Approche numérique et expérimentale de la propagation sonore en environnements océaniques tridimensionnels : application aux problèmes inverses
Auteur / Autrice : | Alexios Korakas |
Direction : | Philippe Blanc-Benon, Frédéric Sturm |
Type : | Thèse de doctorat |
Discipline(s) : | Acoustique |
Date : | Soutenance le 17/05/2010 |
Etablissement(s) : | Ecully, Ecole centrale de Lyon |
Ecole(s) doctorale(s) : | Laboratoire de mécanique des fluides et acoustique (Rhône) |
Jury : | Président / Présidente : Jean-Pierre Sessarego |
Examinateurs / Examinatrices : Daniel Juvé, Dominique Fattaccioli | |
Rapporteurs / Rapporteuses : Philippe Roux, Michael Taroudakis |
Mots clés
Mots clés contrôlés
Résumé
On s’intéresse dans ce travail à l’aspect tridimensionnel (3D) de la propagation sonore en milieux océaniques petits fonds dans le cadre des problèmes inverses. Les problèmes inverses en acoustique sous-marine se basent sur la modélisation bidimensionnelle (2D) de la propagation, ignorant ainsi les effets de réfraction horizontale, qualifiés d’effets 3D. Toutefois, la propagation acoustique en environnements petits fonds, tels le plateau continental, peut être affectée par des effets 3D, leur prise en compte nécessitant l’utilisation de modèles pleinement 3D. Une inversion basée sur un modèle 3D devient inabordable pour plus de deux paramètres à la fois en raison de temps CPU particulièrement élevés. L’objectif de ce travail est d’examiner l’importance des effets 3D sur la performance et la fiabilité des procédures d’inversion habituellement utilisées dans les problèmes de l’acoustique sous-marine. Pour cela, on se place dans un guide d’onde océanique à géométrie inclinée. Des expérimentations à échelle réduite sont menées afin d’identifier et d’interpréter les effets 3D. Une procédure d’inversion par champs d’onde adaptés, formulée dans un cadre Bayesien et basée sur la recherche exhaustive dans l’espace des paramètres, est élaborée. L’inversion s’effectue en comparant des données basse fréquence du champ acoustique, recueillies le long d’antennes linéaires verticales ou horizontales, aux répliques générées par des modèles d’équation parabolique 2D et 3D. Les paramètres importants sont identifiés au moyen d’une étude de sensibilité de la fonction de coût. Dans une étape préliminaire, la performance de l’inversion est étudiée, sur données synthétiques bruitées, dans un cas simple permettant l’utilisation de modèles 2D. Une stratégied’inversion en sous-espaces résultant en une réduction importante des temps CPU pour l’inversion, est examinée. L’inversion est ensuite abordée en présence d’un fond incliné. La possibilité et les limites d’une inversion basée sur un modèle 2D sont explorées. Cette approche, mise en œuvre sur données synthétiques, met en évidence la pertinence de l’utilisation de modèles 2D en champ relativement proche. Une inversion basée sur un modèle 3D n’étant alors nécessaire que pour la pente, des temps CPU raisonnables sont ainsi réalisés. En revanche, en champ lointain, nous sommes confrontés à un risque potentiel d’estimation erronée et le recours à une modélisation 3D devient nécessaire.