Thèse soutenue

Comportement vibro-acoustique de matériaux et structures à base de poudrettes de pneumatiques recyclés

FR
Auteur / Autrice : Nicolas Roche
Direction : Mohamed IchchouMichelle Salvia
Type : Thèse de doctorat
Discipline(s) : Mécanique, Energétique, Génie Civil et Acoustique
Date : Soutenance le 17/12/2010
Etablissement(s) : Ecully, Ecole centrale de Lyon
Ecole(s) doctorale(s) : Ecole doctorale Mécanique, Energétique, Génie Civil, Acoustique (Villeurbanne ; 2011-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de tribologie et dynamique des systèmes (Écully, Rhône ; 1970-)
Jury : Président / Présidente : Jean-Luc Loubet
Examinateurs / Examinatrices : Jérôme Marcilloux, Jun Yi
Rapporteurs / Rapporteuses : Colette Lacabanne, Manuel Collet

Résumé

FR  |  
EN

La difficulté de recyclage des pneus usagés en raison de la réticulation de la gomme représente un enjeu environnemental important. Une solution envisagée dans cette étude est la mise en œuvre de poudrettes de pneumatique recyclées (GTR) dans la conception de produits de plasturgie visant un bon amortissement choc, acoustique et vibratoire. Notre travail s’est orienté vers la conception et la caractérisation de deux types de matériaux : 1) Des composites Thermoplastique/GTR, sur 2 matrices thermoplastiques (TP) différentes (Acétate de vinyle (EVA) et polypropylène (PP) mis en œuvre par extrusion/injection, 2) Des plaques composées à 100% de poudrettes GTR élaborées par compaction/chauffage. La qualité de l’interface TP/GTR a été estimée par analyse micrographie électronique à balayage MEB. L’influence des charges GTR sur la cristallinité des matrices a été évaluée par DSC. Une étude en traction a permis de déterminer le module de Young en traction, le seuil d’écoulement ainsi que l’allongement à rupture. L’amortissement vibratoire a été caractérisé par analyse mécanique dynamique (DMA) avec la détermination du facteur de perte η sur une large gamme de températures permettant la construction des courbes maîtresses en fréquence (équivalence fréquence/température WLF). L’amortissement choc a été déterminé par impact de chute de masse instrumenté. Le coefficient d’absorption acoustique a été mesuré au moyen d’un tube de Kundt par la méthode des deux microphones. Ces différents moyens de caractérisation ont montré que l’amortissement de vibrations et d’impacts était augmenté par l’incorporation de charges GTR dans une matrice TP. L’étude de la résilience des mélanges PP/GTR a mis en évidence l’influence de la structure interne des éprouvettes moulées sur les mécanismes d’amortissement des chocs. Les plaques constituées à 100% de poudrettes compactées/chauffées ont démontré une bonne cohésion et d’excellentes propriétés d’amortissement aux chocs. Le coefficient d’absorption acoustique n’est intéressant qu’au voisinage de la résonance des différentes plaques testées.