Thèse soutenue

Précision et qualité en reconstruction tomographique : algorithmes et applications

FR
Auteur / Autrice : Benoît Recur
Direction : Jean-Philippe DomengerPascal Desbarats
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 29/11/2010
Etablissement(s) : Bordeaux 1
Ecole(s) doctorale(s) : École doctorale Mathématiques et informatique (Talence, Gironde ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire bordelais de recherche en informatique
Jury : Président / Présidente : Achille Braquelaire
Examinateurs / Examinatrices : Michel Montaudon
Rapporteur / Rapporteuse : Thomas Boudier, Jean-Pierre Guédon

Résumé

FR  |  
EN

Il existe un grand nombre de modalités permettant l'acquisition d'un objet de manière non destructrice (Scanner à Rayons X, micro-scanner, Ondes Térahertz, Microscopie Électronique de Transmission, etc). Ces outils acquièrent un ensemble de projections autour de l'objet et une étape de reconstruction aboutit à une représentation de l'espace acquis. La principale limitation de ces méthodes est qu'elles s'appuient sur une modélisation continue de l'espace alors qu'elles sont exploitées dans un domaine fini. L'étape de discrétisation qui en résulte est une source d'erreurs sur les images produites. De plus, la phase d'acquisition ne s'effectue pas de manière idéale et peut donc être entachée d'artéfacts et de bruits. Un grand nombre de méthodes, directes ou itératives, ont été développées pour tenter de réduire les erreurs et reproduire une image la plus représentative possible de la réalité. Un panorama de ces reconstructions est proposé ici et est coloré par une étude de la qualité, de la précision et de la résistances aux bruits d'acquisition.Puisque la discrétisation constitue l'une des principales limitations, nous cherchons ensuite à adapter des méthodes discrètes pour la reconstruction de données réelles. Ces méthodes sont exactes dans un domaine fini mais ne sont pas adaptées à une acquisition réelle, notamment à cause de leur sensibilité aux erreurs. Nous proposons donc un lien entre les deux mondes et développons de nouvelles méthodes discrètes plus robustes aux bruits. Enfin, nous nous intéressons au problème des données manquantes, i.e. lorsque l'acquisition n'est pas uniforme autour de l'objet, à l'origine de déformations dans les images reconstruites. Comme les méthodes discrètes sont insensibles à cet effet nous proposons une amorce de solution utilisant les outils développés dans nos travaux.