Thèse soutenue

Modelisation des composants mono-electroniques : Single-Electron Transistor et Single-Electron Memory

FR  |  
EN
Auteur / Autrice : Aimen Boubaker
Direction : Abdelkader SouifiAdel Kalboussi
Type : Thèse de doctorat
Discipline(s) : Electronique
Date : Soutenance en 2010
Etablissement(s) : Lyon, INSA
Ecole(s) doctorale(s) : École doctorale Électronique, électrotechnique, automatique (Lyon)
Partenaire(s) de recherche : Laboratoire : INL - Institut des Nanotechnologies de Lyon, UMR5270 (Rhône) - Faculté des Sciences de Monastir (Tunisie)
Jury : Examinateurs / Examinatrices : Abdelkader Souifi, Adel Kalboussi, Philippe Dollfus, Thierry Baron, Nicolas Baboux, Nabil Sghaier
Rapporteurs / Rapporteuses : Philippe Dollfus, Thierry Baron

Résumé

FR  |  
EN

[Ce travail concerne le développement des mémoires à un électron de type SET/SEM pour les technologies CMOS silicium. Le premier chapitre du manuscrit est consacré à la présentation d' une revue bibliographique des phénomènes apparaissant dans les nanodispositifs électroniques (effets quantiques, blocage de Coulomb) de type transistors et mémoires à un électron. Dans le deuxième chapitre, nous nous intéressons aux diffë rents modèles électriques proposés pour les SETs. Grâce à des simulations numériques développées sous SPICE, nous avons approfondi notre compréhension du fonctionnement des SETs dans quelques exemples d'applications. Il s' agissait notamment de comparer les modèles dans le cas de SETs métalliques et semiconducteurs. Le troisième chapitre concerne la définition de l' architecture mémoire à un électron de type SET/SEM que nous proposons d'étudier. Après avoir présenté le concept de la structure SET/SEM, et expliqué le principe de fonctionnement dans les modes de lecture et de programmation, nous détaillons les résultats de simulations des caractéristiques du dispositif proposé. Après avoir opté pour une mémoire utilisant deux îlots métalliques pour les opérations de stockage de charge et de lecture respectivement, nous avons utilisé le logiciel SIMON afi n de proposer une architecture optimisée. Les travaux de simulations de l'architecture SET/SEM nous ont permis de calculer les éléments de circuits du modèle électrique équivalent permettant un fonctionnement optimal de la mémoire. Un aspect fondamental pour cette étude était en effet d'optimiser le décalage OVg des caractéristiques Ig-Vg observé lors de l' injection d'électrons uniques dans le point mémoire. Finalement, nous avons démontré qu'un décalage de quelques dizaines de m V/ électron était possible dans notre architecture. Dans le quatrième chapitre, nous présentons une étude détaillée des mécanismes de transport dans le bloc de mémorisation. Un modèle électrique de la cinétique de charge et décharge a été utilisé en prenant en compte l'effet du champ électrique. Finalement, nous avons étudié l' influence des paramètres technologiques comme les épaisseurs d'oxyde et la surface de l' îlot de mémorisation afin de proposer un dimensionnement de l'architecture SET/SEM. Ces simulations faites dans un premier temps à partir du système Ti / Tiüx utilisé dans la technologie nanodamascène développée à l'Université de Sherbrooke, ont pu dans un second temps être étendues à d'autres systèmes de matériaux afin de pro poser les matériaux présentant les meilleurs temps de rétention théoriques. Après avoir comparé les simulations d'îlots métalliques en Pt, Au, TiSi2, NiSi et Ti, nos travaux montrent que titane associé au Ti02 présente les meilleurs temps de rétention à 85% y compris à des températures aussi élevées que 430K qui représente actuellement la température maximale de fonctionnement des SETs réalisés à l'uni versité de Sherbrooke. ]