Biologie intégrative du métabolisme de la baie du raisin
Auteur / Autrice : | Christian Kappel |
Direction : | Serge Delrot |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences, technologie, santé. Bioinformatique |
Date : | Soutenance le 16/12/2010 |
Etablissement(s) : | Bordeaux 2 |
Ecole(s) doctorale(s) : | École doctorale Sciences de la vie et de la santé (Talence, Gironde ; 1993-....) |
Jury : | Président / Présidente : Patrice This |
Examinateurs / Examinatrices : Yves Gibon, Antoine De Daruvar | |
Rapporteurs / Rapporteuses : Mondher Bouzayen, Mario Pezzotti |
Mots clés
Résumé
La surface des vignobles mondiaux représente environ 7,9 millions ha, ce qui correspond à une production annuelle de 67 millions de tonnes de baies. La production mondiale annuelle de vins est de l’ordre de 300 millions hl/an. La surface du vignoble français est de 843 000 ha. La viticulture moderne doit affronter trois défis majeurs interdépendants : réduire l’utilisation des produits phytosanitaires, s'adapter au changement climatique, maîtriser la qualité et la typicité pour garder ou conquérir de nouveaux marchés.En 2007, la vigne est devenue la première espèce fruitière pérenne dont le génome a été séquencé. Cette avancée scientifique ouvre de nombreuses perspectives en termes de génomique fonctionnelle (ensemble de méthodes permettant de caractériser la fonction des gènes) et de biologie intégrative (ensemble de méthodes visant à appréhender le fonctionnement global de la plante et ses réponses à l’environnement). Ces perspectives dépendent pour une bonne part de la maîtrise de quantités importantes de données qu’il convient d’organiser et de corréler grâce à des outils informatiques adaptés.Des approches fonctionnelles concernant des gènes candidats et des approches transcriptomiques à haut débit ont permis d’identifier certains gènes ou certaines familles de gènes impliqués dans le développement et la maturation de la baie de raisin, mais au moment où cette thèse a débuté, aucun travail de biologie intégrative n’avait été entrepris.Le travail présenté ici, qui décrit l’obtention et l’analyse de métadonnées transcriptomiques et biochimiques portant sur la réponse de la baie à l’environnement radiatif, s’inscrit dans ce contexte. En procédant à un effeuillage partiel après la véraison, nous avons modulé l’exposition des baies au rayonnement solaire. Ceci a permis d’étudier l’influence du rayonnement (baie exposée, non exposée), de la position de la grappe (est, ouest) et de la position de la baie (à l’extérieur ou à l’intérieur de la grappe). Des baies ont été récoltées à 5 moments différents après l’effeuillage et utilisées pour des analyses métabolomiques et transcriptomiques. Leur contenu en sucres, acides organiques, acides aminés, anthocyanes et flavonols a été analysé par des dosages enzymatiques et par chromatographie liquide à haute performance). L’expression des gènes a été étudiée avec des microarrays représentatifs de l’ensemble du génome de la vigne (29600 gènes) pour les conditions présentant les différences métaboliques les plus marquées (baies exposées, situées à l’ouest et à l’extérieur de la grappe vs baies non exposées, situées à l’est et à l’intérieur de la grappe). Des analyses statistiques et corrélatives ont été conduites pour (a) déterminer les métabolites qui répondent au traitement et les facteurs qui les influencent (b) déterminer les gènes qui répondent aux traitements et ceux qui semblent co-régulés (c) préciser les réseaux de gènes et de métabolites qui semblent reliés. L’effeuillage n’affecte pas la teneur en sucres ou en acide tartrique des baies, il affecte peu les acides aminés, mais il augmente la teneur en flavonols et diminue la teneur en acide malique. Il affecte plus particulièrement les gènes associés au stress abiotique, au métabolisme secondaire, au transport et au métabolisme hormonal. Des expériences complémentaires ont permis d’identifier divers gènes spécifiquement associés à la composante thermique de l’exposition au soleil, parmi lequels des gènes codant pour des HSP, des transporteurs ABC, et des enzymes du métabolisme flavonoïdique. Des réseaux reliant des gènes et des métabolites ont pu être construits, qui associent des métabolites secondaires à des gènes de fonctions connues, ou à de nouveaux gènes candidats dont il conviendra d’étudier la fonction précise.