Thèse soutenue

Systèmes hétérogènes lyophobes : Influence de la température et de la vitesse sur les cycles d’intrusion/extrusion forcées de liquides non-mouillants dans des matériaux mésoporeux
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Ludivine Guillemot
Direction : Elisabeth CharlaixGérard Vigier
Type : Thèse de doctorat
Discipline(s) : Physique et matériaux
Date : Soutenance en 2010
Etablissement(s) : Lyon, INSA
Ecole(s) doctorale(s) : Ecole Doctorale Matériaux de Lyon (Villeurbanne)
Partenaire(s) de recherche : Laboratoire : MATEIS - Matériaux : Ingénierie et Science - UMR 5510 (Rhône)

Mots clés

FR

Mots clés contrôlés

Résumé

FR  |  
EN

Un système hétérogène lyophobe est constitué d’un matériau mésoporeux et d’un liquide non-mouillant vis-à-vis de ce matériau. Le liquide ne peut pas entrer dans les pores à la pression atmosphérique, mais en augmentant la pression, il devient possible de forcer le liquide à pénétrer, puis en diminuant cette pression, à ressortir des pores du matériau. On mesure alors une hystérésis de pression significative d’une dissipation d’énergie qui peut être utilisée pour des applications d’amortissement bien spécifiques recherchées par l’industrie spatiale. Cette étude cherche à comprendre finement les phénomènes physiques qui régissent les processus d’intrusion et d’extrusion du liquide dans les pores de taille nanométrique, ainsi que de caractériser les effets de la vitesse et de la température sur les cycles d’hystérésis. Un dispositif d’essais original a été conçu afin d’effectuer des cycles d’intrusion/extrusion à différentes températures (20 - 80°C) et vitesses (0. 5 - 1000cm/min). Plusieurs liquides tels que l’eau, l’eau salée et le Galinstan (alliage métallique liquide à température ambiante) et matériaux de structure poreuse variée ont été testés. Des théories de thermodynamiques macroscopiques (théorie de capillarité et modèle de nucléation) ont été utilisées pour expliquer les mesures expérimentales. L’accord expérience/théorie est très bon et a permis notamment de montrer la nécessité de prendre en compte la tension de ligne dans l’énergie de nucléation. Une valeur de cette tension de ligne a été déterminée expérimentalement. Ainsi, il est maintenant possible de prévoir le comportement de ces systèmes amortisseurs