Thèse soutenue

Passage à l’échelle des méthodes de recherche sémantique dans les grandes bases d’images

FR  |  
EN
Auteur / Autrice : David Gorisse
Direction : Frédéric PreciosoMatthieu CordSylvie Philipp-Foliguet
Type : Thèse de doctorat
Discipline(s) : Génie informatique, automatique et traitement du signal
Date : Soutenance le 17/12/2010
Etablissement(s) : Cergy-Pontoise
Ecole(s) doctorale(s) : École doctorale Sciences et ingénierie (Cergy-Pontoise, Val d'Oise)
Partenaire(s) de recherche : Laboratoire : Equipes Traitement de l'Information et Systèmes (Cergy-Pontoise, Val d'Oise ; 2002-....)
Jury : Examinateurs / Examinatrices : Jean-Michel Jolion, Florent Perronnin
Rapporteurs / Rapporteuses : Michel Crucianu, Stéphane Marchand-Maillet

Résumé

FR  |  
EN

Avec la révolution numérique de cette dernière décennie, la quantité de photos numériques mise à disposition de chacun augmente plus rapidement que la capacité de traitement des ordinateurs. Les outils de recherche actuels ont été conçus pour traiter de faibles volumes de données. Leur complexité ne permet généralement pas d'effectuer des recherches dans des corpus de grande taille avec des temps de calculs acceptables pour les utilisateurs. Dans cette thèse, nous proposons des solutions pour passer à l'échelle les moteurs de recherche d'images par le contenu. Dans un premier temps, nous avons considéré les moteurs de recherche automatique traitant des images indexées sous la forme d'histogrammes globaux. Le passage à l'échelle de ces systèmes est obtenu avec l'introduction d'une nouvelle structure d'index adaptée à ce contexte qui nous permet d'effectuer des recherches de plus proches voisins approximées mais plus efficaces. Dans un second temps, nous nous sommes intéressés à des moteurs plus sophistiqués permettant d'améliorer la qualité de recherche en travaillant avec des index locaux tels que les points d'intérêt. Dans un dernier temps, nous avons proposé une stratégie pour réduire la complexité de calcul des moteurs de recherche interactifs. Ces moteurs permettent d'améliorer les résultats en utilisant des annotations que les utilisateurs fournissent au système lors des sessions de recherche. Notre stratégie permet de sélectionner rapidement les images les plus pertinentes à annoter en optimisant une méthode d'apprentissage actif.