
N◦ d’ordre : 2010-XX-XXX

THÈSE
présentée

à l’Université de Cergy-Pontoise
École Nationale Supérieure de l’Électronique et de ses Applications

pour obtenir le grade de :

Docteur en Science de l’Université de Cergy-Pontoise
Spécialité : Sciences et Technologies de l’Information et de la Communication

Par

Bilal Shams
Équipes d’accueil :

Équipe Traitement des Images et du Signal (ETIS) - CNRS UMR 8051
et

Digital Solutions for Innovative IPs Team - STMicroelectronics Crolles

Titre de la thèse :

Les codes LDPC non-binaire du nouvelle generation
Soutenue le 08-12-2010 devant la commission d’examen composée de :

Didier Demigny IUT (Lannion), Université Rennes-1 Examinateur
Valentin Savin CETA-LETI, Grenoble Examinateur
Emmanuel Boutillon LAB-STICC, UBO, Lorient Rapporteur
Laura Conde-Canencia LAB-STICC, UBO, Lorient Rapporteur
Dr. Jossy Sayir University of Cambridge, UK Rapporteur
Vincent HEINRICH STMicroelectronics, Crolles Encadrant
David DECLERCQ ENSEA - Université de Cegy Pontoise Directeur de thèse

Author’s Publications

� INTERNATIONAL CONFERENCES

[C1] B. Shams, D. Declercq, V. Y. Heinrich, “Non-binary split LDPC codes defined
over finite groups”, in Proc. of IEEE ISWCS’09, Siena-Tuscany, Italy, Sept. 2009

[C2] B. Shams, D. Declercq, V. Y. Heinrich, “Improved decoding architecture for non-
binary split codes defined over finite groups”, in Proc. of IEEE ICFCC’10, Wuhan,
China, May 2010

Dedication

To Dr. Shams Rahman, my dad
also a Ph.D.

who is in the Heavens now

Acknowledgements

I carried out my thesis at the laboratory ETIS (Equipe Traitment d’Image et du Sig-

nal) at ENSEA (Ecole Nationale Supérieure de l’Electronique et ses Application and

STMicroelectronics, crolles.

I would like to thank both teams at ETIS and STMicroelectronics, who welcomed

me into their teams and gave me the oppertunity to develop myself into a better pro-

fessional.

My foremost thanks to Prof. David Declercq who supervised me during my Ph.D.

He has always been kind, patient and encouraging. I take great pride in having to work

with him, who is a big name in the field of LDPC codes. I feel greatly indebted to him

and I have learnt a lot from him.

My utmost gratitudes for Vincent Heinrich who was my supervisor at STMicroelec-

tronics. He has always been cool, calm and dynamic. He has taught me a lot about the

corporate sector.

I would also like to mention the support of my darling wife Zakia durig my Ph.D.

She has always been encouraging and motivated me during my hard times.

Above all, I am thankful to the Almighty for His guidance and the blessings he has

always been showering on us all.

iii

Abstract

In this thesis we present our work in the domain of non-binary decoding algorithm for

general classes of non-binary LDPC codes. Binary Low-Density Parity-Check (LDPC)

codes were originally presented by Gallager in 1963, and after some fundamental theo-

retical advancement, they were considered in standards like DVB-S2, WI-MAX, DSL,

W-LAN etc. Later on, Non-Binary LDPC (NB-LDPC) codes were proposed in liter-

ature, and showed better performance for small lengths or when used on non-binary

channels. However, the advantages of using NB-LDPC codes come with the conse-

quence of a heavily increased decoding complexity. For a code defined in GF (q), the

complexity is of the orderO (q2). Similarly, the memory required for storing messages

is of orderO (q). Consequently, the implementation of an LDPC-decoder defined over

a field order q > 64 becomes practically impossible. The main objective of the thesis

is to develop reduced complexity algorithms for non-binary LDPC codes that exhibit

excellent performance and are practically implementable. For better decoding per-

formance, not only the decoding algorithm is important, but also the structure of the

code plays an important role. With this goal in mind, a new family of codes called

cluster-NB-LDPC codes was developed and specific improvements of the NB decoder

for cluster-NB-LDPC codes were proposed. Our principal result is that we were able

to propose decoders for cluster-NB-LDPC codes with reduced complexity compared

to usual decoders for NB-LDPC codes on fields, without any performance loss in error

correction capability.

iv

Acknowledgements

In the first part of the thesis, we modify the EMS algorithm for cluster codes. We

see that the direct implementation of the EMS algorithm to NB cluster-LDPC codes

is not a feasible option. There is a loss in performance and an increase in decoding

complexity. Therefore, we propose some modification in the procedure, which not

only significantly improves the decoding performance but also decreases the decoding

complexity. It places the same limits on the number of operations at the check nodes

as the EMS algorithm for GF (q)-codes i.e. O (nmlognm), with nm << q. We then

propose another method, based on the diversity of cluster codes, to improve the per-

formance of the EMS algorithm for cluster codes. It also helps in reducing the overall

complexity of the decoder. In the end we compare the decoding performance using

this method and analyze the effect on the decoding complexity.

In the last part of the chapter, we propose a new direction for the decoding of LDPC

codes. It is based on the creation of lists of codewords that are local to the parity check

nodes. The list is constructed recursively in a tree structure, which makes it a good

candidate for hardware implementation. It is a new method and requires further im-

provement. As an initial report, we have obtained good results with less number of

computations.

Keywords: Non-binary LDPC codes, simplified decoding of non-binary LDPC codes,

EMS decoding algorithm, Non-binary cluster LDPC codes, local list based decoding

v

Résumé

Dans cette thèse, nous présentons nos travaux dans le domaine des algorithmes de

décodage des codes LDPC non-binaires généralisés. Les codes LDPC binaires ont

été initialement proposés par Gallager en 1963, et après quelques avancées théoriques

fondamentales, ils ont été proposés dans des standards tels que DVB-S2, WI-MAX,

DSL, W-LAN etc. Plus tard, les codes LDPC non-binaires (NB-LDPC) ont été pro-

posés dans la littérature, et ont montré une meilleure performance pour de petites tailles

de code ou lorsqu’ils sont utilisés sur des canaux non-binaires. Cependant, les avan-

tages de l’utilisation de codes NB-LDPC impliquent une augmentation importante de

la complexité de décodage. Pour un code défini dans un corps de Galois GF (q), la

complexité est d’ordre O (q2). De même, la mémoire requise pour le stockage des

messages est d’ordre O (q). Ainsi, l’implémentation d’un décodeur LDPC défini sur

un corps de Galois pour q > 64 devient impossible dans la pratique. L’objectif prin-

cipal de cette thèse est de développer des algorithmes avec une bonne performance et

complexité réduite de sorte qu’ils deviennent implémentables. Pour une performance

de décodage optimisée, non seulement l’algorithme est important, mais également la

structure du code joue un rôle clé. Avec cet objectif à l’esprit, une nouvelle famille de

codes appelés « cluster-NB-LDPC codes » a été élaborée ainsi que des améliorations

spécifiques du décodeur non-binaire pour ces codes. Le résultat principal est que nous

avons pu proposer des décodeurs pour les codes cluster-NB-LDPC avec une complex-

ité réduite par rapport aux décodeurs classiques pour les codes NB-LDPC définis sur

les corps de Galois, sans aucune perte de performance dans la capacité de correction

vi

Résumé

d’erreur.

Dans la première partie de la thèse, nous avons modifié l’algorithme EMS pour les

cluster-codes. La généralisation directe de l’algorithme EMS aux codes cluster-NB-

LDPC n’est pas réaliste . Il y a une perte de performance et une augmentation de la

complexité. Par conséquent, nous proposons quelques modifications dans la procé-

dure, qui non seulement améliore considérablement les performances de décodage,

mais diminue également la complexité. Au niveau des noeuds de parité, cet algo-

rithme conserve les mêmes limites sur le nombre d’opérations que l’algorithme EMS

pour GF (q)-codes, O (nmlognm) avec nm << q. Nous proposons ensuite une autre

méthode, basée sur la diversité des codes cluster, afin d’améliorer les performances

de l’algorithme EMS pour les codes cluster-LDPC. Il contribue également à réduire

la complexité globale du décodeur. Finalement, nous comparons les performances de

décodage en utilisant cette méthode et analysons l’effet sur la complexité de décodage.

Dans la dernière partie du chapitre, nous proposons une nouvelle direction pour le

décodage des codes LDPC. Elle est basée sur la création des listes des mots de code

qui correspondent à des noeuds de parité. Les listes sont construite de manière récur-

sive dans une structure en arbre, ce qui en fait un bon candidat pour l’implémentation

matérielle. Il s’agit d’une méthode nouvelle et doit encore être améliorée mais à pre-

miére vue nous avons obtenu de bons résultats avec un nombre réduit d’operations.

Mots de clé: Les codes LDPC non-binaires, décodage simplifié des codes LDPC non-

binaires, L’algorithme EMS, cluster-LDPC codes non-binaires, décodage basée sur les

listes

vii

Contents

List of Figures xi

List of Tables xiv

Abbreviations xv

1 Introduction - Context and Background 1

1.1 Context and background . 1

1.1.1 Introduction . 1

1.1.2 History . 3

1.2 Motivation and objective of the thesis 4

1.3 Thesis organization . 5

2 Non-binary LDPC codes 8

2.1 Classification of Non-binary LDPC codes 8

2.1.1 NB-LDPC codes defined on finite Galois fields 9

2.1.2 NB-LDPC codes defined on general linear groups 24

2.1.3 Cluster NB-LDPC codes defined on Groups 29

2.2 Simplified implementation of NB-LDPC decoders 33

2.2.1 FFT-based BP algorithm . 34

2.2.2 Log-FFT belief propagation algorithm 37

2.2.3 The log domain non-binary BP algorithm 39

viii

Contents

2.2.4 The Extended Min-Sum algorithm 41

2.2.5 Symbol Flipping based decoding 46

2.2.6 Non-binary Stochastic decoders 48

2.3 Complexity comparison of NB-LDPC decoders 51

2.4 Conclusion . 53

3 Improved EMS algorithm for cluster codes 56

3.1 Generalization of EMS to cluster codes 56

3.1.1 The decoding algorithm . 58

3.1.2 Monte-Carlo simulation results 61

3.2 Improved EMS decoder for cluster codes 65

3.2.1 A second elementary process 65

3.2.2 Improved estimation of output LLRs 67

3.2.3 Monte-Carlo simulation results 68

3.2.4 Hardware Architecture . 70

3.2.5 Complexity comparison . 73

3.3 Diversity of group-LDPC codes . 75

3.3.1 Parallel cluster-EMS check update processes 75

3.3.2 Monte-Carlo simulation results 77

3.3.3 Complexity comparisons . 79

3.4 Conclusion . 81

4 A new decoding algorithm for NB-LDPC codes using local lists 83

4.1 List Decoding . 84

4.2 The local-list based decoder . 85

4.2.1 Creation of the list . 86

4.2.2 Extraction of LLRs from a local list 88

4.2.3 The decoding algorithm . 89

ix

Contents

4.3 Decoding performance and complexity 91

4.4 Reduced list-size decoder . 93

4.5 Conclusion . 95

5 Conclusions and perspectives 96

5.1 Conclusions . 96

5.2 Perspectives . 97

Bibliography 99

x

List of Figures

1.1 Block Diagram of a communication system 2

2.1 A non-binary LDPC parity check matrix 11

2.2 The Tanner Graph for a non-binary parity check matrix 12

2.3 A cyclic permutation of a message at the permutation node 13

2.4 Binary representation of a GF(q)-LDPC code 14

2.5 The messages flowing across a Tanner graph for the BP algorithm . . 16

2.6 The degree dv variable node update 17

2.7 The degree dc = 3 check node update 18

2.8 Binary vs non-binary LDPC codes, Nb = 3008 bits and R = 1/2 . . . 21

2.9 Binary vs non-binary LDPC codes, Nb = 565 bits and R = 2/3 21

2.10 Performance of regularGF (256) LDPC codes over a 16-QAM channel

at a BER of 10−5 . 22

2.11 Performance of regular GF (256) LDPC codes over a 256-QAM chan-

nel at a BER of 10−5 . 23

2.12 The square clusters in a binary PCM 25

2.13 Binary clusters and their associated functions (a). Full-Rank (b) Rank-

deficient . 26

2.14 A rectangular cluster and its associated function node projections . . . 30

2.15 A binary parity check matrix with rectangular clusters 31

2.16 Tanner graph for FFT-based BP decoding 37

xi

List of Figures

2.17 The log-FFT based BP algorithm . 40

2.18 The forward-backward strategy for a check node of degree dc = 5 . . 43

2.19 The elementary check update process 46

2.20 Parity check matrix H of a generalized LDPC code based on super-codes 46

2.21 Tanner Graph and vote generation for the PCM for super-codes based

generalized LDPC codes . 47

2.22 The Stochastic variable update process for a degree dv = 2 50

2.23 The stochastic check update process for degree dc = 4 51

3.1 A binary PCM composed of clusters of different sizes 57

3.2 The messages flowing across a Tanner graph for cluster-LDPC codes . 57

3.3 Elementary check update process, various scenarios for adding neigh-

bors to the sorter . 61

3.4 Flow chart for the check update algorithm 62

3.5 EMS for a GF (64)-code and cluster-code with p1 = 4, p2 = 6, N =

576-bits and R = 1/2 . 63

3.6 EMS for a GF (64)-code and cluster-code with p1 = 4, p2 = 6, N =

2304-bits and R = 1/2 . 64

3.7 EMS for a GF (64)-code and two cluster-code with p1 = 3, 4, p2 = 6,

N = 3000-bits and R = 1/2 . 64

3.8 The matrix M formed with full-size input vectors Ufc and Tj 67

3.9 Improved EMS for a cluster-code with p1 = 4, p2 = 6, N = 576-bits

and R = 1/2 . 68

3.10 Improved EMS for a cluster-code with p1 = 4, p2 = 6, N = 2304-bits

and R = 1/2 . 69

3.11 Improved EMS for two cluster-codes with p1 = 3, 4, p2 = 6, N =

3000-bits and R = 1/2 . 70

3.12 The main components of the decoder 71

xii

List of Figures

3.13 Variable update processor . 72

3.14 Improved EMS for two cluster-codes with p1 = 3, 4, p2 = 6, N =

3000-bits and R = 1/2 . 73

3.15 Multiple instances of a check update process scrambled in parallel us-

ing diversity of group-LDPC codes 76

3.16 Decoder diversity N = 3000, R = 0.5, (p1, p2) = (3, 6) 78

3.17 Decoder diversity N = 3000, R = 0.5, (p1, p2) = (4, 6) 78

3.18 Decoder diversity N = 4800, R = 0.88, (p1, p2) = (3, 7) 79

3.19 Normalized area vs. number of parallel check-update processes 80

3.20 Normalized area vs. message truncation value nm 81

4.1 A trellis for an order-64 check node of degree dc = 6 84

4.2 A list of codewords and their likelihoods 85

4.3 Tree for creation of list . 86

4.4 Elementary step of the tree . 87

4.5 local-list decoder vs. cluster-EMS decoder N = 3000, R = 0.5,

(p1, p2) = (3, 6) . 92

4.6 local-list decoder vs. cluster-EMS decoder N = 3000, R = 0.5,

(p1, p2) = (4, 6) . 93

4.7 Path saturation at certain nodes of the trellis 94

4.8 Local-list decoder N = 3000, R = 0.5, (p1, p2) = (3, 6) 94

xiii

List of Tables

2.1 Primitive Polynomials . 9

2.2 Binary and Polynomial representation of Finite Field GF (8) 10

2.3 Computational complexity of the BP algorithm 20

2.4 Memory required to store messages in a NB-Tanner Graph 33

2.5 Vote values for the symbol flipping decoding for generalized LDPC

based on 2-super codes . 48

2.6 Number of operations required for an elementary process of a variable

node . 52

2.7 Number of operations required for an elementary process of a check

node . 53

3.1 Size of LLR-vectors . 74

3.2 Number of operations at a variable node with dv = 2 74

3.3 Number of operations at a check node 75

4.1 Number of operations required to process the check nodes 91

4.2 List size and no. of operations for the code with dc = 8 and p1 = 3 . . 91

4.3 List size and no. of operations for the code with dc = 6 and p1 = 4 . . 92

xiv

Abbreviations

APP A-posteriori probability
AWGN Added White Gaussian Noise
BER Bit Error Rate
BIAWGN Binary Input Additive White Gaussian Noise (channel)
BP Belief Propagation
ECC Error Correcting Codes
EMS Extended Min-Sum
FER Frame Error Rate
FFT Fast Fourier Transform
FPGA Field Programmable Gate Arrays
FT Fourier Transform
GF Galois Field
HDD Hard Decision Decoder
ISI Inter Symbol Interference
LDPC Low Density Parity Check (code)
LUT Look-up table
ML Maximum Likelihood
MPA Message Passing Algorithm
MSA Min-Sum Algorithm
NB-LDPC Non-binary Low Density Parity Check
PCM Parity Check Matrix
PDF Probability Density Function
SNR Signal-to-Noise Ratio
SPA Sum Product Algorithm

xv

1

Introduction - Context and Background

1.1 Context and background

IN this thesis we present our work in the domain of error correction codes (ECC),
which makes possible the transmission of data over imperfect channels with the

least possible errors. In this chapter we introduce the basic concepts explored in the
thesis. We discuss the imporantance of LDPC codes in communication systems and
the interest of using non-binary LDPC codes over their binary counterparts which is
the main motivation behind this work.

1.1.1 Introduction

Figure 1.1 depicts the block diagram of a traditional communication system. The
transmitter and receiver are the two entities communicating with each other whilst
the channel adds imperfection to the transmission. The transmitter is composed of
mainly three elements: source and channel encoders and a modulator. Similarly, at the
receiver there is the de-modulator and the two decoders. The source encoder removes
redundancy in the data received from the source, thus compressing the data. This helps
in increasing the data rate of the transmitter. On the other hand, the channel encoder
adds redundancy to the data received from the source encoder. This helps in making
the data robust to the errors introduced by the channel. The ratio of the information
data and the transmitted data forms the coding-rate R of the code, which is a parameter
of the coding system. The modulator modulates the data as per the type and order of
modulation installed. The channel adds degradation into the transmitted data. This
includes ambiant noise generally modeled as additive white gaussian noise (AWGN),
inter-symbol interference (ISI) due to multi-path fading and multi-user interference in
multi-user systems.

The AWGN transmission channel is generally modeled as noise b with zero mean and
variance σ2, (N (0, σ2)). Consider a transmitted finite energy signal x. The received
signal is then modelled as y = x + b. This transmission defines a gaussian channel
characterized by the ratio of the signal energy and energy of noise Eb/N0.

1

Introduction

Figure 1.1: Block Diagram of a communication system

At the receiver, the demodulator converts the modulated signal into bit streams. The
channel decoder applies an error correcting procedure to correct the errors introduced
by the channel. The source encoder then decompresses the received information and
reconstructs the transmitted data.

The principle of error correcting codes is to add redundancy to the data to be trans-
mitted and then use this redundancy to re-create the data after it has been distorted by
the channel. The channel encoder encodes a message of K bits to a codeword of N
bits. The K bits are called as the information bits whereas the M = N −K redundant
bits are called as the parity bits. The ratio R = K/N is called the rate of the code.

{0, 1}K ⇒ C ⊆ {0, 1}N (1.1)

Error correction methods consist in finding the codeword having the smallest distance
with the received signal. The capacity of an error correcting code is measured as the
minimum distance dmin of the code, which is the smallest distance between two ele-
ments of the codeword set C. If the received signal has a distance greater than dmin/2
from the transmitted codeword, there is a possiblility that the codeword nearest to the
received signal is not the codeword which was initially transmitted. Therefore dmin
plays an important role in terms of the error correcting capability of a code. From a
geometrical point of view, the codewords form hyper-spheres of radius dmin/2 in a
N -dimensional space. If the received signal is outside the sphere, the probability of
decoding a wrong codeword increases.

The decoding procedure is thus an algorithmic problem in which we search the nearest
codeword to the received signal in a multidimensional space. The optimal solution is
thus an extensive sequential search of the nearest codeword which can make the de-

2

1.1 Context and background

coding procedure quite complex i.e. of the order O(2K). Thus various sub-optimal but
faster solutions were proposed.

1.1.2 History

In 1948, Claude E. Shannon laid the mathematical foundation of modern information
theory and gave the very first systematic framework for communication in his landmark
paper [Sha48]. He introduced the concept of redundant channel coding as a method to
achieve reliable communication on a noisy channel with known capacity. In particular,
he proved that for sufficiently long codes arbitrarily reliable communication is possible
at any coding rate below the capacity. Since then, the challenge of channel coding has
been to design practical coding solutions that approach the channel capacity.

During the following decades, a lot of coding families were invented e.g. Ham-
ming codes, Golay codes, Reed-Muller codes, convolutional codes, BCH codes, Reed-
Solomon codes are just a few to mention. The goal was to construct codes with good
properties and to find low complexity algorithms which are able to perform near opti-
mum decoding for these codes. In 1993, Turbo codes [BGT93] were discovered which
proved to be a major breakthrough for reliable communication through noisy channels.
A practical coding scheme was presented that approaches the channel capacity within
1 dB at a bit error rate (BER) of 10−6. More importantly it showed the potential of
iterative decoding as a mean of approaching the channel capacity. Since then, there
has been a tremendous amount of research on codes that are iteratively decodable and
generally defined by graphs.

Low-Density Parity-Check (LDPC) codes were originally presented by Gallager [Gal62]
in 1963, but received little attention at that time. The large computational needs for the
decoding of long LDPC codes prevented their widespread use until major advances
were made in computing, which eventually allowed cost-effective decoding imple-
mentation. With the breakthrough of turbo codes, they were rediscovered [Mac97]
and regained more attention. However, one noticable and important exception is the
work of Tanner [Tan81], in 1981, in which he generalized LDPC codes and introduced
a graphical representation of LDPC codes, called as Tanner graph. Tanner graphs of
LDPC codes are bipartite graphs that contains two types of nodes which are connected
via edges. They are called the variable and check nodes representing the symbols and
the parities respectively.

More recently, binary LDPC codes were considered in standards like DVB-S2, WI-
MAX, DSL, W-LAN etc. However, they start to show their weakness when the code
size is small or moderate and when higher order modulation is used for transmission.
Non-binary LDPC (NB-LDPC) codes were proposed [DM98] and they showed better

3

Introduction

performance for codes of smaller length and defined in higher field orders. NB-LDPC
codes then became candidates for future communication systems.

There are three aspects related to the design of a good channel decoder: its perfor-
mance, the technology and its usage. The performance aspect plays an important role
towards the quality of transmission. From a technological point of view, the decoding
algorithm is generally composed of heavy computations and it must be capable of per-
forming these computations with the least latency and highest data rate. This makes
it necessary to envisage the decoding algorithm with a reduced complexity of imple-
mentation. Hence, in order to realize the hardware implementation of the decoder, we
have to make a compromise between performance and complexity. On the other hand,
digital communication systems are being increasingly used in the daily lives of the
general public (mobile phones, digital TVs, PDAs, GPS etc.). More and more devices
are being introduced and the number of communicating devices has increased. This re-
sults in the evolution of the use of technology and thus has two consequences. Firstly,
there is a direct impact on the consumption characteristics and secondly the flexibility
necessary to adapt the devices to different standards and technologies. Alongside, the
prices of the circuits manufacturing must also be controlled.

1.2 Motivation and objective of the thesis

Binary-LDPC codes are based on the verification of parities of a matrix using for de-
coding, called the parity check matrix (PCM). The PCM has a very low density of ones,
such that as the size of the matrix tends to infinite, the ratio of the non-zero elements
to the null elements tends to zero [Rya03]. Non-binary-LDPC codes are a direct gen-
eralization of the binary case and the non-zero elements of the PCM are then defined
in a Galois field, denoted as GF (q). The NB-PCM is a low density matrix and it is
represented by the bipartite Tanner graph.

It is widely accepted that the degradation in performance of an LDPC decoder comes
due to dependance of the messages passed betweeen the nodes of the Tanner graph.
This dependance is induced because of the topological structure of the code which
includes cycles, stopping and trapping sets. This dependance is even more enhanced
when the messages used to initialize the decoder are already correlated by the channel.
NB-LDPC codes help in reducing the dependance of the messages for the following
main reasons:

• For the same code-rate and binary-length, the graph corresponding to a NB-
LDPC codes is typicaly less dense as compared to the graph corresponding to
the a binary-LDPC code [MD99]. As a consequence, the graph corresponding

4

1.3 Thesis organization

to the NB-LDPC code has better topological properties i.e. larger girth and less
stopping and trapping sets.

• For a binary LDPC code transmitted with a high order modulation, the Maxi-
mum a-posteriori (MAP) demapper creates probabilities at the binary level for
the decoder. This implies that decoder input messages are correlated even in the
absence of cycles. However, if the LDPC code is defined in the same or higher
order of Galois field as the order of modulation, the NB-LDPC decoder is initial-
ized with non-correlated messages. Therefore, NB-LDPC codes perform better
for high order modulation [SF02].

However, the advantages of using NB-LDPC codes come with the consequence of an
heavily increased decoding complexity. For a code defined in GF (q), the complexity
is of the order O(q2) [WSM04a]. Similarly, the memory required for storing messages
is of order O(q). Consequently, the implementation of an LDPC-decoder defined over
a field order q > 64 becomes practically impossible.

The main objective of the thesis is to develop a reduced complexity algorithm for
non-binary LDPC codes that exhibit excellent performance together with an efficient
parallel implementation. For better decoding performance, not only the decoding algo-
rithm is important, but also the structure of the code plays an important role. With this
goal, NB-LDPC codes defined over finite groups were proposed [CPD+09]. A spe-
cial case of group-LDPC codes is when the variable nodes are processed in a smaller
group-order as compared to the check nodes. We refer to this family of codes as NB
cluster-LDPC codes. They are designed to have a higher minimum distance and are
foreseen to be good candidates for high rate applications. For this reason, we have
concentrated our work on this family of codes and we propose decoding algorithms
for NB cluster-LDPC codes.

1.3 Thesis organization

In chapter 2, we explain the basics of non-binary LDPC codes. In the first part of
the chapter, we explain the graphical and matrix representation of non-binary LDPC
defined over finite Galois fields and their generalization to finite groups. We then in-
troduce the concept of clusters-LDPC codes defined over finite groups. In the second
part of the chapter, we present a detailed and state of the art description of various non-
binary LDPC decoders proposed in literature. In the third and last part of the chapter,
we make a comparison between the complexities of various decoders.

In chapter 3, we present the generalization of the EMS algorithm to NB cluster-LDPC
codes. We refer to it as the cluster-EMS algorithm. In the second part of the chapter,

5

Introduction

we propose some improvements in the decoding procedure to adapt the EMS algo-
rithm to cluster-codes in a better manner. We also present a hardware architecture for
our proposed improved cluster-EMS algorithm and compare its complexity to other
algorithms. In the third part of the chapter, we then propose a method to reduce the
surface area of the decoder. The method is based on the implementation of several
instances of a check update process in parallel with a very low complexity and then fu-
sioning the output of each instance to compute the extrinsic output of the check node.
We also analyse the effect on the area of the decoder.

In chapter 4, we explain our second proposed decoder which is based on the con-
cept of list decoding. The decoding algorithm is based on the creation of lists based
on local parities at the check nodes level and therefore, we call it local-list decoder.
In the second part of the chapter, we propose an idea to reduce the complexity of the
local-list decoder, but our proposed idea was not supported by Monte-Carlo simula-
tions. However, for the sake of information, we explain the idea.

In chapter 5, we conclude the manuscript and present the summary and perspectives of
the work.

6

7

2

Non-binary LDPC codes

THIS chapter presents the background and state of the art information about non-
binary LDPC codes. In the first part of the chapter, we present the structure and

representation of the various families of LDPC codes. We start by introducing NB-
LDPC codes defined over finite Galois fields and explain the Belief-Propagation (BP)
algorithm used for decoding. After that, we move towards NB-LDPC codes defined
over groups and emphasize on a special case of NB-LDPC codes defined over finite
groups which we term as cluster NB-LDPC codes. In the second part of the chapter,
we introduce various low complexity decoding algorithms that have been proposed
in the literature. As a conclusion to the chapter, we make a comparison between the
decoding complexity and performance for some of these algorithms.

2.1 Classification of Non-binary LDPC codes

Low density Parity check codes (LDPC) are a class of linear block codes that uses a
generator matrix for encoding and a parity check matrix (PCM) for decoding. The
name low density parity check comes from the fact that the PCM has a very low den-
sity of non-zero elements as compared to the number of zero elements. By definition,
the PCM ratio between the number of non-zero elements and the number of zero ele-
ments tends to zero as the size of the matrix tends to infinity. The PCM is represented
in the form of a Tanner graph which is a bipartite graph with two types of nodes. This
facilitates the use of an iterative decoding algorithm where messages are being passed
between the two sets of nodes. The messages represent in some sense reliabilities of
the symbol values. The decoder operates in an iterative fashion, and A-posteriori prob-
abilities (APP) are calculated at the end of each iteration to make a decision on the
received symbols.

We first explain the structure and decoding of codes defined over finite Galois fields
and then detail the concept of LDPC codes defined over finite groups. We then explain
an interesting family of codes which we call cluster-LDPC codes.

8

2.1 Classification of Non-binary LDPC codes

p Primitive Polynomials
1 1 + x
2 1 + x+ x2

3 1 + x+ x3, 1 + x2 + x3

4 1 + x+ x4,1 + x3 + x4

5 1 + x2 + x5,1 + x+ x2 + x3, x5,1 + x3 + x5,1 + x+ x3 + x4 + x5,
1 + x2 + x3 + x4 + x5,1 + x+ x2 + x4 + x5

Table 2.1: Primitive Polynomials

2.1.1 NB-LDPC codes defined on finite Galois fields

Galois Fields

A Galois field is a finite field with a finite order, which is either a prime number or the
power of a prime number. A field of order np = q is represented as GF (np) or GF (q)
and it contains q-elements which are denoted as {0, 1, α, α2, ..., αq−2} respectively. A
specific type called as characteristic-2 fields are the fields when n = 2. All the ele-
ments of a characteristic-2 field can be represented in a polynomial format [PFD06a].
The primitive polynomial of the field is defined to be an irreducible polynomial that
generates all the other polynomials. As a result, the symbol represented by the prim-
itive polynomial is called as the primitive symbol α of the field, the powers of which
construct all the other elements of the field. For any finite field GF (2p), there exists a
primitive polynomial of degree p over GF (q) [PFD06b]. Table 2.1 lists the primitive
polynomials for p equals 1 through 5. We can be observe that for p = 1, the field is
a binary field and for p ≥ 2, it represents a non-binary field. Binary LDPC codes are
defined over a Galois field GF (2), with {0, 1} being the field elements. Hence non-
binary LDPC codes can be considered as a direct generalization of binary LDPC codes.

Each element of a characteristic-2 field is represented by a polynomial with binary
coefficients. Table 2.2 shows the example for p = 3 while considering the primitive
polynomial 1 + x + x3. The field consists of 8 elements and each one has a binary
representation composed of the binary coefficients of the associated polynomial. With
this representation finite field addition and multiplication becomes polynomial addition
and multiplication, where the addition is modulo-2. We will see later in the chapter that
the PCM of a non-binary LDPC code can also be represented in a binary matrix form
using the binary coefficients of the polynomial representation.

9

2 Non-binary LDPC codes

Element Binary Rep. Polynomial Sum
0 000 0
α0 100 1
α1 010 α
α2 001 α2

α3 110 α + 1
α4 011 α2 + α
α5 111 α2 + α + 1
α6 101 α2 + 1

Table 2.2: Binary and Polynomial representation of Finite Field GF (8)

The parity check matrix

An LDPC block code defined over a finite Galois field GF (2p) is described as a K-
dimensional subspace C of the vector space GF (2p)N of N -tuples. Hence the code C
has a total of (2p)K codewords. The code C is a subspace and is spanned by the basis:

G = {g0, g1, ..., gK−1} (2.1)

Each codeword c ∈ C is then written as:

c = u0g0 + u1g1 + ...+ uK−1gK−1 (2.2)

for any vector {ui}. In matrix form, this equation can be written as c = u.G where
u = [u0, u1, ..., uK−1] and G is the (K × N) generator matrix whose rows are the
vectors {gi} of the basis.

C = {c = u.G,∀u ∈ GF (2p)K} (2.3)

TheM = (N−K) dimensional dual space C⊥ of C comprises of vectors x ∈ GF (2p)N

for which xC ⊥ = 0. The basis of C⊥ is represented as:

H⊥ = {h0, h1, ..., hM−1} (2.4)

Therefore, this implies that:

C⊥ = {c ∈ GF (2p)N : H.c
GF (2p)

= 0} (2.5)

where H is a (M ×N) matrix whose rows are the {hi} elements of the basis. It is the
generator matrix of the dual space C⊥ and is called as the parity check matrix (PCM)
of the code C. The rows of H can also be seen as the coefficients of a linear equa-

10

2.1 Classification of Non-binary LDPC codes

tion system. Each equation is called as a parity check equation as it performs the test
whether the received word verifies the parity. There are M = N − K such tests and
it gives the name parity check matrix (PCM). The PCM for a (10 × 5) LDPC code is
shown in Fig. 2.1.

Figure 2.1: A non-binary LDPC parity check matrix

The original PCM proposed by Gallager had equal number of non-zero elements in all
rows and columns, dc and dv respectively. Such type of a code is called as a regular
LDPC code. However a code with a different number of non-zero elements in its rows
and columns is termed irregular LDPC codes.

Using the generator matrix G, for a frame of length K, the encoders create a code-
word of length N , where N −K are the redundant symbols. The rate of the code can
be defined as:

R =
K

N
(2.6)

The rate of a code helps in determining the data-rate of the communication system
as it defines the total number information sent versus the redundancy added to the
transmission.

The Tanner graph representation

In 1981, Tanner presented a bipartite graphical representation of binary LDPC codes
which is called as a Tanner graph after his name [Tan81]. A graph is called bipartite
if it has two disjoint sets of nodes which are connected via edges and no two edges of
the same set are connected to each other. The two sets of nodes represent the variables
and the functions between them respectively. In the case of LDPC codes, the variables
are the symbols of the codeword and are thus called as variable nodes. The functions
between the variables correspond to the parity check equations and thus, these nodes
are called as parity check nodes.

Consider a (M × N) regular-LDPC code, with dv and dc non-zero elements in the
PCM at each column and row respectively. The Tanner graph is constructed by as-
sociating a variable node to each column and a parity node to each row of the PCM.

11

2 Non-binary LDPC codes

There are M parity check nodes and N variable nodes. For each non-zero element
hij , an edge is created between the ith parity node and the jth variable node. This way
each parity node is connected to dc variable nodes and likewise each variable node is
connected to dv parity check nodes. dc and dv are termed as the degree of connection
of the check and variable nodes respectively.

Figure 2.2: The Tanner Graph for a non-binary parity check matrix

When the non-zero elements hij are the elements of a non-binary finite fieldGF (q), we
add another class of node called as the function nodes [DF07]. These nodes correspond
to multiplication of the codeword symbols with the non-zero elements hij ∈ GF (q).
After multiplication, the messages at the check nodes input become independent of
the non-binary values of the PCM and they can be processed concurrently. Fig. 2.2
represents the Tanner graph for the PCM of Fig. 2.1 with (M,N) = (5, 10) and
(dc, dv) = (4, 2).

The function node models the multiplication of the symbols cj and the non-zero el-
ements hj by a cyclic permutation of the message values [DF07] and this is why they
are also referred as permutation nodes. A cyclic permutation of a messageUvp is shown
in Fig. 2.3. The LLR value of the symbol 0 remains at the same index and all the other
values are shifted in a cyclic fashion by α3.

A cycle in a Tanner graph is represented by a path that finishes at the same node from
where it had emerged. The shortest cycle of a graph is called as its girth. The smallest
possible girth of an LDPC code is 4. This is because the Tanner graph is a bipartite
graph where two similar types of nodes do not interconnect directly. Cycles bring in
dependance between the transmitted which as a consequence degrades the decoding
performance of the code. Therefore, it is desirable to avoid cycles, specially short
length cycles.

12

2.1 Classification of Non-binary LDPC codes

Figure 2.3: A cyclic permutation of a message at the permutation node

The binary representation of the non-binary PCM

When the field order of a NB-LDPC code is a power of 2, the non-binary elements of
the field have a polynomial representation [PFD06b], which in turn provides a binary
representation of the field elements.

Consider a (M × N) regular NB-LDPC code defined in a Galois field GF (q), with
q = 2p as the order of the field. The degrees of connection of the variable and check
nodes are (dv, dc) respectively. The non-binary parity check matrix H associated to
the code has its non-zero elements belonging to the Galois field GF (2p = q). The
non-zero elements belong to the set S = {αi : i = 0, ..., q − 2}, with α being the
primitive element of the field. We define a primitive polynomial of degree p for the
field.

p(x) = a0 + a1x+ a2x
2...+ xp (2.7)

A companion matrix A of size p × p is also associated to the primitive polynomial
[PFD06a].

A =

0 1 0 0 ... 0
0 0 1 0 ... 0
0 0 0 1 ... 0
.
0 1
a0 a1 a2 a3 ... ap−1

where [a0, ..., ap−1] are the coefficients of the primitive polynomial p(x).

Since p(x) is the primitive polynomial of the field GF (2p), A is called as its prim-
itive element under matrix representation. As a result, the powers of the matrix A
generate the binary matrix representations of all the other elements of the field. Thus

13

2 Non-binary LDPC codes

the non-zero elements hij of the PCM can be written in the form of a (p × p) binary
matrices Hij , where Hij is the result of the tranpose of a power of the primitive matrix
of the Galois field. Subsequently, the (M × N) NB-PCM can be written in the form
of a Mb ×Nb binary PCM, where Mb = pM and Nb = pN as shown in Fig. 2.4. The
zero elements of the PCM are represented with all-zero matrices of size (p× p).

Figure 2.4: Binary representation of a GF(q)-LDPC code

The arithmetics on the GF (q) elements are carried out using modulo-2 addition and
multiplication of the polynomial representations. Similarly, the arithmetics on the ma-
trix representation can be carried out using modulo-2 arithmetics over the matrix rep-
resentations. The parity check equation can, thus, be written in the vectorial domain
as: ∑

j:Hij 6=0

HijX
T
j = 0T (2.8)

where Hij is the matrix representation of the Galois field element hij , Xj is the p-bits
binary mapping of the symbol cj and 0 is the all zero component vector.

As described earlier that the function nodes are added to a NB-Tanner graph which
makes the check nodes independant of the non-binary elements of the PCM. The func-
tion nodes realize the multiplication of the messages with the non-binary elements by
a cyclic permutation of the message values. For a function node bearing the value hij ,
the message values are shifted in a cyclic fashion by a value hij . The cyclic permuta-
tion of the message values can be obtained using the binary matrix representation Hij

of hij and the p-bits binary mapping {bαi [k]}k=0,...,p−1 of the symbols αi ∈ GF (q).
The multiplication of the matrix Hij with bαi results in the binary mapping of another

14

2.1 Classification of Non-binary LDPC codes

element αj , where (αi, αj) ∈ GF (q).

bαj = Hij.bαi (2.9)

This multiplication of subsequent elements are followed in a cyclic fashion and thus it
results in a cyclic permutation of the message values as shown in Fig. 2.3.

The Belief propagation decoding algorithm

Gallager proposed a quasi-optimal decoding algorithm for binary LDPC codes which
is termed Belief propagation (BP) [Gal62]. It is an iterative message passing algorithm
which is also called as the Sum-Product algorithm (SPA). As the name belief propaga-
tion suggests, the algorithm is based on the propagation of messages composed of the
probabilities of the symbols cn. To each edge of the Tanner graph, two messages are
associated for the two directions of propagation i.e. one from the variable nodes to the
check nodes and the other in the reverse direction.

The algorithms used for the decoding of binary LDPC codes can also be generalised to
non-binary LDPC codes defined over finite fields by employing the various operations
in correspondance to finite fields. MacKay et al. generalised the belief propagation
algorithm to non-binary LDPC codes defined over finite fields [DM98]. The messages
flowing through the graph are of size q and they represent the probabilities of the sym-
bols cn, when the code is defined in a finite field GF (q). For example, a message
vector associated to a random variable z is written as:

P (z) = [P [0] P [1] P [α] ... P [αq−2]] (2.10)

where P [αi] = P (z = αi) represents the probability of the random variable z being
equal to αi ∈ GF (q).

The Tanner graph is processed in two steps:

1. First the variable nodes processes the inputs by a term by term multiplication of
the dv−1 input messages to calculate the extrinsic outputs of the variable nodes.

2. The second steps involves the computation of the extrinsic outputs of the parity
nodes while verifying the parity equations at each check node.

The ith-parity equation is written as:

dc−1∑
j=0

hij ⊗ cj = 0 (2.11)

15

2 Non-binary LDPC codes

where hij are the non-zero elements of the ith row of the parity matrix H , cj are the
symbols of the codeword that participate in the parity and dc is the degree of connec-
tion of the check node. The messages circulating between the nodes contain extrinsic
information. This means that for any edge j on a node of degree d, the output on the
edge j is calculated as a function of all the other inputs excluding the input message
from edge j itself. This holds for both, the variable and check nodes.

The Belief propagation (BP) algorithm is based on the computation of the a-posteriori
probability of the codeword symbols. For a transmitted codeword c = [c0c1...cN−1], we
are interested in computing the aposteriori probability (APP) of a given symbol αj of a
word ci with in the transmitted codeword, given the received word y = [y0y1...yN−1].

P (ci = αj|y) (2.12)

For the messages that traverse the Tanner graph, we use the representation as follows:
U is a message flowing from the variable nodes towards the check node and V is a
message in the reverse direction. Thus, {Vpiv}i=0...dv−1 is the set of messages entering
a variable node v of degree dv and {Uvpi}i=0...dv−1 is the set of output messages of
the same variable node. The index piv indicates the direction of propagation of the
message i.e. from the permutation node pi to the variable node v and vpi in the reverse
direction. Similarly, the sets {Upic}i=0...dc−1 and {Vcpi}i=0...dc−1 are the set of inputs
and outputs of the check node c of degree dc. Fig. 2.5 represents the Tanner graph of a
single parity check and denotes the various messages traversing though the graph.

Figure 2.5: The messages flowing across a Tanner graph for the BP algorithm

The Belief Propagation (BP) algorithm is composed of six steps:

1 - Initialization:
During this step, all the messages U are initialized with the likelihood information

16

2.1 Classification of Non-binary LDPC codes

from the channel.

Uvpi [0 ... αq−2] = [Pchv [0] Pchv [1] ... Pchv [α
q−2]] , v = 0, ..., N − 1 (2.13)

where {0, 1, ..., αq−2} ∈ GF (q) are the elements of the field and:

Pchv [α
i] = P (yv|cv = αi) (2.14)

is the likelihood probability of the symbol αi information calculated at the channel
output.

2 - Variable nodes processing:
Consider a variable node v of degree dv with the input messages {Vpkv}k=0...dv−1 as
shown in Fig.2.6. To calculate the output messages Uvpk on the edge k, we consider all
the input messages except for the input message on the edge k.

Uvpk [α
i] = µvpkPchv [α

i]
dv−1∏

j=0,j 6=k

Vpjv[α
i] (2.15)

where αi ∈ GF (q), k = 0, ..., dv − 1 and µvpk is a normalization factor such that:

q−1∑
i=0

Uvpk [α
i] = 1 (2.16)

Figure 2.6: The degree dv variable node update

3 - Cyclic-permutation nodes processing:
These nodes multiply the codeword elements with the non-binary elements hp of the
PCM. Since Finite Galois fields are cyclic and multiplication in GF(q) correspond to a
cyclic permutation of the message values [DF07]. The message Uvp from the variable

17

2 Non-binary LDPC codes

node v is udpated by the permutation node p carrying a value hp, to a message Upc as:

Upc[0 ... αq−2] = ΨhpUvp[0 ... αq−2] (2.17)

where Ψhp is the (q × q) permutation matrix that corresponds to the non-binary value
hp. All the values of the message are circularly shifted except for the value labelled by
the symbol 0, which remains at its place. The permutation process is expressed as:

Upc[hp ⊗ αi] = Uvp[α
i] (2.18)

where αi ∈ GF (q) are the symbols of the Galois field. The permutation process is
depicted in Fig. 2.3 in the previous section.

4 - Check nodes processing:
After the multiplication with the non-binary elements of the PCM, all the parity nodes
have the same behaviour and they become independant of the non-binary values of the
parity check matrix. Each check node then computes the probabilities of the symbols
that verify the parity conditioned to the input messages of that check node. The check
update process can be expressed as a convolution of the incoming messages [DF07].

Vcpk =
dc−1
~

j=0,j 6=k
Upjc (2.19)

The convolution can be realised as:

Vcpk [α
i] =

∑
δ:
dc−1∑
m=0

βm(x)=0

δ
dc−1∏

j=0,j 6=k

Upjc (2.20)

with v = {0, 1, ..., dc− 1}, αi ∈ GF (q), βm represent the symbols that take part in the
parity and δ ∈ {0, 1} depending on whether the parity equation is verified.

Figure 2.7: The degree dc = 3 check node update

18

2.1 Classification of Non-binary LDPC codes

Fig. 2.7 depicts a check node of degree dc = 3. The check node update eq. (2.20) can
be explained as: The message value Vcp2 [α

i] is calculated as a sum of all the products,
Up0c[α

j]Up1c[α
k], that verify the condition αj ⊗ αk ⊗ αi = 0 with αj, αk, αi ∈ GF (q)

and ⊗ represents multiplication in the field.

5 - Reverse-permutation processing:
After the messages have been updated at the check nodes, they are permuted back in
the reverse direction at the permutation nodes. The value h−1p is used for the reverse
permutation. It is realised by using eq. 2.40 in the reverse direction.

Upv[α
i] = Ucp[hp ⊗ αi] (2.21)

6 - APP Calculation and the codeword decision:
Finally, the a-posteriori probabilities (APP) of the symbols are calculated at the vari-
ables using the new probabilities. A decision is then made on each symbol based on
the highest APP.

v̂n = max
αi∈GF (q)

Pch[α
i]

dv−1∏
j=0,j 6=k

Vpjv[α
i] , αi ∈ GF (q) (2.22)

The steps 2-6 are iteratively repeated until a valid codeword has been obtained or a
fixed number of iterations has been completed. For a valid codeword to be obtained,
the decoded codeword v̂ must satisfy Hv̂ = 0, where H is the parity check matrix. If
the maximum number of iterations are completed without decoding a valid codeword,
a decoding failure is declared.

The main obstacle in the path of the hardware implementation of the BP decoding
algorithm is its computational complexity, the major factor being the check nodes pro-
cessing, which is composed of a high number of additions and multiplications. The
decoding complexity of a GF (q) non-binary decoder is of the order O (q2). Table 2.3
presents the no. of computations for a variable and check node of degrees dv and dc
respectively. The nodes are processed with a recursive strategy called as the forward-
backward (F/B) strategy [HDYW06], which is detailed in the next section.

Moreover, the normalization of the messages at the check nodes output, eq. 2.15,
requires q divisions. As a consequence of the complexity, the hardware implementa-
tion for codes defined in order q > 16 can not be realised. Therfore, we directed our
research towards proposing low complexity non-binary LDPC decoders and present
our work in chapter-3 and chapter-4.

19

2 Non-binary LDPC codes

Process Additions (+) Multiplications(×) Division (÷)
BP variable update dvq (2dv − 1)q -
BP check update 3(dc − 2)q2 3(dc − 2)q2 q

Table 2.3: Computational complexity of the BP algorithm

Binary LDPC codes vs. Non-binary LDPC codes

Binary LDPC codes have been extensively studied in literature and have been shown
to approach the shannon limit performance for long length codes [RU01, CFRU01,
LMSS01]. A lot of research has been carried out in finding ways to improve not
only their decoding performance but also their structure which is better adapted to
the transmission channel. In [RSU01], the authors proposed a method which allows
us to predict the performance of binary LDPC codes in terms of probability of error.
The proposed method is called as density evolution and it follows the evolution of the
probability densities along with the propagated messages in the graph. However, it is
difficult to analyse and predict the performance of NB-LDPC codes because the meth-
ods proposed for binary LDPC codes cannot be directly generalized to the non-binary
case. Though, some authors have tried to generalize the methods based on density
evolution for binary LDPC codes in order to optimise the construction of irregular
NB-LDPC codes [LFK03, BB06, BT05, RU05]. However, the obtained profiles are
not very accurate and could only be applied to very long codes. The difficulty is that
the messages of a non-binary BP decoder are defined in high dimensional spaces, and
it is in general difficult to keep track of their densities.

It is well known that the loss in performance of the BP algorithm comes from the
inter-dependance of the messages flowing in the Tanner graph [YHB04]. The inter-
dependance is created by specific topological structures that exist e.g. cycles, stopping
and trapping sets. The reason is that the belief propagation algorithm is based on
the application of Bayes rules locally at each check node, after which the a-posteriori
probabilities are calculated for each variable node. In [KFL01], it was proved that for
a cycle free graph, the local Bayesian function can be factorized to the a-posteriori
probabilities of the symbols. In the cycle free case, all the messages are independant
from each other, however, the presence of cycles bring along dependance between the
messages which impairs the calculation of the exact a-posteriori probabilities. This
determines that the BP algorithm is an optimal algorithm in the cycle free case and
becomes sub-optimal with the introduction of cycles in the graph. The performance
of the BP decoder is further decreased when the decoder is initialized with messages
which have already been inter-correlated by the channel [Voi07].

20

2.1 Classification of Non-binary LDPC codes

Figure 2.8: Binary vs non-binary LDPC codes, Nb = 3008 bits and R = 1/2

Figure 2.9: Binary vs non-binary LDPC codes, Nb = 565 bits and R = 2/3

NB-LDPC codes [DM98] have shown better performance as compared to their binary
counterparts, specially for higher order Galois fields [SF02, DCG04, BB06, MWZ06]
and for codes of smaller length [MD99, SZAG06, ZLT+08]. This is mainly because
the graph of a NB-LDPC code is more sparse as compared to their homologous bi-
nary counterparts for the same rate and binary code length [HFE04, PFD06a]. As a

21

2 Non-binary LDPC codes

result, we have a graph associated to NB-LDPC codes with better properties in terms
of the number of cycles and their minimum length. Hence, a NB-LDPC code helps
in avoiding short length cycles and thus improves the performane of the BP algorithm
by avoiding the correlation induced in the messages due to the topological structures.
The shortest cycle in a graph is called its girth. The girth of an irregular binary code
of length Nb = 848 bits and rate R = 0.5 has typically a girth equal to gb = 6 whereas
a NB-LDPC code of the same length and rate has a girth gnb = 14, provided that we
have well constructed codes [DCG04, VP08, BB06].

Figure 2.10: Performance of regular GF (256) LDPC codes over a 16-QAM channel
at a BER of 10−5

It was also demonstrated that NB-LDPC codes have a better performance for channels
with high spectral efficiency i.e. while using high order modulation [PML+09, BB06,
DCG04, MD99]. For the case of a M − QAM modulated transmission while using
binary LDPC codes, the MAP demapper at the receiver side constructs symbol like-
lihoods which are inter-correlated at the binary level. This means that the decoder is
initialized with already correlated messages even in the absence of cycles in the decod-
ing graph. However, if the code is constructed in a non-binary Galois field with order
greater than or equal to the modulation order, the decoder is initialized with uncorre-
lated messages which in turn improves the performance of the BP decoder. This was
proved analytically and by means of simulations in [SF02].

Binary LDPC codes have shown good performance in the presence of burst errors
[Tan81, WS98, YR01, PNF04]. However, NB-LDPC have shown even better perfor-
mance in the presence of burst errors [MSV08, CWL05, LZL+07]. This is because

22

2.1 Classification of Non-binary LDPC codes

Figure 2.11: Performance of regular GF (256) LDPC codes over a 256-QAM channel
at a BER of 10−5

consecutive bits are grouped together forming symbols in the non-binary field GF (q).
Moreover, NB-LDPC codes are being used in MIMO systems where they have shown
better performance [JYgXL09, BF04] as compared to binary LDPC codes. It exhibits
a better balance between performance and complexity when detection and decoding
are performed jointly as compared to when done separately[PC06].

The main reason to use NB-LDPC codes in place of binary LDPC codes lies in the
fact that for a finite length code, while using a sub-optimal low complexity algorithm,
NB-LDPC decoders have a performance very close to the maximum-likelihood de-
coder (MLD) as compared to binary LDPC decoders [Voi07]. We now present the
comparison of the error correcting performance of binary vs. non-binary LDPC codes.

Fig. 2.8 and 2.9 represent the performance comparison for short length codes trans-
mitted over a binary-AWGN channel. The codes considered have the same rate and
length. We see a gain in performance while using GF (64) as compared to the binary
codes. Similarly, while using GF (256) codes, we also obtain a very low error floor.

We now present the performance comparison of NB-LDPC codes for high order mod-
ulations. The figures 2.10 and 2.11 represent the values of the Eb/No for which the
frame error rate (FER) is 10−5 for different ultra-sparse (dv = 2) NB-LDPC codes
defined over GF (256). The codeword lengths considered were N = 2000, 8000 and
40000 bits. We can observe Fig. 2.10, that for N = 40000, there is a loss of 0.5dB as
compared to the channel capacity for 16-QAM modulation. However, for 256-QAM

23

2 Non-binary LDPC codes

modulation in Fig. 2.11, the loss in performance from the channel capacity is increased
to 1.2dB. The same behaviour is observed for N = 8000 and 2000 as well. This shows
that using an order of field higher than the modulation order results in better perfor-
mance.

Therefore, NB-LDPC codes are considered as the candidates for future communication
systems.

2.1.2 NB-LDPC codes defined on general linear groups
In this section, we detail another class of low density parity check codes defined over
finite linear groups G(q), which is a more general framework as compared to LDPC
codes defined over finite Galois fields GF (q). This allows us to consider a wider class
of LDPC codes as compared to codes defined in a finite Galois field [SD06].

Parity check constraints defined over groups

Let c = [c0...cN−1] be a codeword of an LDPC code defined over a finite Galois field
GF (q), with q ≥ 2. The ith-parity equation is written as:∑

j:hij 6=0

hijcj
GF (q)

= 0 (2.23)

where hij are the non-zero elements of the ith row of the PCM. This definition can
be generalized to the case where the elements of the PCM are defined over a general
linear group G(q) [RU05]. With this definition, the ith-parity equation becomes:∑

j

fij(cj)
G(q)
= 0 (2.24)

where fij is a general linear function. This definition is very general and encompasses
the classical NB-LDPC codes defined over finite fields as a sub-case.

A special case of interest is when the considered group has its cardinalty q as a power
of 2, i.e. the group of type G(q) = (Z

2Z)p with p = log2(q). The variable nodes for
such type of a code represent the elements of the finite linear group G(2p). A symbol
cj ∈ G(2p) can be represented by a p-bits binary map Xj = {bj[k]}k=0,...,p−1. Any
choice of binary map can be made, however, in order to compliant with codes defined
over finite Galois fields, we choose the binary map corresponding to a Galois field
with the same number of elements, and defined with the minimal root polynomial of
the field.

24

2.1 Classification of Non-binary LDPC codes

For a code defined over a linear group G(2p), the functions fij(.) are linear and can
be represented by a (p × p) binary matrix [SD07]. We refer to the binary matrix as a
cluster and denote the jth cluster of the ith parity equation as Hij . A check node of
degree dc is then composed of dc clusters and it forms a parity matrix Hcci of the local
component code i.e. it can be interpreted as a local binary component code with p rows
and dcp cols.

Hcci = [Hi1 Hi2 ... Hidc] (2.25)

Using the notations defined above, the ith parity equation can now be written in the
matrix form as: ∑

j

HijX
T
j = 0 (2.26)

For a (M ×N) LDPC code defined over a finite group G(2p), the parity check matrix
H can now be seen as a binary matrix of size (Mb × Nb), Mb = pM and Nb = pN .
Each non-zero element of the PCM is represented by a (p×p) non-zero cluster whereas
the zero elements of the PCM have an all zero (p× p) matrix representation. Fig. 2.12
shows the PCM of a code defined in G(24) with clusters of size (4× 4).

Figure 2.12: The square clusters in a binary PCM

This binary parity matrix can be decoded using a non-binary Tanner graph with N
variable nodes and M check nodes. The functions fij(.) are attached to the function
nodes, which correspond to a linear mapping from G(2p) to G(2p), such that:

αn = fij(α
m) (2.27)

where αn,αm ∈ G(2p) are the symbols of the group. The linear mapping for a function
fij(.) is obtained using its cluster representation Hij as:

bαn = Hij.bαm (2.28)

25

2 Non-binary LDPC codes

where bαn and bαm are the p-bits binary representation of the symbols αn and αm re-
spectively.

If the cluster Hij is a full rank matrix, the function then corresponds to a random
permutation, which may not be cyclic. In the case, when it is a rank deficient matrix,
it corresponds to a projection over some of the elements of the group. Fig. 2.13 de-
picts both cases with the two different non-zero clusters and their respective mapping
functions. The binary cluster in Fig. 2.13(a) shows a full rank cluster with a full rank
projection where all the elements are mapped from G(q) to G(q). The binary cluster in
Fig. 2.13(b) represents a rank-deficient projection where some elements are projected
more than once, leaving others un-projected. The un-projected symbols are called as
un-authorized states and carry a value of −∞.

Figure 2.13: Binary clusters and their associated functions (a). Full-Rank (b) Rank-
deficient

BP decoding of LDPC codes defined over groups

NB-LDPC codes defined over groups can also be decoded using the belief propagation
(BP) algorithm. The BP decoder is very similar in nature to the classical BP decoder
for codes defined over finite fields. The only difference is that the non-zero values of
the PCM are replaced by more general linear functions from G(q) to G(q), which are

26

2.1 Classification of Non-binary LDPC codes

defind by the binary matricesHij forming the clusters. Following the same notation for
the messages flowing in the Tanner Graph, {Uvp, Upc, Vcp, Vpv}, the decoding procedure
involves the following main steps:

• Variable nodes update: similar to the finite field decoder, for an edge connected
to a variable node, the output extrinsic messages is calculated as the term by
term product of the channel likelihood vector and all the other input mesages,
excluding the input message on the edge itself. For a degree dv variable node v,
the reliability of the symbol αi ∈ G(q) in the output message Uvfk , passed to the
function node fk is computed as:

Uvfk [α
i] = µvfkPchv [α

i]
dv−1∏

j=0,j 6=k

Vfjv[α
i] (2.29)

where Vfjv are the input messages and µvpk is a probability normalization factor.

• Function nodes update: the messages are updated using the function fij(.) as-
sociated to the cluster of the edge of the Tanner graph. The update operation is
defined as:

Upc[α
n] = Uvp[α

m] m = 0...q − 1 (2.30)

where (αn, αm) ∈ G(q) and their relationship is defined by eq. (2.28). The
process is performed over all values αm that have an image αn through the linear
function fij(.).

• Check nodes update: this step is again identical to the BP decoding procedure
for codes defined over finite fields as defined in eq. 2.20.

Vcfk [α
i] =

∑
δ:
dc−1∑
m=0

βm(x)=0

δ
dc−1∏

j=0,j 6=k

Upjc (2.31)

with αi ∈ G(q), βm represent the symbols that take part in the parity and δ ∈
{0, 1} depending on whether the parity equation is verified.

• Inverse function nodes update: This update process uses the function fij(.) in
the reverse direction i.e. by identifying the values αm which have the image βn.
The update equation is defined as:

Vfv[α
m] = Vcf [α

n] ∀αm, αn ∈ G(q) : αn = fij(α
m) (2.32)

These steps constitute a decoding iteration of a general LDPC code defined over a
finite group. The APP is calculated at the end of each iteration to make a decision on

27

2 Non-binary LDPC codes

the received codeword as explained for LDPC codes defined over Galois fields.

Advantages of generalized NB-LDPC Codes

Although binary LDPC codes are a powerful enough class of codes to achieve near ca-
pacity performance, they show their weakness while using short length codes or when
a high order modulation is used. On the other hand, NB-LDPC codes have shown
better performance in these two conditions [HFE04]. Thus, increasing the alphabet
size was seen as another way of achieveing capacity, though with an increased decod-
ing complexity. However, the relationship between alphabet size and performance is
not a simple one and an increase in the underlying alphabet does not necessarily lead
to increased performance [RU05]. For the same noise realization, a Belief propaga-
tion decoder on a specific Tanner graph can either: (i) converge to the right codeword
(ii) converge to the wrong codeword (iii) diverge after a certain number of iteration
[PDL08]. Hence, the structure of the underlying Tanner graph plays an important role
in the decoding performance of an LDPC code.

The main interest in defining NB-LDPC codes over groups is that the family is larger
than classical NB-LDPC codes defined over finite Galois fields. By considering codes
in a wider ensemble, it is therefore possible to find better codes without changing the
Tanner graph density or the order of the symbols finite set. This leads to a higher de-
gree of freedom in terms of code construction without actually increasing the decoding
complexity. In [PDL08], the authors showed that non-binary codes built on finite fields
is actually a limitation, both from performance and implementation aspects. By con-
sidering NB-LDPC codes on a general linear group, they showed in particular that a
resonable additional complexity, a slight performance gain can be obtained as com-
pared to Galois field codes.

In [DM98], it was shown that for codes defined over GF (q), selecting carefully the
non-binary entries of the PCM can improve the overall performance of the code when
compared to randomly chosen coefficients. The selection of the non-zero values have
an impact on both, the waterfall region and error floor zone, which are also dependant
on both the field order and the code rate. Choosing properly the edge labels has a direct
influence on the local minimum distance of the code, and hence the global minimum
distance as well. In [PFD06a], it was shown the error floor region can be lowered by
avoiding low weight codewords induced by cycles and stopping sets in the unerlying
Tanner graph. NB-LDPC codes defined over groups offer a higher degree of freedom
in terms of code construction and hence powerful codes can be constructed that have
a higher minimum distance than for the regular NB-LDPC codes defined over Galois
fields. For example, The best dc-tuples of coefficients for a GF (64) code with dc = 4
have a minimum distance of dmin = 3 in GF (64), while it is possible to consider com-

28

2.1 Classification of Non-binary LDPC codes

ponent codes with dmin = 4 for codes defined over a general linear group [CPD+09].
This has a direct impact on the waterfall region performance of the LDPC codes.

The decoding algorithm used for decoding LDPC codes defined over finite groups
helps in generalizing the BP algorithm to other types of codes also. In [PDL07], turbo
codes were decoded using the generalized concept of the non-binary belief propagation
for group-LDPC decoders.

2.1.3 Cluster NB-LDPC codes defined on Groups

In this section, we explain in detail a sub-family of codes defined over finite groups
which we call as Cluster NB-LDPC codes. We explain this type of codes in a seperate
section because the primary target of the work presented in the thesis is this family
of codes. However, our work is applicable to other families of codes also. The main
principle of these codes is that the binary clusters are not square but rectangular clusters
which provides us with an even higher degree of freedom in terms of code construction.
As a result of the presence of rectangular clusters, the variable and check nodes are
processed in different order of messages.

Definition of cluster NB-LDPC codes

The motivation behind the definition of cluster codes comes from the work introduced
in [VDV+08] where the authors proposed to divide the symbols at the variable nodes
into sub-symbols, i.e. consider a sub-symbol of order 2p/ns instead of considering
a GF (2p) symbol, where ns is the splitting order of the symbols. For any symbol
ck ∈ GF (2p), let {bk}k=0...p−1 be the corresponding p-bits binary mapping. A sub-
symbol of ck is defined as a fraction of the bits from the binary mapping. For example,
a symbol in GF (64) can be split into two sub-symbols by forming two disjoint set of
3-bits each. Before the input at each check node, ns sub-symbols are joined together
to form a GF (2p) symbol and is then processed by the check node. Likewise, in the
reverse direction, each symbol is divided into ns symbols, before being processed by
the variable nodes. This way the variable nodes are processed in a smaller order as
compared to the check nodes.

This idea was generalised to NB-LDPC codes defined over groups in [SD06] and rect-
angular clusters were considered instead of square binary clusters. With the same
representation as in the previous section, the clusters Hij are of size (p2 × p1) instead
of (p × p), where p1 ≤ p2. However, unlike the idea of [VDV+08], sub-symbols are
not joined together to form symbols, but the rectangular clusters form the functions
fij(.) which are used to transform a lower order message into a higer order message
i.e. from G(2p1)→ G(2p2).

29

2 Non-binary LDPC codes

Structure of cluster codes

A sub-symbol is described as a symbol in G(2p1), with p1 ≤ p2. For each symbol
cn ∈ G(2p1), there exists a p1-bits binary mapping Xj = {b[k]}k=0...p1−1. The parity
equation with binary clusters Hij can be expressed as:

dc−1∑
j=0

HijXj = 0 (2.33)

The functions defined by the (p2 × p1) rectangluar clusters Hij are linear mapping
functions in G(2p1) → G(2p2). This mapping is different from the mapping function
discussed in the previous section. It is a mapping between two groups of different or-
ders. A lower order message is mapped to a message defined in a higher order. Fig.
2.14 shows a rectangular binary cluster and its associated binary mapping. The map-
ping function is obtained using eq. 2.28. As observed, some of the symbols are left
un-mapped. These symbols are considered to be un-authorized states and carry the
value −∞.

Figure 2.14: A rectangular cluster and its associated function node projections

In principle, the values of the column dimension p1 can be different for different clus-
ters for the same check node as explained in [SD06, SD07] i.e. for a check node, we
have p1j , where j = 0, ..., dc. This results in a very generalised family of codes with a
large degree of freedom in terms of code construction. The code is no longer described
in a single finite field or group. However, for sake of simplicity, we consider a single
value of p1 at all the clusters of the check nodes. For the case, when p1 = p2, the
cluster is square and we have a regular NB-LDPC code defined over a finite group.

30

2.1 Classification of Non-binary LDPC codes

A parity check matrix for cluster NB-LDPD codes is shown in Fig. 2.15. The binary
matrix is divided into clusters of size (p2 × p1). The non-zero values of the PCM are
represented by non-zero binary clusters and all the null values are represented by the
all zero matrix.

Figure 2.15: A binary parity check matrix with rectangular clusters

There are two main steps into the design of cluster NB-LDPC codes:

(i) building the Tanner graph, i.e. optimizing the edge connections.
(ii) selecting the non-zero values of H, i.e. carefully choosing the functions fij(.) or
equivalently Hij .

The first step aims at maximizing the local girth and can be implemented by using
the PEG algorithm [HEA05, VP08]. The non-zero values can then be selected using
the method proposed in [PFD06a]. In any case, they must be carefully selected to en-
sure good performance in the waterfall region and obtain a low error floor.

NB-LDPC codes defined over groups can now be summarized as follows [Dec08]:

• If the elements of the PCM are defined in a group linear G(q), any general func-
tion can be used in eq. (2.24). The number of possible functions in this case are
qq − 1.

• A subset of codes defined over groups, which is of particular interest, is the
linear case when the functions fij(.) have binary matrix representations of size
(p × p). This results in the functions fij(.) to be either a permutation of the
message values or a projection depending on whether the matrix representation
Hij is full rank or rank deficient. The total number of possible function in this
case is 2p

2 − 1.

31

2 Non-binary LDPC codes

• If the clusters Hij are the binary companion matrices of the elements of a finite
Galois field GF (2p), the functions fij(.) are a cyclic permutations, which cor-
respond to the multiplication of the non-zero element hij ∈ GF (q). There are
only (q − 1) possible choices for the functions.

• If the clusters Hij are rectangular clusters of size p2 × p1, such that p2 6= p1,
the functions fij(.) acts as a mapping between messages of two different orders.
There are 2p1p2 − 1 choices for the functions.

• If the columns of the rectangular cluster Hij are the columns from the campan-
ion matrices of the elements of a finite Galois field, we get the case defined in
[VDV+08]. The sub-symbols have to be combined to form symbols before the
permutation nodes and symbols have to be marginalized to sub-symbols in the
reverse direction.

Some properties and constraints of cluster NB-LDPC codes

We now discuss the various properties of cluster NB-LDPC codes:

i). Minimum distance of the code:
The fact that the binary parity check matrix Hbin is composed of rectangular clusters
instead of square clusters bring more degree of freedom in terms of code construction.
The density of 1’s is less localized and as a consequence, more powerful codes with
good minimum distance dmin can be constructed. As already discussed, a higher mini-
mum distance has a direct impact on the error floor performance and on the probability
of undetected errors i.e. when the decoder converges to a wrong codeword [PFD06a].

ii). Memory requirement for BP decoding:
The non-binary BP algorithm is based on the propagation of probabilities of the ele-
ments of the field/group through the Tanner graph.Each message vector is composed
of q elements and storing all the messages leads to heavy storage requirements. Thus,
memory storage is one of the several issues that stands in the way of the hardware
implementation of non-binary LDPC decoders.

Cluster NB-LDPC codes provides a partial solution for this problem. The messages
at the variable nodes represent the probabilities of sub-symbols instead of symbols.
As a result, the message vector at the variable node is of length 2p1 instead of the 2p2

length message at the check node. For nq bits quantization, the memory requirements
of the BP decoding algorithm for the different families of codes are stated in Table 2.4.
The table indicates the memory required for message storage in one direction of the
Tanner graph only. Here 2p = 2p2 is the order of the group or field in which the code is
defined. For a rate R = 1/2 code defined in GF (64) or G(64), with length Nb = 576

32

2.2 Simplified implementation of NB-LDPC decoders

Field Group Cluster
2p.dc.M.nq 2p.dc.M.nq 2.dc.2

P2/2.M.nq

Table 2.4: Memory required to store messages in a NB-Tanner Graph

bits for example, the field and group decoders would require 12288.nq bits to represent
the messages. A similar specifications cluster code with p1 = 3 would require 3072.nq
bits and for p1 = 4, it would require 4608nq bits.

iii). Decoding in G(2p2):
The variable nodes are processed in G(2p1) which implies to a significant reduction
of memory requirement for storing the messages. However, the check nodes are pro-
cessed in a higher order G(2p2) which preserves the advantages of a higher order LDPC
code.

iv). Degree of check nodes dc:
Cluster codes generally have a higher degree of check nodes as compared to the regular
LDPC codes defined over fields or groups. This is because the symbols are the variable
nodes have been divided into sub-symbols, hence an increase in the number of edges.
As compared to a code defined in G(64) or GF (64) with the degree of check nodes
dc = 4 , a cluster NB-LDPC code with p1 = 3, the check nodes degree is dc = 8.
Similarly, for a cluster code with p1 = 4, the degree of connection is dc = 6.

2.2 Simplified implementation of NB-LDPC decoders

In this section, we present the various non-binary LDPC decoders that have been pre-
sented in literature. However, in this section, we only present their decoding proce-
dures. The decoding complexities of the various algorithms will be discussed in sec-
tion 2.3. We start by explaining the derivatives of the BP algorithm: the FFT-based BP,
log-FFT-BP and the log-BP. Then we discuss the Extended-Minsum algorithm which
is a generalization of the binary Min-Sum algorithm. It is an efficient and reduced
complexity decoding algorithm which uses truncated messages. We also present the
symbol flipping algorithm and stochastic decoders, which are the generalizations of
the binary bit-flipping algorithm and the binary stochastic decoders respectively.

The BP algorithm for codes defined over a finite Galois field GF (q), as explained
in section 2.1.1, is composed of the following main steps:

• Initialization: The variable nodes are initialized with the belief of the corre-
sponding variable, based solely on the channel information.

33

2 Non-binary LDPC codes

• Variable nodes processing: A message is passed from each variable node n to
a check node m which expresses the belief of the nth variable, given all the
information from the channel and all the connected check nodes excluding the
check node m itself.

• Function nodes processing: The function nodes process the messages by a cyclic
permutation of the message values

• Check nodes processing: Each check node m sends a message to each of its
adjacent variable node n, carrying the belief of the nth variable, given the in-
formation from all the adjacent variable nodes excluding the variable node n
itself.

• Reverse Function nodes processing: The message values are shifted in a cyclic
fashion in the reverse manner.

• Codeword Decision: Each variable node n computes the most likely value ĉ of
n, based on the information from the channel and its adjacent check nodes. If all
the checks are satisfied i.e. H.ĉ = 0, a codeword has been successfully decoded
and it is returned. In the other case, the processes is iteratively repeated.

A decoding failure is generally declared if after a fixed number of iterations no valid
codeword has been produced. In order to reduce the decoding complexity, log domain
version of the algorithms have been proposed. In that case, the term "LLRs" is used in-
stead of probabilites. We now present the various low complexity decoding algorithms
which are sub-optimal forms of the belief propagation (BP) algorithm.

2.2.1 FFT-based BP algorithm

In the BP algorithm, the check nodes processing consumes the major portion of the
computational complexity. In [MD99] the authors proposed to process the check nodes
in the frequencey domain, and hence the convolution can be replaced by a product.
This allows to reduce the computational complexity of the BP algorithm to O (p2p).
Consider U and V as two messages to be convolved:

F(U
GF
~ V) = F(U).F(V) (2.34)

where F(.) represents the Fourier transform.

Tensorial representation of messages:

The authors of [BD03] proposed a tensoral representation of the messages in GF (2p)
which simplifies the FFT based approach and results for field order of 2p = 256

34

2.2 Simplified implementation of NB-LDPC decoders

were reported. When the Galois field is characteristic-2, i.e. it is of the order 2p,
the messages can be given a tensorial representation of p-dimensions and of size 2 in
each dimension. Each element of the field GF (2p) can be represented by a degree-
(p − 1) polynomial i(x) =

∑p−1
l=0 alx

l−1, where al ∈ {0, 1}. Any set of p binary
values {al}l=0,...,p−1, thereby determines a unique field element αi ∈ GF (q). Using
this representation, a message on the edge connected to a variable node is a tensor
{U [a0...ap−1]}i0...ip−1 indexed by the binary coefficients of αi [DF07]. For example,
U [0, 1, 1] corresponds to the probability P (αi = x + x2|.) in GF (8), conditionally to
the random variables depending on αi in the factor graph.

The Fourier transform:

The tensorial representation makes the Fourier transform (FT) very simple as it corre-
sponds to p second order Fourier transforms, one in each dimension of the tensor. The
FT of a p-dimensional size-2 tensor Ua0...ap−1 is given by:

F(U) = U ×0 F ×1 F...×p−1 F (2.35)

where ’×k’ represents the tensor product in the kth dimension of the tensor and F is
the 2× 2 matrix of the 2nd-order Fourier transform:

F =
1√
2

[
1 1
1 −1

]

The tensor product Z = U ×k F is defined [DF07], for (i1...ik, ik+1..ip) ∈ (0, 1)p−1:

Z[i1...ik−1, 0, ik+1..ip] =
1√
2

(U [i1...ik−1, 0, ik+1..ip] + U [i1...ik−1, 0, ik+1..ip])

Z[i1...ik−1, 1, ik+1..ip] =
1√
2

(U [i1...ik−1, 0, ik+1..ip]− U [i1...ik−1, 0, ik+1..ip])

The Fourier transform of the tensor can be calculated using the above equations for in-
dexes k, i.e. in all dimensions of the tensor. This implementation of the tensoral prod-
uct of the Fourier transform is similar to the butterfly implementation of Fast Fourier
Transform (FFT). As can be observed, the Fourier transform calculation involves only
addition.

The Walsh-Hadamard Transform:

The second order FT matrix can also be extended to the matrix form called the Walsh-
Hadamard transorm. By repeative calculation of the 2nd order tensoral product in all
dimensions, the Walsh-Hadamard transform matrix can be constructed. For example,

35

2 Non-binary LDPC codes

the Walsh-Hadamard transform matrix for a vector of size 16 × 16 i.e. 4 dimensions,
is:

FT =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 −1 1 1 1 −1 1 1 −1 −1 1 −1 1 −1 −1 −1
1 1 −1 1 1 −1 −1 1 −1 1 −1 −1 −1 −1 1 1
1 1 1 −1 1 1 −1 −1 1 −1 1 −1 −1 −1 −1 1
1 1 1 1 −1 1 1 −1 −1 1 −1 1 −1 −1 −1 −1
1 −1 −1 1 1 1 −1 1 1 −1 −1 1 −1 1 −1 −1
1 1 −1 −1 1 −1 1 −1 −1 −1 −1 1 1 1 −1 1
1 1 1 −1 −1 1 −1 1 −1 −1 −1 −1 1 1 1 −1
1 −1 −1 1 −1 1 −1 −1 −1 −1 1 1 1 −1 1 1
1 −1 1 −1 1 −1 −1 −1 −1 1 1 1 −1 1 1 −1
1 1 −1 1 −1 −1 −1 −1 1 1 1 −1 1 1 −1 −1
1 −1 −1 −1 1 1 1 −1 1 1 −1 −1 1 −1 1 −1
1 1 −1 −1 −1 −1 1 1 1 −1 1 1 −1 −1 1 −1
1 −1 −1 −1 −1 1 1 1 −1 1 1 −1 −1 1 −1 1
1 −1 1 −1 −1 −1 −1 1 1 1 −1 1 1 −1 −1 1
1 −1 1 1 −1 −1 1 −1 1 −1 −1 −1 −1 1 1 1

For a message of order q, the FT-matrix requires q2 additions to compute the Fourier
transform. However, the tensor product method requires qlog(q) additions, which
makes it a simpler process as compared to the FT-matrix.

The check update process:

With the FFT based BP Algorithm, the variable and permutation nodes processing
remains the same. However, as shown in the Tanner graph of Fig. 2.16, the parity
check nodes are converted into product nodes after the messages are transformed into
the frequencey domain. Thus the check node update equation can be written as:

Vtp = F

(dc∏
c=1,c 6=t

F (Upc)

)
(2.36)

With this implementation, the computational complexity of the check node update
process is reduced to O (dcqlog(q)).

36

2.2 Simplified implementation of NB-LDPC decoders

Figure 2.16: Tanner graph for FFT-based BP decoding

2.2.2 Log-FFT belief propagation algorithm

From a practical implementation point of view, the probability domain BP algorithm
has several drawbacks as compared to its log-domain implementation: (1) Log-BP
is more robust to quantization noise and usually requires less quantization levels as
compared to the probability domain BP [PL00, WSM04a]. (2) Probability domain BP
requires message multiplication whereas log-BP uses only additions. (3) The log-BP
implementation has a lesser latency as compared to the probability domain implemen-
tation as the later requires more clock cycles for the multiplications. (4) By using
the algorithm explained in [HEAD01a], the log-BP can be further simplified to the
max-log-BP algorithm. (5) Unlike the the probability domain BP which requires an
extra normalization step, the log-BP does not require the sum of the LLR values of a
message to be unity.

Log-likelihood ratios (LLRs)

We now introduce the notion of an LLR of a variable v over a finite Galois fieldGF (q).
An LLR stands for log-likelihood ratio and is the ratio of the probabilites of a symbol
αi and the symbol 0, where {0, 1, α, .., αq−2} ∈ GF (q).

L(αi) = L(v = αi) = log

(
P (v = αi)

P (v = 0)

)
(2.37)

with P (v = αi) represents the probability that v takes the value αi. An LLR vector
stores the log-likelihood ratios of all the symbols of the field GF(q).

L(v) = [0 L(v = 1) L(v = α) ... L(v = αq−2)] (2.38)

37

2 Non-binary LDPC codes

With this representation, the symbol 0 always carry an LLR value of 0. The most likely
symbol has the highest LLR value and the least likely symbol has the least LLR value.
We keep the same representation of messages as before and represent, by U , the LLR
messages flowing from the variable nodes towards the check nodes and by V , we rep-
resent the LLR message flowing in the reverse direction. The indices vp, pc, cp and pv
indicate the source and destination nodes of the respective LLR message.

The log-BP algorithm is composed of the following main steps:

1). Initialization:
The decoder is initialized with the channel output LLRs which are calculated as per
eqs. 2.37 and 2.38. All the other incoming edges of the variable nodes are initialized
to zero.

2). Variable update:
The variable update process becomes a simple addition of the input messages and the
channel information. The LLR value of the symbol αk ∈ GF (q) from the variable
node v on the edge j connected to the function node fj is given by:

Uvfj [α
k] = Lchv [α

k] +
dv−1∑
i=0,i 6=j

Vfiv[α
k] (2.39)

Here, contrary to probability-domain BP, we do not require normalization of the sym-
bol probabilities as they are log-likelihood ratios.

3). Permutation update:
The permutation nodes processing remain the same as the probability domain and it is
just a cyclic permutation of message values.

Ufjc[hfj ⊗ αi] = Uvp[α
i] (2.40)

where hfj is the non-zero element of the PCM carried by the function node fj and
αi ∈ GF (q) are the symbols of the Galois field.

4). Check update:
The log-FFT-BP Algorithm combines the advantages of FFT and the log domain im-
plementation. The check nodes are processed in the log domain, with the advantage
that we have only additions to perform. However, the FFT cannot be calculated in the
log-domain as it is implemented in the real domain. Therefore, we require a transfor-

38

2.2 Simplified implementation of NB-LDPC decoders

mation, between the real and log domains, of the type:

T : R→ R/b = log(a)

T−1 : R→ R/a = eb
(2.41)

where a and b are the real and log domain messages respectively. However, the resul-
tant values of the FFT can be negative, therefore, the conversion from the real domain
to log domain becomes complicated. This problem can be solved using the following
representation [SC03]:

b = (b′, b′′) = (sign(a), log(|a|)) (2.42)

and
a = b′exp(b′′) (2.43)

These equations make possible the use of FFT and the log-domain check update pro-
cess together. The process of the transformation of the messages between the log and
FFT domains is depicted in Fig. 2.17. With this implementation, we have a check
nodes processing complexity of O (qlog2(q)).
A disadvantage associated with the implementation of log-FFT-BP is the exponential
computations involved in the algorithm, which may not be practical. An attempt was
also made to tackle this issue with the use of look-up tables (LUT). However, this
approach was still not of a great interest because with increased field order, the LUT
accesses grows in qlog2(q) for a single message [DF07]. In [SC03], the authors had
shown with simulation results that the LUT approach is manageable for fields up to
GF (16).

2.2.3 The log domain non-binary BP algorithm

The log-domain BP algorithm consists of LLR vectors which are computed as per eqs.
2.37 and 2.38. The variable nodes processing of the log-BP algorithm remains the same
as the log-FFT-BP algorithm. However, the check update mechanism is modified as we
no longer need the messages in the frequency domain. The messages are processed in
the log domain as log density rations (LDRs). Thus eliminating the importance of the
field order to be power of 2, as we had discussed in the previous section that the FT is
easy to calculate when the field order is a power of 2. Therefore, the log-BP algorithm
can be applied to any field order q as long as q is a prime number or the power of a
prime number [DF07].

39

2 Non-binary LDPC codes

Figure 2.17: The log-FFT based BP algorithm

The box-plus operator (max*):

The box-plus operator was first introduced in [HooMM99] forGF (2). It was extended
to the non-binary case in [WSM04b] and it was proved that for two random variables
v1 and v2 in GF (q):

L(v1 + v2) = L(v1)� L(v2) (2.44)

and similarly for two elements A1 and A2 in GF (q):

L(A1v1 + A2v2) = �(L(v1), L(v2), A1, A2) (2.45)

The box-operator can be expressed in terms of the Jacobi logarithm:

ln(ev1 + ev2) = max∗(v1, v2) = max(v1, v2) + ln(1 + e−|v1−v2|) (2.46)

The max∗ operator is composed of a maximization and a correction factor by the term
ln(1 + .). The correction factor can be stored in small look-up tables (LUTs) as a
function of |v1− v2| [HEAD01b]. Moreover, the max∗ operator for multiple variables
can be computed recursively i.e. max∗(v1, v2, v3) = max∗(max∗(v1, v2), v3)).

40

2.2 Simplified implementation of NB-LDPC decoders

The check update process:

After introducing the concept of box-plus operator, we now present the log-domain
check udpate process. Here note that the permutation nodes processing, i.e.the mul-
tiplication of the messages with the non-binary elements of the PCM, is a part of the
check update process and is not executed as a seperate process. Consider a degree
dc check node with its adjacent variables {vck}k=0,...,dc−1. Consider two new random
variables over GF (q):

σc,vcl =
∑
j≤l

hc,vcjL(vcj) (2.47)

ρc,vcl =
∑
j≥l

hc,vcjL(vcj) (2.48)

where L(vcj) represents the LLR vector associated with the variable node vcj con-
nected on the edge j. Using these variables, the check node output message L(ckv) on
the edge k is be computed as:

L(ckv) = L(h−1c,vck
σc,vck−1

+ h−1c,vck
ρc,vck+1

) (2.49)

This equation is of the same format as eq. 2.45 and thus can be computed using the
box-plus operator.

L(ckv) = �(h−1c,vck

dc−1∑
j=0,j 6=k

hc,vcjL(vcj))) (2.50)

The box-plus operator is futher simplified to only a maximization process. In order to
compensate for the further loss in information, a fixed offset is used which is added
to all the output messages. Due to the loss in information there is a slight degradation
in the decoding performance. However the box-plus operator significantly reduces the
computational complexity and thus high field order decoders became possible.

2.2.4 The Extended Min-Sum algorithm
The Extended-Min-Sum (EMS) algorithm is a generalization of the binary Min-Sum
algorithm. It was first proposed in [DF07] where the authors showed that the EMS
algorithm in GF (2) is equivalent to the Min-Sum algorithm for binary codes. The
authors proposed to use truncated message vectors of size nm at the check nodes in
place of the size-q message vector, with nm << q. This reduced the check nodes
complexity to O(nmq). This idea was further studies in [VDV+10] and extended the
concept to the whole of the Tanner graph i.e. variable nodes also. Thus, the EMS
algorithm uses the nm highest LLR values at both the check and variable nodes and
the remaining LLR values of a vector are replaced by a single value γ. The authors also

41

2 Non-binary LDPC codes

proposed a compensation offset correction for the loss in the performance. In order to
efficiently process the check nodes, the authors used a recursive implementation called
as the Forward-Backward (F/B) strategy. The complexity of the check nodes was then
reduced to O(nmlog(nm)).

Structure of the truncated messages:

We now present the structure of the truncated messages. We use the same representa-
tion for messages i.e. Uvp and Upc are the messages flowing from the variable nodes
towards the check nodes. Vcp and Vpv are the messages flowing in the direction of the
variable nodes. However, these messages are sorted in decreasing order and are lim-
ited to size nm. The remaining (q− nm) elements of the LLR vector are considered to
carry the value γ. Thus each message is of size nm and in order to keep track of the
symbol corresponding to each LLR value, we need to associate an additional vector β,
that indicate the set of symbols corresponding to the truncated LLR mesage. Thus, for
a message vector Uvp, the highest LLR value is stored at Uvp[0] and βUvp [0] carries the
corresponding symbol information. The channel likelihood information is however not
truncated and stored in a q-size vector sorted in decreasing order. With this notation, a
full representation of a message L, sorted in decreasing order, can be expressed as:

L = [L[0] L[1] ... L[nm − 1] γ γ ... γ] (2.51)

The corresponding symbol information is carried in the vector βL of size nm:

βL = [βL[0] βL[1] ... βL[nm−1]] (2.52)

Thus, we require only two vectors, each of size nm, to store a complete message.
Since the vectors are stored in decreasing order, it also means that the value γ verifies
γ < L[nm − 1]. The value of γ can be calculated using the normalization of the
mesages in the probability domain. In [VDV+10], this value was approximated to be
the (nm + 1)th value of the message vector. Moreover, a suitable offset can also be
added to compensate for the loss of information due to the truncation of messages.
Thus, the value of γ can be expressed as:

γ = L[nm] + offset (2.53)

The offset can be calculated in several ways. Generally, it is calculated using Monte-
Carlo simulations for different values of offset, and selecting the offset with the best
frame error rates (FER).

42

2.2 Simplified implementation of NB-LDPC decoders

The forward-backward (F/B) strategy

The forward-backward (F/B) strategy is a recursive process and follows the prinicple
of "divide and conquer". It is based on the division of a process into several elementary
modules and the outputs of the various elementary modules are then joined together
to form the whole process. For LDPC codes, the node update process is divided into
elementary modules such that each module has only two inputs edges. Fig. 2.18 shows
the F/B strategy for a degree 5 check node with {Ui}i=0,..,4 as inputs and {Vi}i=0,..,4 as
the respective outputs.
As we can observe, the input messages are processed in the forward direction and in

U0 U1 U2 U3 U4

V4V0 V3V2V1

Figure 2.18: The forward-backward strategy for a check node of degree dc = 5

the backward direction and the various inputs and intermediate messages are then com-
bined together to form the various extrinsic output messages. Also it can be noticed in
the figure, that the structure is linear and can be extended easily to any degree of check
nodes. For a check node of degree dc, the number of elementary steps required are:

nelem = 3(dc − 2) (2.54)

The decoding algorithm

We now explain the various steps involved in the decoding algorithm. The variable
update, permutation nodes update and the check update process. The F/B strategy is
used to process the check nodes, therefore, for the check update process, we discuss
only elementary processes i.e. with only two inputs. The various elementary processes

43

2 Non-binary LDPC codes

can be joined together in the forward-backward manner to obtain the extrinsic outputs
of a check node.

i). Variable nodes update:
Consider the LLR-vectors (V0, .., Vdv−1) as the inputs from the check nodes to a vari-
able node of degree dv. The vectors are sorted in decreasing order, each of size nm,
with the vectors (βVi , ..., βVdv−1

) carrying the symbol information corresponding to
each LLR-vector respectively. The compensation values for each LLR-vector is rep-
resented as (γV0 , ..., γVdv−1

) respectively. Lch is the channel information LLR-vector
of size 2p sorted in decreasing order with βLch carrying the symbol information. The
output vector U is calculated as the highest nm values from the symbol by symbol
summation of all the inputs. The LLR-value of a symbol αi ∈ GF (2p) is calculated
as:

Uk[α
i] = Lcv[α

i] +
∑

j=0,j 6=k

Yj (2.55)

with

Yj =

{
Vj[α

i] if αi ∈ βVj
γVj otherwise

(2.56)

The compensation value is used when the LLR-value corresponding to the symbol is
not in the respective input message. The nm symbols with the highest LLR-values are
kept in the output U . The symbols carrying smaller LLR-values are truncated.

ii). Permutation nodes update:
The permutation nodes permutes the message values according to the non-binary val-
ues hi of the PCM. For this purpose, only the indices of the symbol vectors β are
updated and the LLR-values remain unchanged.

βUpic [k] = hi.βUvpi [k] (2.57)

where the multiplication in performed in GF (q).

iii). Elementary check nodes update:
The check nodes are processed using the Forward-Backward strategy. The various el-
ementary processes are then joined together to form the output of the check nodes as
discussed above. Here we explain only the elementary check update process i.e. a
process with two inputs and a single output LLR-vector only.

For the elementary check node update process, consider the LLR vectors U1 and U2 as
inputs and the output V . All the vectors are of size nm and sorted in decreasing order.

44

2.2 Simplified implementation of NB-LDPC decoders

βU1 ,βU2 and βV are the vectors carrying the symbol information corresponding to LLR
values of each vector respectively. Let S(βV [k]) be the set of all the possible symbol
combinations that satisfy the parity equation, i.e.

βU1 [i]⊕ βU2 [j]⊕ βV [k] = 0 (2.58)

The output message V is then obtained as:

V [k] = max
S(βV [k])

(U1[i] + U2[j]) (2.59)

This computational complexity is then dominated by O(n2
m). However, the authors of

[VDV+10] proposed a better method to search the nm highest combination out of the
possible n2

m combinations. This reduced the complexity to O(n2
m/2). The method is

based on scanning a 2-D matrix M of size (nm × nm) which is formed from the sum
of the two inputs such that:

M [i, j] = U1[i] + U2[j] i = 0, ..., nm − 1 (2.60)

For each value of M [i, j], the associated symbol information βM [i, j] is calculated as:

βM [i, j] = βU1 [i]
GF
⊕ βU2 [j] (2.61)

The matrix M is depicted in Fig. 2.19. Since the two inputs are sorted in decreasing
order, so the highest values of the sum of the two inputs are present in the upper left
triangle of the matrix M . Therefore, we need to only scan the highest n2

m/2 elements
present in upper left triangle to find the highest nm combinations. Along with the
matrix M , the procedure also requires a sorter of size nm as depicted in Fig. 2.19. The
check elementary processed can thus be implemented as:

1. Initialization: Insert the first column of the matrix- M into the sorter and initial-
ize no. of elements copied n = 0

2. Output: Move the highest value of the sorter towards the outputs

3. Test: Does the associated GF (q) symbol already exist in the output vector

• No: Copy the highest value and symbol to the output vector V [n] and βV [n]
and update n = n+ 1

• Yes: Discard the value and take no action

4. Control: Replace the value in the sorter by its right neighbour with regard to
matrix M

5. if (n = nm) exit - else go to step-2

45

2 Non-binary LDPC codes

Figure 2.19: The elementary check update process

As can be deducted from the pseudocode that the algorithm cannot be stopped just after
nm values have been scanned as because it is possible that two or more values might
correspond to the same GF (q) symbol. However, it is certain to find the nm symbols
with the highest LLR values with in the upper left n2

m/2 elements of M . Thus, the
number of elements to be scanned is limited to the interval nc = [nm, n

2
m/2].

2.2.5 Symbol Flipping based decoding

The symbol-flipping algorithm was proposed in [KH06] as an extension of the bit flip-
ping algorithm [HH02, MF05]. However, this symbol based hard decision decoding
algorithm works only for low order of Galois fields. For higher orders, the algorithm
looses a lot of its efficiency.

The symbol-flipping algorithm was proposed for a generalization of LDPC codes that
uses local component codes, i.e. each parity node is considered to be a local consitutent
code. Furthermore, several check nodes are clumped together to form super codes. For
a super-codes based generalized LDPC code with degree of variable nodes dv, there
are dv super codes and each variable node is connected to each super code.

Figure 2.20: Parity check matrix H of a generalized LDPC code based on super-codes

46

2.2 Simplified implementation of NB-LDPC decoders

A super-codes based (M × N − K) generalized LDPC code can be seen as the in-
tersection of C =

⋂dv
j=1C

j of dv super codes. Fig. 2.20 shows an example of a PCM
of this type of a LDPC code of size (21 × 6). As we can observe, the PCM can be
divided into two sub-PCMs H1, H2, hence 2 super-codes. The PCMs H2 is obtained
as a random permutation of the PCM H1, i.e. Hj = πj(H

1), where j = 2, .., dv and
π represents a permutation. Therefore the codewords of the super-codes can also be
expresses as Cj = πj(C

1). The variable dv implies that each variable node is con-
nected to dv local component codes (parity nodes) represented by dv different clumps
of super codes Cj ,j = 1, .., dv respectively. Fig. 2.21 represents the corresponding
Tanner graph for the PCM in Fig. 2.20.

Figure 2.21: Tanner Graph and vote generation for the PCM for super-codes based
generalized LDPC codes

The authors of [KH06] used the Reed-Solomon (7 × 5) code as its local compo-
nent code. The constituent codes not only find out the error positions but also pro-
duce the error magnitudes. Based on these results, the component codes generate
votes for a specific symbol. The votes are generated using using either the Peterson-
Gorenstein-Zierler (PGZ) or the Berlekamp-Massey (BM) [HLY02] hard decision de-
coders (HDD), which are then sent towards the variable nodes. The votes are generated
based on the following decoding scenarios at the constituent codes.

• All-zero syndrome: this implies the presence of a valid codeword, hence all the
constituent dc symbols are labelled by the character V .

• Non-zero syndrome and decoding success: This indicates the presence of an
invalid but correctable received word. The error positions are labelled by E
whereas the correct symbol are labelled by e.

47

2 Non-binary LDPC codes

Vote Pair EE EE’ Ee EV,ee eV VV
Vote Value 4 3.5 3 2 1 0

Table 2.5: Vote values for the symbol flipping decoding for generalized LDPC based
on 2-super codes

• Non-zero syndrome and decoding failure: This indicates that no error position
was identified that caused the decoding failure, therefore no corrective action
can be gleaned out from this constituent decoder. All the RS code symbols are
labelled by e, similar to the correctly decoded symbols in scenario 2.

The various votes V ,e and E are given numerical values in order to rank the votes
according to their reliabilities. In [HH02], it was suggested that values V = 0, e = 1
and E = 2 produce the lowest BERs where a higher vote represents a lower reliability.
Table 2.5 represent the values of the joint votes of the two super-codes as suggested in
[HH02]. A vote pair of EE ′ indicates that different error magnitudes were suggested
by the two constituent decoders. The decoding process can be summarized as:

1. Invoke the PGZ or BM HDDs for the non-binary constituent RS codes of the
super codes C1 and C2.

2. Compute the vote values at the N variable nodes using Table 2.5 and rank the
symbols according to their calculated reliabilities.

3. Correct the least reliable symbols, i.e. the maximum votes values, according to
the error magnitudes. The vote pair ee and eV are not to be corrected as no valid
error magnitude was calculated.

4. Repeat steps (1) to (3) until we have V V for all the N symbols or a maximum
number of iterations have reached.

Simulation results were presented in [KH06] for LDPC codes defined over GF (32)
communicating over AWGN and uncorrelated Rayleigh fading channels while using
BPSK modulation. The non-binary symbol-flipping algorithm showed improved per-
formance as compared to their binary counter part using the bit-flipping algorithm.

2.2.6 Non-binary Stochastic decoders

Binary stochastic decoders use random bit-streams to represent message probabilities
[TGM06] and have a very simple hardware architecture with reduced wiring complex-
ity. Subsequently, stochastic decoders were implemented on field-programmable gate
arrays (FPGAs) [TMG07, TMG08] which were area-efficient, fully parallel and had a

48

2.2 Simplified implementation of NB-LDPC decoders

high-throughput and a performance close to the channel capacity. As the aftermath, a
non-binary stochastic decoder was presented in [SMG09] in order to enable the prac-
tical implementation of non-binary LDPC decoders.

The non-binary stochastic decoding algorithm uses streams of symbols chosen from
GF (2p) to represent the messages. The probability of a symbol is determined by di-
viding the no. of times the symbol occured in the stream over the total length of the
stream. Such type of message representation makes very simple the underlying cir-
cuitry and its manipulation. Thus U vp(t) denotes the symbol at position t of the stream
at the output of the variable node v. The notation U is used to differentiate a stream
from a message U carrying probabilities of the GF (2p) symbols. The output streams
of the check nodes are represented as V cp.

In binary stochastic decoders, a phenomenen called as latch-up occurs which is caused
by cycles in the graph. The switching activity between the symbols become very low
and the stochastic streams become correlated and invalidates the independancy as-
sumption considered while while constructing the stochastic equations. Two solutions
were proposed;

1). Noise-dependant scaling: Increase the switching activity by scaling down the
channel likelihood information. For example, for BPSK modulation over AWGN, the
scaled likelihood l′(bi) of the bit bi is computed as a function of the unscaled likelihood
l(bi) as:

l′(bi) = [l(i)]
2ασ2n
Y (2.62)

where σ2
n is the noise variance and α

Y
is scaling factor and is calculated to determine

the best performance the SNR range of interest.

2). Edge-memories (EM): Insert finite depth memory buffers called as edge memo-
ries between the variable and permutation nodes. The EMs randomly reorder symbols
in the output streams of the variable nodes and thus breaks correlation between the
streams without affecting the overall stream statistics. The EM contents are updated
when the variable node output is changed. The output of the EM is then the output of
its connected variable node. In case the variable nodes output is no changed, the output
of the EM is a stream of randomly selected symbols from its contents.

We now present the stochatic processing of the various nodes of a Tanner graph of
a non-binary LDPC code:

Variable nodes processing:
The variable node output value of the stream at time t is computed as: copy the input

49

2 Non-binary LDPC codes

symbol to the output symbol if the input symbols on all the other incoming edges are
equal at time t, otherwise use the value copied in the last interval.

U vp(t) =

{
a if V iv = a,∀i : i 6= p

U vp(t− 1) otherwise
(2.63)

This process can be implemented with XNOR and AND gates as shown in Fig. 2.22
for a GF (23) code with dv = 2. The output of the circuit provides the enable signal
to the EMs. The circuit can be extended to higher order fields by using more XNOR
gates and a larger AND gate. Thus, increasing the number of bits which are required
to represent the GF (2p) symbols in the stochastic streams. If the degree of connection
dv is increased, the number of inputs to each XNOR gate is increased accordingly.

Figure 2.22: The Stochastic variable update process for a degree dv = 2

Permutation nodes processing:
The permutation nodes multiply the non-zero elements hj of the PCM with the input
messages. In the BP algorithm, this is achieved by a cyclic shift. However, a stochastic
permutation node carries out the process by multiplying the non-zero element hj with
the stochastic stream.

Upc[α
i] = U vp[α

i.hj] (αi, hj) ∈ GF (2p) (2.64)

For the messages passing in the reverse direction i.e. from the check towards the vari-
able nodes, the inverse node multiplication can be implemented by multiplication with
h−1j .

At the hardware level, the permutation node can be implemented using GF (2p) multi-
pliers. Since, for a particular edge of a code, the non-binary element is always hj , the
multiplier can be designed to multiply by a specific constant GF (2p) element instead
of a generic GF (2p) multiplier. This significantly reduces the circuit complexity.

Check nodes processing:
For the check node of degree dc = 3, an output is defined as the addition of the other

50

2.3 Complexity comparison of NB-LDPC decoders

two inputs.

V c0(t) = U1c(t)
GF
⊕ U2c(t) (2.65)

This equation can be generalized to any degree of check nodes as:

V cp(t) =
dc∑

i=0,i 6=p

U ic(t) (2.66)

where the summation is a GF (2p) addition. For a GF (2) code, this equation reduces
to the equation defined in [TGM06].

Since the GF (2p) symbols can be represented in their polynomial formats, so GF (2p)
addition can be realized using XOR gates. Fig. 2.23 presents a stochastic check node
for a GF (23) code with dc = 4. The circuit can be extended to a higher degree of
check nodes by increasing the number inputs to the XOR gates. Accordingly, for a
higher order code, the number of XOR gates have to be increased.

Figure 2.23: The stochastic check update process for degree dc = 4

2.3 Complexity comparison of NB-LDPC decoders

Non-binary LDPC codes were first investigated by Davey and Mackay in 1998 where
they generalised the binary Belief-Propagation (BP) or the Sum-Product algorithm
(SPA) to decode non-binary LDPC codes defined over a Galois field GF (q) [DM98].
However, the disadvantage associated with the NB-LDPC decoder was its complexity,
which is of the order O(q2). Moreover, it also increased the memory requirement for
storing messages. As a result fields of order q > 16 were not considered initially. To
reduce complexity, Mackay and Davey also devised a Fast Fourier Transform (FFT)
based BP algorithm [MD99]. However, the FFT could only be implemented for field
orders of the power of two i.e. GF (2p). This idea was extended into the log do-
main and the log-FFT-BP algorithm was proposed in [SC03]. However combining

51

2 Non-binary LDPC codes

Algo. Multiplications Divisions Max∗ Max Additions
BP q - - - q − 1
FFT-BP q - - - q − 1
log-BP - - q − 1 - q
EMS - - - nm(2nm) nm

Table 2.6: Number of operations required for an elementary process of a variable node

log values and the FFT require exponential and logarathmic computations, which may
not practical. Therefore, the authors proposed the use of look-up tables (LUT) which
again limited the use of higher order fields as the number of access to the LUTs in-
creased with the increased message sizes. In [BD03], the authors proposed a tensoral
representation for the FFT computation and as a result the authors reported results for
field orders upto 2p = 256. The binary Min-Sum algorithm [CF02] was generalised
to non-binary LDPC codes in [WSM04b]. Though the algorithm was composed of
additions only, the complexity remained of order O(q2) in addition. In [DF07], the
authors proposed to use only a certain number nm of highest message values at the
check nodes. The algorithm was referred to as the Extended-Min-Sum (EMS) algo-
rithm. This decreased the complexity of the check update process to O(nmq). This
idea was extended to the variables nodes as well in [VDV+10] and the EMS algorithm
was proposed to have truncated message vectors at both, the variable and check nodes.
This decreased the memory requirements in the whole of the Tanner graph alongwith a
heavy reduction in the decoding complexity at both nodes. Other very low complexity
decoders have also been proposed where the authors generalized the sub-optimal bi-
nary decoding techniques to non-binary LDPC codes. The symbol flipping algorithm
[KH06] and the NB-stochastic decoders [SMG09] performed very efficiently with very
low complexities, however they are limited to small field orders only.

In the previous section, we had described that the processing for a high degree check
node can be implemented using the forward-backward (F/B) strategy. The F/B strategy
breaks the whole process into several elementary processes such that each elementary
process has two input edges and an output edge. The various inputs and intermediate
messages are then joined together to form the whole process as shown in 2.18. For a
degree dc check node, 3(dc − 2) number of elementary steps are required.

In this section, we compare the decoding complexities of the elementary processes
of the algorithms: BP, FFT-BP, log-BP, EMS. We present the complexity in terms of
number of operations (additions, multiplication, divisions etc.). Table 2.3 depicts the
complexities for the elementary process of a variable node. Table 2.3 presents the com-
plexities of the elementary process of a check node.

52

2.4 Conclusion

Algo. Multiplications Divisions Max∗ Max Additions
BP q2 q - - q(q − 1)
FFT-BP q(dcp+ 1) q - - dcqp
log-BP - - q(q − 1) - q2

EMS - - - nmnop nm + nop (real)
nm + nop (in GF (q))

Table 2.7: Number of operations required for an elementary process of a check node

We can observe that the number of operations can be tremendousely decreased while
using the EMS algorithm as compared to the BP decoding algorithm. However, this
decrease is interesting only for small values of the truncation parameter i.e. nm << q.
For larger values of nm, the EMS algorithm does not give the same advantage in terms
of decreased complexity.

2.4 Conclusion

Binary LDPC codes have shown to approach the Shannon limit for long codes. But
they show their limitations when smaller length codes are employed or when a high
order modulation is used. For that reason, non-binary LDPC codes defined over finite
Galois fields were proposed. They show a gain in performance for short length codes
and for a field order higher than the modulation order.

However, the main disadvantage associated with NB-LDPC codes is their decoding
complexity. For a NB-LDPC code defined over a Galois field GF (q), the complexity
of the BP algorithm is of the order O(q2). Hence, low complexity algorithms were
proposed. The FFT-based BP, log-FFT-BP and log domain BP algorithms were the
sub-optimal derivatives of the BP algorithm but their decoding complexity was still
impractical. The symbol-flipping and the non-binary stochastic decoders offer a very
low complexity which is implementable, however, they can be applied only to short
length codes defined in low order Galois fields. There is no existing evidence that they
can be applied to high order fields or larger length codes. However, the Extended-Min-
Sum (EMS) algorithm emerged to be a promising candidate. It was a generalization
of the binary Min-Sum algorithm and proposed the use of truncated messages in the
Tanner graph which not only reduced the decoding complexity but also offered to de-
crease the memory required for storing messages. A truncated GF (q) message means

53

2 Non-binary LDPC codes

to store only a certain number nm of high LLR-values of the message and replacing
the q − nm least reliable message values by a single value γ. Since then, research has
also been directed towards improving the performance of the EMS algorithm in order
to have a very low value of nm e.g. nm ≈ 12 for a GF (64) message.

Along with the decrease in the decoding complexity, the code structure itself has been
a topic of interest for researchers. As has been discussed in the chapter that the code
design and structure of the Tanner graph plays an important role in the decoding perfor-
mance of a LDPC code. There are a lot of publications on the design and development
of LDPC codes. In this regard, LDPC codes were proposed to be defined over finite
groups such that the non-binary elements of the PCM had square binary matrix rep-
resentations of size (p × p). This provided code designers with a higher degree of
freedom as the binary clusters can be constructed to have a higher minimal distance
and thus stronger codes can be constructed.

Later, the binary matrix representations were proposed to be rectangular clusters of
size (p2 × p1), with p1 < p2. This provided an even higher degree of freedom in terms
of code construction. We refer to them as "cluster codes". Cluster codes generally have
a lower error floor as compared to the GF (q) codes using the BP decoding algorithm.
However, low complexity decoding algorithms have not yet been proposed for cluster
codes. And this is the main emphasis of the work presented in this thesis.

54

55

3

Improved EMS algorithm for cluster
codes

IN this chapter, we present our work on the generalization of the EMS algorithm,
proposed in [VDV+10], to cluster codes which we refer to as cluster-EMS. We

start by presenting a direct generalization of the EMS algorithm to cluster codes. We
present an improved method to compute the nm highest values as compared to the one
presented in [VDV+10]. In section II, we present an improved decoding algorithm
where we identify and amend the problems associated with the direct generalization
of the cluster-EMS algorithm. In section III, we then make use of the diversity of the
Tanner graph associated to cluster codes and propose to implant parallel scrambled
local processes to compute the check nodes output. It helps in reducing the surface
area of the hardware architecture.

3.1 Generalization of EMS to cluster codes

In this section, we present the direct generalization of the EMS algorithm to cluster
codes. We also propose a new method to search the highest nm values at the ele-
mentary procedure. The proposed method requires less resources as compared to the
method proposed in [VDV+10] by efficiently scanning the 2-D matrix formed from
the combination of the two inputs to the elementary process.

The main feature of cluster codes is that the variable and check nodes are processed in
different orders of messages. The variable orders are processed in a smaller order as
compared to the check nodes. This is due to the fact that binary clusters in the PCM
are rectangular. Hence, the functions of the non-binary Tanner graph associated to the
clusters act as a mapping between messages of two different orders. This process has
been explained in the previous chapter and depicted in Fig. 2.14. In principle, the
various variable and check nodes can be defined over different group orders for the
same code. This is achieved by defining different size clusters across the parity check
matrix as shown in Fig. 3.1. As we can observe the order of the clusters are defined
over different values 2p1 , 2p2 , 2p3 , ..., 2pn ,, where p1 6= p2... 6= pn.

56

3.1 Generalization of EMS to cluster codes

Figure 3.1: A binary PCM composed of clusters of different sizes

For the sake of simplicity, we will consider the cluster size to be fixed to (p2 × p1)
throughout the manuscript, where p1 < p2. The variable nodes are thus processed in a
smaller order G(2p1) as compared to the check nodes G(2p2). The function nodes act
as a mapping between the messages of the two orders G(2p1) ↔ G(2p2). However,
a messages at the input of check nodes has 2p1 authorized states only, where the re-
maining (2p2 − 2p1) states are declared unauthorized and carry the value −∞. Thus,
the messages at the check nodes input are stored in vectors of size 2p1 each. Fig. 3.2
represents the Tanner graph for the cluster codes and the various messages flowing
through it. The messages are non-truncated, and thus we have a reduction in memory
without the loss of information. However, the check nodes are processed using the
forward-backward strategy, and in order to have a reduced complexity decoder, the
output messages of the various elementary processes are truncated to size nm.

Figure 3.2: The messages flowing across a Tanner graph for cluster-LDPC codes

57

3 Improved EMS algorithm for cluster codes

3.1.1 The decoding algorithm

We keep the same representation of messages flowing through the Tanner graph as
mentioned in the previous chapter i.e. Uvf and Ufc are the LLR-messages flowing
from the variable direction v to the check node c via the function node f . Similarly Vcf
and Vfv represent the messages flowing in the reverse direction.

Strictly positive LLR-vectors

We use a representation of the LLRs with which we have strictly positive LLR-values.
There is no notion of a negative LLR value and the least reliable symbol is associated
to an LLR equal to zero. The LLR value of a symbol is thus computed as:

L(αi) = log

(
P (v = αi)

P (v = αjmin)

)
(3.1)

where αjmin is the least reliable symbol in the vector. With this representation a sorted
LLR vector has the form:

L(v) = [L(αi) L(αj) L(αk) ... 0] (3.2)

where L(αi) is the LLR value of the most reliable symbol and 0 belongs to the least
reliable symbol. Moreover, with this representation of LLRs, the compensation value
γ, can also be considered as zero. Hence, we dont require to carry an extra element γ.

With cluster codes, there are two symbol sets belonging to two different groups; G(2p1)
and G(2p2). We represent by αip1 , a symbol belonging to the group G(2p1) and by αip2 ,
a symbol belonging to the group G(2p2). Since the variable nodes are processed in
G(2p1), the channel likelihood vector Lch is computed in order 2p1 . Moreover, it is not
truncated as 2p1 < 2p2 and we dont require it to be sorted in ascending or descending
order. The LLR-value of a symbol αip1 is computed as per eq. (3.1).

ii). Variable nodes update:

All the messages involved at the variable nodes are of the same order and represent
all the possible 2p1 symbols without any message truncation. Therefore, the variable
nodes processing correspond to an extrinsic element by element sum of the input mes-
sages.

Uvfi [α
k
p1

] = Lchv [α
k
p1

] +
dv−1∑

j=0,j 6=f

Vfjv[α
k
p1

] (3.3)

58

3.1 Generalization of EMS to cluster codes

where αkp1 ∈ G(2p1). As we can observe that this process is simple an element by
element addition of the LLR-vectors and the channel likelihood. In section 3.2.4, we
will see that it requires only a simple adder. Thus, it is a very simple process as
compared to the classical EMS algorithm for GF (q)-LDPC codes.

iii). Function nodes update:

The function nodes update is a mapping process between messages of two different
orders i.e. between orders 2p1 and 2p2 as depited in Fig. 3.2. The input message vector
Uvf is an order-2p1 message and the output message Ufc is defined in order 2p2 . The
mapping process can be depicted as:

Ufc[α
i
p2

] =

{
Uvf [α

j
p1

] if αip2 = f(αjp1)

−∞ otherwise
(3.4)

where αip2 ∈ G(2p2) and αip1 ∈ G(2p1) and f(.) is the mapping function. The output
message thus contains 2p1 LLR values and the remaining (2p2 − 2p1) carry the value
−∞. Therefore, the LLR vector can also be represented by a vector Upc is also a vector
of size 2p1 , with another vector βUpc carrying the symbol information corresponding to
each LLR-value.

The function nodes processing can also be explained as: consider the set S(βf), a
set of G(2p2) symbols mapped by the function node:

S(βf) = {αip2 : αip2 = f(αjp1)} (3.5)

Thus the message Uvf is mapped to a message Ufc such that:

βUfc [i] = S(βf)[i] (3.6)

iv). Check nodes update

Once the messages are mapped to order-2p2 , they are sorted and the log domain check
udpate process can be now be carried out using the forward-backward strategy ex-
plained in section 2.2.4. The input messages are of size 2p1 and the intermediate mes-
sages are truncated to size nm with nm << 2p2 , the check update process if founded on
the EMS algorithm. For the elementary process, we used a recently introduced method
[BCC10] which is more efficient as compared to the one presented the classical EMS
algorithm in [VDV+10]. This method computes the highest nm combinations of the
LLR-values while requiring reduced resources.

Consider two inputs Up1c and Up2c, with βUp1c and βUp2c carrying their corresponding

59

3 Improved EMS algorithm for cluster codes

symbol information. Their combination form the 2-D matrix, denotedM , and depicted
in the Fig. 2.19. As the input messages are sorted in decreasing order, the higher val-
ues are present in the upper-left triangle of the matrix M with highest value at index
(0, 0). The sorter is initialized only with the element M [0][0]. Then, two neighbours
come into play, the right neighbor M [i][j + 1] and the bottom neighbor M [i + 1][j]
respectively. The right neighbor is added if the sorter does not already contain an el-
ement belonging to the same column as the neighbor. Similarly, the bottom neighbor
is added on the condition that the sorter does not possess an element belonging to the
same row as the neighbor. There are four possible scenarios for the two neighbors.

• Add the right neighbor: The right neighbor M [i][j + 1] is added if the sorter
does not contain an element M [k][j+1], such that k < i as shown in Fig. 3.3(a).

• Add the bottom neighbor: The bottom neighboring element M [i + 1][j] is
added if the sorter does not contain an element M [i + 1][k], such that k < j. It
is shown in Fig. 3.3(b).

• Add both neighbors: Both, right and bottom, neighbors are added if the sorter
does not contain preceeding elements belonging to the same column and row of
each neighbor respectively, as shown in Fig. 3.3(c).

• Dont add any neighbors: If both neighbors have their preceeding elements
respectively, then there is no need to insert any of the neighbors to the sorter, as
shown in Fig. 3.3(d).

In Fig. 3.3, the dark colored elements represent the LLR-combinatoins that have al-
ready been processed, gray represent the LLR-values currently residing in the sorter
and the crossed element represent the element which is the current highest element in
the sorter and copied to the output. The right and bottom neighbors are represented
with dots. For a right neighbor, if there is a gray element in the same column, it is not
inserted into the sorter. Similarly, for each bottom neighbor to be added, it has to be
verified that there is no gray element belonging to the same row.

With this method, elements are added into the sorter in a more efficient manner. An
element is added to the sorter, if it does not contain a higher valued element belonging
to the same row or column. In order to compute the highest nm values, a sorter of size√

2nop is sufficient. nop is the number of operations required to compute the highest
nm values and it is generally fixed to nop = 2nm. The authors of [VDV+10] had pro-
posed a sorter of size nm.

Moreover, a compensation offset is also added to the output LLR values. In [VDV+10],
the offset is added to to the non-truncated LLR values. This keeps the compensation
value γ = 0. Fig. 3.4 represents the elementary check update process in the form of a
flow-chart.

60

3.1 Generalization of EMS to cluster codes

Figure 3.3: Elementary check update process, various scenarios for adding neighbors
to the sorter

v). Reverse function nodes processing

At the check nodes output, a message Vcp is an order-2p2 message of length nm, with
the vector βVcp carrying the corresponding symbol information. The function nodes
then maps the message Vcp into a message Vpv defined in order 2p1 by using the func-
tion fij(.) in the reverse direction. However, since the the message Vcp is a truncated
message of length nm, it may not necessarily contain the LLRs of the symbols belong-
ing to the symbols-set S(βf) defined by the mapping function f(.). In such a case, the
LLR-value zero is used.

Vpv[α
j
p1

] =

{
Vcp[α

i
p1

] if αip2 ∈ S(βf)

0 otherwise
(3.7)

This results in one whole iteration to be completed. Just like in all iterative decoders,
at the end of each iteration, the APP is calculated and tests are performed to verify
whether a valid codeword had been received or not. In the case of an invalid codewode,
the iterations are repeated until either a valid codeword is received or a fixed number
of iterations have expired. If the iterations expires without decoding a valid codeword,
a decoding failure is declared for the received word.

3.1.2 Monte-Carlo simulation results
In this section, we present the decoding performance, in terms of frames error rate
(FER), of the EMS algorithm generalized to cluster codes . We also present the de-
coding performance of the EMS algorithm applied to classical LDPC defined over a
Galois field GF (q), with the same code length (N) and rate (R).

Fig. 3.5 presents the decoding performance for a code of length N = 575-bits and

61

3 Improved EMS algorithm for cluster codes

Figure 3.4: Flow chart for the check update algorithm

62

3.1 Generalization of EMS to cluster codes

Figure 3.5: EMS for a GF (64)-code and cluster-code with p1 = 4, p2 = 6, N = 576-
bits and R = 1/2

rate R = 1/2. The Galois field code is defined over GF (64), whereas the cluster-code
is constructed over a cluster size (p2 × p1) = (6 × 4). Thus, the variable nodes are
processed in order 24 and the check nodes in order 26. The messages flow across the
Tanner graph using flooding scheduling. The maximum number of allowed iterations
are fixed to 100. We compare the performances for the message truncation values
nm = 12 and nm = 18. For lower Eb/No, as compared to the classical the GF (q)
code, the cluster-LDPC code observes a loss of around 0.3dB and 0.4dB for nm = 12
and nm = 18 respectively. However, the performance gap between the two codes
decreases as Eb/No increases and it is expected that cluster-EMS might eventually
output perform the GF (q) EMS.

In Fig. 3.6, we verify the performances for a half-rate code with a larger length i.e.
2304-bits. The GF (64)-code again shows an improved performance in the water fall
region as compared to the (6 × 4) cluster-code. Cluster-codes exhibit a loss of about
0.2dB for both nm = 12 and nm = 18. However, for higher Eb/No we observe a sig-
nificant improvement in performane and cluster-EMS outperforms the GF (64) code
at about Eb/No > 2dB for both, nm = 12 and nm = 18. Thus, we can deduct that
cluster codes tend to have a lower error floor as compared to GF (q) codes.

In Fig. 3.7, we study the effects of using different cluster orders for the same code
i.e. (6 × 3) and (6 × 4). Thus we verify the performance while first processing the
variable nodes in order 23 = 8 and then 24 = 16. The check nodes are processed in
order 26 = 64 for both cases. As compared to the GF (64) code, we have the same

63

3 Improved EMS algorithm for cluster codes

Figure 3.6: EMS for a GF (64)-code and cluster-code with p1 = 4, p2 = 6, N = 2304-
bits and R = 1/2

Figure 3.7: EMS for a GF (64)-code and two cluster-code with p1 = 3, 4, p2 = 6,
N = 3000-bits and R = 1/2

kind of performance as before i.e. loss in the waterfall region and a gain for higher
Eb/No. However, an important point to note here is that the code with cluster order
(6× 4) performs better than code with a cluster order (6× 3). This is because the code
with the G(16)↔ G(64) is more close to that of the GF (64) code as compared to the
one with G(8) ↔ G(64). Thus, the variable nodes order also plays an important role

64

3.2 Improved EMS decoder for cluster codes

in defining the performance of a cluster code.

3.2 Improved EMS decoder for cluster codes

The EMS decoder generalized to cluster codes, presented in the previous section, is not
completely adapted to cluster-LDPC codes. In this section, we present an improved
version of the algorithm. We propose two modification at the check nodes level and
prove the increase in decoding performance with Monte-Carlo simulations. We also
present a hardware architecture for the proposed improved decoder and compare the
decoding complexity with the GF (q)-EMS decoder.

3.2.1 A second elementary process

As a first modification, we propose to add another elementary process into the forward-
backward mechanism that replaces uniquely the elementary processes used to compute
the extrinsic outputs of the check nodes. The elementary processes used to compute
the intermediate messages remain the same as discussed in section 3.1.

In the method proposed in section 3.1, at the output of the check nodes, a message
Vcf is an LLR-vector of size nm and defined in G(2p2). The vector βVcf carries the
corresponding symbol information. The function node f then maps the message to
order 2p1 , using the set S(βf) defined in eq. 3.5. It is the set of symbols αip2 ∈ G(2p2)
formed by mapping the symbols αjp1 ∈ G(2p1) using the function fij(.). If the symbol
corresponding to the symbol αjp1 ∈ G(2p1) is not present in S(βf), a null LLR-value is
mapped instead.

The vector Vcf , at the check nodes output, is a truncated message and contains nm
LLR-values corresponding to nm symbols stored in βVcf . The probability that a sym-
bol αip2 ∈ S(βf) is present in βVcf is nm

2p2
, whereas nm << 2p2 . This means that there is

a high probability that symbols belong to the set S(βf) may not be present in the check
node output messages. Thus, most of the time null LLR-values will be mapped and the
message Vfv at the output of the function node will contain mostly zeros. Therefore,
we have a loss of information and consequently a loss in decoding performance.

As a remedy to the loss of information, we proposed to use a second type of ele-
mentary process. It is not an additional extra process as it replaces at certain instances
the previousely explained elementary process. We refer to this new elementary process
as Elem2 and we call the previous elementary process as Elem1. The forward-back
strategy depicted in Fig. 2.18 has all the elementary nodes implemented as Elem1.
Now, the elementary nodes that compute uniquely the extrinsic outputs are replaced

65

3 Improved EMS algorithm for cluster codes

by Elem2. Elem1 remains un-changed while computing the intermediate messages

The basic principle of Elem2 is same as Elem1 i.e. scanning the 2-D matrix M formed
by the combination of the two sorted inputs. However, unlike Elem1, the output of
Elem2 is not the highest nm combination LLR-values and their corresponding symbol
information. Rather it is an output vector of size 2p1 and contains the LLR-values of
only the symbols mapped by the corresponding function node. This means that for the
edge connected to the function node f , with the associated symbols set S(βf), Elem2
computes the LLR-values of the symbols αip2 ∈ S(βf). With this, all the original LLR
values are then mapped onto the 2p1-order message as the LLR-values of all the sym-
bols to be mapped are present in Vcf .

The second elementary process, Elem2, uses following procedure:

1. Inputs: The two input messages (U1, βU1) and (U2, βU2), The function node
symbol-set S(βf)

2. Initialize: Initialize the sorter to all-zeros and insert M [0][0], no. of elements
copied= n, Initialize all output LLR-values to -1

3. Output: Highest value of the sorter s[0] and the corresponding symbol informa-
tion βs[0]

4. Test: βs[0] ∈ S(βf) and V [βs[0]] = −1

• Yes: Copy s[0] and βs[0] to output V [βs[0]], increment n = n+ 1

• No: Discard the value and take no action

5. Control:

• Add right neighbor of the element s[0] with respect to M , if no element of
the same column is present in sorter s

• Add bottom neighbor of the element s[0] with respect to M , if no element
of the same row is present in sorter s

6. if (n = 2p1) exit - else go to step-3

This modified elementary process may introduce a slight increase in complexity as the
matrix M is scanned to find the higher LLR combination of certain 2p1 symbols. Thus,
it may lead to scanning a higher number of elements of M as compared to Elem1.
However, with the second modification that we proposed, this increase in complexity
is annuled as it places a limitation of scanning the highest n2

m/2 elements, which is
similar to Elem1.

66

3.2 Improved EMS decoder for cluster codes

3.2.2 Improved estimation of output LLRs
This modification is applied to both elementary steps, Elem1 and Elem2. It not only
improves the output of the check nodes, it also helps in cancelling the increase in com-
plexity due to the second elementary step, Elem2.

The check node input message Ufc can be written in the full sized sorted LLR-vector
as:

Ufc = [Ufc[0] Ufc[1]... Ufc[2
p1 − 1] −∞ −∞ ... −∞] (3.8)

The symbols corresponding to the LLR-value of −∞ are un-authorized states. How-
ever, a temporary message Ti, computed while using the forward-backward strategy
may not necessarily contain un-authorized states. However, since we are using trun-
cated messages of size nm and the truncated symbols carry an LLR-value equal to zero,
the intermediate message Tj in the full sized sorted LLR-vector format is represented
as:

Tj = [T [0] T [1] ... T [nm − 2] 0 0 ... 0] (3.9)

Consider an elementary process Elem1 with the two message vectors Ufc and Tj , as
inputs. The matrix M formed from the combination of the two inputs vectors is a ma-
trix of size (2p2 × 2p2) as shown in Fig. 3.8. The lower ((2p2 − 2p1) × 2p2) elements
carry the value−∞ because of the un-authorized states in Ufc. Similarly, the each row
from the right (2p1 × 2p1 − nm + 1) elements carry the same LLR-value Ufc[0]. They
are represented by a cross in the figure.

Figure 3.8: The matrix M formed with full-size input vectors Ufc and Tj

The elementary processes select the highest combination LLRs-values by starting with

67

3 Improved EMS algorithm for cluster codes

the element M [0][0]. The right and bottom neighbours are then inserted into the
sorter. After choosing any number of combinations, say n, if the element at index
M [0][nm− 1] is selected i.e. the element depicted with a cross in Fig. 3.8, the remain-
ing (2p2 −n) symbols will also be selected from the same row. Thus, all the remaining
symbols will carry the same LLR-value Ufc[0] . The output Vi can thus be expressed
as:

Vi = [M [0][0] V [1] ... V [n] Ufc[0] Ufc[0] ... Ufc[0]] (3.10)

Now, applying the same procedure to truncated messages of length nm, whenever the
last element of the first row is selected, we stop scanning further elements and fill the
remaining output indices with the LLR-value last selected. Thus, the output has now
closer resemblance to the output of the full-size LLRs. Also, we place a limitation on
the maximum number of elements to be scanned i.e. n2

m/2. Therefore, Elem2 has the
same limits as Elem1. This process cannot be applied to the side containing the values
−∞.

3.2.3 Monte-Carlo simulation results

In this section, we present the Monte-Carlo simulation results for the improved cluster-
EMS decoder. We compare the decoding performance with the pervious version of the
decoder and clearly observe an improved decoding performance with the proposed
modifications. Let us also recall that cluster codes were proposed to attain better per-
formance in the error floor while accepting a slight degradation in the waterfall region
as comapred to GF (q) codes.

Figure 3.9: Improved EMS for a cluster-code with p1 = 4, p2 = 6, N = 576-bits and
R = 1/2

68

3.2 Improved EMS decoder for cluster codes

Fig. 3.9 presents the simulation results for a half rate code of length N=576-bits.
The regular field-LDPC codes is defined over GF (64) whereas the cluster code has a
cluster-size of (6×4). The variable nodes are thus processed in order-24 and the check
nodes in order 26. As compared to EMS for the GF (64) code, in the water-fall region,
the direct generalization of cluster-EMS has a loss of 0.3dB and 0.4dB for nm = 12
and nm = 18 respectively. With the modified cluster-EMS algorithm, the loss is is re-
duced to 0.1dB and 0.15dB respectively. Note that this small loss comes mainly from
the code itself rather than the decoder behaviour, so this small loss was expected. This
is verified since the performance degradation is further reduced for lower error rates,
until eventually the cluster codes outperform the GF (q) code.

Figure 3.10: Improved EMS for a cluster-code with p1 = 4, p2 = 6, N = 2304-bits
and R = 1/2

In Fig. 3.10, we consider a half rate code with N = 2304 bits and a cluster size
(6× 3). We present the performance of the improved cluster-EMS using both, floating
point and fixed point implementations. For the fixed point implementation, we use a
special LLR structure which is explained in the next section. we observe that as com-
pared to the floating point implementation, there is a negligible loss in performance
while using the fixed point implementation with 5-bits quatization levels. Moreover,
like in the previous case, cluster-EMS exhibits a loss in performance in the waterfall
region as compared to the code over GF (64). However, the modified version of EMS
for cluster codes outperforms the GF (q)-EMS for Eb/No > 1.8dB for nm = 12 and
there is a gain of almost 0.25dB as compared to the previous version of cluster-EMS.
This demonsrates the superiority of the newly proposed decoding procedure.

69

3 Improved EMS algorithm for cluster codes

Figure 3.11: Improved EMS for two cluster-codes with p1 = 3, 4, p2 = 6, N = 3000-
bits and R = 1/2

In Fig. 3.11, we present the performance of the improved EMS decoder using clus-
ters of two different sizes of the same code i.e. cluster sizes (6 × 3) and (6 × 4) and
N = 3000 bits. We have an improved performance as compared to the previous version
of EMS algorithm for cluster codes. With nm = 12, for p1 = 4 and p1 = 3 respectively,
the loss with respect to the EMS for a GF (64) code in the water-fall region is reduced
to 0.1dB and 0.2dB with the new cluster-EMS as compared to the 0.25dB and 0.3dB
loss with the older version. Moreover, the new version of cluster-EMS outperform the
GF (64) code at Eb/No = 1.75dB for p1 = 4 and 2dB for p1 = 3.

3.2.4 Hardware Architecture

In this section, we propose a serial hardware architecture for our proposed decoder.
Due to the sequential nature of the decoder, the decoder requires less resources which
is critical for a NB-LDPC decoder. Fig. 3.12 depicts the main components of the
decoding process. The various components of our proposed decoder requires less re-
sources as compared to the architecture proposed for the EMS algorithm for GF (q)
codes in [VVD+07].

Quantization and LLR-vectors:

The channel information is stored in likelihood vectors {Li}i=0,...,N−1, each of size 2p1 ,
acting as inputs to the N variable nodes. However, we use a different format for LLRs
as compared to the previousely used LLR-formats. The LLR of a symbol αi ∈ G(q) is

70

3.2 Improved EMS decoder for cluster codes

Figure 3.12: The main components of the decoder

structured as:

L(αi) = log

(
P (αmax)

P (αi)

)
(3.11)

where αmax is the symbol in the message which is most reliable. With this representa-
tion, a higher LLR value represents a lower probability of likelihood. The most reliable
symbol always carry an LLR-value of 0. Thus, an LLR-vector sorted on the basis of
reliability will be sorted in ascending order.

This structure of LLRs results in a better quantization scheme as compared to the previ-
ousely defined LLR-formats. It is more robust and reduces the saturation noise which
in turn improves the decoding performance. For 5-bits quantization, the LLR-values
varies in the range {0, ..., 31}, 0 being the LLR-value of the most reliable symbol
whereas the least possible reliabity LLR-value is 31. Saturation thus occurs at the less
reliable symbols and not at the most reliable ones. The LLR-value of the most reliable
symbol always remain at 0.

With this representation of LLRs, the arithematic operations of the decoding procedure
remain the same, however the logical operations may be changed. A max() operation
has to be replaced by a min() and vice-vera.

Variable udpate process:

The variable nodes are processed in a smaller order G(2p1) as compared to the check
nodes G(2p2) and thus smaller message vectors. This results in a very simple variable
update process. For a variable node of degree dv = 2, the output Ui is computed as a
simple element by element addition of the input message vi and the channel likelihood
Li. It requires 2p1 clock cycles. For a higher degree node, the number of cycles are
increased (dv − 1) times.

With a parallel architecture, using 2p1 processing units in parallel will execute the

71

3 Improved EMS algorithm for cluster codes

Figure 3.13: Variable update processor

process in a single clock cycle. This shows that cluster NB-LDPC codes with the
proposed architecture could be a viable solution for very high rate applications.

Check update process:

The two types of elementary modules depicted in section 3.2 are joined together in a
recursive fasion to process the check nodes.

Elementary process 1:
Fig. 3.14 shows the proposed architecture for the check update process. It consists of a
sorter, an adder, a GF-adder and a symbol verification unit. The sorter input LLRs and
their corresponding symbol index information are received in a serial fasion and stored
in the input registers. The two input LLRs are fed to the adder. The symbol index
information also flows along with the LLRs until the final output. To compute the nm
highest values, the architecture presented in [VVD+07] requires a sorter of length nm.
However, with the bubble-check algorithm we require a sorter of length

√
2nop, where

nop is the number of operations required to compute the highest nm LLR combination
values. It is fixed to nop = 2nm as proposed in [CCAGB00].

Moreover, the serial architecture of [VVD+07] requires the initialization of the sorter
which takes nm cycles, however our serial architecture does not require it. The process
is executed just after the first values of both inputs are received. This leads to the re-
duction of the overall latency.

The highest LLR-value of the sorter and its corresponding symbol are then copied
to the output provided that the same symbol has not already been copied to the out-
put. This verification is processed by the symbol verification unit (SVU). In the next
cycle, new LLR-values and their corresponding symbol information are fetched and
processed as explained in section 3.1. When the two neighboring values have to be
fetched, no value is copied to the output during the first cycle. During the second cy-
cle, the highest value of the sorter is copied to the output after the second neighbour
is fetched. However, when no neighbour is required to be inserted into the sorter, the
right neighbour is fetched in order to avoid the wastage of the cycle. We have verified
through various simulations that the number of cycles for this elementary step when
fixed to nm + 5 gives good performance.

72

3.2 Improved EMS decoder for cluster codes

Figure 3.14: Improved EMS for two cluster-codes with p1 = 3, 4, p2 = 6, N = 3000-
bits and R = 1/2

Elementary Process 2:
The second elementary process follows the same architecture as the first one except for
the symbol verification unit. The symbol verification unit allows an LLR value to be
delivered at the output only if the corresponding symbol belongs to the set of symbols
mapped by the function node which is also given as an input. This architecture has the
same overall complexity as Elem1, but we showed that the symbol verification unit has
a strong impact on the error correcting performance.

3.2.5 Complexity comparison

We now analyze the computational complexity of our proposed decoder. We also com-
pare it with the EMS algorithm proposed for GF (q)-codes in [VDV+10].

The EMS based algorithm uses truncated message vectors in order to reduce the de-
coding complexity and the memory requirements. For a GF (q) code, it uses vectors
of size nm instead of q, where nm << q. For each LLR-vector, only the highest nm
values are considered. The remaining (q − nm) elements are represented by single
value γ. However, we considered LLR-vectors with strictly positive LLR-values and
considered γ = 0. The memory required to store the message vectors depend linearly
on nm and the complexity is dominated by O (n2

m). Therefore, the value of nm should
be selected such that it assures both, decoding performance and an acceptable decod-

73

3 Improved EMS algorithm for cluster codes

ing complexity.

An advantage of cluster-codes is the memory reduction. The variable nodes are gen-

Algo. Variable Nodes Check Nodes Check Nodes
(Input/Output) (Intermediate)

GF (q)-Minsum q q q
GF (q)-EMS nm nm nm
Cluster-EMS 2p1 2p1 nm

Table 3.1: Size of LLR-vectors

erally defined in a smaller order G(2p1) as compared to the check nodes G(2p2), where
p1 ≤ p2. With full complexity vector representation, we gain a significant amount of
memory with cluster-LDPC codes as compared to GF (q)-LDPC codes. However, the
gain may vary for the EMS-based algorithms depending on the value of nm and p1. For
example, for a rate R = 1/2 code, the value 24 ≤ nm ≤ 12 is generally considered
[CCAGB00]. For a cluster-LDPC code with p1 = 3, a message is composed of 23 = 8
LLR-values whereas for p1 = 4, each message is composed of 16 values. However, the
added advantage of cluster codes is that the messages are reserved in their full format
without any truncation. Message trunacation only occurs for the intermediate message
computed during the forward-backward procedure at the check nodes.

Table 3.2.5 presents the complexity of variable nodes update process in terms of num-
ber of operations performed. As we can observe the variable update process for cluster-
EMS is a very simple process and is realized by the element by element addition of the
input vectors. Table 3.2.5 presents the number of operations performed at the check
nodes. There is no difference in terms of number of operations performed at the check
nodes for the same value of dc. However, However, since for cluster codes, the degree
of check nodes is increased by a factor p2/p1 as compared to a GF (2p) code, where
p = p2. Consequently the check nodes processing complexity is also increased by a
factor 2p2/2p1 .

Algo. Max Real Addition
GF (q)-EMS nm(nm + 2) nm
Cluster-EMS - 2p1

Table 3.2: Number of operations at a variable node with dv = 2

74

3.3 Diversity of group-LDPC codes

Algo. Max GF (q)-Addition Real Addition
GF (q)-EMS 3(dc − 2)nop

√
2nop 3(dc − 2)nop 3(dc − 2)(nop + nm)

Cluster-EMS 3(dc − 2)nop
√

2nop 3(dc − 2)nop 3(dc − 2)(nop + 2p1)

Table 3.3: Number of operations at a check node

3.3 Diversity of group-LDPC codes

LDPC codes defined over groups offer diversity in terms that different non-binary Tan-
ner graphs of the same code formed form the binary PCM can derive different decoding
performances [Dec08]. We make use of this idea and apply it locally at the check nodes
level. We propose to use several discrete processes of the same check node in parallel
with very low values of nm. The output of all the various processes are then fusioned
together to form the extrinsic outputs that exhibits good decoding performance.

3.3.1 Parallel cluster-EMS check update processes

The parity equation for the ith check node can be written as:

dc−1∑
j=0

Hijxj = 0 (3.12)

where Hij are the non-zero elements of the ith row of the PCM. This parity equation
can be seen as a local codeword composed of dc words. Applying a random permuta-
tion on the sequence order of the words will keep the same code space but will result
in a different local decoding graph. As a consequence, if the same inputs are provided
to the two graphs, the output dynamics of the two codes will be different. This result
in a different convergence behaviour for each decoder.

We, now, define a diversity as a random permutation applied to the order of the el-
ements of the local parity check matrix of a check node.

D(k)
pk

= π(k)(Hij) (3.13)

A diversity set is now defined as a set of such type of permutations.

{Hij,D(1)
p1
,D(2)

p2 , ...,D(Nd−1)
pNd−1

} (3.14)

where Nd is the number of diversities. The check node can now be processed with the
different elements of the diversity sets. For the same input LLR-vectors, each instance

75

3 Improved EMS algorithm for cluster codes

of the check node using the diversity set will result in different extrinsic output LLR-
values. The outputs of the different instances are then fusioned to obtain the output
LLRs which are then fed to the variable nodes. This process is shown in Fig. 3.15.

Figure 3.15: Multiple instances of a check update process scrambled in parallel using
diversity of group-LDPC codes

To fusion the outputs of the various instances, there are various merging techniques
that one can think of. The check update process is founded on the EMS algorithm, the
goal of which is to compute the maximum LLR-value of the combination of inputs that
verify the parity. Thus, we also use the max() operator also to merge the LLR-vectors.
For a certain symbol, we choose the highest LLR-value of that symbol amongst all the
LLR-vectors. For example, using Nd = 3, for the symbol αi, the output is chosen as:

V0[α
i] = max(Lv00 [αi], Lv01 [αi], Lv02 [αi])] (3.15)

76

3.3 Diversity of group-LDPC codes

where LVjk is the jth LLR-vector corresponding to the output LLR-vector Vj and asso-
ciated with the check node instance k.

The output LLRs, while using the diversity set, exhibits better convergence behaviour
than while using a single instance of the check node. It makes use of the diversity
and thus better LLRs are constructed. We prove this with Monte-Carlo simulations as
explained in the next section. This method can, thus, be helpful in proposing a low
complexity decoder for group-LDPC codes i.e. instead of using a single instance of a
check node with a certain value of nm, employ Nd instances of the check node with
a very low value of nm. This results in an increase in the number of processes but it
reduces the overall complexity of the decoder as the complexity at each process sepa-
rately is significantly reduced. The effect on the over-all complexity is dependent on
the number of instances Nd and the value of nm. We discuss this in section 3.3.3.

Another important point to note is the permutations applied to the sequence order of
the non-zero clusters Hij . While constructing a PCM, the binary clusters Hij are po-
sitioned such that the code attains the best performance i.e. it has a higher minimum
distance and a larger girth. However, a random permutation of the clusters may effect
this performance and thus the diversity of group-LDPC may not be efficiently utilised.
Thus, different permutations may result in different decoding performances and the
best permutation set can be chosen either at the time of construction of the PCM or by
brute force method.

3.3.2 Monte-Carlo simulation results

In this section,we present the decoding performance of the proposed decoder that uses
the diversity of group-LDPC codes. For various values of nm, we compare its perfor-
mance for various values of Nd.

Fig. 3.16 presents the decoding performance for a half-rate code of length N = 3000
bits and (p1, p2) = (3, 6). Thus, the variable nodes are processed in G(8) and the check
nodes in G(64). We compare the performance for Nd = {1, 2, 3} and nm = {6, 9, 12}.
The decoder with Nd = 1 is the regular cluster-EMS decoder proposed in section 3.2.
For nm = 12, there is a gain of about 0.1dB with Nd = 2 as compared to the decoder
with Nd = 1. Similarly for nm = 9, with Nd = 2 we gain about 0.15dB. Moreover,
the decoders with Nd = 2 tend to have a lower error floor. This can also be observed
from the performance of the decoder with Nd = 3 and nm = [6, 6, 6]. As compared to
the regular cluster-EMS decoder with nm = 12 decoder, there is a loss of about 0.2dB
in the waterfall region. However, this loss reduces for higher Eb/No, and it is expected
that with Nd = 3, we have better performance at low error rates of about 10−8. For
Nd = 2 and nm = [9, 6], there is also a gain of about 0.05dB as compared to the regular

77

3 Improved EMS algorithm for cluster codes

Figure 3.16: Decoder diversity N = 3000, R = 0.5, (p1, p2) = (3, 6)

cluster-EMS decoder with nm = 9.

Figure 3.17: Decoder diversity N = 3000, R = 0.5, (p1, p2) = (4, 6)

Fig. 3.17 presents the decoding performance for the same code as but with the with a

78

3.3 Diversity of group-LDPC codes

different order of variable nodes. The clusters are of size (6× 4), and thus the variable
nodes are processed in order 24. With Nd = 2 and nm = 9, we see the same perfor-
mance as before i.e. better performance for higher Eb/No. A lower error floor is also
expected.

Figure 3.18: Decoder diversity N = 4800, R = 0.88, (p1, p2) = (3, 7)

Fig. 3.18 presents the performance for a code of rate R = 0.88 and length N = 4800
bits. We observe that with Nd = 2 and nm = 24, we attain the same performance as
the regular cluster-EMS with Nm = 32. Similarly, for Nd = 2 and nm = 18, we attain
the same performance as the regular cluster-EMS decoder with nm = 24.

Thus, we can deduct from the results that, for the same value of nm, we gain in per-
formance for a higher value of Nd. Therefore, we can obtain a decoder with the same
performance but with a lower value of nm. Moreover, while using the diversity of
cluster-LDPC codes, we attain a lower error floor. However, the disadvantage associ-
ated is that the number of processes are increased Nd times. We discuss the effect of
the value of Nd below.

3.3.3 Complexity comparisons

The total silicon area of the decoder is increased when several instances of the check
udpate process scrambled in parallel are added to the decoding procedure. It is in-

79

3 Improved EMS algorithm for cluster codes

creased by a factor linearly proportional to Nd, the total number of processes scram-
bled in parallel. However, this increase is compensated for by using a smaller value of
nm, with which we require smaller size components and thus the overall surface area is
reduced. To get a complete and accurate idea on the comparison of the surface area for
various values of Nd and nm, a physical implementation based on the RTL description
is needed. However, we have not realized the hardware implementation and here we
present only an analytical comparison of the decoders based on perception and experi-
ence.

We consider the architecture presented in section 3.2.4. Fig. 3.13 represents the vari-
able node process which is a simple adder. Fig. 3.14 presents the check node process
which compounds almost half of the decoder area. The remaining surface area is occu-
pied by the memory elements, variable and function nodes update process, interleaver
and other processes. In order to make a comparison between a classical cluster-EMS
decoder and a cluster-EMS decoder with multiple check update processes scrambled
in parallel, we need to examine the effects of two factors on the total surface area: (i).
Effect of the value of nm (ii). Effect of Nd, number of parallel check update processes

Since the check update process consitutes almost half of the decoder area, for Nd = 2
and keeping the same value of nm, the overall area is increased by a factor of 1.5. Fig.
3.19 shows the graph for the effect of Nd on the normalized area of the decoder, for
any fixed value of nm.

Figure 3.19: Normalized area vs. number of parallel check-update processes

The surface area is increased due to the increased number of check update processes.
To reduce this effect, we consider a smaller value of nm at the various processes. With
reference to Fig. 3.14, the value of nm effects the input registers, sorter, symbol ver-
ification unit and the output registers. The input and output registers and the symbol
verification unit is increased or decreased directly proportional to the value of nm,

80

3.4 Conclusion

whereas the sorter realizes a rather heavier increase in complexity with an increased
value of nm. Moreover, with an increased value of nm, we require more memory ele-
ments as to store the messages produced during the forward-backward processing.

Figure 3.20: Normalized area vs. message truncation value nm

Using the above mentioned analysis, it can be stated that two check-update processes
in parallel and the value of nm reduced by a factor of 1.5 will result in the same sur-
face area as the regular cluster-EMS decoder. For example, cluster-EMS decoders with
{Nd = 1, nm = 12} and {Nd = 2, nm = 9} will result in the same surface area for
both decoders. Thus, overall, it can be said that the surface area is doubled when the
value of nm is increased by a factor of 2. Fig. 3.20 shows the graph for the effect of
the value of nm on the surface area for a single check update process.

3.4 Conclusion

In this chapter, we generalized the GF (q)-EMS decoder to NB cluster-LDPC codes
defined over finite groups. We first present a direct generalization of the algorithm
and show its performance with Monte-Carlo simulation results. In the second part of
the chapter, we discuss the drawbacks associated with the direct generalization and
propose two modifications in the procedure that improves the decoding performance.
We prove with Monte-Carlo simulation results that there is a significant gain in perfor-
mance with the proposed modifications. Moreover, the proposed modifications donot
have a significant effect on the decoding complexity.

In the last part of the chapter, we proposed a method to make use of the diversity
of cluster-LDPC codes. We propose to use several low complexity instance of a check
node in parallel and fusion their outputs to compute the extrinsic LLR-values of the

81

3 Improved EMS algorithm for cluster codes

check node. With this procedure, we can reduce the surface area of the decoder. More-
over, we also obtain a lower error floor which we prove with Monte-Carlo simulations
results.

82

4

A new decoding algorithm for NB-LDPC
codes using local lists

THE work presented in this chapter has been done in collaboration with Prof. Em-
manuel Boutillon of Université de Bretagne-Sud (UBS).

Along with iterative decoding, another method which gained interest is list decod-
ing. The term list decoding was first proposed by Elias in [Eli57] in which the decoder
generated multiple messages rather than one message after reception and one of them
is selected as the received symbol sequence. This increased the decoding capability
of the decoder as the codeword search radius is increased. In [For96] and [Cha72],
following the same idea, lists of codewords are created from the channel information
using the most reliable and the least reliable bit positions respectively. The most likely
codewords is then chosen based on certain tests and conditions. In [FBL00], a SISO
algorithm called as augmented list decoding - Fang-Battail-Buda-Algorithm (ALD-
FBBA) was proposed. It first sorts the symbol reliabilities received at the channel
output and makes a hard decision over them. An encoding matrix is constructed based
on the hard decision which is then used to construct a set of codewords. A marginal-
ization procedure is applied on the set which results in the soft output of the algorithm.
In [JHH07], a list decoder for binary LDPC codes was presented.

In this chapter, we combine the two decoding methods, iterative and list decoding
and present an iterative list-based decoding algorithm for cluster codes defined over
finite groups. Our proposed decoding algorithm called as local-list based decoding is
based on creating lists of codewords not on the global code but rather on local parity
nodes. The lists are then used to create extrinsic LLR-values for the symbols at the
output of check nodes. The messages are then passed to the variable nodes to make a
decision on the codeword. Thus, iterative decoding is combined with list decoding.

In the first section, we explain in detail our proposed local-list based decoding al-
gorithm. We present its decoding performance with Monte-Carlo simulation results
and then analyze its decoding complexity. In the last part of the chapter, we propose a
modification in the decoder that helps in reducing the decoding complexity by reduc-
ing the size of the lists computed during the decoding procedure. H the proposed idea

83

4 A new decoding algorithm for NB-LDPC codes using local lists

also results in a performance loss.

4.1 List Decoding

A trellis is a graphical representation of a code (block or convolutional), in which any
path represents a codeword. Fig 4.1 represents the trellis for a codeword set C com-
posed of 6-words. There are 23 = 8 states at each level of the trellis as each word
is composed of 3-bits. The best known and most commonly used trellis based maxi-
mum likelihood decoding (MLD) algorithm is the Viterbi algorithm [Vit67]. It finds
the globally most likely sequence of symbols in the given trellis which is the sequence
closest in distance to the received noisy sequence [Lou95].

Figure 4.1: A trellis for an order-64 check node of degree dc = 6

However, the main idea behind list decoding is that the decoding algorithm produces
a list of possible codewords instead of creating a single possible codeword. All the
codewords in the list have a distance less than a certain defined threshold e from the
received noisy sequence. This allows for handling a greater number of errors. A list-
based viterbi decoding algorithm was proposed in [SS94]. It produced an ordered list
of the L globally best candidates after a trellis search, sorted in decreasing order of
likelihoods. The list is then used to make a final decision on the received codeword.

Let C be a code of length dc over an alphabet A of size q. The list decoding prob-
lem can be formulated as:

Input: Received word x ∈ AN , and error bound e
Output: A list βLL of all codewords x1, x2, ..., xnL ∈ C whose distance from y is at
most e

Fig. 4.2 shows a size nL list of codewords βLL and their likelihoods LL. Each code-
word is composed of dc words, where each word cij is an order-q symbol.

84

4.2 The local-list based decoder

Figure 4.2: A list of codewords and their likelihoods

4.2 The local-list based decoder

For NB-LDPC codes defined over groups, the parity equation is defined as:∑
j

fij(cj)
G(q)
= 0 (4.1)

where fij is any general function which could be linear or non-linear depending on
the group over which the code is defined. When the considered group has a cardinal-
ity of 2 i.e. it is of the type G(q) = (Z

2Z)p, the variables belong to the finite linear
group G(2p). Each symbol cj ∈ G(2p) can be represented by a p-bits binary map
Xj = {bj[k]}k=0,...,p−1. The functions fij() are represented by a (p× p) binary matrix.
A special case of these codes is when the functions fij() are represented by a rectan-
gular binary matrix Hij of size (p2×p1). We refer to this matrix as a cluster and hence
we give the name non-binary cluster-LDPC codes to the family. The main principle
of this family of codes is that the variable nodes are now defined over a group G(2p1),
and consequently the variables have a p1-bits binary representation.

For the ith parity equation, we denote the jth cluster as Hij . Any degree-dc check node
is thus composed of dc such clusters, and it forms a local parity check matrix Hcci of
the local component code. Thus, it can be interpreted as a binary local component code
with a parity check matrix of size p2 × dcp1.

Hcci = [Hi1 Hi2 ... Hidc] (4.2)

85

4 A new decoding algorithm for NB-LDPC codes using local lists

The ith parity equation can now be expressed in the matrix form as:

dc−1∑
j=0

HijX
T
j = 0 (4.3)

With this representation, a binary word [X0 ... Xdc−1] that satisfies eq. (4.3 forms a
dcp1-bits binary codeword. Accordingly, since Xj is the p1-bits binary mapping of the
symbol cj ∈ G(2p1), the combination [c0 ... cdc−1] becomes a codeword defined the
group G(2p1). It is composed of dc words and is local to the check node.

Now, the main idea of our local-list based decoder is to find a list of nL such code-
words at each parity check node. The list is then used to extract extrinsic LLR-values
for the output at each edge of the check node. Thus the process is completed in two
stages:

1). Creation of the local lists at each check nodes
2). Extraction of extrinsic LLR-values from the local lists

4.2.1 Creation of the list

Consider a degree dc check node with input LLR-vectors {Ui}i=0,...,dc−1 sorted in de-
creasing order of LLR-values. The vectors {βbinUi }i=0,...,dc−1 carry the p1-bits binary
mapping of the corresponding symbols. The inputs to the check nodes are processed a
tree form as shown in Fig. 4.3. At each elementary node of the tree, two messages are
joined together to form a new list of binary words sorted in decreasing order of LLRs
which then acts as an input to the next level of the tree. At the output of the last stage
of the tree, we have a list of codewords, each of dc2p1 bits.

Figure 4.3: Tree for creation of list

86

4.2 The local-list based decoder

Elementary tree-node

We now explain the procedure followed in an elementary node of the tree. Each el-
ementary node receives two messages: (IA, β

bin
IA

) of size NmA and (IB, βIB) of size
NmB , sorted in decreasing order of LLR-values. The vector βIA carries the pA-bits
binary mapping of the symbols corresponding to the LLR-values in IA and similarly
βbinIB carry the pB-bits binary mapping of the symbols corresponding to the LLR-values
in IB. The output is a list (M,βbinM) with the NmM symbols carrying the highest com-
bination of LLR-values.

M [i] = IA[j] + IB[k]

βbinM [i] = [βbinIA [j] βbinIB [k]]
(4.4)

with 0 ≤ i ≤ NmM − 1, 0 ≤ j ≤ NmA − 1 and 0 ≤ k ≤ NmB − 1. The symbols
in βbinM have a pM = pA + pB bits binary representation. The procedure is depicted in
Fig. 4.4.

Figure 4.4: Elementary step of the tree

The output list of each node then acts as inputs to the lower nodes of the tree and this
continues until the final list {LL, βbinLL} is created. The symbols in βbinLL have a dcp1-bits
binary representation and can be viewed as composed of dc words, each of p1-bits. In
order to ensure that all the elements of {LL, βbinLL} are codewords, each element of the
list must satisfy the equation:

Hcci .β
bin
LL [j]T = 0T (4.5)

87

4 A new decoding algorithm for NB-LDPC codes using local lists

where Hcci is the binary representation of the (p2 × dcp1) PCM constructed from the
ith-parity. It is important to note here that the codewords are verified only at the very
last node of the tree i.e. while computing {LL, βbinLL}.

It can be observed that the dimensions of the lists increases with each level. In or-
der to have a reduced complexity process, the size of the list Nmi at each stage Nsi of
the tree must be limited i.e. Nmi << (NmA ∗ NmB), with NmA and NmB being the
sizes of the inputs lists. As obvious, this may result in a loss of information, however
a compensation offset can be used to improve the decoding.

4.2.2 Extraction of LLRs from a local list
Once the list (LL, βbinLL) is created, the next step is to extract extrinsic LLR-values for
each output edge of the check node. The list βbinLL is limited to size NmL and carries
codewords composed of dc words, each of p1 bits. The list is sorted in decreasing or-
der of LLR-values carried by LL. For the extraction of extrinsic LLRs, we also require
the check nodes input messages {Uj}j=0,..,dc−1 and the binary mapping of their cor-
responding symbols {βbinUj }j=0,...,dc−1. The extrinsic output LLR-values of the check
node are copied to the vectors {Vi}i=0,...,dc−1, each of size 2p1 .

As an initialization procedure, a boolean table Flag of size (dc × 2p1) is initialized
to all-zeros. When the output value V [i][j] is updated, Flag[i][j] is set to 1. The
pseudo-code to create LLRs from the list is as follows:

Algorithm 1: List Processing:
for i = 0 to NmL − 1 do

for j = 0 to dc − 1 do
symb← jth symbol of the ith codeword
newLLR← LLRvalue of symb in Uj
if Flag[j][symb] == 0 then
Vj[symb]← LL[i] - newLLR
Flag[j][symb]← 0

end if
end for

end for

The List processing steps are used to extract the output extrinsic LLR-values for the
symbols corresponding to the output {Vj}j=0,..,dc−1. However, due to the fact that the
lists are truncated to a limited size, it may occur that the LLR-value corresponding to
a certain symbol is not present in the list of codewords. Thus, a post-processing step is

88

4.2 The local-list based decoder

necessary to find out these missing values and insert a certain pre-defined value at their
places. Since in our case the LLRs are strictly positive, so fix the predefined-value to
0. Moreover, an offset is also added in the post-processing step which compensates
for the loss of information due to the reduced size lists. The value of offset can be
empirically determined using Monte-Carlo simulations. The post-processing steps are
depicted in the Algorithm 2.

Algorithm 2: Post Processing:
for i = 0 to dc − 1 do
minval← min{Vi[0], ..., Vi[2

p1 − 1]}
for j = 0 to 2p1 − 1 do

if Flag[j][symb] == 0 then
Vj[symb]← offset

else
Vj[symb]← minval + offset

end if
end for

end for

The check node output vectors {Vj}j=0,...,dc−1 are then sent directly to the variable
nodes.

4.2.3 The decoding algorithm

We now summarize the decoding procedure of the local-list based decoder for a (M ×
N) NB-cluster LDPC code, with cluster size (p2 × p1).

Initialization

The decoder is initialized with the channel information in the form of LLR-vectors
{Li}i=0,..,N−1 of order-2p1 . The binary mapping of the corresponding symbols are
carried by the vectors {βbinLi }i=0,...,N−1.

L = [L[0] L[1] ... L[2p1 − 1]]

βbinL = [βbinL[0] β
bin
L[1] ... β

bin
L[2p1−1]]

(4.6)

89

4 A new decoding algorithm for NB-LDPC codes using local lists

where L[i] represents the LLR-value of the ith-symbol. Here, we would like to re-call
that we have strictly positive LLR-values. For a symbol αi, it is calculated as:

L(αi) = log

(
P (v = αi

P (v = αjmin)

)
(4.7)

where αjmin is the least probable symbol of the variable v.

Variable nodes update

The variable nodes output is computed as an extrinsic element by element sum of the
inputs messages and the channel likelihood vectors.

Uvk[i] = Lchv [i] +
dv−1∑

j=0,j 6=k

Vjv[i] (4.8)

Check nodes update

The output message Uvk of the variable node v is directly fed to the check node k. As
already discussed that the check nodes update process is executed in two stages. The
first step of the check update procedure is the creation of the list of codewords. At each
check node k, a local list {LLk, βbinLLk} is created as explained in section 4.2.1. This list
is then used to extract the extrinsic output LLR-values as explained in section 4.2.2.

APP calculation

The extrinsic LLR-vectors at the output of the check nodes are sent then directly to
the variable nodes where the a-posteriori probabilities (APPs) of the symbols are cal-
culated and a decision is made on the global codeword v̂. For a valid codeword to be
obtained, it must satisfy the equation:

H.v̂T = 0 (4.9)

where H is the parity check matrix of the code. If v̂ does not satisfy the equation,
the process is iteratively repeated until either successful decoding or a fixed number of
iterations have been executed. If a valid codeword is not obtained after the iterations,
a decoding failure is declared.

90

4.3 Decoding performance and complexity

4.3 Decoding performance and complexity

In this section, we analyze the complexity and decoding performance of the proposed
decoder. We study the complexity in terms of number of operations performed at the
check nodes. For the decoding performance, we present Monte-Carlo simulation re-
sults of the proposed decoding method. We compare the decoding performance with
the cluster-EMS decoder proposed in chapter 3.

Algo. Real Additions GF(q)-Addition Max
Cluster-EMS 3(dc − 2)(nop + 2p1) 3(dc − 2)(nop) 3(dc − 2)nop(

√
2nop)

list-decoder
∑Ns−1

i=0 NniNmi + dc2
p1 -

∑Ns−1
i=0 NniNmi

√
2Nmi + dcnL

Table 4.1: Number of operations required to process the check nodes

Table 4.1 presents the number of operations performed while processing a single check
node of degree dc for the proposed algorithms. For the cluster-EMS algorithm, nm is
the message truncation value and nop is the total number of necessary steps so that all
the nm values of the output vector are computed. This value is generally fixed to 2nm
[CCAGB00]. For the local-list based decoder Ns is the total number of stages in the
tree and Nni is the number of nodes at each stage-i. Nmi is the size of the list consid-
ered at each stage-i.

List-Name Nm1 , Nm2 , NmL No. of max() No. of additions
List-I 24, 64, 50 1904 274

Table 4.2: List size and no. of operations for the code with dc = 8 and p1 = 3

Table 4.2 presents the size of the lists used at the various nodes of the tree. In order
to compute the final list of 50 codewords, the decoder requires 1904 max() operations
and 274 additions. For a cluster-EMS decoder with nm = 12, we see require 3024
max() operations and 648 additions. When we compare to performances for these
parameters, as shown in Fig. 4.5, we observe that we have the same decoding perfor-
mance. Thus, a very less number of operations, we are able to attain the same decoding
performance as the cluster-EMS decoder. This makes the local-list based decoder an
interesting candidate for error correcting applications.

Table 4.3 presents the number of operations for the the list used for decoding the

91

4 A new decoding algorithm for NB-LDPC codes using local lists

Figure 4.5: local-list decoder vs. cluster-EMS decoder N = 3000, R = 0.5, (p1, p2) =
(3, 6)

same code as above but with p1 = 4. Thus, the check node inputs are LLR-vectors
of size 16. The cluster-EMS decoder with nm = 12 requires 2016 max() operations
and 432 additions. When we compare the performances shown in Fig. 4.6, we observe
that, contrary to the previous case, we have a loss in performance of about 0.2dB. This
is due to the fact that we need to calculate 16 LLR-values for each output edge of the
check node, whereas for the previous case, we required to compute only 8 LLR-values.
Thus, we require lists with even larger dimensions.

List-Name Nm1 , Nm2 , NmL No. of max() No. of additions
List-I 38, 82, 80 2208 280

Table 4.3: List size and no. of operations for the code with dc = 6 and p1 = 4

Thus, we can conclude that the local-list decoder is an interesting prospect for code
with higher degree of check nodes and lower order of variable nodes. For codes with
higher order of variable nodes, we require lists of large size, which may become im-
practical.

92

4.4 Reduced list-size decoder

Figure 4.6: local-list decoder vs. cluster-EMS decoder N = 3000, R = 0.5, (p1, p2) =
(4, 6)

4.4 Reduced list-size decoder

The problem with the local-list based decoder, proposed in the previous section, is that
the sizes of the lists at the various stages of the tree are quite large. For codes with low
order of variable nodes, we gain in terms of the number of operations performed as
compared to the cluster-EMS algorithm. However, the problem in the implementation
of the decoder remains in the size of the sorters which are required to compute the
highest Nmi combinations LLR-values at any stage-i of the tree. In order to compute
a list of size Nmi , we require a sorter of size

√
2Nmi . With large values of Nmi , the

decoding algorithm remains counter productive as the implementation complexity re-
mains cumbersome. In order to solve this problem, we tried to propose a solution. The
idea seemed to be interesting, but we did not obtain an encouraging results. However,
for the sake of information, we explain our proposed idea.

The list-decoding is based on the creating a list {LL, βLL} of codewords which is
local to a parity check node. The list of codewords can be represented in the form of a
trellis as shown in Fig. 4.1, where each path represent a codeword. Each path carries a
certain weight which is represented as the LLR-value of the codeword. The local-list
decoder is based on selecting NL path with the highest corresponding weights. We
observed that the path connections were saturated at certain nodes at the various stages
of the trellis i.e. at a certain stage of the trellis, there were a lot many connections to a
few symbols and other symbols were left unconnected as depicted in Fig. 4.7.

93

4 A new decoding algorithm for NB-LDPC codes using local lists

Figure 4.7: Path saturation at certain nodes of the trellis

The saturation effects the list (LL, βbinLL) of codewords at the output of the tree. It
is composed of codewords with the connected symbols only. The symbols which are
left un-connected are not present in the list, and thus the output LLR-value for those
symbols cannot be computed when we extract LLRs from the list at each check node.
This results in a loss of information and in order to compensate for the loss, an prede-
fined value plus an offset is used instead. However, this is not sufficient and large size
lists are required in order to attain good performance.

Thus, we tried to propose a solution by scattering the connections through out the
nodes of the trellis. At any stage-i of the trellis, compute a certain number Nmax of
connections carrying the highest weights, following the same procedure as proposed in
section 4.2. The remaining Nmi − Nmax values are spread out throughout the various
other nodes(symbols) of the inputs. This procedure can be explained in another way:
from all the incoming nL connections to a stage-i, remove theNmi−Nmax connections
and assign them to symbols which are not connected to any node of stage-(i− 1).

Figure 4.8: Local-list decoder N = 3000, R = 0.5, (p1, p2) = (3, 6)

94

4.5 Conclusion

Fig. 4.8 shows the Monte-Carlo simulation results for a LDPC code of rate R = 1/2
and lengthN = 3000 bits. Limit defines the percentage of the symbols selected on the
basis of highest combination LLR-values. For example, at any stage-i of the tree, we
compute a list of sizeNmi . We compute (Limit)% of the symbols that carry the highest
combination LLR-values. The remaining symbols are selected from outside the area
that fall into theNmi highest combinations. From the remaining symbols, each symbol
is selected only once. However, we can observe from Fig. 4.8 that we have a loss in
performance of about 0.12dB and 0.15dB for Limit = 85% and Limit = 80% respec-
tively. Thus, this method is not of interest and we need to develop another method to
reduce the sizes of the lists at the various nodes of the tree.

4.5 Conclusion
In this chapter, we proposed a new decoding algorithm for non-binary cluster-LDPC
codes defined over finite groups which joins iterative decoding with list-based decod-
ing. At each check node, a list of codewords is constructed which is local to the parity
node. The extrinsic output LLR-values are then extracted from the list of codewords,
which are then sent towards the variable nodes. This process is iteratively repeated,
until we attain successful decoding or a fixed number of iterations have been run. We
proved with simulations results that for a higher degree of check node and a lower
order of the variable nodes, the decoder attains better performance than the cluster-
EMS decoder, proposed in chapter 3, with a reduced number of operations. However,
we still need a mechanism to reduce the lists for codes with a lower degrees of check
nodes or a higher order of the variable nodes.

The added advantage of the tree structure of the list-based decoder is that it can be
implemented with a parallel architecture. Thus, it is suitable for high rate applications.
However, the complexity of the parallel implementation of the sorter is increased ex-
ponentially with the size of the sorter, which remains a problem. Thus, implementation
with large size lists is a difficult task and there is a need of a mechanism which aids in
reducing the list sizes at the various stages of the tree.

We tried to propose a mechanism to reduce the list size at the various stages of the
tree. However, our proposed idea was not supported by Monte-Carlo simulation results
as we did not attain any interesting results. Further work can be done on decreasing
the sizes of the lists and if we are able to do so, we can have an efficient and low
complexity non-binary LDPC decoder that fulfills the requirements of new generation
communication systems.

95

5

Conclusions and perspectives

5.1 Conclusions

We started the work with a detailed study of the state-of-the-art. We studies the various
decoders proposed for non-binary LDPC codes defined over finite Galois fields. We
then directed our research to a new family of LDPC codes defined over finite groups.
We refer to this family of codes as cluster-LDPC codes due to the fact that the elements
of the parity check matrix can be represented in the form of a non-binary cluster of size
(p2 × p1).

The EMS algorithm is, so far, one of best proposed decoder for non-binary LDPC
codes. It has a very efficient performance with a low complexity. Thus, as a first task,
we generalized the EMS algorithm to cluster-LDPC codes. However, we saw that the
direct generalization is not a viable solution and needs some improvements. So we
notified the problems associated with the direct generalization and proposed two mod-
ifications in the decoding procedure. With simulations results, we proved that we have
a significant gain in performance with the proposed modifications.

We then proposed another method that could prove useful in decreasing the surface
area of the decoder. Cluster-LDPC codes introduce diversity into the decoder and we
proposed to make use of this diversity. For each check, we proposed to implement in
parallel, several instances of the check node update process. The output of the various
instances are then fusion-ed together to form the extrinsic output of the check node.
We proved with simulations results that we have better decoding performance when
we used multiple instances of a check node. Moreover, we have a lower error floor.

We also proposed a new decoding algorithm for cluster-LDPC codes. It is based on the
creation lists of codewords that are local to the parity nodes. The lists are then used to
create the extrinsic output LLR-values of the check nodes. The decoder showed good
performance for variable nodes defined in a lower group order. However, for high or-
der variable nodes, the size of the lists gets high. Thus, we require a mechanism with
which we can decrease the required list sizes. We also tried to propose a method to
decrease the lists sizes, however, we did not attain encouraging results.

96

5.2 Perspectives

5.2 Perspectives
The following points constitute interesting perspectives to the work presented in this
thesis.

• For the cluster-EMS algorithm, it would be interesting to see if the non-authorized
states can be used in a better fashion, so that can reduce the over-all complexity
of the decoder. This would also allow us to increase the value of nm, and thus
better performance.

• Regarding the list-based decoder, the size of the lists still remain a problem.
Therefore, if we are able to find an interesting a mechanism to reduce the list
size, we can obtain a very low complexity decoder.

97

98

Bibliography

[BB06] A. Bennatan and D. Burshtein. Design and analysis of non-binary ldpc
codes for arbitrary discrete memoryless channels. IEEE Transactions on
Information Theory, 52:549–583, Feb 2006.

[BCC10] E. Boutillon and L. Conde-Canencia. Bubble check: a simplified algo-
rithm for elementary check node processing in extended min-sum non-
binary ldpc decoders. IEEE Electronic letters, 46:633–634, April 2010.

[BD03] L. Barnault and D. Declercq. Fast decoding algorithm for ldpc codes
over gf(2q). In Proceedings of IEEE Information theory workshop,
pages 70–73, Paris, France, March 2003.

[BF04] G.J. Byers and F.Takawira. Non-binary and concatenated ldpc codes for
multiple-antenna systems. In Proceedings of AFRICON, pages 83–88,
Gaborone, Botswana, Sept 2004.

[BGT93] Claude Berrou, Alain Glavieux, and Punya Thitimajshima. Near shan-
non limit error-correcting codes and decoding. In the proc. of Inter-
national Conference on Communication (ICC), pages 1064–1070, May
1993.

[BT05] G. Byers and F. Takawira. Exit charts for non-binary ldpc codes. In
Proceedings of ICC, Seoul, Korea, May 2005.

[CCAGB00] L. Conde-Canencia, A. Al-Ghouwayel, and E. Boutillon. Complex-
ity comparison of non-binary ldpc decoders. In Proceedings of ICT-
MobileSummit 09, Santander, Spain, June 2000.

[CF02] J. Chen and M. Fossorier. Density evolution for two improved bp-based
decoding algorithms of ldpc codes. IEEE Communication letters, 6:208–
210, May 2002.

[CFRU01] S.Y. Chung, G.D. Forney, T.J. Richardson, and R.L. Urbanke. On the
design of low density parity check codes within 0.0045db of the shannon
limit. IEEE Communication letter, 5:58–60, February 2001.

99

Bibliography

[Cha72] D. Chase. A class of algorithms for decoding block codes with chan-
nel measurement information. IEEE transcation of Information Theory,
18:170–182, January 1972.

[CPD+09] W. Chen, C. Poulliat, D. Declercq, L. Conde-Canencia, A. Al-
Ghouwayel, and E. Boutillon. Non-binary ldpc codes defined over the
general linear group: Finite length design and practical implementa-
tion issues. In Proceeding of VTC’09 (special session FP7-ICT-RAS-
cluster),, Barcelona, Spain, April 2009.

[CWL05] Junbin Chen, Lin Wang, and Yong Li. Performance comparison between
non-binary ldpc codes and reed-solomon codes over noise burst chan-
nels. In Proceedings of IEEE ICCS’05, pages 1–4, China, May 2005.

[DCG04] D. Declercq, M. Colas, and G. Gelle. Regular gf(2q) ldpc coded mod-
ulations for higher order qam-awgn channels. In Proceedings of IEEE
ISITA, Parma, Italy, Oct 2004.

[Dec08] D. Declercq. Non-binary group decoder diversity for decoding dense
block codes. In Proceeding of IEEE Turbo-coding symposium, Lau-
sanne, Switzerland, Sept. 2008.

[DF07] D. Declercq and M. Fossorier. Decoding algorithms for non-binary ldpc
codes over gf(q). IEEE Transactions on communication, 55:633–643,
April 2007.

[DM98] M. Davey and D.J.C. Mackay. Low density parity check codes over
gf(q). IEEE communication letter, 2:165–167, June 1998.

[Eli57] P. Elias. List decoding for noisy channels. MIT, Cambridge, MA, Tech,
1957.

[FBL00] J. Fang, F. Buda, and E. Lemois. Turbo product code: A well suitable
solution to wireless packet transmission for very low error rates. in 2nd
international symposium on Turbo codes and related topics, pages 101–
111, 2000.

[For96] G.D. Forney. Generalised minimum distance decoding. IEEE transca-
tion of Information Theory, 12:125–131, April 1996.

[Gal62] R. G. Gallager. Low density parity check codes. IEEE transaction on
Information theory, IT-8:21–28, Jan 1962.

100

Bibliography

[HDYW06] Xiaofei Huang, Suquan Ding, Zhixing Yang, and Youshou Wu. Fast min-
sum algorithms for decoding of ldpc codes over gf(q). In Proceedings
of IEEE ITW’06, pages 96–99, Beijing, China, Oct. 2006.

[HEA05] X-Y. Hu, E. Eleftheriou, and D.M. Arnold. Regular and irregular pro-
gressive edge growth tanner graphs. IEEE trans. on Inf. Theory, 51:386–
398, Jan. 2005.

[HEAD01a] X. Hu, E. Eleftheriou, D.M. Arnold, and A. Dholakia. Efficient imple-
mentation of the sum-product algorithm for decoding ldpc codes. In
Proceedings of IEEE Globecom, 2001.

[HEAD01b] X. Hu, E. Eleftheriou, D.M. Arnold, and A. Dholakia. Efficient imple-
mentation of the sum-product algorithm for decoding ldpc codes. In
Proceedings of IEEE Globecom, 2001.

[HFE04] X.Y. Hu, M. Fossorier, and E. Eleftheriou. Binary representation of cycle
tanner graph gf(2q) codes. In Proceedings of IEEE ICC, pages 528–532,
Paris,France, June 2004.

[HH02] S. Hirst and B. Honary. Decoding of generalized low density parity
check codes using weighted bit-flip voting. IEEE proceedings on com-
munications, 149:1–5, Feb 2002.

[HLY02] L. Hanzo, T. Liew, and B.L. Yeap. Turbo coding, turbo equalization and
space-time coding. John Wiley and sons ltd., 2002.

[HooMM99] J. Hagenauer, E. offer offer, C. Méasson, and M. Mörz. Decoding and
equalization with analog non-linear networks. European transcations
communication, 10, Nov. 1999.

[JHH07] J. Justesen, T. Hoholdt, and J. Hjaltason. Iterative list decoding of some
ldpc codes. IEEE transcation of Information Theory, 53:4276–4284,
Nov. 2007.

[JYgXL09] Xueqin Jiand, Yier Yan, Xiang gen Xia, and Moon Ho Lee. Applica-
tion of non-binary ldpc codes based on euclidean geometries to mimo
systems. In Proceedings of Intern. conference on wireless comm. and
Signal processing, pages 1–5, Nanjing, China, Nov 2009.

[KFL01] F. Kschischang, B. Frey, and H.A. Loeliger. Factor graphs and the sum
product algorithm. IEEE Transactions on Information Theory, 47:498–
519, Feb 2001.

101

Bibliography

[KH06] Fang-Chun Kuo and L. Hanzo. Symbol flipping based decoding of gen-
eralized low density parity check codes over gf(q). In Proceedings of
IEEE WCNC’06, pages 1207–1211, Las-Vegas, NV, April 2006.

[LFK03] G. Li, I. Fair, and W. Krzymien. Analysis of nonbinary ldpc codes using
gaussian approximation. In Proceedings of ISIT, Kanagawa, Japan, July
2003.

[LMSS01] M.G. Luby, M. Mitzenmacher, M.A. Shokrollahi, and D.A. Spielman.
Improved low density parity check codes using irregular graphs. IEEE
Transactions on Information Theory, 47:619–637, Feb 2001.

[Lou95] Hui-Ling Lou. Implementing the viterbi algorithm. IEEE signal pro-
cessing magazine, 12:42–52, Sep. 1995.

[LZL+07] Lan Lan, Lingqi Zeng, Y.Y. Lei, Shu Lin, and K. Abdel-Ghaffar. Con-
struction of quasi-cyclic ldpc codes for awgn and binary erasure chan-
nels: A finite field approach. IEEE Transactions on Information Theory,
53:2429–2458, July 2007.

[Mac97] D.J.C. Mackay. Good error correcting codes based on very sparse matri-
ces. IEEE International symposium on Information theory, 2:113, July
1997.

[MD99] D.J.C. Mackay and M. Davey. Evaluation of gallager codes for short
block length and high rate applications. proc. of IMA workshop on codes,
systems and graphical models, pages 113–130, 1999.

[MF05] N. Miladinovic and M.P.C. Fossorier. Improved bit-flipping decoding
of low density parity check codes. IEEE Transactions on Inf. Theory,
51:1594–1606, April 2005.

[MSV08] A. Morinoni, P. Savazzi, and S. Valle. Efficient design of non-binary
ldpc codes for magnetic recording channels, robust to error bursts. In
Proceedings of IEEE Int. Symp. on Turbo codes and related topics, pages
288–293, Lausanne, Switzerland, Sept 2008.

[MWZ06] Long Ma, Lin Wang, and Jianwen Zhang. Performance advantage of
non-binary ldpc codes at high code rate under awgn channel. In Pro-
ceedings of Intern. conf. on Communication technologies, Guilin, China,
Nov 2006.

[PC06] Rong-Hui Peng and Rong-Rong Chen. Design of non-binary ldpc codes
over gf(q) for multiple-antenna transmission. In Proceedings of MIL-
COM, Washington DC, USA, Oct 2006.

102

Bibliography

[PDL07] C. Poulliat, D. Declercq, and T. Lestable. Decoding turbo codes with a
non-binary belief propagation decoder. In in the proc. of the 19th WWRF
meeting wg4, Nov 2007.

[PDL08] C. Poulliat, D. Declercq, and T. Lestable. Efficient decoding of turbo
codes with non-binary belief propagation. EURASIP JWCN, special is-
sue on ’advances in Error control coding techniques’, 2008.

[PFD06a] C. Poulliat, M. Fossorier, and D. Declercq. Design of non binary ldpc
codes using their binary image: algebraic properties. In Proceedings of
IEEE ISIT, Seattle, USA, July 2006.

[PFD06b] C. Poulliat, M. Fossorier, and D. Declercq. Opitmization of non-binary
ldpc codes using their binary images. In Proceedings of IEEE Int. Symp.
on Turbo codes, Munich, Germnay, April 2006.

[PL00] L. Ping and W.K. Leung. Decoding low density parity check codes with
finite quantization bits. IEEE communication letters, 4:62–64, Feb 2000.

[PML+09] S. Pfletschinger, A. Mourad, E. Lopez, D. Declercq, and G. Bacci. Per-
formance evaluation of non-binary ldpc coes on wireless channels. In
Proceedings of ICT Mobile summit, Santandar, Spain, June 2009.

[PNF04] H. Pishro-Nik and F. Fekri. On decoding of low density parity check
codes over binary erasure channel. IEEE Transactions on Information
Theory, 50:439–454, March 2004.

[RSU01] T.J. Richardson, M.A. Shokrollahi, and R.L. Urbanke. Design of capac-
ity approaching irregular low density parity check codes. IEEE Transac-
tions on Information Theory, 47:619–637, Feb 2001.

[RU01] T.J. Richardson and R.L. Urbanke. The capacity of low density parity
check codes under message passing decoding. IEEE Transactions on
Information Theory, 47:599–618, February 2001.

[RU05] V. Rathi and R.L. Urbanke. Density evolution thresholds and the stability
conditions for non-binary ldpc codes. IEEE Transactions on communi-
cation, 152(6):1069–1074, Dec 2005.

[Rya03] W.E. Ryan. An introduction to ldpc codes.
http://www.ece.arizona.edu/%7Eryan/New%20Folder/ryan-crc-ldpc-
chap.pdf, Aug 2003.

[SC03] H. Song and J.R. Cruz. Reduced complexity decoding of q-ary ldpc
codes for magnetic recording. IEEE trans on magnetics, 39, March 2003.

103

Bibliography

[SD06] L. Sassatelli and D. Declercq. Non-binary hybrid ldpc codes - structure,
decoding and optimization. In Proceedings of IEEE ITW’06, Chengdu,
China, Oct. 2006.

[SD07] L. Sassatelli and D. Declercq. Analysis of non-binary hybrid ldpc codes.
In Proceedings of IEEE ISIT’07, Nice, France, June 2007.

[SF02] D. Sridhara and T.E. Fuja. Low density parity check codes defined over
groups and rings. In the proc. of Information Theory Workshop (ITW),
Oct 2002.

[Sha48] Claude E. Shannon. A mathematical theory of communication. Bell
System Technical Journal, 27, 1948.

[SMG09] G. Sarkis, S. Mannor, and W.J. Gross. Stochastic decoding of ldpc codes
over gf(q). In Proceedings of IEEE ICC’09, pages 1–5, Dresden, Ger-
many, June 2009.

[SS94] Nambirajan Seshadri and Carl-Erik W. Sundberg. List viterbi decod-
ing algorithms with applications. IEEE transcation on communications,
42:313–323, Feb. 1994.

[SZAG06] S. Song, L. Zeng, and K. Abdel-Ghaffar. Algebric construction of non-
binary quasi-cyclic ldpc codes. In Proceedings of ISIT, Seattle, USA,
July 2006.

[Tan81] R.M. Tanner. A recursive approach to low complexity codes. IEEE
transaction on Information theory, pages 533–547, Sept 1981.

[TGM06] S. Sharifi Tehrani, W. Gross, and S. Mannor. Stochastic decoding of ldpc
codes. IEEE communication letters, 10:716–718, 2006.

[TMG07] S. Sharifi Tehrani, S. Mannor, and W.J. Gross. An area efficient
fpga based architecture for fully parallel stochastic ldpc decoding. In
Proceedings of IEEE workshop on signal processing, pages 255–260,
Shanghai, China, Oct. 2007.

[TMG08] S. Sharifi Tehrani, S. Mannor, and W.J. Gross. Fully parallel stochastic
ldpc decoders. IEEE trans. on Signal processing, 56:5692–5703, Nov
2008.

[VDV+08] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard. “Split
non-binary ldpc codes”. July 2008.

104

Bibliography

[VDV+10] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard. Low
complexity decoding algorithm for non-binary ldpc codes in high order
fields. IEEE Transactions on communication, 58(5):1–11, May 2010.

[Vit67] A.J. Viterbi. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE transcation of Information Theory,
13:260–269, April. 1967.

[Voi07] A. Voicila. Décodage simplifié des codes LDPC non-binaire. thèse,
Université de Cergy-Pontoise, Sept 2007.

[VP08] A. Venkiah and C. Poulliat. Design of cages with a randomized progres-
sive edge growth algorithm. IEEE Communication letters, 12:301–303,
April 2008.

[VVD+07] A. Voicila, F. Verdier, D. Declercq, M. Fossorier, and P. Urard. “Ar-
chitecture of a low-complexity non-binary ldpc decoder for high order
fields”. October 2007.

[WS98] A.P. Worthen and W.E. Stark. Low density parity check codes for fading
channels with memory. In Proceedings of 36th allerton conf. on commu-
nication, control and computing, pages 117–125, Sept 1998.

[WSM04a] H. Wymeersch, H. Steendam, and M. Moeneclaey. Computational com-
plexity and quantization effects of decodign algorithms of ldpc codes
over gf(q). Montreal, Canada, May 2004.

[WSM04b] H. Wymeersch, H. Steendam, and M. Moeneclaey. Log domain decod-
ing of ldpc codes over gf(q). In Proceedings of IEEE Intern. Conf. on
Communications, pages 772–776, Paris, France, June 2004.

[YHB04] M.R. Yazdani, S. Hemati, and A.H. Banihashemi. Improving belief
propagation on graphs with cycles. IEEE Communication letters, 8:57–
59, January 2004.

[YR01] M. Yang and W.E. Ryan. Performance of (quasi-)cyclic ldpc codes in
noise bursts on the epr4 channel. In Proceedings of IEEE GLOBECOM,
pages 2961–2965, Texas, USA, 2001.

[ZLT+08] L. Zeng, L. Lan, Y. Yu Tai, B. Zhou, Shu Lin, A. Khaled, and A.S. Abdel
Ghaffar. Construction of nonbinary cyclic, quasi-cyclic and regular ldpc
codes: A finite geometry approach. IEEE transactions on Communica-
tions, 56, March 2008.

105

