Thèse soutenue

FR
Accès à la thèse
Auteur / Autrice : Mouhammad Said
Direction : Jacques-Olivier LachaudFabien Feschet
Type : Thèse de doctorat
Discipline(s) : Informatique et mathématiques
Date : Soutenance en 2010
Etablissement(s) : Grenoble
Ecole(s) doctorale(s) : École doctorale mathématiques, sciences et technologies de l'information, informatique (Grenoble199.-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Mathématiques (Chambéry) - Laboratoire d'algorithmique et image (Clermont-FerrandLAIC)
Jury : Président / Présidente : Éric Andres
Examinateurs / Examinatrices : Laurent Vuillon
Rapporteurs / Rapporteuses : Valérie Berthé, David Coeurjolly

Résumé

FR  |  
EN

Les courbes frontières définissent les régions ou les formes du plan de manière compacte et descriptive. Il est bien connu que les formes doivent être étudiées à différentes échelles. Ceci a conduit au développement des pyramides régulières et irrégulières pour l'analyse des formes et la compréhension des scènes. Cependant, il n'existe pas une description analytique de la multi-résolution d'une forme numérique, contrairement au célèbre espace-échelle (scale-space) dans le monde continu. En outre, les primitives géométriques telles que les lignes, les cercles ou les polynômes ont une grande importance dans le contexte de la géométrie numérique. Les morceaux des droites numériques sont un bon moyen pour estimer les tangentes et les arcs discrets approchent la courbure. Il est donc nécessaire de les garder dans l'analyse multi-échelle des frontières numériques. Un des objectifs de cette thèse est de donner des nouveaux résultats analytiques sur la multi-résolution des droites 4-connexes et des segments de droites 4-connexes. Figueiredo est le premier qui a étudié le comportement des droites 8-connexes lors du changement de la résolution de la grille. Dans le présent travail, nous considérons une droite 4-connexe pour laquelle une description analytique est fournie lorsque la résolution de la grille est modifiée par un facteur arbitraire. En plus, nous montrons que leurs couvertures sont des droites 4-connexes. Comme les formules analytiques des segments de droite sont un problème beaucoup plus difficile, nous proposons un parcours indirect pour la multi-résolution d'un DSS en utilisant le fait qu'un segment est un morceau fin d'une droite discrète. Etant donné un DSS, nous construisons deux droites dont l'intersection le contient et dont la partie connexe principale a les mêmes caractéristiques arithmétiques, ainsi que le même nombre de motifs. Notons que nous proposons de nouveaux résultats combinatoires des intersections de droites. Nous déterminons la multi-résolution du segment en examinant la multi-résolution de l'intersection de ces deux droites. Nous donnons une nouvelle description analytique de cet ensemble avec des inégalités arithmétiques. Nous abordons également le problème du calcul des caractéristiques exactes d'un sous-segment d'une droite 4-connexe qui a des caractéristiques connues. Nous présentons deux nouveaux algorithmes SmartDSS et ReversedSmartDSS qui résolvent ce problème. Leur principe est de se déplacer dans l'arbre de Stern-Brocot de la fraction soit de manière haut-bas ou bas-haut. Dans le pire cas, leur complexité est meilleure que l'algorithme de reconnaissance DSS classique. Les deux algorithmes peuvent dès lors servir à calculer efficacement la multi-résolution d'un segment. Les bruits tout au long des contours numériques ne sont pas vraiment détectés, mais plutôt annulés par l'épaississement des segments de droites 4-connexes. De plus, l'épaisseur est réglée par un utilisateur et aussi définie globalement pour le contour. Pour surmonter ce problème, nous proposons une stratégie originale pour détecter localement à la fois la quantité de bruit et les épaisseurs significatives de chaque point de contour. Ce travail se base sur les propriétés asymptotiques de segments flous d'épaisseurs différentes, et forme une alternative à l'approche multi-résolution de la détection du bruit.