + n3 linear
equations. The kernel in Q of the resulting purely numerical system gives the Q-vector-
space V of indeterminates in U . These indeterminates are solutions of the considered
determining system and specify the quadratic infinitesimal generators of the symmetries.
This kernel may be computed by any classical numerical method. The specialization set
for which this process fails to find a correct solution is a zero-dimensional algebraic va-
riety defined by the solution set of the polynomial det(N (Z)) (see [100, 119, 120] for
probabilistic aspect). Thus, the failure probability of such method is almost zero.

Remark that the base field of the Lie algebra (see definition 2.4.2-3 in § 2.4.2 of [6])
returned by this algorithm is Q (see § 3.3.1 page 69). As a result, some infinitesimal
generators may define the same vector field (see example 3.3.8 page 70). The redundancy
should be discarded, the base field must be extended as much as possible (see § 3.3.5
page 78 for the algorithm used in the ExpandedLiePointSymmetry package).

All these computational strategies with the restrictions on the determining systems
and the symmetries yield a polynomial complexity as stated in the following proposition.

Proposition 4.2.8. The probabilistic resolution of the above determining systems (equa-
tions (4.34) page 98) defining the infinitesimal generators of expanded Lie point sym-
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metries with polynomial coefficients in Q[Z], detailed in the algorithm 4 page 99, has an
arithmetic complexity O

(
5Lnd + n(d+1)ω

)
where L is the complexity for the evaluation

of the set F = (f1, . . . , fk), n is the cardinal of the coordinate set, d is the maximum
degree of polynomials used in the coefficients ξ of the symmetries and ω is the linear
algebra constant. y

Proof. Let us see the complexity of the algorithm 4 page 99 in two steps: the construction
of the matrix M and its kernel computation. Let L be the complexity for the evaluation
of the set F = (f1, . . . , fk). The evaluation cost for determining systems is equal to 5L
(see [80]). The cost of the construction of a matrix is supposed to be linear w.r.t. its
size. The matrix N is of order

(
n× n(d+1)

)
where n is the cardinal of the coordinate

set and d is the maximum degree of polynomials used in the coefficients of symmetries.
The construction of the matrix M needs nd times specialization of N because its size is
of order

(
n(d+1) × n(d+1)

)
. Thus the kernel computation of M costs n(d+1)ω operations

where ω is the linear algebra constant. The probabilistic resolution of determining
systems of interest (see algorithm 4 page 99) has a complexity O

(
5Lnd + n(d+1)ω

)
. For

the computation model see § 2 in [45] or § 3.2 in [44]. y

Remark 4.2.9. The complexity of the algorithm 4 page 99 is linear w.r.t. the cardinal
of the coordinate set but exponential in the maximum degree of polynomials of the
coefficients of symmetries (see proposition 4.2.8). In this document, the maximum degree
considered for such polynomials is 2 (quadratic type symmetries). In this worst case,
the complexity is equal to O

(
5Ln2 + n3ω

)
. Thus the complexity remains polynomial in

the input size for the most common encountered symmetries. y

4.2.4 Structure Computation of Lie Point Symmetries Algebras

In this subsection we first explicit the algorithm of computing expanded Lie point sym-
metries of a system of ODEs in the ExpandedLiePointSymmetry package using above
restrictions. The algorithms used for algebraic systems and systems of OREs are similar
to this one. Then we detail the usage of the ELPSymmetries function.

The algorithm 5 page 101 summarizes the computation of a Lie algebra composed
by expanded Lie point symmetries of a continuous dynamical system D. The input
system of ODEs is represented by the associated infinitesimal generator δD. One needs
to indicate the type of required symmetries among translations, scalings, affine and
quadratic type symmetries (see § 4.2.2 page 96). One can also specify a list of coordinates
if the resulting symmetries must not act on them. This option does not appear in the
algorithm 5 page 101 for the sake of clarity. The output is the Lie algebra defined by
the computed symmetries.

The steps of the algorithm 5 page 101 along with associated line numbers follow:

• lines 1-2, initialization of the vector of coordinates Z and the vector of polynomi-
als F associated to the state variables of the given system of ODEs;

• lines 4-7, construction of the determining system thanks to the equation (4.34b)
page 98 for the chosen type of symmetry;
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• lines 9-11, computation of the Lie algebra that corresponds to the Lie point sym-
metries of δD by using the algorithm 4 page 99;

• line 13, extension of the base field. The base field of this Lie algebra is supposed
to be Q (see § 3.3.1 page 69). In order to discard surplus of the infinitesimal
generators, one needs to extend this base field (see § 3.3.5 page 78).

Algorithm 5 Computing expanded Lie point symmetries of a continuous dynamical
system D.

Input: A system of ODEs represented by the associated infinitesimal generator δD.
A variable sym that indicates the type of the required symmetries (translation, scal-
ing, affine or quadratic)

Output: A Lie algebra composed by infinitesimal generators of the symmetries of δD
given in the input.

1: Z := (z1, . . . , zn) ;
2: F := (f1, . . . , fk) ;
3: #The vector of coefficients ξ and the gradient matrix ∇ of the searched symmetries

(see equation (4.29) page 97)
4: ξ := VectorOfCoefficients (sym, Z) ;
5: ∇ := GradientMatrix (sym, Z) ;
6: #Computation of the determining system thanks to the equation (4.34b) page 98
7: DetSys := DeterminingSystem (F, ξ,∇) ;
8: #The vector of unknowns is composed of the indeterminates A,B,Γ of the equa-

tion (4.28) page 97 used to define symmetries and the unknown λ used in the deter-
mining system

9: U := (A,B,Γ, λ) ;
10: #Resolution of the determining system using the algorithm 4 page 99
11: LieAlg := SolveDeterminingSystem (DetSys, Z, U) ;
12: #Extension of the base field as in the paragraph “Changing the Base Field of a Lie

Algebra” in § 3.3.5 page 78
13: return ChangeBaseField (LieAlg, δD) ;

In the ExpandedLiePointSymmetry package, expanded Lie point symmetries of an
algebraic or a dynamical system are computed by calling the ELPSymmetries function
that follows the algorithm 5. The first argument that represents the system of interest
must be of type AlgebraicSystem, InfinitesimalGenerator or RecurrenceOperator.
The second argument is used to specify the kind of symmetries that one is looking for.
This is an optional argument with a default value devoted to quadratic type symmetries
but one can ask for translations, scalings and also affine type symmetries (see § 4.2.2
page 96). The output is a Lie algebra generated by all the infinitesimal generators that
have been computed.

Example 4.2.10. This example shows the usage of the function ELPSymmetries with
different data structures. The first code example computes the translations, the scalings
and the affine type symmetries (see § 4.2.2 page 96) of the algebraic system given in the
example 3.1.2 page 59. The system does not have any translation (see 4.2.4 page 96)
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but one scaling (see 4.2.5 page 96). Furthermore, the system possesses two affine type
symmetries. Remark that a scaling, by definition, is also an affine type symmetry so the
scaling of LieAlg2 appears again in LieAlg3.

� �
> # Symmetries of an algebraic system

> AlgSys := NewAlgebraiSystem([(1-c*P)*P+b*Q+1,a*P-l*Q+1]);
AlgSys := [(1 - c P) P + b Q + 1, a P - Q l + 1]

> LieAlg1 := ELPSymmetries(AlgSys ,sym=translation );

LieAlg1 := LieAlgebraOfDim (0)

> GeneratorsOf(LieAlg1 );
[]

> LieAlg2 := ELPSymmetries(AlgSys ,sym=scaling );

LieAlg2 := LieAlgebraOfDim (1)

> GeneratorsOf(LieAlg2 );
/d \ /d \ /d \

[F -> -Q |-- F| + b |-- F| + l |-- F|]

\dQ / \db / \dl /

> LieAlg3 := ELPSymmetries(AlgSys ,sym=affine );

LieAlg3 := LieAlgebraOfDim (2)

> GeneratorsOf(LieAlg3 );
/d \ /d \ /d \ /d \ /d \

[F -> Q |-- F| + P |-- F|, F -> -Q |-- F| + b |-- F| + l |-- F|]

\da / \dl / \dQ / \db / \dl /
� �

The following code example computes affine type symmetries of the system of ODEs
given in the example 3.2.6 page 63. It is represented by the associated infinitesimal
generator. One finds three such symmetries.

� �
> # Symmetries of an infinitesimal generator

> InfGen := NewInfinitesimalGenerator([1, (a-b*x)*x, 0, 0],[t,x,a,b]);

/d \ /d \

InfGen := F -> |-- F| + (a - x b) x |-- F|

\dt / \dx /

> LieAlg4 := ELPSymmetries(InfGen , sym=affine );

LieAlg4 := LieAlgebraOfDim (3)

> GeneratorsOf(LieAlg4 );
d /d \ /d \ /d \ /d \ /d \

[F -> -- F, F -> -x |-- F| + b |-- F|, F -> t |-- F| - x |-- F| - a |-- F|]

dt \dx / \db / \dt / \dx / \da /
� �

The final code example computes three affine type symmetries of the system of OREs
given in the example 3.2.18 page 65 and represented by its recurrence operator.

� �
> # Symmetries of a recurrence operator

> RecurOp := NewReurreneOperator([tau +1,c*x,y+x,c],[tau ,x,y,c]);
RecurOp := (tau , x, y, c) -> [tau + 1, c x, y + x, c]

> LieAlg5 := ELPSymmetries(RecurOp , sym=affine );

LieAlg5 := LieAlgebraOfDim (3)

> GeneratorsOf(LieAlg5 );
d d /d \ /d \

[F -> ---- F, F -> -- F, F -> x |-- F| + y |-- F|]

dtau dy \dx / \dy /
� �
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Exact Simplification Processes

This chapter shows how one can, given an algebraic or a dynamical system, construct
an equivalent one using Lie point symmetries. In fact, the original system could be
described by a lower dimensional system and fibers. During the reduction process, Lie
point symmetries of the given system are used to obtain these lower dimensional system
and fibers. During the reparametrization process, we consider a continuous dynamical
system and the algebraic system that defines its steady points. Lie point symmetries
of this algebraic system are used to perform a change of coordinates on the dynamical
system.

We begin by giving the geometry of the reduction process. After illustration of classi-
cal reduction process (see [86]), we reach the moving frame based reduction process, main
subject of this chapter. The general form of this algorithm may be found in [37, 38].
We show the reduction of algebraic and dynamical systems by a special case of this
method. Then, we explain some practical problems and the implementation of mov-
ing frame based reduction process in ExpandedLiePointSymmetry package. Finally we
address the reparametrization process. We detail its main idea and its implementation.

5.1 Geometry of the Reduction Process

Geometrically, to reduce a system means to consider it in a lower dimensional space.
The following theorem gives formal definition of this process in our framework.

Theorem 5.1.1 (see § 3.4 of [86]). Let G be a r-dimensional regular local Lie group of
a Lie point transformation S with again r-dimensional orbits defined in Rn. Then there
exists a (n− r)-dimensional quotient space of Rn by the action of S, denoted Rn/G,
together with a smooth projection π : Rn → Rn/G, that satisfies the following properties:

• The points Z1 and Z2 lie in the same orbit of S in Rn, if and only if, π(Z1) is
equal to π(Z2);

• If g denotes the Lie algebra of infinitesimal generators B = (δ1, . . . , δr) associated
to the action of S, then for every point Z in Rn, the linear map

dπ : TRn
Z → T (Rn/G)π(Z) (5.1)

between tangent spaces is onto, with B as kernel. y
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Hence, the projection of any object in Rn, that is invariant under the action of
the local Lie group G, leads to a quotient manifold. This last has r fewer dimensions
where r is the dimension of the orbits of the symmetry S of the object. Inversely, the
fiber composed of this quotient manifold and the orbits of S allows to reach the original
object from the reduced one.

Example 5.1.2. Consider the algebraic system defined by the equation x2 + y2 − r2 = 0
that corresponds to a cone in 3 dimensional space. Let us take Z = (x, y, r). The group
action associated to one of its one-dimensional symmetry S is given below:

x→ xλ, y → y λ, r → r λ (5.2)

where λ is the group parameter. The reduction of the variable r from this algebraic

H : r − 1

V : x2 + y2 − r2

Ṽ : x̃2 + ỹ2 − 1

Orb(S,Z)

Z

Z̃

Figure 5.1: Reduction of the algebraic system defined by x2 + y2 − r2 = 0.

system by using S is illustrated in figure 5.2. The variety V, defined by this algebraic
system, is projected onto the variety H defined by the equation r − 1 = 0 along the
orbits Orb(S,Z) of S. Each orbit of S is represented by a single point in H. The reduced

variety Ṽ of equation x̃2 + ỹ2 − 1 = 0 (the circle of radius 1), is at the intersection of V
andH. Remark that this reduced variety Ṽ is in a 2-dimensional space. The fiber, i.e. the
reduced variety Ṽ and the orbits Orb(S,Z), contains enough information to recover the
original variety V. The explicit relations between the original coordinates Z = (x, y, r)
and the new ones I = (x̃, ỹ) are given by:

x̃ =
x

r
ỹ =

y

r
· (5.3)

y

Remark 5.1.3. The same geometrical process is used for the reparametrization of systems
of ODEs (see § 5.5 page 129). However, one does not use the symmetries of differential
systems but these of the algebraic systems that define their steady points. y
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5.2 Classical Reduction Process

In this section we illustrate the classical reduction process that is partially based on the
rectification of a symmetry. Nevertheless, in this document we are not using this type
of process that requires computation of invariants. However we survey this process in
order to approach the moving frame based reduction process.

The classical reduction process requires two main steps. The first one is the com-
putation of new coordinates for the rectification of Lie point symmetries in classical
framework. This necessitates resolution of systems of PDEs. The second one is the
rewriting the studied system in these new coordinates (see [59]). This change could be
performed using elimination algorithms such as Gröbner basis or differential elimination
(see [13]). According also to the chosen set of coordinates, one can obtain different but
equivalent reduced systems. Even if the reduced system changes, its main geometrical
properties such as the number of equations remain the same.

5.2.1 Rectification of a Symmetry

In this subsection, we define and illustrate the rectification of a symmetry.

Definition 5.2.1 (Rectified Symmetries). A rectified (a.k.a. normal form in [104]) sym-
metry is represented by an infinitesimal generator δ of the form:

δ =
∂

∂z
(5.4)

where z is a coordinate. Hence the action is just a translation. y

Definition 5.2.2 (Principal Element). Given an infinitesimal generator δ, a function p
such that δp = 1 is called a principal element. y

Theorem 5.2.3 (see § 2.2 of [104]). Let δ be an infinitesimal generator acting on the
coordinate set Z = (z1, . . . , zn). The rectification of a symmetry corresponds to find new
coordinates I = (p, ζ1, . . . , ζn−1) such that:

δp = 1 and δζi = 0 ∀i ∈ {1, . . . , n− 1} . (5.5)

In these new coordinates, by definition, δ can be written in its rectified form. There
always exist such coordinates. y

Remark 5.2.4. The inverse of a moving frame ρ̃ = −ρ associated to an infinitesimal
generator δ always verifies the equality δρ̃ = 1 (see lemma 5.3.17 page 113). y

Example 5.2.5. Let us look at a scaling on a two dimensional space Z = (x, y):

δ = x
∂

∂x
+ y

∂

∂y
· (5.6)

In order to write this infinitesimal generator in its rectified form, one needs to compute
new coordinates (z, ζ) by solving the partial differential equations δz = 1 and δζ = 0.
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For example, z = log(y) (supposing that y is strictly positive) and ζ = x/y verify these
equations. Indeed, in these new coordinates, δ is rectified:

δ =
∂

∂z
· (5.7)

y

Remark 5.2.6. The rectified form of an infinitesimal generator is not unique, it depends
on the chosen new coordinates. y

5.2.2 Illustrations

In the following examples, we illustrate the two main steps of the classical reduction
process: the invariants computation and the elimination.

Example 5.2.7. Let us reconsider the algebraic system defined by x2 + y2 − r2 = 0
(see example 5.1.2 page 104). The infinitesimal generator δS associated to the one-
dimensional symmetry S given in (5.2) page 104 follows:

δS = x
∂

∂x
+ y

∂

∂y
+ r

∂

∂r
· (5.8)

1. Invariants Computation. According to remark 3.4.23 page 85 there exist two
independent invariants for the symmetry S. Let us denote them by x̃ and ỹ. They
verify the partial differential equations δS x̃ = 0 and δS ỹ = 0. By solving these
equations, one can take as new coordinates, for example, x̃ = x/r, ỹ = y/r (given
in (5.3) page 104). Remark that these invariants exist locally where the variable r
is different than 0.

2. Elimination. Now, the goal is to rewrite the algebraic system x2 + y2 − r2 = 0
in the new coordinate chart I = (x̃, ỹ). The elimination procedure applied on the
system: 




x2 + y2 − r2 = 0,
x̃ r − x = 0,
ỹ r − y = 0

(5.9)

leads to the reduced algebraic system x̃2 + ỹ2 − 1 = 0.

By this reduction process, as expected, the number of coordinates of the original algebraic
system is decreased by one. y

Remark 5.2.8. The Gröbner basis of the system (5.9) w.r.t. the lexicographic order given
by (x, y, r, x̃, ỹ) is: 




r2
(
x̃2 + ỹ2 − 1

)
= 0,

−ỹ r + y = 0,
−x̃ r + x = 0.

(5.10)

y
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Example 5.2.9. Let us reduce the system of ODEs (3.9) given in the example 3.2.6
page 63. It is defined on the coordinate set Z = (t, x, a, b). The infinitesimal generator
associated to one of its one-dimensional symmetries follows:

δS = −x∂
∂x

+ b
∂

∂b
· (5.11)

1. Invariants Computation. We are looking for three invariants
(
t̃, x̃, ỹ

)
of δS

that can be found by solving the partial differential equations δS t̃ = 0, δS x̃ = 0
and δS ã = 0. One can take:

t̃ = t, x̃ = x b, ã = a. (5.12)

2. Elimination. Now, the goal is to rewrite the dynamical system (3.9) page 63 in
the new coordinate chart of invariants I =

(
t̃, x̃, ã

)
:





dx̃

dt̃
=

d (x b)

dt
=
bdx+ xdb

dt
= b

dx

db
,

= (a− b x) b x = (ã− x̃) x̃,
dã

dt̃
=

da

dt
= 0,

⇒





dx̃

dt̃
= x̃ (ã− x̃) ,

dã

dt̃
= 0.

(5.13)

The reduction process, as expected, eliminated the parameter b and thus the equa-
tion db/dt = 0 from the resulting system. y

The same method can be applied to discrete dynamical systems as in the following
example.

Example 5.2.10. Let us illustrate the reduction of a system of OREs by using the recur-
rence operator σ in (3.2.18) page 65. It is defined on the coordinate set Z = (τ, x, y, c).
The infinitesimal generator associated to one of its one-dimensional symmetries follows:

δS = x
∂

∂x
+ y

∂

∂y
· (5.14)

1. Invariants Computation. We are looking for three invariants (τ̃ , ỹ, c̃) of δS
that can be found by solving the partial differential equations δS τ̃ = 0, δS ỹ = 0
and δS c̃ = 0. One can take:

τ̃ = τ, ỹ =
y

x
, c̃ = c. (5.15)

Remark that these invariants exist locally where x is different than 0.

2. Elimination. Now, the goal is to rewrite the dynamical system (3.11) page 64 in
the new coordinate chart of invariants I = (τ̃ , ỹ, c̃). The recurrence operator σ is
an endomorphism thus we obtain (or for example using Gröbner bases):

στ̃ = τ̃ + 1, σỹ =
σy

σx
=

( y
x

)
+ 1

c x
x =

ỹ + 1

c̃
, σc̃ = c̃. (5.16)



108 Exact Simplification Processes

The reduction process, as expected, eliminated the state variable x and thus the equa-
tion σx = c x from the resulting system. y

Remark that the classical reduction method is an exact reduction method meaning
that there exist relations (fibers) between the original and the reduced systems coordi-
nates given by the invariants. Its limitations can be seen as systems and infinitesimal
generators of their symmetries complicate. In the previous examples, we use scaling type
symmetries so that the invariants can be computed easily. The next example illustrates
a more difficult case.

Example 5.2.11. Let us consider the following algebraic system (we are not interested
in the point defined by x = y = a = b = c = 0):





(y − b)2 + a2 − c2

4 = 0

(x− a)2 + b2 − c2

4 = 0

x2 + y2 − c2 = 0.

(5.17)

The following infinitesimal generator is associated to one of its one-dimensional symme-
try groups:

δS = 4 c (b− y) ∂
∂x

+ 4 c a
∂

∂y
+ c (4 b− 3 y)

∂

∂a
+ x c

∂

∂b
+ 4 (y a+ b x− y x) ∂

∂c
· (5.18)

This quadratic type symmetry acts on the parameter c (δSc 6= 0) so it could be used
to eliminate it from the studied system. What are the associated invariants? One
needs to solve partial differential equations of the form δSζ = 0. Perhaps, some special
techniques could give solutions to this example but there is no a general algorithm for
such computations. y

The main idea of all these examples is the projection (see § 5.1 page 103) of the
system variety onto an appropriate submanifold. The fiber i.e. the reduced system
and the orbits of the associated symmetry keep necessary informations to reconstruct
solutions of the original system. So the explicit expressions of the invariants are not
essential in the reduction process. In the next section, let us describe roughly the notion
of moving frames. In the sequel, the moving frame based reduction process shows how
one can reduce a system without computing associated invariants and avoiding as much
as possible nonlinear elimination steps.

5.3 Around Moving Frames

This section provides the preliminaries for the moving frame based reduction process
and some related notions. We begin by defining cross-sections that are used for the
projection of the reduction process. Then we define moving frames as they are used in
this document and some of their properties. Remark that we employ a consequence of
the recurrence formula given in § 13 of [38]. Finally we show how to use these moving
frames for the invariants computation and for the rectification of symmetries.
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5.3.1 Cross-Section

In moving frame based reduction process, a cross-section is one of the key objects. It
corresponds to the submanifold on which the original system is projected in order to
obtain the reduced system.

Definition 5.3.1 (Cross-Section). Let G be a r-dimensional local Lie group of trans-
formation acting regularly on Rn where Z is the coordinate set. A cross-section is
a (n− r)-dimensional submanifold H ⊂ Rn of equations:

h1(Z) = · · · = hr(Z) = 0 (5.19)

such that

• H intersects locally the orbits of G at least in one point;

• H intersects these orbits transversely i.e. for each infinitesimal generator δ associ-
ated to G, the relation δhi 6= 0 holds for all i in {1, . . . , r}.

The cross-section is said to be regular if H intersects each orbit at most once. y

Remark 5.3.2. If G acts (semi-)regularly, then the Implicit Function Theorem guarantees
the existence of regular local cross-sections at any point of M (see § 2 of [37]). y

Remark 5.3.3. There are infinitely many cross-sections that can be used for a reduction
process. Thus it must be chosen carefully in order to facilitate computations. However,
even if two different cross-sections lead to two different reduced systems, their main
geometrical properties, as the dimension of the system, remain the same. y

Hypothesis 5.3.4. In the following algorithms, one focuses on local cross-sections (even
if it is not mentioned explicitly) and chosen cross-sections are taken linear w.r.t. the
coordinates that we want to eliminate. y

5.3.2 Moving Frame

Let us give formal definition of a moving frame as it is used along this document, in
a restricted framework. The goal of defining moving frames is to use them to reduce
an algebraic or dynamical system without any computation of invariants or need to
integrate any differential equation.

Definition 5.3.5 (Moving Frame). Let G be a r-dimensional local Lie group acting
regularly on n-dimensional manifold Rn with r ≤ n. A moving frame is a smooth local G-
equivariant map (for group elements near the neutral element e of G):

ρ : Rn → G. (5.20)

y

Remark 5.3.6. Each moving frame of this document is a right moving frame. Although,
there is an elementary correspondence between right and left moving frames (see th. 4.2
in § 4 of [38]). y
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The notion of G-equivariance indicates the commutativity between the moving frame
and the group action.

Definition 5.3.7 (G-Equivariance of a Moving Frame). Let G be a r-dimensional local
Lie symmetry group associated to a Lie symmetry S. The G-equivariance of a moving
frame ρ : Rn → G implies the commutativity property through the following relation for
all ν in G and Z in Rn:

ρ(S(ν, Z)) = ρ(Z) + (−ν) with (−ν) + ν = e (5.21)

where + is the group operation. y

Hypothesis 5.3.8. In the context of this document, such a moving frame always exists
in a neighborhood of a point Z of Rn because G is supposed to act regularly near Z (see
th. 4.4 in § 4 of [38]). y

In our framework, the determination of a moving frame relies on the choice of a local
cross-section as one can see in the following theorem.

Theorem 5.3.9 (Moving Frame, see th. 2.3 in § 2 of [89]). Let G, a r-dimensional
local Lie symmetry group associated to a Lie symmetry S, act regularly (and thus freely)
on Rn. Let H ⊂ Rn be a local cross-section. Given Z in Rn, let ρ(Z) be the unique group
element that maps Z to the cross-section i.e.:

S(ρ(Z) , Z) ∈ H. (5.22)

Then ρ : Rn → G is a right moving frame. y

Geometrically, the group element ρ(Z) given by a moving frame is characterized
as the unique group transformation that moves the point Z onto the cross-section H.
Moreover, a point S(ρ(Z) , Z) lies on H and on the orbit Orb(S,Z) passing through Z.

Remark 5.3.10. The moving frame ρ is related to the classical reduction process be-
cause it verifies δSρ = −1 where δS is the infinitesimal generator of the associated one-
dimensional symmetry group (see proof of the proposition 5.3.17 page 113). Thus it is
a part of the computation summarized in theorem 5.2.3 page 105. y

The following lemma states how to choose a local moving frame from a given cross-
section by using theorem 5.3.9.

Lemma 5.3.11 (see § 2 of [89]). Let G be a r-dimensional local symmetry group acting
on Rn and H ⊂ Rn a local cross-section to the orbits of G. The normalization equations
associated to H are the system of equations:

hi(S(ρ(Z) , Z)) = 0 ∀i ∈ {1, . . . , r} . (5.23)

Assuming that G acts freely and H is a regular cross-section, there is a unique local
solution ρ(Z) to these algebraic equations determining the moving frame ρ associated
to H. y
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The next example illustrates all these notions on a one-dimensional Lie symmetry
group.

Example 5.3.12. Consider the following continuous dynamical system of two state
variables where Z = (t, x, y):

dx

dt
= y,

dy

dt
=
y

x
· (5.24)

Let S be a one-dimensional Lie symmetry of this system with:

S : G× R3 → R3,

ν × Z → S(ν, Z) =




t eν

x eν

y


 .

(5.25)

This group action is associated to the following infinitesimal generator:

δS = t
∂

∂t
+ x

∂

∂x
· (5.26)

One can correspond a 2-dimensional local cross-section to this one-dimensional symmetry
group. Let us choose the cross-section H by respecting the conditions of definition 5.3.1
page 109 but quite arbitrarily h(Z) = x− 1. The associated normalization equation is
of the form:

h(S(ρ(Z) , Z)) = x eρ(Z) − 1 = 0. (5.27)

The normalization formula issue from this normalization equation states the expression
of the moving frame to ρ(Z) = − log (x). y

Remark 5.3.13. The moving frame reduction process detailed in the forthcoming sections
does not require the computation of moving frames; it relies on the recurrence formula
(see § 13 of [38]). y

5.3.3 Invariants Computation using Moving Frames

We recall here the moving frame based invariant computation to show that this method
provides tools to compute the invariants if they are asked. In my work, I do not compute
the invariants. They require the associated explicit group action that is given by the
resolution of PDEs systems. Again, there is no a general algorithm for such problems.
Considering that one already has the group action, moving frame based invariant com-
putation is a fully algorithmic method and complete presentation can be found in § 4
of [38] and in [59].

Theorem 5.3.14 (see th. 8.25 of [88]). The substitution of the normalization for-
mula ρ(Z) obtained from resolution of normalization equations (5.23) page 110 into the
group action, leads to n− r functionally independent invariants. This invariantization
of coordinates yields fundamental invariants denoted by I := S(ρ(Z) , Z) (one needs to
remove numerical projections). The point Z is projected on H and the invariants I of S
are the coordinates induced by this projection. y
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The following examples illustrate this computation in simple cases of scalings.

Example 5.3.15. Reconsider the example 5.3.12 page 111. A set of independent invari-
ants is found by substituting the moving frame ρ(Z) = − log (x) into the parameter ν of
the group action (5.25) page 111:

S(ρ(Z) , Z) =




t eρ(Z)

x eρ(Z)

y


 =




t e− log(x)

x e−log(x)

y


 =




t
x
1
y


 . (5.28)

Discarding the numerical constant in above projection (it corresponds to the coordinate
to be eliminated), one finds the invariants associated to the Lie symmetry S i.e. the
set I = (t/x, y). y

Example 5.3.16. Consider now, the discrete dynamical system defined on Z = (τ, x, y):

στ = τ + 1, σx = 2x− y, σy = x. (5.29)

Let S be a one-dimensional Lie symmetry of this system with:

S : G× R3 → R3,

ν × Z → S(ν, Z) =




τ
x eν

y eν


 .

(5.30)

This group action is associated to the following infinitesimal generator:

δS = t
∂

∂t
+ x

∂

∂x
· (5.31)

One can correspond a 2-dimensional local cross-section to this one-dimensional symmetry
group. Let us choose the cross-section H by respecting the conditions of definition 5.3.1
page 109 but quite arbitrarily h(Z) = x− 1. The associated normalization equation is
of the form:

h(S(ρ(Z) , Z)) = x eρ(Z) − 1 = 0. (5.32)

The normalization formula issue from this normalization equation states the expression
of the moving frame to ρ(Z) = − log (x). A set of independent invariants is found by
substituting this moving frame into the parameter ν of the group action (5.30):

S(ρ(Z) , Z) =




τ

x eρ(Z)

y eρ(Z)


 =




τ

x e−log(x)

y e− log(x)


 =




τ
1
y
x


 . (5.33)

Discarding the numerical result, one finds the invariants associated to this symmetry
i.e. I = (τ, y/x). y
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5.3.4 Rectification of a Symmetry using Moving Frames

The following proposition states a way of choosing a new coordinate set so that an
infinitesimal generator associated to a Lie symmetry can be rewritten in its rectified or
semi-rectified form.

Proposition 5.3.17. Let δS be an infinitesimal generator acting on the coordinate set Z
of dimension n with associated n− 1 invariants I = (ζ1, . . . , ζn−1).

1. In the new coordinate set composed by these invariants and the inverse of the mov-
ing frame i.e. ρ̃ = −ρ (when it exists), this infinitesimal generator can be rewritten
in its rectified form δS = ∂/∂ρ̃.

2. In the new coordinate set composed by these invariants and a semi-invariant µ, this
infinitesimal generator can be rewritten in its semi-rectified form δS = αµ∂/∂µ
with α in R. y

Proof. A one-dimensional symmetry acting on n coordinates has n− 1 independent in-
variants (see remark 3.4.23 page 85), denoted by I = (ζ1, . . . , ζn−1). They verify δSζi = 0
(see § 3.4.5 page 84) for all i in {1, . . . , n− 1}.

1. Let us show that the inverse of a moving frame ρ̃ = −ρ verifies δS ρ̃ = 1. This can
be deduced from the G-equivariance property of moving frames given in defini-
tion 5.3.7 page 110. The equality (5.21) page 110 induces the following one:

S(ρ(S(ǫ, Z)) , Z) = S(ρ(Z)− ǫ, Z) (5.34)

for all ǫ in the neighborhood of the neutral element 0 of G. The equation (5.34)
leads to the following relations by considering the continuity properties (see equa-
tion (3.60) page 81 and (3.61) page 82) of the symmetry S:

S(ǫ,S(ρ(S(ǫ, Z)) , Z)) = S(ρ(Z) , Z) ,

S
`

ǫ,S
`

ρ
`

Z + ǫ δSZ + O
`

ǫ2
´´

, Z
´´

= S(ρ(Z) , Z) ,

S
`

ǫ,S
`

ρ(Z) + ǫ ∂ρ

∂Z
(Z) δSZ + O

`

ǫ2
´

, Z
´´

= S(ρ(Z) , Z) ,

S
`

ǫ,S(ρ(Z) , Z) + ǫ ∂ρ

∂Z
(Z) δSZδSS(ρ(Z) , Z) + O

`

ǫ2
´´

= S(ρ(Z) , Z) ,

S(ρ(Z) , Z) + ǫ ∂ρ

∂Z
(Z) δSZδSS(ρ(Z) , Z) + ǫδSS(ρ(Z) , Z) + O

`

ǫ2
´

= S(ρ(Z) , Z) .

(5.35)

This latest relation implies the following one:

∂ρ

∂Z
(Z) δSZδSS(ρ(Z) , Z) = −δSS(ρ(Z) , Z) (5.36)

which leads to the equality ∂ρ/∂Z(Z) δSZ = −1. Hence, one can conclude that
for a right moving frame ρ, δSρ = −1 and for its inverse ρ̃, δS ρ̃ = 1 hold.

2. By definition, a semi-invariant µ verifies the relation δSµ = αµ with α in R.
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Thus, in the given new coordinate set, the infinitesimal generator can be rewritten in its
rectified (resp. semi-rectified) form in the first (resp. second) case. y

Remark 5.3.18. The sign of the expression δSρ depends whether we choose right or left
moving frames. y

5.4 Moving Frame Based Reduction Process

The moving frame method is first introduced by Darboux (see [29]) in the xixth century,
then developed by Cartan (see [24]). In [37], the authors Fels and Olver say: “The
theory of moving frame is acknowledged to be a powerful tool for studying the geometric
properties of submanifolds under the action of a transformation group”. The method
of moving frames can be directly applied to practical problems arising in geometry,
invariant theory or differential equations.

This section is devoted to moving frame based reduction process also known as
invariantization process, not in its whole generality but as it is implemented in the
package ExpandedLiePointSymmetry. This is a special case of the recurrence formula
given in § 13 of [38] or in § 5 of [65]. The goal of recalling it here is the simplicity of its
adaptation in our framework. We present the reduction of an algebraic and a dynamical
system w.r.t. a single symmetry i.e. one-dimensional Lie algebra. Then we discuss the
reduction w.r.t. symmetries with an associated Lie algebra of more than one dimension.
Finally, the implementation is detailed.

Here, the aim of the moving frame based reduction process is to represent a given al-
gebraic or dynamical system by a lower dimensional system and fibers. The standpoint of
this section implies polynomial complexity in the input size for presented computations.
In fact, the moving frame method leads to a reduction process for which neither the
moving frame nor the invariants need to be computed (see § 13 of [38] for the recurrence
formula).

In this document, the inputs of this process are an algebraic or a dynamical system
(see ch. 3 page 59 for their representation) and its Lie point symmetries (see ch. 4 page 87
for their computation). The output is the representation of the input system by a lower
dimensional system and the implicit fibers. These fibers constitute the link between
the original and the reduced system. When these fibers are explicitly known, they
correspond to invariants of the used symmetries. In this document, we do not compute
invariants explicitly. Instead we propose to compute numerically the corresponding
fibers. Given a cross-section, the moving frame application gives the unique element of
the used symmetry group that maps a point of the variety defined by the input system
to another point in this cross-section.

Hypothesis 5.4.1. In this section, used local Lie symmetry groups are of dimension
one thus they can be represented by a single infinitesimal generator. For higher dimen-
sional symmetry groups, the structure of Lie algebras permits to perform an incremental
reduction. y

Hypothesis 5.4.2. In this section, computations rely upon the chosen local cross-
section H and associated moving frame ρ. In our framework, cross-sections depend
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on the coordinate z to eliminate (see hyp. 5.3.4 page 109) and they verify the rela-
tion ∂H/∂z 6= 0. Moreover, as the used local Lie symmetry group is of dimension one,
the dimension of the variety defined by H is n− 1 where n is the dimension of the
original system. y

5.4.1 Reduction of an Algebraic System

This subsection explains and illustrates the reduction of an algebraic system with a one
dimensional local Lie symmetry group using moving frames.

Let us sketch by the following example the moving frame based reduction process of
an algebraic system without computing neither the moving frame nor the invariants.

Example 5.4.3. Reconsider the algebraic system defined by x2 + y2 − r2 = 0 and its
variety V (see example 5.1.2 page 104). Let us reduce the coordinate r by using moving
frame based reduction process. The infinitesimal generator associated to the symmetry
group action given in (5.2) page 104 follows:

δS = x
∂

∂x
+ y

∂

∂y
+ r

∂

∂r
· (5.37)

The reduction of r is possible because S acts on r i.e. δSr 6= 0 and the orbits of S are
transversal to V. The variety H defined by r − 1 = 0 can be chosen as a cross-section.
Remark that it is not included in V but intersects it and is linear w.r.t. the coordinate r.
The moving frame based reduction process consists of specializing the coordinate r to 1
as imposed by the cross-section. So the reduced algebraic system x̃2 + ỹ2 − 1 = 0 is
in the cross-section H where x̃ and ỹ are new coordinates (invariants). Remark that
the reduced variety Ṽ is the projection of V in H along the orbits Orb(S,Z) of S. The
fiber, i.e. this reduced variety and the orbits of S, is enough to represent the original
variety V. y

The following result summarizes this reduction process.

Proposition 5.4.4 (see th. 4.3 in § 4.1 of [59]). Let G be a group action and V the
variety defined by an algebraic system in R (Z)G i.e. an expression invariant under the
action of G. Let H be a local cross-section linear w.r.t. a coordinate z, on which G
acts. We assume that H 6⊂ V and H ∩ V 6= ∅. H defines the invariants ζ1, . . . , ζn−1 (see
§ 5.3.3 page 111). The rewriting of the algebraic system in R (ζ1, . . . , ζn−1) is given by
the projection of V onto the cross-section H i.e., in our case, by the specialization of z
w.r.t. the cross-section H. y

Remark 5.4.5. The reduced algebraic system obtained by the proposition 5.4.4 is equal
to the result of the classical reduction process and the chosen invariants are associated
to moving frame (see § 5.3.3 page 111) when the principal element in (5.5) page 105 is
this moving frame. y
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5.4.2 Reduction of a Dynamical System

The recurrence formula given in § 13 of [38] uses r-dimensional symmetry groups in order
to reduce continuous dynamical systems. This formula is expressed in another formalism
by theorem 3.6 in [58]. In our work we apply this formula to one-dimensional symmetry
groups. Thus, for greater dimensional symmetries, the link between the original and the
reduced systems are expressed by a succession of one-parameter fibers (the succession is
structured by the properties of the symmetries Lie algebra).

This subsection deals with the reduction of a dynamical system in two cases (as the
reduction process is a projection, we call it elimination in the sequel). The first one is the
elimination of a state variable. In this document, we present only continuous dynamical
systems for this case. For discrete dynamical systems a similar method can be applied
under some conditions. This research subject is left to future work. The second case is
the elimination of a parameter where the used method is common for both, continuous
and discrete, dynamical systems.

State Variable Elimination

In this paragraph, we deal with the elimination of a state variable from continuous
dynamical systems. Such a reduction can be done by moving frame based methods
without computing any explicit group action, moving frame or invariant. The following
proposition states a simple case of the recurrence formula (see § 13 of [38] for a presen-
tation in an extern calculus framework, [59] for a presentation in an algebraic geometric
framework and [58] for a presentation with derivation in a jet space).

Proposition 5.4.6. Let D be a continuous dynamical system with G as transformation
group, δD associated infinitesimal generator and x a state variable (δDx 6= 0). Let S be
a one-dimensional local Lie symmetry of D and δS associated infinitesimal generator.
We assume that S acts on x i.e. δSx 6= 0. Let also H : h(Z) = 0 be a cross-section
associated to S. In this case, the orbits of D do not have to stay in this cross-section
i.e. δDh(Z) 6= 0. The following integral relation, illustrated in figure 5.2 page 117 holds:

∀ (ν, Z) ∈ (G,H) , S(ρ(D(ν, Z)) ,D(ν, Z)) ∈ H. (5.38)

This proposition provides the infinitesimal version of this statement. In these notations,
the moving frame based reduction of a state variable is a specialization of the state
variable x w.r.t. the chosen cross-section (following hypothesis 5.3.4 page 109 the cross-
section is linear w.r.t. x) in the following infinitesimal generator:

δD −
δDx

δSx
δS · (5.39)

The resulting infinitesimal generator denoted by δ eD is associated to the reduced dynamical

system D̃ = S(ρ(D(ν, Z)) ,D(ν, Z)). y

Proof. The moving frame based method let work directly with infinitesimal expressions.
The aim of this proof is to determine the infinitesimal generator δ eD encoding the reduced
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H
Z

D(ν, Z)

S(ρ(D(ν, Z)) ,D(ν, Z))D̃

D S

Figure 5.2: Reduction of a dynamical system.

dynamical system D̃ by using δD and the infinitesimal generator δS of the used Lie point
symmetry. We use an analytic framework in order to explicit the recurrence formula
presented in § 13 of [38] in our special case.

First, remark that any point Z in the chosen cross-section H satisfies the rela-
tion h(Z) = 0 and also one has S(ρ(Z) , Z) = Z. Furthermore, for such a point and
any ǫ in the neighborhood of 0 in R, the following relation holds:

h(S(ρ(D(ǫ, Z)) ,D(ǫ, Z))) = 0. (5.40)

Using the properties (3.60) page 81 and (3.61) page 82, one can realize the following
series of computation from (5.40):

h(S(ρ(D(ǫ, Z)) ,D(ǫ, Z))) = 0

= h
(
S
(
ρ(D(ǫ, Z)) , Z + ǫδDZ + O

(
ǫ2
)))

,

= h
(
S(ρ(D(ǫ, Z)) , Z) + ǫ∂S(ρ(D(ǫ,Z)),Z)

∂Z δDZ + O
(
ǫ2
))
,

= h
(
S
(
ρ(Z) + ǫ ∂ρ

∂Z (Z) δDZ + O
(
ǫ2
)
, Z
)

+ ǫ∂S(ρ(Z),Z)
∂Z δDZ + O

(
ǫ2
))
,

= h
(
Z + ǫ ∂ρ

∂Z (Z) δDZδSZ + ǫδDZ + O
(
ǫ2
))
,

= h(Z) + ǫ ∂h
∂Z (Z)

(
∂ρ
∂Z (Z) δDZδSZ + δDZ

)
+ O

(
ǫ2
)
,

= h(Z) + ǫ ∂h
∂Z (Z) (δDρ(Z) δSZ + δDZ) + O

(
ǫ2
)
.

(5.41)

As already said, h(Z) = 0 so the coefficient of ǫ in above power series expansion is 0.
Thus (δD + µ δS)h = 0 where µ = δDρ(Z) and is unknown. The projection of the contin-
uous dynamical system has δD + µ δS as infinitesimal generator (see 3.65 page 82). On
the other hand, the new infinitesimal generator must not depend on the state variable x
that one wants to eliminate meaning that the relation (δD + µ δS) x = 0 holds. Thus µ
is equal to −δDx/δSx. Finally, as D̃ remains in the cross-section, the specialization of
the infinitesimal generator given in (5.39) page 116 w.r.t. the chosen cross-section gives
the infinitesimal generator δ eD of the reduced continuous dynamical system. y

The following example shows the reduction of a state variable from a continuous
dynamical system. First, we use moving frame based reduction method and reach the
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reduced dynamical system without any integration or any differential elimination. Then
we perform the same process by using the classical reduction method in order to illustrate
the relationship with the first computations.

Example 5.4.7. The following continuous dynamical system D and associated infinites-
imal generator has 2 state variables where Z = (t, x, y):

dx

dt
= y,

dy

dt
=
y

x
and δD =

∂

∂t
+ y

∂

∂x
+
y

x

∂

∂y
· (5.42)

By using the local Lie point symmetry S associated to:

δS = t
∂

∂t
+ x

∂

∂x
(5.43)

one can eliminate the state variable x because δSx 6= 0. Let us choose, as always, a
cross-section H : h(Z) = 0 that locally and transversely intersects the orbits of S. For
example, let us take H : x− 1 = 0 that verifies δSh(Z) 6= 0 and linear w.r.t. x. Remark
that, in this case the orbits of D do not stay in the cross-section (see figure 5.2 page 117)
i.e. δD (x− 1) 6= 0. In order to apply the proposition 5.4.6 page 116, one must compute
the infinitesimal generator associated to the projection of the original dynamical system
in the cross-section by using the formula (5.39) page 116:

δD −
δDx

δSx
δS =

(
∂

∂t
+ y

∂

∂x
+
y

x

∂

∂y

)
− y

x

(
t
∂

∂t
+ x

∂

∂x

)
=

(
1− y t

x

)
∂

∂t
+
y

x

∂

∂y
· (5.44)

The specialization of the variable x to 1 as imposed by the chosen cross-section gives
the infinitesimal generator of the reduced continuous dynamical system D̃ in the new
coordinate chart

(
t̃, ỹ
)
:

δ eD =
(
1− ỹ t̃

) ∂
∂t̃

+ ỹ
∂

∂ỹ
· (5.45)

Now, let us use the classical reduction method to reach the same result.

1. Invariants Computation. Let us denote the invariants that we are looking for
by x̃ and ỹ. They verify the differential equations δS x̃ = 0 and δS ỹ = 0. The mov-
ing frame allows to compute these invariants. Thus, following the theorem 5.3.14
page 111, one has the explicit expressions of some invariants:

t̃ =
t

x
, ỹ = y. (5.46)

2. Elimination. For this step, one can compute δD t̃ and δDỹ w.r.t. t̃ and ỹ and
perform a differential elimination using [13]. But one can also use the dual form
of the infinitesimal generator δD:

dx = y dt, xdy = y dt (5.47)

as follows. The exterior derivation of t̃ implies that the relation xdt̃+ t̃ dx = dt
holds; using (5.47), one can eliminate dx in this relation to obtain:

xdt̃+ t̃ xdy =
xdy

y
· (5.48)
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Using explicit definition of the invariants t̃ and ỹ, other variables can be eliminated
from (5.48) page 118 to obtain:

ỹ dt̃ =
(
1− t̃ ỹ

)
dỹ. (5.49)

Thus the associated reduced dynamical system is associated to the infinitesimal
generator given in (5.45) page 118. y

Remark 5.4.8. As one can see, neither the invariants nor the moving frame is computed
by this moving frame based reduction method, only implicit representations are used.
The original system is represented by the reduced system and the orbits of symmetry S.
This fiber is implicitly encoded by differential equations associated to δS and could be
numerically computed. y

Remark 5.4.9. Until now, in order to be clear as much as possible, considered examples
were based on scalings. The importance of moving frame based reduction process can be
seen if symmetries are more complicated. Imagine that one needs to eliminate the param-
eter b from the following continuous dynamical system defined on Z = (x, y, p, q, a, b):

dx

dt
= p,

dy

dt
= q,

dp

dt
= −2 ax,

dq

dt
= b− 2 a y,

da

dt
= 0,

db

dt
= 0 (5.50)

by using the quadratic infinitesimal generator:

δS = p
∂

∂x
+
∂

∂y
− 2 ax

∂

∂p
+ 2 a

∂

∂b
(5.51)

associated to a symmetry of it. One needs to choose a cross-section that verifies required
conditions; for example H : b− 1 = 0. In this case, computing associated invariants is
not obvious. But using moving frame based reduction process, the specialization of b
to 1 leads directly to the reduced system:

dx̃

dt̃
= p̃,

dỹ

dt̃
= q̃,

dp̃

dt̃
= −2 ã x̃,

dq̃

dt̃
= 1− 2 ã ỹ,

dã

dt̃
= 0. (5.52)

As one can see, there is no need to compute invariants nor the moving frame. This reduc-
tion method ensures that there exists a new coordinate chart of invariants

(
t̃, x̃, ỹ, p̃, q̃, ã

)

in which the system (5.50) can be represented by (5.52) and the fibers of (5.51). y

Remark 5.4.10. For a continuous dynamical system, the process followed for the reduc-
tion of a parameter is a special case of the reduction of a state variable, more precisely
one has µ = 0. y

Parameter Elimination

In this paragraph, the moving frame based elimination of a parameter is presented for
continuous and discrete dynamical systems. Because the method doesn’t involve any
continuity property, these two cases can be handled in the same way.

Let δD be an infinitesimal generator associated to a continuous dynamical system.
Remark that for a parameter θ, one has δDθ = 0. Thus, according to the proposition 5.4.6
page 116, the moving frame based reduction of a parameter is a simple specialization
of this parameter w.r.t. the chosen cross-section. The following example illustrates this
case.
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Example 5.4.11. Let us consider the following continuous dynamical system D defined
on the coordinate set Z = (t, x, y, a, b):

dx

dt
= x− a y, dy

dt
= b− ax, da

dt
=

db

dt
= 0 (5.53)

and its associated infinitesimal generator:

δD =
∂

∂t
+ (x− a y) ∂

∂x
+ (b− ax) ∂

∂y
· (5.54)

This dynamical system possesses a one-dimensional local Lie point symmetry S repre-
sented by the infinitesimal generator:

δS = x
∂

∂x
+ y

∂

∂y
+ b

∂

∂b
· (5.55)

One can eliminate the parameter b from this dynamical system by using δS because it
acts on this parameter i.e. δSb 6= 0. Let us choose a local cross-section H : h(Z) = 0 that
locally and transversely intersects the orbits of S i.e. δSh(Z) 6= 0, verifying ∂h(Z)/∂b 6= 0
and linear in b; for example h = b− 1. The moving frame based reduction process tells
that, in this case, the elimination of the parameter b is equivalent to the specialization
of the dynamical system D by b = 1 i.e. to:

dx̃

dt̃
= x̃− ã ỹ, dỹ

dt̃
= 1− ã x̃, dã

dt̃
= 0 (5.56)

where t̃, x̃, ỹ and ã are new coordinates (invariants). Remark that the system (5.53) can
be represented by the lower dimensional system (5.56) and the orbits of S. y

The following example shows that the same reduction process is likely valid for dis-
crete dynamical systems. This subject will be part of a future work for formal demon-
stration. Its implementation is already available in [102].

Example 5.4.12. The discrete dynamical system defined on Z = (τ,X, Y,R,X0, C, r)
by the recurrence operator σ:





στ = τ + 1,

σX = RX − (R−1)X2

X0
− C X Y, σY = r X Y

X0
,

σR = R, σX0 = X0, σC = C, σr = r

(5.57)

is a discrete time predator-prey model (see [81]). Here, X and Y represent the prey and
predator numbers in year τ whose maximum reproductive rates are, respectively, R and r
and X0 is the equilibrium value of X in the absence of Y . One of its one-dimensional
local Lie point symmetries S associated to the infinitesimal generator:

δS = X
∂

∂x
+X0

∂

∂X0
(5.58)

can be used to eliminate the parameter X0 because one has δSX0 6= 0. As for the
continuous case, one can choose a local cross-section defined by H : X0 − 1 = 0 that



5.4. Moving Frame Based Reduction Process 121

verifies required conditions; δS (X0 − 1) 6= 0 and ∂ (X0 − 1)/∂X0 6= 0. According to the
moving frame based reduction process, the reduced discrete dynamical system can be
obtained by specializing the parameter X0 to 1:





στ̃ = τ̃ + 1,

σX̃ = R̃ X̃ −
(
R̃− 1

)
X̃2 − C̃ X̃ Ỹ , σỸ = r̃ X̃ Ỹ ,

σR̃ = R̃, σC̃ = C̃, σr̃ = r̃

(5.59)

where τ̃ , X̃, Ỹ , R̃, C̃ and r̃ are new coordinates (invariants). Remark that the sys-
tem (5.57) page 120 can be represented by the lower dimensional system (5.59) and
the orbits of S.

Now, let us verify this result by rewriting the original system in the new coordinate

set composed by the invariants τ̃ = τ, X̃ = X/X0, Ỹ = Y, R̃ = R, C̃ = C, r̃ = r:





στ̃ = στ = τ + 1 = τ̃ + 1,

σX̃ = σX
σX0

= R X
X0

− (R− 1)
(

X
X0

)2

− C X
X0

Y = R̃ X̃ −
(
R̃− 1

)
X̃2 − C̃ X̃ Ỹ ,

σỸ = σY = r X
X0

Y = r̃ X̃ Ỹ ,

σR̃ = σR = R = R̃,

σC̃ = σC = C = C̃,
σr̃ = σr = r = r̃.

(5.60)

These eliminations show that the reduced discrete dynamical system found by the clas-
sical reduction process is given in (5.59). y

5.4.3 Successive Reduction Process

In this document, a reduction process is performed by using one-dimensional symmetry
groups. For r-dimensional local Lie symmetry groups, we perform successively r times
this process (using the relation (5.1) page 103). Given such a Lie algebra, one must
choose the order of its infinitesimal generators to perform these reductions. The following
proposition gives this order in the case of a solvable Lie algebra.

Proposition 5.4.13. [see th. 2.60 in § 2.5 of [86]] Consider a dynamical system D
and the chain of Lie subalgebras g

(1), . . . , g(κ) of its solvable Lie algebra g as described
in (3.38) page 74. Suppose that the Lie subalgebra g

(i+1) is used to reduce D and that
a new dynamical system D̃ is deduced. In this context, D̃ admits the quotient alge-
bra g

(i)/g(i+1) as the Lie algebra of its symmetries. y

Remark 5.4.14. If the dimension difference between two successive Lie subalgebras g
(i)

and g
(i+1) is greater than 1, then one can use associated infinitesimal generators in

any order because the quotient algebra g
(i)/g(i+1) is commutative by construction (see

proposition 3.3.19 page 73). y

The reduction process remain correct, if for some reasons, the infinitesimal generators
are not used in the right order. However, their effectiveness may be affected. Given a r-
dimensional Lie algebra, one can be sure to reduce the associated system at most by r
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but not exactly by r. Recall that, on the other hand, these cases can be handled by
applying the more general algorithm based on the recurrence formula given in [38, 65]
without considering a special order of infinitesimal generators. The following examples
illustrate the importance of this order in this document.

Example 5.4.15. The dynamical system (another type of Verhulst logistic growth
model given in (3.9) page 63):

dx

dt
= (a− b x) x− c x, da

dt
=

db

dt
=

dc

dt
= 0 (5.61)

possesses a Lie symmetry group of dimension 3 that can be represented by a translation
and two scalings:

δ1 =
∂

∂a
+
∂

∂c
, δ2 = −t∂

∂t
+ a

∂

∂a
+ b

∂

∂b
+ c

∂

∂c
, δ3 = x

∂

∂x
− b∂

∂b
· (5.62)

If one uses at first the scalings in order to eliminate two parameters from the system,
then the reduced system will no longer have a translation. Indeed, one can eliminate,
for example, the parameters a and b using δ2 and δ3. In this case, the reduced system
writes in a new coordinate set:

dx̃

dt̃
= (1− x̃) x̃− c̃ x̃, dc̃

dt̃
= 0· (5.63)

Remark that this system has no translation. On the other hand, if one uses at first the
information of the translation to eliminate one parameter, let us say c, then the reduced
system writes in a new coordinate set:

dx̃

dt̃
=
(
ã− b̃ x̃

)
x̃,

dã

dt̃
=

db̃

dt̃
= 0· (5.64)

Remark that this reduced system keeps its two scalings which serve to eliminate two
remaining parameters (see § 2.6 of [109]). This is because the scalings are symmetries of
the translation but the opposite is not true. One can verify this result by constructing
associated commutator table:

δ1 δ2 δ3

δ1 0 δ1 0

δ2 −δ1 0 0

δ3 0 0 0

(5.65)

In the associated commutator series, remark that g
(0) contains δ1, δ2 and δ3, g

(1) contains
just δ1 and g

(2) is empty. So, one must use δ1 before others in the reduction process. The
order in which the infinitesimal generators δ2 and δ3 are used is not important because
the quotient algebra g

(0)/g(1) is commutative. y

Example 5.4.16. Look at the solvable Lie algebra considered in the example 3.3.23
page 74. One has a commutator series as follows:

g = g
(0) ⊂ g

(1) ⊂ g
(2) = {0} . (5.66)

According to the solvability theory, one must use the information given by the infinites-
imal generators of g

(1) i.e. δ1 or δ4 before these in g
(0) but not in g

(1) i.e. δ2 or δ3. y
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Another practical question is the rewriting of remaining Lie symmetries after using
one. When one performs the reduction procedure with one infinitesimal generator δS , the
coordinate set of the system changes. In fact, the system is rewritten in new coordinates
so that it can have desired properties. In this case, remaining symmetries of the original
system must be rewritten also in this new coordinate set. Knowing that a Lie symmetry
is actually a continuous dynamical system, remaining symmetries must be also reduced
by the same infinitesimal generator δS (see proposition 5.4.13 page 121). After each
reduction process, this adaptation is fundamental.

Remark 5.4.17. Let δ1 be an infinitesimal generator in g
(i+1) and δ2 be infinitesimal gen-

erator in g
(i) defined on the coordinate set Z. Let us suppose that δ2 is a symmetry of δ1

(see remark 3.3.25 page 74). Once δ1 is used for the reduction process, the infinitesimal
generators of symmetries must be rewritten in a new coordinates set Z̃. δ1 is trans-
formed into its rectified form w.r.t. a new coordinate, let us say z̃1 i.e. δ1z̃1 = 1. Let us
suppose that δ2 is rewritten in Z̃ and that it is used to eliminate the coordinate z̃2 (see
proposition 5.4.13 page 121). After this second reduction, actually, one needs to reduce
again δ1 to see if it is affected. Because δ2 is a symmetry of δ1 and z̃2 is an invariant
of δ1 i.e. δ1z̃2 = 0 (see equation (5.39) page 116), there is no need to come back to the
used infinitesimal generators during a successive reduction process. y

Let us illustrate this rewriting of infinitesimal generators during a successive reduc-
tion process.

Example 5.4.18. The continuous dynamical system of one state variable and two pa-
rameters:

dx

dt
= a b x,

da

dt
=

db

dt
= 0 (5.67)

possesses a Lie symmetry of dimension 2 that can be represented by the following in-
finitesimal generators:

δ1 = −t∂
∂t
− x∂

∂x
+ b

∂

∂b
and δ2 = −2 t

∂

∂t
+ a

∂

∂a
+ b

∂

∂b
· (5.68)

The goal is to reduce the parameters a and b from the system (5.67) by using these
infinitesimal generators. The first one can be used to eliminate the parameter b by
introducing new coordinates such as:

t̃ = t b, x̃ = x b, ã = a. (5.69)

Remark that these are invariants of δ1. In this new coordinate set, the system can be
rewritten as:

dx̃

dt̃
= ã x̃,

dã

dt̃
= 0. (5.70)

Now, the information given by the second infinitesimal generator δ2 can also be used in
order to eliminate ã. But in (5.68), δ2 is given in the original coordinates and must be
rewritten in new ones given in (5.69). In these new coordinate set, one can reduce δ2
into δ̃2:

δ̃2 = −t̃∂
∂t̃

+ x̃
∂

∂x̃
+ ã

∂

∂ã
(5.71)
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that is a symmetry of (5.70) page 123 because δ1 and δ2 commutes. Finally, δ̃2 can be
used to introduce a third coordinate set:

T = t̃ ã, X =
x̃

ã
· (5.72)

In this last coordinate set, the system (5.70) page 123 is rewritten as:

dX

dT
= X. (5.73)

As expected, the final system, defined on the coordinate set (T,X), has no parameters.
In order to reach the original system from this last equation, one may use associated
fibers that are given explicitly in this example thanks to the new coordinates. y

5.4.4 Implementation of Moving Frame Based Reduction Process

In the ExpandedLiePointSymmetry package, the moving frame based reduction method
is implemented by the function Invariantize, a name that stands for rewriting a given
system in a new coordinate set of invariants of associated symmetries. This subsection
is devoted to clarify this function and its usage. In the sequel, its inputs and its outputs
are illustrated in many examples.

The inputs of the function Invariantize are:

• a system to reduce; it can be an algebraic or a dynamical system represented by
types AlgebraicSystem, InfinitesimalGenerator or RecurrenceOperator;

• an infinitesimal generator or a Lie algebra of its symmetries;

• a list of coordinates to eliminate. This argument is optional; if it is not specified,
the algorithm chooses appropriate variables to eliminate arbitrarily.

The output of the function Invariantize involves 3 elements:

• the reduced system written in the new coordinate set, if it was possible to apply
the moving frame based reduction; otherwise the original system;

• a list of used cross-sections during the reduction;

• a list of infinitesimal generators of symmetries used in the reduction.

Remark 5.4.19. There exists also another implementation for this output. After every
reduction process, a dynamical system data structure is created. It involves the reduced
system, the used cross-section and the infinitesimal generator of the used symmetry. In
the case of successive reductions, these data structures are overlapped. In this document,
we do not use this implementation to avoid the enlarging of expressions. y
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There are two points to clarify about the function Invariantize so that the user
can exactly see what happens in the function and how to interpret the output.

The first remark concerns the elimination of a given list of variables. The reduction
method can fail for some variables. For example if there is no symmetry acting on a
given variable, then this variable cannot be eliminated. Or in the case of a Lie algebra
input, if symmetries acting on a given variable are lost after first reductions then the
variable can’t be eliminated neither. For this second case, the order of given variables
to eliminate may be important.

The second remark concerns the new coordinate set notation. Observe that in this
document, invariantized coordinates are denoted with a tilde. In this way, it is easy
to distinguish the old and new coordinates but this notation is not practical for the
implementation, especially when several reductions must be done successively. That is
why a unique notation is used for all coordinates. The only thing to remember is that
every time that a reduction is performed, the system is rewritten in a new coordinate
set. The used infinitesimal generator and associated cross-section of each reduction are
given in a separated coordinate set. This point will be lighten up by the next examples.

Example 5.4.20. The following function calls realize the reduction of the algebraic
system defined by x2 + y2 − r2 = 0 explained in the example 5.1.2 page 104. The goal
is to eliminate the variable r by using δS = x∂/∂x+ y∂/∂y + r∂/∂r.

� �
> # Reduction of an algebraic system with an infinitesimal generator

> AlgSys := NewAlgebraiSystem([x^2+y^2-r^2]);
2 2 2

AlgSys := [x + y - r ]

> Sym := NewInfinitesimalGenerator([x,y,r],[x,y,r]);
/d \ /d \ /d \

Sym := F -> x |-- F| + y |-- F| + r |-- F|

\dx / \dy / \dr /

> out := Invariantize(AlgSys , Sym , toeliminate =[r]):

> ReducedSystem := out [1];

2 2

ReducedSystem := [x + y - 1]

> CrossSection := out [2];

CrossSection := [1 - r]

> UsedSym := out [3];

/d \ /d \ /d \

UsedSym := [F -> x |-- F| + y |-- F| + r |-- F|]

\dx / \dy / \dr /
� �

Remark that even if the reduced system is given in the notations of the original system,
their coordinates are different. The reduced system could be seen as x̃2 + ỹ2 − 1 = 0
while the cross-section as 1− r = 0.

Let use realize now the reduction of r from the same algebraic system without spec-
ifying the infinitesimal generator to use.

� �
> # Reduction of an algebraic system with a Lie algebra

> AlgSys := NewAlgebraiSystem([x^2+y^2-r^2]);
2 2 2

AlgSys := [x + y - r ]
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> # Lie algebra of its affine type Lie symmetries

> LieAlg := ELPSymmetries(AlgSys , sym=affine );

LieAlg := LieAlgebraOfDim (3)

> out := Invariantize(AlgSys , LieAlg , toeliminate =[r]):

> ReducedSystem := out [1];

2 2

ReducedSystem := [x + y - 1]

> CrossSection := out [2];

CrossSection := [1 - r]

> UsedSym := out [3];

/d \ /d \

UsedSym := [F -> x |-- F| + r |-- F|]

\dr / \dx /
� �

Remark that the user is informed of the used infinitesimal generator taken from the
given Lie algebra. y

Example 5.4.21. The following code corresponds to the reduction of a parameter from
the continuous dynamical system (5.53) as given in the example 5.4.11 page 120 and
that of the discrete dynamical system (5.57) as given in the example 5.4.12 page 120.

� �
> # Reduction of a parameter of a continuous dynamical system

> ContSystem := NewInfinitesimalGenerator([1,x-a*y,b-a*x,0,0],[t,x,y,a,b]);
/d \ /d \ /d \

ContSystem := F -> |-- F| + (x - a y) |-- F| + (b - a x) |-- F|

\dt / \dx / \dy /

> Sym := NewInfinitesimalGenerator([0,x,y,0,b],[t,x,y,a,b]);
/d \ /d \ /d \

Sym := F -> x |-- F| + y |-- F| + b |-- F|

\dx / \dy / \db /

> out := Invariantize(ContSystem , Sym , toeliminate =[b]):

> ReducedSystem := out [1];

/d \ /d \ /d \

ReducedSystem := F -> |-- F| + (x - a y) |-- F| + (1 - a x) |-- F|

\dt / \dx / \dy /

> CrossSection := out [2];

CrossSection := [1 - b]

> UsedSym := out [3];

/d \ /d \ /d \

UsedSym := [F -> x |-- F| + y |-- F| + b |-- F|]

\dx / \dy / \db /
� �
� �
> # Reduction of a parameter of a discrete dynamical system

> DiscSystem := NewReurreneOperator(
> [tau +1,R*X -((R-1)*X^2/ X0)-C*X*Y,(r*X*Y)/X0 ,R,X0 ,C,r],

> [tau ,X,Y,R,X0 ,C,r]);

DiscSystem := (tau , X, Y, R, X0 , C, r) ->

2

(R - 1) X r X Y

[tau + 1, R X - ---------- - C X Y, -----, R, X0 , C, r]

X0 X0

> Sym := NewInfinitesimalGenerator([0,X,0,0,X0 ,0,0],[tau ,X,Y,R,X0 ,C,r]);
/d \ / d \

Sym := F -> X |-- F| + X0 |--- F|
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\dX / \dX0 /

> out := Invariantize(DiscSystem , Sym , toeliminate =[X0]):

> ReducedSystem := out [1];

ReducedSystem := (tau , X, Y, R, X0 , C, r) ->

2

[tau + 1, R X - (R - 1) X - C X Y, r X Y, R, 1, C, r]

> CrossSection := out [2];

CrossSection := [1 - X0]

> UsedSym := out [3];

/d \ / d \

UsedSym := [F -> X |-- F| + X0 |--- F|]

\dX / \dX0 /
� �

Until now, there was no extra difficulties to interpret the output of the function
Invariantize because previous examples are based on reduction w.r.t. a one-parameter
local Lie symmetry group i.e. by using one infinitesimal generator. The following example
shows in details how to read this when two such reductions are done successively.

Example 5.4.22. Let us detail the implementation of the example 5.4.18 page 123.
We perform the reduction of the parameters a and b from the continuous dynamical
system D:

dx

dt
= a b x,

da

dt
=

db

dt
= 0 (5.74)

represented by the infinitesimal generator:

δD =
∂

∂t
+ a b x

∂

∂x
· (5.75)

One can compute the symmetries of this system by using the function ELPSymmetries.
Its output is a Lie algebra of 4 infinitesimal generators:

δ1 =
∂

∂t
, δ2 = −a∂

∂a
+ b

∂

∂b
, δ3 = x

∂

∂x
, δ4 = t

∂

∂t
− a∂

∂a
· (5.76)

As one can remark, the infinitesimal generator δ1 acts just on the independent variable
so it is discarded during the reduction process. The first infinitesimal generator to
use is δ2 in order to eliminate the first parameter a. As expected, one can use the
cross-section H1 : a− 1 = 0 to obtain the intermediate reduced system associated to the
infinitesimal generator:

δ eD1
=
∂

∂t̃
+ b̃ x̃

∂

∂x̃
(5.77)

where t̃ = t, x̃ = x and b̃ = a b are new coordinates. At this stage of the reduction,
remaining symmetries δ3 and δ4 must be rewritten (see § 5.4.3 page 121). In the new
coordinate set, one can write:

δ̃3 = x̃
∂

∂x̃
, δ̃4 = t̃

∂

∂t̃
− b̃∂

∂b̃
· (5.78)

Again, the infinitesimal generator δ̃3 acts on just 1 coordinate so it is discarded during
the reduction process. The last symmetry acts now on the coordinate b̃, thus it may be
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eliminated. The cross-section H2 : b̃− 1 = 0 is used to obtain the final reduced system
associated to the infinitesimal generator:

δ eD2
=
∂

∂T
+X

∂

∂X
(5.79)

written in a third coordinate set defined by T = t̃ b̃ and X = x̃. The following code
performs exactly this example.

� �
> # Several reductions

> ContSystem := NewInfinitesimalGenerator([1,a*b*x,0,0],[t,x,a,b]);
/d \ /d \

ContSystem := F -> |-- F| + a b x |-- F|

\dt / \dx /

> LieAlg := ELPSymmetries(ContSystem );
LieAlg := LieAlgebraOfDim (4)

> GeneratorsOf(LieAlg );
d /d \ /d \ /d \ /d \ /d \

[F -> -- F, F -> -a |-- F| + b |-- F|, F -> x |-- F|, F -> t |-- F| - a |-- F|]

dt \da / \db / \dx / \dt / \da /

> out := Invariantize(ContSystem , LieAlg , toeliminate =[a,b]):

> ReducedSystem := out [1];

/d \ /d \

ReducedSystem := F -> |-- F| + x |-- F|

\dt / \dx /

> CrossSections := out [2];

CrossSections := [1 - a, 1 - b]

> UsedSyms := out [3];

/d \ /d \ /d \ /d \

UsedSyms := [F -> -a |-- F| + b |-- F|, F -> t |-- F| - b |-- F|]

\da / \db / \dt / \db /
� �

So remark that contrarily to the uniqueness of the coordinates notation on the output of
the function Invariantize, different coordinate sets are hidden. The first cross-section
and first used symmetry are defined on (t, x, a, b). The second cross-section and second

symmetry are defined on
(
t̃, x̃, b̃

)
. Finally, the resulting reduced system is defined on

the third coordinate set (T,X). y

As many reductions as desired may be done automatically (if the symmetries of the
studied system allow). The same principal of notation must be used to take advantage
of the output.

Example 5.4.23. The example 5.4.7 page 118 illustrates the reduction of a state vari-
able from a continuous dynamical system. The following code performs this reduction
automatically.

� �
> # Reduction of a state variable of a continuous dynamical system

> ContSystem := NewInfinitesimalGenerator([1,y,y/x],[t,x,y]);
/d \

y |-- F|

/d \ /d \ \dy /

ContSystem := F -> |-- F| + y |-- F| + --------

\dt / \dx / x
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> Sym := NewInfinitesimalGenerator([t,x,0],[t,x,y]);
/d \ /d \

Sym := F -> t |-- F| + x |-- F|

\dt / \dx /

> out := Invariantize(ContSystem , Sym , toeliminate =[x]):

> ReducedSystem := out [1];

/d \ /d \

ReducedSystem := F -> (1 - t y) |-- F| + y |-- F|

\dt / \dy /

> CrossSection := out [2];

CrossSection := [1 - x]

> UsedSym := out [3];

/d \ /d \

UsedSym := [F -> t |-- F| + x |-- F|]

\dt / \dx /
� �

5.5 Reparametrization Process

In this section, we present the reparametrization of systems of ODEs (see also § 2.2.2
page 45 for associated algorithms). The goal of this process is to eliminate some pa-
rameters from the algebraic system that defines their steady points by rewriting the
system in a new coordinate set. We begin by the reduction of a parameter to introduce
the reparametrization. Then we state the main ideas of the reparametrization process.
Finally, we show the usage of its implementation in the MABSys package.

In this document, the reparametrization is done only w.r.t. a parameter. Also, we
consider only scalings, even if I think that this method can be extended to more general
kind of symmetries. Contrarily to the previous section, I do not look to avoid the
computations of invariants. Fortunately, the special form of scalings permits to obtain
associated invariants without computing any differential equation (see § 2.1.2 page 37).
In addition, because a Lie algebra of scaling is always commutative (see lemma 3.3.26
page 75), one can consider all scalings together, without caring about their order or
rewriting (see § 5.4.3 page 121).

5.5.1 Reparametrization of a Dynamical System

The aim of the reparametrization process is to continue to prepare systems of ODEs to
their qualitative analysis after the reduction process. The original idea is, once there
is no more suitable symmetries to reduce systems of ODEs, to use these of associated
algebraic systems that define their steady points. By these symmetries we can not reduce
the system using the reduction process presented in previous sections. However, we can
find a new coordinate set where the steady points of the system of interest depend on
less parameters. This process permits also to distinguish the roles of parameters (see
§ 1.4.2 page 18).

Remark 5.5.1. Every considered symmetry of a system of ODEs is also a symmetry of
the algebraic system defining its steady points. The opposite is not true. y
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The reparametrization method follows the idea of the classical reduction process
i.e. one computes a set of invariants associated to the used symmetry and rewrites the
original system in these coordinates. Remark that, as stated in proposition 2.2.6 page 46,
in our work this algorithm has a polynomial complexity. First, we restrict ourselves to
scalings meaning that the invariants that we are looking for may be found without any
integration (see § 2.1.2 page 37). Second, the chosen invariants constitute an invertible
change of coordinates meaning that rewriting the original system in the new coordinates
requires only a substitution (see § 2.1.2 page 37).

The following example shows the utility of the reparametrization process.

Example 5.5.2. Let us consider the dynamical system D defined on the coordinate
set Z = (t,G, α, θ):

dG

dt
= (1−G) θ − αG, dθ

dt
= 0,

dα

dt
= 0. (5.80)

We show how one can use a scaling of the algebraic system Σ : θ (1−G)− αG = 0
defining the steady points of D in order to simplify them. One can see that a steady point
of the system (5.80) is defined by G = θ/ (θ + α) where G depends on 2 parameters θ
and α. Remark that the infinitesimal generator:

δS = θ
∂

∂θ
+ α

∂

∂α
(5.81)

is a symmetry of Σ but not of D i.e. δS can not be used for reduction. By supposing
that α does not vanish, one can transform δS into a semi-rectified symmetry of the

form α̃∂/∂α̃ by using the new coordinate set Z̃ =
(
t̃, G̃, α̃, θ̃

)
where t̃ = t, G̃ = G, α̃ = α

and θ̃ = θ/α. In these coordinates, the system (5.80) is transformed into D̃:

dG̃

dt̃
=
((

1− G̃
)
θ̃ − G̃

)
α̃,

dθ̃

dt̃
= 0,

dα̃

dt̃
= 0. (5.82)

The number of coordinates of this system is the same as the system (5.80). Nonetheless
the advantage of this notation can be seen by looking at its steady points. The algebraic

system Σ̃ : θ̃
(
1− G̃

)
− G̃ = 0 defines the steady points of D̃ and one has G̃ = θ̃/

(
θ̃ + 1

)
.

Remark that the steady points depend now on just 1 parameter θ̃. This can be very
useful for further qualitative analysis computations. The number of parameters of the
system of interest does not change but this method distinguishes the role of parameters.
The value of the parameter α̃ is not important to localize a steady point but it specifies
its nature because it appears on the eigenvalues of the associated Jacobian. y

Remark 5.5.3. If one uses a symmetry of the algebraic system that is also a symmetry
of the dynamical system, this process has the same effect as the reduction. y

Remark 5.5.4. The equation (5.80) is put into its singular perturbed form (see ch. 7
of [82]). y

The special form of the change of coordinates computed during the reparametriza-
tion process (see § 2.1.2 page 37) transforms the infinitesimal generators of the used
symmetries into their semi-rectified form. The following lemma states the contribution
of the reparametrization for the steady point expressions of ODEs systems.
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Lemma 5.5.5. Let Σ = (f1, . . . , fk) be a regular algebraic system (see definition 3.1.1
page 59) defined on Z = (z1, . . . , zn). If a rectified symmetry ∂/∂zi (resp. a semi-rectified
symmetry zi∂/∂zi) acting on a coordinate zi is an infinitesimal generator of one of the
symmetries of Σ, then its solutions do not depend on zi. y

Proof. Let δS be a rectified (resp. semi-rectified) symmetry of Σ. Then, according to
definition of an expanded Lie point symmetry given by the theorem 4.1.1 page 88,
following statement is correct:

δSfj(Z) = 0 whenever fj(Z) = 0, ∀j ∈ {1, . . . , k} . (5.83)

One can associate the following one-parameter ν group of transformation to the rectified
(resp. semi-rectified) symmetry (see § 3.4 page 79):

{
zj → zj ∀j 6= i,
zi → zi + ν.

(
resp.

{
zj → zj ∀j 6= i,
zi → ν zi.

)
(5.84)

This tells that if the point Z = (z1, . . . , zi−1, zi, zi+1, . . . , zn) is a solution of Σ then
the point (z1, . . . , zi−1, zi + ν, zi+1, . . . , zn) (resp. (z1, . . . , zi−1, ν zi, zi+1, . . . , zn)) is also
a solution of Σ for all ν in R. This fact shows that solutions of Σ do not depend on the
value of the ith coordinate zi. y

Example 5.5.6. In this example, we reparametrize the system of ODEs (see [83]):

{
dX
dt = a k1X − k2X Y,

dY
dt = k2X Y − k3 Y.

(5.85)

The algebraic system that defines its steady points:

{
a k1X − k2X Y = 0,
k2X Y − k3 Y = 0

(5.86)

possesses a scaling type symmetry that acts on the parameter k2:

δS = k1
∂

∂k1
+ k3

∂

∂k3
+ k2

∂

∂k2
(5.87)

and δS is not a symmetry of (5.85). One can deduce the new coordinates:

t̃ = t, X̃ = X, Ỹ = Y, ã = a, k̃1 =
k1

k2
, k̃2 = k2, k̃3 =

k3

k2
. (5.88)

in which rewriting the dynamical system (5.85) eads to the following dynamical system:





d eX
det =

(
ã k̃1 X̃ − X̃ Ỹ

)
k̃2,

deY
det =

(
X̃ Ỹ − k̃3 Ỹ

)
k̃2.

(5.89)
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Remark that, in this system, the parameter k̃2 does not influence the location of its
steady points that are defined by:

{
ã k̃1 X̃ − X̃ Ỹ = 0,

X̃ Ỹ − k̃3 Ỹ = 0.
(5.90)

Thus, the steady points of (5.85) page 131 depends on 4 parameters but these of (5.89)
page 131 on 3 parameters. y

Remark 5.5.7. All these computations work very easily when one considers a reorganiza-
tion w.r.t. a parameter. Working with state variables requires differential computations.
Anyway, let us see what can be expected from such a situation. Look at the following
system of ODEs:

dx

dt
= x− y, dy

dt
= x2. (5.91)

This continuous dynamical system does not have a scaling but associated algebraic sys-
tem of its steady points i.e.

{
x− y = 0, x2 = 0

}
has one. The scaling x∂/∂x + y∂/∂y

could be used in the same way of reparametrization process based on a parameter. The
new coordinate set would be t̃ = t, x̃ = x/y and ỹ = y. Rewriting the system (5.91) in
these new coordinates yields following dynamical system after some derivation compu-
tations:

dx̃

dt̃
= −x̃2 + x̃− 1,

dỹ

dt̃
= x̃2 ỹ2. (5.92)

As one can see, the expressions of the steady points are not really simplified. But
a decoupling between variables, a sort of decomposition of dependency between the
equations is made. Meaning that the first equation involves now just the variable x̃ but
its degree increased. Furthermore, the system (5.92) is triangular. y

5.5.2 Implementation of Reparametrization Process

The reparametrization procedure is implemented in the MABSys package. Recall that, it
is possible to apply this implementation to systems coming from any scientific context.

Remark 5.5.8. The name of the function that perform the reparametrization involves
the cylindrification notion. This is because the aim of this method is to decompose
an algebraic system in order to free its solutions from some coordinates i.e. so that its
solutions do not involve these coordinates. y

The following example shows how one can perform this method automatically.

Example 5.5.9. This example recalls the examples 5.5.6 page 131. Let us repara-
metrize the system of ODEs (5.85) page 131 w.r.t. the parameter k2 by calling the
CylindrifySteadyPoints function.

� �
> ODEs := [diff(X(t),t)=a*k1*X(t)-k2*X(t)*Y(t),diff(Y(t),t)=k2*X(t)*Y(t)-k3*Y(t)];

d d

ODEs := [-- X(t) = a k1 X(t) - k2 X(t) Y(t), -- Y(t) = k2 X(t) Y(t) - k3 Y(t)]

dt dt
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> out := CylindrifySteadyPoints(ODEs , [k2], [X,Y,a,k1 ,k3 ]):

> out := out [1]:

> out [1];

d d

[-- X(t) = -k2 X(t) (-a k1 + Y(t)), -- Y(t) = Y(t) k2 (X(t) - k3)]

dt dt

> out [2];

[a k1 X - X Y, X Y - k3 Y]

> out [3];

k1 k3

[k1 = ----, k3 = ----]

k2 k2

> out [4];

[k2]
� �

Steady points of the resulting system of ODEs depend on one less parameters than the
original system. The output is composed of the steady points rewritten in the new
coordinates, the change of coordinates given in (5.88) page 131 and the parameter w.r.t.
which the reparametrization is done. y





“What would life be if we had no courage

to attempt anything?”

Letter to Theo van Gogh
The Hague, December 29 th 1881

Vincent van Gogh

IV Conclusion

135





137

During the last three years (four if I count my master) I worked mainly on the exact
simplification of algebraic and dynamical systems using expanded Lie point symmetries.
In this document, I present a practical usage of the moving frame based reduction process
on a particular case. Moreover, I propose an original way of using Lie symmetries for the
preliminary analysis of differential systems. This reparametrization improves the exact
simplification done by the reduction. In fact, we eliminate some coordinates from the
studied system. We keep the equivalence relations between the original and the simplified
systems in an implicit (reduction) or an explicit (reparametrization) form. For now, these
methods are mainly applied on biochemical reaction networks. But for any scientific
domain where algebraic systems, systems of ODEs or systems of OREs are employed,
these algorithms can be useful. I concretized these ideas with the articles [15, 12] and the
packages MABSys and ExpandedLiePointSymmetry. These implementations are ready to
use even if it remains much to do.

There are many possible future works on this domain. For example, it would be
interesting to find more symmetries to help the qualitative analysis either by extending
their definitions used in our framework or by introducing new algorithms. The moving
frame based reduction applied to discrete dynamical systems needs to be formalized.
The idea of reparametrization needs to be generalized to more complicated symmetries
than scalings and to the case of state variables (for the decoupling of coordinates in
a dynamical system). One of the perspectives is also to tackle different application
domains than modeling in biology. Furthermore, the implementation part must follow
all these improvements.

The most difficult part of my work was its interdisciplinary structure. My subject
is at the intersection of computer science, mathematics and biology. I learned to adapt
myself to domains where I am not that comfortable. I improved to organise and to
extract the essential part of my ideas in order to be understood by a large number of
people. In the meanwhile, partly thanks to these difficulties, I really enjoyed my work.
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A

Hopf Bifurcation Analysis

In this chapter, we are interested in Hopf bifurcation analysis and classical symbolic
qualitative analysis of continuous dynamical systems performed by the MABSys package.
There is a large literature for this kind of studies, among which one can cite [52, 51, 50]
for continuous dynamical systems and [107, 52, 72] for discrete dynamical systems. The
qualitative analysis functions of MABSys don’t come with new ideas. Some of them
already exist in some of the Maple packages or use Maple commands in their imple-
mentations. But let me recall that, even if MABSys’ pilot implementation is in Maple,
the objective remains to construct a module compatible with chosen data structures as
complete as possible and independent of the computer algebra softwares. In the future,
other programming languages as C can be preferred to reach more people.

In the sequel, we focus on the symbolic qualitative analysis about steady points, their
nature and Poincaré-Andronov-Hopf bifurcations. Throughout these explanations, we
present the implementation of related qualitative analysis tools of the MABSys package.
First, we survey the linearization procedure and the bifurcation theory. Then we give a
general idea about Poincaré-Andronov-Hopf bifurcations through the known computer
algebra method on Routh-Hurwitz criterion.

The symbolic qualitative approach allows to make conclusions regardless whether
one has the explicit expression or not of the solutions and this for all initial values.
We tackle the symbolic qualitative analysis for medium size systems i.e. with about
twenty coordinates. For two-dimensional systems due their simple structure there exist
specific methods as phase portraits or Poincaré-Bendixson theorem (see § 12.1 of [52] or
ch. I.16 of [51]). For medium size systems one can expect algebraic methods to conclude
the analysis. My work situates in this case. Some problems as searching for a Poincaré-
Andronov-Hopf bifurcation are reduced to systems of equalities and inequalities to solve.
Solving such conditions is not obvious especially if one is looking for solutions in the real
numbers (and not complex numbers). Several methods can be applied. Exploration of
numerical values can be a solution but this numerical method is of exponential time in
the number of parameters. If one has 8 parameters and wants to test 10 values for each
one, then the space to explore contains 108 cases. Another method is to use computer
algebra techniques based on CAD or critical point methods (see [19, 33, 97]). Even if
these are of exponential complexity in the number of variables in the worst case, they
can work very well in some cases. Or sometimes it is enough to use some basic heuristics
(see § 1.5.3 page 24). For more complicated systems, in general case, there is no well-
established theory but one can try to reduce the number of coordinates of the system
by divers ways, for example by using Lie point symmetries (see ch. 5 page 103).
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A.1 Classical Notations for Symbolic Qualitative Analysis

In this section we survey the stability of steady points and the linearization to introduce
my notations for Poincaré-Andronov-Hopf bifurcation.

Now on, we restrict systems of ODEs to autonomous ones i.e. where the evolution of
state variables does not depend on the independent variable. This restriction is conceiv-
able because mathematical models in which we are interested are mostly autonomous.

A.1.1 Stability of Steady Points

This subsection recalls the definition of steady points along with their stability conditions.
On a steady point of a system of ODEs all derivatives vanish. It can be defined formally
thanks to nullclines.

Definition A.1.1 (Nullcline). A xi-nullcline Nxi
of a system of ODEs is a set of points Z

that satisfy fi(Z) = 0 i.e.:

Nxi
= {Z ∈ Rn | fi(Z) = 0} . (A.1)

y

Definition A.1.2 (Steady Point). A steady point (also called an equilibrium or a fixed
point) of a system of ODEs is a point Ze in Rn which is located in the intersection of
all xi-nullcline Nxi

of a system of ODEs i.e.:

Ze ∈
⋂

i∈{1,...,k}

Nxi
⇒ fi(Ze) = 0 ∀i ∈ {1, . . . , k} . (A.2)

y

Example A.1.3. Let us find the algebraic system that defines the steady points of the
Van der Pol oscillator using MABSys. The following commands define the system of ODEs
of interest given in equation (3.8) page 63 with the OrdinaryDifferentialEquations

data structure (see remark 3.2.22 page 67). We deduce then associated algebraic system
of steady points and give explicitly steady point expressions.

� �
> # The definition of the system of ODEs.

> ODEs := [diff(x(t),t)=mu*(1-y(t)^2)*x(t)-y(t),diff(y(t),t)=x(t)];

d 2 d

ODEs := [-- x(t) = mu (1 - y(t) ) x(t) - y(t), -- y(t) = x(t)]

dt dt

> # Algebraic equations defining its steady points .

> SteadyPoint := SteadyPointSystem(ODEs);
2

SteadyPoint := [mu (1 - y ) x - y, x]

> # The steady point of the system .

> SP := [x=0, y=0];

SP := [x = 0, y = 0]
� �
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Hypothesis A.1.4. In the following definitions, a steady point is assumed to be at the
origin because one may always translate any steady point to the origin by a simple change
of coordinates. y

Here, we recall necessary definitions about the stability to follow the forthcoming
sections (see § 1.3 of [52] and for more general overview see whole book).

Definition A.1.5 (Stability). A continuous dynamical system D is called stable at a
steady point Ze if:

∀ǫ > 0, ∃η = η(ǫ) | ‖D(0, Z)− Ze‖ < η ⇒ ∀t ≥ 0, ‖D(t, Z)− Ze‖ < ǫ (A.3)

where ‖ · ‖ refers to Euclidean distance. y

In other words, if all solutions of a system of ODEs that start out near a steady
point Ze remain close enough forever, then Ze is stable. Remark that solutions do not
need to approach to the steady point.

Definition A.1.6 (Asymptotically Stability). A continuous dynamical system D is
called asymptotically stable at a steady point Ze if the system is stable at Ze and

∃ν > 0 | ‖D(0, Z)− Ze‖ < ν ⇒ lim
t→∞

‖D(t, Z)− Ze‖ = 0 (A.4)

where ‖ · ‖ refers to Euclidean distance. y

In other words, if all solutions of a system of ODEs that start out near a steady
point Ze not only remain close enough but also converge to this point, then Ze is asymp-
totically stable.

Small perturbations are useful also to distinguish types of stability. If after small
perturbations, the system returns always to the steady point, then this system is stable
at this point. If small perturbations cause the system to move away, then this system
is unstable at this point. Note that they are many geometric objects which may be
classified according to their stability. Informally, an attractor is an object that nearby
orbits converge towards it. At the same way, a repellor is an object that nearby orbits
diverge away from it. For example, limit cycles (see definition A.2.2 page 146) are objects
that may be attractor or repellor.

A.1.2 Linearization

This section is devoted to the linearization which is a method for predicting the local
stability of a dynamical system near a steady point.

The stability of a dynamical system is characterized by a small perturbation of
its state variables and the reaction of the system to that perturbation. Let me re-
call that X = (x1, . . . , xk) denotes the set of state variables of a dynamical system
and F = (f1, . . . , fk) specifies the evolution of these state variables (see definition 3.2.1
page 62). Let Ze be a steady point and Xe state variables of this steady point. A small
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perturbation ε = (ε1, . . . , εk) may be performed on the steady point i.e., in vector-valued
notation, one can write X = Xe + ε. Taylor series on this point gives:

dX

dt
=

dε

dt
= F (Z) = F (Ze) + ε

∂F

∂X
(Ze) + O

(
ε2
)
. (A.5)

Taking into account F (Ze) = 0, for small enough |ε|, the first order term dominates this
expression, thus one can conclude that associated linear system is:

dε

dt
= ε

∂F

∂X
(Ze) . (A.6)

Let us introduce some classical notations:

• The Jacobian matrix J of all first-order partial derivatives of F is defined explicitly
by:

J =

(
∂F

∂X

)
=

(
∂fi

∂xj

)

1≤i,j≤k

(A.7)

where the (i, j)-th entry of J is the partial derivative of fi w.r.t. xj ;

• The characteristic polynomial of J in the variable λ, denoted by PJ(λ), is the
determinant of the matrix λIk − J where Ik is the identity matrix of size k. It can
be denoted by:

PJ(λ) = a0λ
k + a1λ

k−1 + · · ·+ ak−1λ+ ak (A.8)

where ai for i in {1, . . . , k} are rational functions in R(Z);

• Roots of the characteristic polynomial PJ(λ), given in (A.8), are called eigenvalues
of the Jacobian J . The (right) eigenvector is a not null vector V such as JV = λV
where λ is in C, namely an eigenvalue.

Example A.1.7. Let us recall the Van der Pol oscillator (see equation (3.8) page 63) and
compute its Jacobian matrix evaluated at its steady point (see example A.1.3 page 142)
as well as the associated characteristic polynomial.

� �
> # The associated Jacobian matrix .

> J := JaobianMatrix(ODEs , statevars =[x,y]);

[ 2 ]

J := [-mu (-1 + y ) -2 mu y x - 1]

[ ]

[ 1 0 ]

> J0 := subs(SP , J);

[mu -1]

J0 := [ ]

[1 0]

> P := LinearAlgebra:- CharacteristicPolynomial (J0, lambda );

2

P := lambda - mu lambda + 1
� �
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According to the following theorem, the behavior of a system of ODEs, at the neigh-
borhood of a given steady point, is classified by looking the signs of the eigenvalues of
the Jacobian evaluated at this point. Remark also that, unfortunately, the linearization
does not always suffice to conclude the stability (see example 9.9 of [52] which is one of
the classical examples).

Theorem A.1.8 (Stability, see § 1.3 of [52]). Let us consider a system of nonlinear
ODEs. Let F be associated set of C1 functions, Ze one of its fixed points. Suppose
that the Jacobian J0 at the steady point does not vanish. Then the steady point is
asymptotically stable if J0 has all eigenvalues with negative real part and unstable if it
has at least one eigenvalue with positive real part. y

The main problem of this stability analysis is that, in general case, symbolic expres-
sions that must be handled grow as the dimension of the system increases. Moreover,
one cannot always compute explicitly the eigenvalues from the characteristic polyno-
mial. According to Abel’s impossibility theorem (see [1]) there is no general solution in
radicals to polynomial equations of degree strictly greater than 5. Meaning that it is
impossible, in general, to write down the roots of such a polynomial equation by finite
expressions in function of its coefficients, rational operations and root extractions.

A.2 Poincaré-Andronov-Hopf Bifurcation

In this section we are interested in oscillations due to Poincaré-Andronov-Hopf bifur-
cations. We present Routh-Hurwitz criterion that gives the conditions to have such
bifurcation and associated implementations in MABSys. For a more general survey see
ch. 11 of [52] or § I.16 of [51] and another symbolic method can be found in [50]. In the
sequel, for brevity, this bifurcation is called only Hopf bifurcation.

The bifurcation theory is a systematic study of possible changes in the structure
of the orbits of a dynamical system depending on their parameters values (see ch. 2
of [52]). The goal is to find out the small smooth change of parameters values which
causes a sudden qualitative or topological change in the dynamical system’s behavior:
the appearance or the disappearance of steady points, stability changes on a given steady
point etc.

Definition A.2.1 (Codimension of a Bifurcation). The codimension of a bifurcation is
the number of parameters which must be varied for the bifurcation to occur. y

The codimension of a bifurcation is very high for complicated systems. One can
not know which parameters to vary, how much to vary them w.r.t. each other, which
parameters to fix to have desired behaviors. The reduction and the reparametrization
(see ch. 5 page 103) algorithms can help the user.

A.2.1 Seeking for Oscillations

My motivation of seeking for oscillations comes from the aim of modeling a gene regu-
latory network which controls the circadian clock of a unicellular green alga (see § 1.2.2
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page 9). Given a system of parametric ODEs, I am interested in finding ranges of values
for the system parameters and variables which produce oscillating trajectories i.e. stable
limit cycles.

Definition A.2.2 (Limit Cycle). A limit cycle is a periodic orbit attracting nearby
orbits. In other words, it corresponds to oscillation trajectories. If a limit cycle is
reached as time tends to +∞ (resp. to −∞) then it is called a stable (resp. unstable)
limit cycle. Otherwise, it is neither stable nor unstable. y

Under some general hypothesis, in the neighborhood of a Hopf bifurcation, a stable
steady point of the system gives birth to a small stable limit cycle. Remark that looking
for Hopf bifurcations is not equivalent to looking for stable limit cycles. First, some
Hopf bifurcations (e.g. subcritical ones) do not imply the existence of stable limit cycles;
second, there may exist limit cycles not related to Hopf bifurcations. But here, we focus
on how one can search a Hopf bifurcation with symbolic computer algebra methods.

A.2.2 Definition of a Hopf Bifurcation

The appearance or the disappearance of a periodic orbit through a local change in
the stability properties of a steady point is known as the Hopf bifurcation. In the
sequel, I restrict this study to steady points with one conjugate nonzero purely imaginary
eigenvalues. The following theorem tells the conditions under which this bifurcation
phenomena occurs.

Theorem A.2.3 (Poincaré-Andronov-Hopf Bifurcation, see § 11.2 of [52]). Let J0 be
the Jacobian of a continuous parametric dynamical system evaluate at a steady point Ze

of it. Suppose that all eigenvalues of J0 have negative real parts except one conjugate
nonzero purely imaginary pair 1±ιβ. A Hopf bifurcation arises when these two eigen-
values crosses the imaginary axis because of a variation of the system parameters (see
figure A.1 page 146). y

R

ιR

ιβ

−ιβ

Figure A.1: Two conjugate nonzero purely imaginary eigenvalues cross the imaginary
axis in the complex plan. A stable limit cycle may happen for the studied system.

Remark that if the real parameters values continuously vary then the steady points
and their associated eigenvalues continuously vary also. For near-critical parameter
values, limit cycles over steady points may be observed. A Hopf bifurcation is called
supercritical if it results to stable limit cycles.

1ι stands for the imaginary unit equal to
√
−1.
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A.2.3 Routh-Hurwitz Criterion

In this subsection, we are interested in giving necessary conditions so that a Hopf bi-
furcation occurs and their implementations in the MABSys package. The theorem A.2.3
page 146 tells that the linear part of a continuous dynamical system is important for
the existence of nontrivial periodic orbits. The local dynamics near such points depend
mainly on nonlinear terms of the associated system. The following paragraphs are about
Routh-Hurwitz criterion (see § I.13 of [51]). First, let us begin by defining Sturm series
which are very important for Routh’s theorem.

Definition A.2.4 (Sturm Series, see [105]). Let p0 and p1 two univariate polynomials.
Suppose that they do not have a common root and the degree of p0 is greater then the
degree of p1. The Sturm series is constructed by:

pi := pi+1 qi+1 − pi+2 for i ≥ 0. (A.9)

This is almost the same algorithm as Euclid’s but the remainder pi+2 has negative
sign. y

Let us see now Sturm series p0, p1, . . . , pk associated to the characteristic polyno-
mial PJ (λ). The series begins with two polynomials obtained by dividing PJ (ιµ) by ιk

and separate real and imaginary parts:

p0(µ) := ℜ
(

PJ(ιµ)
ιk

)
= a0 µ

k − a2 µ
k−2 + a4 µ

k−4 ± . . .
p1(µ) := −ℑ

(
PJ(ιµ)

ιk

)
= a1 µ

k−1 − a3 µ
k−3 + a5 µ

k−5 ± . . .
(A.10)

The remaining terms are defined as in (A.9). Due to the special structure of these
polynomials, they can be rewritten in the form:

pi(µ) := ci,0 µ
k−i + ci,1 µ

k−i−2 + ci,2 µ
k−i−4 + . . . (A.11)

In these notations, the quotient qi of (A.9) is equal to (ci−1,0/ci,0)µ which provides
the condition ci,0 6= 0. Moreover, the replacement of (A.11) in (A.9) gives the following
recursive formulas for computation of the coefficients ci,j .

ci+1,j = ci,j+1
ci−1,0

ci,0
− ci−1,j+1 =

1

ci,0
det

(
ci−1,0 ci−1,j+1

ci,0 ci,j+1

)
. (A.12)

If ci,0 = 0 for some i, the quotient qi is a higher degree polynomial and the sequence (A.9)
stops at ph with h < k.

The following Routh’s theorem (see [96]) tells necessary conditions to have all the
roots of a polynomial with negative real parts without computing them explicitly.

Theorem A.2.5 (Routh’s theorem, see th. 13.4 of [51]). With above notations, all
roots λ of the real polynomial PJ(λ) with a0 > 0 lie in the negative half plane i.e. ℜ(λ) < 0
if and only if ci,0 > 0 for i in {0, . . . , k}. y
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Routh theorem is also known as Routh-Hurwitz criterion because the coefficients ci,0
for i in {1, . . . , k} correspond exactly to what is called Hurwitz determinants (see [63]);
their definition related to Hurwitz matrix is given below.

Definition A.2.6 (Hurwitz Matrix). The square Hurwitz matrix associated to a char-
acteristic polynomial PJ (λ) given as in (A.8) page 144 has the following form:

H =




a1 a3 a5 · · · · · ·
a0 a2 a4 · · · · · ·
0 a1 a3 a5 · · ·
0 a0 a2 a4 · · ·
...

...
...

...
. . .



. (A.13)

y

Definition A.2.7 (Hurwitz Determinants). The ith Hurwitz determinant is the deter-
minant of the ith principal minor of the above Hurwitz matrix H. There are k Hurwitz
determinants for a characteristic polynomial of degree k. y

Example A.2.8. We continue to apply key concepts on the Van der Pol oscillator (see
equation (3.8) page 63) to show MABSys commands. P is the associated characteristic
polynomial found in the example A.1.7 page 144. The following commands computes
Hurwitz matrix and determinants of the same system from this characteristic polynomial.

� �
> # The associated Hurwitz matrix

> H := HurwitzMatrix(P, lambda );

[-mu 0]

H := [ ]

[ 1 1]

> # Associated Hurwitz determinants

> HDet := HurwitzDeterminants(P, lambda );

HDet := [1, -mu , -mu]
� �

The following two propositions are well known and facilitate the stability analysis
of steady points. We give their proof (as in [12, 15]) because they give necessary Hopf
bifurcation conditions that are used in § 1.5.3 page 24.

Proposition A.2.9. If all the Hurwitz determinants ci,0 are positive, apart perhaps ck,0

then the associated Jacobian J has no pure imaginary eigenvalue. y

Proof. If all Hurwitz determinants ci,0 are positive (0 ≤ i < k) then they are a fortiori
nonzero. Assume that J has pure imaginary eigenvalues ±ιµ̃ (they are necessarily con-
jugate). These values ±µ̃ are then common zeros of p0 and p1. The gcd of p0 and p1

has thus degree greater than or equal to 2. This gcd is the last nonzero polynomial in
the sequence p0, . . . , pk−1. Thus one polynomial pi with 0 ≤ i < k must vanish identi-
cally. Therefore the corresponding Hurwitz determinant ci,0 mush vanish also which is
in contradiction with the positivity assumption. y

Proposition A.2.10. If all Hurwitz determinants ci,0 (for all i in {0, . . . , k − 2}) are
positive, ck−1,0 = 0 and ck−2,1 < 0 then all the eigenvalues of the associated Jacobian J
have negative real parts except a purely imaginary conjugate pair. y
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Proof. The polynomial pk−1 has the special form pk−1 = ck,0 µ and ck,0 = 0. Then pk−2 is
the gcd of p0 and p1, it is of degree two and has the special form pk−2 = ck−2,0 µ

2 + ck−2,1.
The conditions ck−2,0 > 0 and ck−2,1 < 0 let us know that the common roots ±µ̃ of p0

and p1 are real. Therefore J has one pair of purely imaginary conjugate eigenvalues ±ιµ̃.
Now, compute the Sturm series (see the equation (A.10) page 147) over the polyno-

mial P̃J(λ) = PJ(λ) /
(
λ2 + µ̃2

)
. This Sturm series p̃0, p̃1, . . . , p̃k̃ can actually be derived

from that of PJ(λ):

p̃0(µ) =
p0

(λ2 + µ̃2)
, p̃1(µ) =

p1

(λ2 + µ̃2)
, . . . , p̃k̃−1(µ) =

pk−1

(λ2 + µ̃2)
, p̃k̃(µ) = ck−2,0. (A.14)

All corresponding Hurwitz determinants are positive. According to the Routh theorem
(see theorem A.2.5 page 147), all the roots of P̃J have negative real parts. This concludes
the proof of the proposition. y

The conditions that we are looking for so that a Hopf bifurcation occurs (see the-
orem A.2.3 page 146) for a parametric continuous dynamical system are given by the
proposition A.2.10 page 148.

Example A.2.11. Let us reconsider the Van der Pol oscillator. This system could have a
Hopf bifurcation if the necessary conditions given by the proposition A.2.10 page 148 are
satisfied. These conditions can be computed automatically by using MABSys as follows.

� �
> # Necessary conditions so that a Hopf bifurcation can happen

> pos , zero , neg := HopfBifurationConditions(CP, lambda );

pos , zero , neg := [1], -mu , -1
� �

The result of HopfBifurcationConditions function corresponds to:

c0,0 = 1 > 0, c1,0 = −µ = 0, c0,1 = −1 < 0. (A.15)

Because 1 > 0 and −1 < 0 are obvious, one can conclude that a Hopf bifurcation may
occur for Van der Pol oscillator if µ = 0. y
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Biochemical Networks and their Modeling

The aim of this chapter is to present the first part of MABSys i.e. the modeling of bio-
chemical networks by means of ODEs. In MABSys a biochemical network describes the
interactions between macromolecules (genes, mRNAs, proteins) towards some process
as binding, release, synthesis, degradation and transformation. First, we give a general
survey of some biological phenomena to introduce their implementation. Then we tackle
the modeling part. Two different ways of modeling are available in MABSys: by using
directly rate laws of the reactions or by using quasi-steady state approximation (QSSA)
algorithm as given in [10]. Last, we illustrate these modelings and show associated
MABSys commands.

B.1 Cellular Biological Phenomena

In this section we glance at some intracellular phenomena and show their representation
in MABSys.

B.1.1 Different Kinds of Reactions

Binding & Release

A transcription is a copy process of the coding part of a gene into an mRNA molecule.
A transcription factor is a protein that binds to a specific part of the gene and thereby
regulates the transcription. This transcription factor, along or in collaboration with
other proteins, may be an activator by promoting the transcription or a repressor by
blocking the transcription. Even transcription factors can be activated or deactivated by
themselves or by other proteins. Binding the transcription factor to the gene is a complex
mechanism that includes, for example, the opening of double helices by creating a single
strand to which mRNA can bind while it is being built. There is a chain of phenomena
that takes place while binding and release.

In this document, the modeling is made in its simplest way i.e. as an invertible
phenomenon regulated by transcription rate constants α and θ as in figure B.1 page 152.
The variable G represents the non-linked gene, P a protein which is a transcription factor
and H the linked gene i.e. the gene G and the protein P together.
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G + P H
α

θ

Figure B.1: Binding and release mechanisms.

Synthesis & Degradation

A synthesis is a phenomenon that produces a new molecule by using amino acids present
in the cell. A degradation is the crumbling of a macromolecule into amino acids that
return into the cell. For the sake of simplicity, in this document it is supposed that

G G + M
ρ

M M + P
β

∅ X
η

M ∅
δM

P ∅
δP

Figure B.2: Synthesis and degradation mechanisms.

cells possess enough amino acids each time that a synthesis is executed. An empty set
represents these amino-acids that do not take place in the representations. Figure B.2
shows the synthesis of an mRNA denoted by M from a gene G (transcription), of a
protein P from this mRNA (translation), of another protein X without considering its
source and also the degradation of M and P . The letters above the arrows correspond to
associated rate constants. Remark that after the synthesis of a mRNA or the protein P ,
the associated gene or mRNA remain unchanged. While these procedures, they serve
just as an information board.

Transformation

A transformation corresponds to the conversion of species. Figure B.3 shows a classical
transformation of two reactants R1 and R2 into two products P1 and P2 with a rate
constant equal to k.

R1 + R2 P1 + P2
k

Figure B.3: Transformation mechanism.
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B.1.2 Implementation of a Reaction

In this subsection, we detail and illustrate the implementation of a reaction in the package
MABSys.

The implementation of a biological system is one of the first steps for its treatment.
Graphical diagrams are useful for visualization and having a first thought about how
these mechanisms work. However, computer algebra softwares need more formal struc-
turing. SBML (see [121]) is a computer-readable format for representing biochemical
reaction networks. There exist also structured diagram editors for drawing biochemical
gene-regulatory networks as CellDesginer (see [40]) or JDesigner (see [98]) which permit
to export the network in the form of SBML. In this document, we do not focus on SBML
because the main subjects (simplification of models) can be used for dynamical systems
coming from any kind of scientific context. Biology is one of the several application
domains. For now, the description made in MABSys includes only the most important
parts of a biochemical reaction in its simplest way. In the future, it can be interesting
to integrate SBML format.

Here, every one-way reaction is represented by a simple Reaction data structure. It
is created by the NewReaction constructor, defined by the key word Reaction and the
following elements:

• reactants given as a linear combination of species names in the reaction;

• products given as a linear combination of species names in the reaction;

• the rate law of the system. A classical way of modeling reactions is to use the
mass-action law indicated by the keyword MassActionLaw but one can also choose
another reaction law in the form of rational fractions (for instance Hill functions)
indicated by the keyword CustomizedLaw. For the mass-action law one must give
associated rate constant and for a customized law the whole rate;

• a boolean that indicates the velocity of the reaction; it can be true for fast and
false for slow reactions. The default value is false.

A system of reaction that corresponds to the ReactionSystem data structure is a list of
reactions.

Example B.1.1. Let us see a basic enzymatic reaction system given in figure B.4 and its

E + S C
k1

k−1

C E + P
k2

Figure B.4: Basic enzymatic biochemical reaction system

construction in MABSys. This system describes the transformation of a substrate S into
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a product P under the action of the enzyme E. Meanwhile, an intermediate complex C
is produced. Each reaction follows the mass-action law and associated rate constants
are indicated above or below of the arrows. The system contains 3 one-way reactions
defined in two timescales. The first two reactions are considered fast w.r.t. the third
one meaning that their rate constants k1, k−1 are supposed to be greater than the third
one k2.

� �
> # The biochemical reactions

> R1 := NewReation(E+S,C,MassAtionLaw(k1),fast=true );
R1 := Reation([E, S], [C], MassAtionLaw(k1), true)

> R2 := NewReation(C,E+S,MassAtionLaw(km1),fast=true);
R2 := Reation([C], [E, S], MassAtionLaw(km1), true)

> R3 := NewReation(C,E+P,MassAtionLaw(k2 ));
R3 := Reation([C], [E, P], MassAtionLaw(k2), false )

> type(R1 , Reation);
true

> # The biochemical reaction system

> RS := [R1,R2,R3];

RS := [Reation([E, S], [C], MassAtionLaw(k1), true),Reation([C], [E, S], MassAtionLaw(km1 ), true),Reation([C], [E, P], MassAtionLaw(k2), false )]

> type(RS , ReationSystem);
true

� �

In MABSys there are also many auxiliary functions to manipulate the reactions such
as to extract the name of products, the name of reactants, to get fast or slow reactions,
to get rate constants etc. For all these functions see associated help pages [69].

B.2 Modeling by means of Nonlinear ODEs

This section tells how to transform a biological system composed of above phenomena
into a system of ODEs and present associated implementations. First I give an overview
about reactions that follows the classical mass-action law or a customized law, associated
stoichiometric matrix and rate vectors. Then I show the basic modeling method and the
quasi-steady state approximation (QSSA). This is given by an example using the new
algorithm introduced by the authors of [10]. I illustrate each of these notions with their
implementation in MABSys.

B.2.1 Background Knowledge

This subsection recalls some of the main notations and the notions about the modeling
of biological systems which are useful to clarify § 1.3 page 11.

In this document, the name of a protein in the equations refer to its concentration
in the medium where the reactions happen. If a reaction possesses a gene G within its
species as in binding, release or synthesis, then one can not talk about its concentration.
The derivative of G suppose the continuous variation of the gene which is meaningless.
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However this dynamic may be seen as a rate of the gene transcription. In binding and
release phenomena, G and H represent two different states of the same gene. They have
complementary gene transcription rates i.e. G+H = γ0 for some γ0 in R. A similar
logic is valid also for mRNAs. The derivative of M may be seen as the variation in the
rate of mRNA translation. In the sequel, the derivative of a species X w.r.t. time t is
denoted by a dot Ẋ .

Mass-action Law

The mass-action law is a classical way of defining the dynamic of a reaction in function of
the concentration of the present species and the rate constant which quantifies its speed.
Mainly, this law tells that, for an elementary reaction, the reaction rate is proportional
to the reactant concentrations raised to a particular power depending on their ratio and
to the rate constant.

Two biochemical reactions are given in figure B.5. The reactants A and B are

Aα + Bβ . . . Sσ + Tτ . . .
k+

k−

Figure B.5: Two one-way reaction

transformed into the products S and T by a rate constant k+ and vice versa by a rate
constant k−. All these rate constants are considered to be strictly positive. The reactions
tells how many molecules are needed to execute it. For example in figure B.5 α times A
and β times B let the forward reaction (from left to right) be executed. The mass-action
law indicates:

• the forward reaction rate = k+A
αBβ . . .

• the backward reaction rate = k− S
σ T τ . . .

When the concentration of a species increases, its velocity is taken positive; in the
contrary case, it is taken negative. Here is the model that respects the mass-action law
for the forward reaction:

{
Ȧ = Ḃ = · · · = −k+A

αBβ . . . ,

Ṡ = Ṫ = · · · = k+A
αBβ . . .

(B.1)

and that for the backward reaction:
{
Ȧ = Ḃ = · · · = k− S

σ T τ . . . ,

Ṡ = Ṫ = · · · = −k− Sσ T τ . . . .
(B.2)

Example B.2.1. In the following code example we create a reaction where two molecules
of A and one molecule of B are transformed into the product C by following the mass-
action law with k as the rate constant. By default, the reaction is considered as slow.
Then we call some MABSys commands to illustrate some of its functionalities.
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� �
> # Mass -action law

> R := NewReation(2* A+B,C,MassAtionLaw(k));
R := Reation([2 A, B], [C], MassAtionLaw(k), false )

> GetReactionReactants (R);

[2 A, B]

> GetReactionProducts (R);

[C]

> GetReactionRate(R);

2

k A B
� �

Customized Law

A customized law let the user to indicate any rate law in rational function for a given
reaction. Again, names of species indicate associated concentrations and new letters are
considered as parameters.

Example B.2.2. In this code example we create two reactions. The transformation
consists of converting a protein P into another protein Q by respecting the customized
law given just by some parameter k. We also create the synthesis of the protein P
without considering the source and assuming that the reaction follows a customized law
in the form of a Hill function. By default both are considered as slow.

� �
> # Customized law

> R1 := NewReation(P,Q,CustomizedLaw(k));
R1 := Reation([P], [Q], CustomizedLaw(k), false)

> GetReactionRate(R1);

k

> R2 := NewReation(0,P,CustomizedLaw(Q/(Q+theta )));
Q

R2 := Reation([], [P], CustomizedLaw(---------), false )

Q + theta

> GetReactionRate(R2);

Q

---------

Q + theta
� �

Rate Vector and Stoichiometric Matrix

The modeling of a biological system composed of many reactions requires the combina-
tion of each reaction information. An algorithmic way to obtain these models necessitates
the usage of the rate vector and the stoichiometric matrix.

Definition B.2.3 (Rate Vector). Let us consider a system of r one-way reactions
with v1, . . . , vr as their reaction rates. The vector V = (v1, . . . , vr) of dimension r is
called its rate vector. y
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Definition B.2.4 (Stoichiometric Matrix). Let us consider a system of r one-way bio-
chemical reactions between the species denoted by X = (x1, . . . , xk) where k is their
cardinal. The stoichiometric matrix is a matrix of dimension k × r. Each column corre-
sponds to a particular biochemical reaction and each row to a species. Its (i, j)th entry
is the number of molecules needed for the ith species in the jth reaction i.e. its stoichio-
metric coefficient. If the species is formed by the reaction, the coefficient has a positive
sign, if it is consumed, the stoichiometric coefficient appears with a negative sign. All
the other entries of the column which correspond to species that do not participate to
the reaction are zero. If a species appears on the left and right hand side of a reaction,
then its stoichiometric matrix is the difference of the number of molecules that were
formed and the number of molecules that were consumed. y

Example B.2.5. Let us return to the example B.1.1 page 153 where a basic enzy-
matic reaction system of 3 one-way reactions, given in figure B.4 page 153, is encoded
by MABSys. Remember that the variable RS corresponds to the system representation.
The following MABSys commands compute associated rate vector of dimension 3 and
stoichiometric matrix of dimension 4× 3.

� �
> # The rate vector

> RateVetor(RS);
[k1 E S]

[ ]

[km1 C ]

[ ]

[ k2 C ]

> # The stoichiometric matrix

> StoihiometriMatrix(RS, [E,S,C,P]);

[-1 1 1]

[ ]

[-1 1 0]

[ ]

[ 1 -1 -1]

[ ]

[ 0 0 1]
� �

B.2.2 Basic Modeling

One of the simplest classical way of modeling a biological system consists of constructing
a model by following the rate laws (mass-action or customized law) of the reactions.
The basic modeling of a biological system of r one-way reactions that involves k species
denoted by X = (x1, . . . , xk) by means of ODEs requires associated rate vector V of
dimension r and stoichiometric matrixM of dimension k × r. In vector-valued notations,
the basic model is given by the following formula:

Ẋ =MV. (B.3)

This model can be obtained by ReactionSystem2ODEs function of MABSys.

Example B.2.6. The computation of the basic model that corresponds to the basic
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enzymatic reaction system of figure B.4 page 153 follows.




Ė

Ṡ

Ċ

Ṗ


 =




−1 1 1
−1 1 0
1 −1 −1
0 0 1






k1E S
k−1 C
k2 C


 ⇔





Ė = −k1E S + k−1 C + k2 C,

Ṡ = −k1E S + k−1 C,

Ċ = k1E S − k−1 C − k2 C,

Ṗ = k2 C.

(B.4)

This biological system is already encoded in the variable RS in example B.1.1 page 153.
Its automatic modeling follows.

� �
> # Basic modeling

> ReationSystem2ODEs(RS , [E,S,C,P]);

d

[-- E(t) = -k1 E(t) S(t) + km1 C(t) + k2 C(t),

dt

d

-- S(t) = -k1 E(t) S(t) + km1 C(t),

dt

d

-- C(t) = k1 E(t) S(t) - km1 C(t) - k2 C(t),

dt

d

-- P(t) = k2 C(t)]

dt
� �

B.2.3 Quasi-Steady State Approximation

There are different ways to perform quasi-steady state approximation (QSSA) which is an
inexact simplification method. The classical one which consists to replace some variables
with their steady state values is useful in many cases. However, for example when one is
interested in timescales over which the system equilibrates or in period and amplitude of
oscillations for an oscillating system, this classical QSSA must be adjusted. Indeed, the
separation of timescales is the key for observing nontrivial behaviors. In biology, many
processes like dimerization occur faster than others. In [10], QSSA method considered
by [113, 4] is reformulated and made fully algorithmic. The algorithm can be expressed
by means of either differential elimination methods (see [9, 56, 66, 95]) or regular chains
using [67]. In [11] authors apply QSSA to a family of networks proposed in [12] and
obtain a more precise model (see also § 1.3.3 page 14).

For biological systems, two classes of reactions are considered: slow and fast ones.
The idea is to study the dynamics of slow reactions, assuming that the fast ones are at
quasi-equilibrium, thereby removing from the system of ODEs, the differential equations
which describe the evolution of the variables at quasi-equilibrium. Here, I present the
main idea of this method through the basic enzymatic reaction system given in the
example B.1.1 page 153. The main hypothesis which permits to perform QSSA is that
the reversible reaction i.e. the first one in figure B.4 page 153 is much faster then the
second reaction. In other words, one assumes that the parameters k1 and k−1 are greater
than k2. In addition to this hypothesis, one uses the pre-equilibrium approximation on
the fast reactions. That corresponds to say that the reaction rates are equal in two
directions i.e. k1E S = k−1 C.
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As for the basic modeling, QSSA requires to know the contribution of each reaction.
QSSA handles the fast reactions which are assumed to be at equilibrium in a different
manner than the slow reactions. The contribution of each slow reaction is derived from
the associated rate law as usual. The contribution of each fast reaction is represented
by a new variable. The underlying idea is that the dynamic of the fast reactions is (for
the moment) considered as unknown. This means that one adds a degree of freedom for
each fast reaction. This freedom, in fact, allows the system to stay on the equilibrium
conditions. Performing elimination on the extra unwanted variables, one gets a set of
differential equations in the reactants only.

Over the basic enzymatic reaction system example, the contribution of the fast reac-
tion is denoted by F (for fast reaction) and the contribution of the slow reaction is k2 C
(compare with the equations (B.4) page 158):





Ė = −F + k2 C,

Ṡ = −F,
Ċ = F − k2 C,

Ṗ = k2 C.

(B.5)

By differential elimination and introducing K = k−1/k1 one gets:

F =
k2 E S (S + K)

K (S + E + K)
, Ė =

k2 E2 S

K (S + E + K)
, Ṗ =

k2 E S

K
, Ṡ = − k2 E S (S + K)

K (S + E + K)
, C =

E S

K
· (B.6)

Using the conservation laws E + C = E0 + C0 and S + C + P = S0 + C0 + P0 (that one
can automatically deduce from the system (B.5) by means of linear algebra), assuming
that C0 = P0 = 0 and introducing Vm = k2E0, computations yield:

Ṡ = − Vm S (K + S)

K E0 + (K + S)2
(B.7)

where 0 subscript denotes the initial concentrations.

The classical formula given in the early xxth century for the same problem by Henri,
Michaëlis and Menten (see [54, 77]) on the one hand, Briggs and Haldane (see [18]) on
the other hand writes:

Ṡ = − Vm S

K + S
(B.8)

where Vm = k2E0 and K are parameters. Both reductions rely on a few extra assump-
tions and has different values for the parameter K; k−1/k1 in Henri-Michaëlis-Menten
case, (k−1 + k2) /k1 in Briggs-Haldane’s.

Over this easy example, the benefits of (B.7) w.r.t. (B.8) are clear. The reduction is
automatic and yields a formula which seems more accurate when S is not supposed to
be greater than E0. Observe that with this assumption the formula (B.8) is recovered
from (B.7). For numerical simulations that verify these phenomena see [10, 11].

Example B.2.7. The formula (B.7) can be computed automatically by using the func-
tion ModelReduce of MABSys. In example B.1.1 page 153 the reactions are encoded in
the variable RS with their velocity assumptions.
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� �
> # Modeling by QSSA

> QSSAModel := ModelRedue(RS, [E,C,P,S], useConservationLaws=true )[1 ,1]:

> # The further simplifications

> QSSAModel := simplify (subs({k1=km1/K,C_0 =0, P_0 =0,k2=Vm/E_0},QSSAModel )):

> # The last equation correspond to the substrate .

> QSSAModelS := QSSAModel [-1];

d Vm S(t) (K + S(t))

QSSAModelS := -- S(t) = - -----------------------------

dt 2 2

2 S(t) K + S(t) + E_0 K + K
� �
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ming Wang, editors, Gröbner Bases in Symbolic Analysis Workshop D2.2 of the Special Semester
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