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Vertex coloring of graphs via the discharging method

Abstract : In this thesis, we are interested in various vertex coloring and homo-
morphism problems of graphs with special emphasis on planar graphs and sparse
graphs. We consider proper vertex coloring, acyclic coloring, star coloring, forest
coloring, fractional coloring and the list version of most of these concepts.

In Chapter 2, we consider the problem of finding sufficient conditions for a planar
graph to be 3-choosable. These conditions are expressed in terms of forbidden
subgraphs and our results extend several known results.

The notion of acyclic list coloring of planar graphs was introduced by Borodin,
Fon-Der Flaass, Kostochka, Raspaud, and Sopena. They conjectured that every
planar graph is acyclically 5-choosable. In Chapter 3, we obtain some sufficient
conditions for planar graphs to be acyclically k-choosable with k ∈ {3, 4, 5}.

In Chapter 4, we prove that every subcubic graph is 6-star-colorable. On the
other hand, Fertin, Raspaud and Reed showed that the Wagner graph cannot be
5-star-colorable. This fact implies that our result is best possible. Moreover, we
obtain new upper bounds on star choosability of planar subcubic graphs with given
girth.

A k-forest-coloring of a graph G is a mapping π from V (G) to the set {1, · · · , k}
such that each color class induces a forest. The vertex-arboricity of G is the smallest
integer k such that G has a k-forest-coloring. In Chapter 5, we prove a conjecture of
Raspaud and Wang asserting that every planar graph without intersecting triangles
has vertex-arboricity at most 2.

Finally, in Chapter 6, we focus on the homomorphism problems of sparse graphs
to the Petersen graph. More precisely, we prove that every triangle-free graph with
maximum average degree less than 5/2 admits a homomorphism to the Petersen
graph. Moreover, we show that the bound on the maximum average degree in our
result is best possible.

Keywords : planar graph, acyclic coloring, star coloring, vertex-arboricity, homo-
morphism, maximum average degree, Petersen graph, cycle.

Discipline : Computer Science

LaBRI
Université Bordeaux 1

351 cours de la Libération,
33405 Talence Cedex (FRANCE)





Coloration des sommets des graphes par la méthode de déchargement

Résumé : Dans cette thèse, nous nous intéressons à differentes colorations des som-
mets d’un graphe et aux homomorphismes de graphes. Nous nous intéressons plus
spécialement aux graphes planaires et aux graphes peu denses. Nous considérons
la coloration propre des sommets, la coloration acyclique, la coloration étoilée, la
k-forêt-coloration, la coloration fractionnaire et la version par liste de la plupart de
ces concepts.

Dans le Chapitre 2, nous cherchons des conditions suffisantes de 3-liste colorabil-
ité des graphes planaires. Ces conditions sont exprimées en termes de sous-graphes
interdits et nos résultats impliquent plusieurs résultats connus.

La notion de la coloration acyclique par liste des graphes planaires a été in-
troduite par Borodin, Fon-Der Flaass, Kostochka, Raspaud, et Sopena. Ils ont
conjecturé que tout graphe planaire est acycliquement 5-liste coloriable. Dans le
Chapitre 3, on obtient des conditions suffisantes pour qu’un graphe planaire ad-
mette une k-coloration acyclique par liste avec k ∈ {3, 4, 5}.

Dans le Chapitre 4, nous montrons que tout graphe subcubique est 6-étoilé-
coloriable. D’autre part, Fertin, Raspaud et Reed ont montré que le graphe de
Wagner ne peut pas être 5-étoilé-coloriable. Ce fait implique que notre résultat est
optimal. De plus, nous obtenons des nouvelles bornes supérieures sur la choisiss-
abilité étoilé d’un graphe planaire subcubique de maille donnée.

Une k-forêt-coloration d’un graphe G est une application π de l’ensemble des
sommets V (G) de G dans l’ensemble de couleurs 1, 2, · · · , k telle que chaque classe
de couleur induit une forêt. Le sommet-arboricité de G est le plus petit entier k
tel que G a k-forêt-coloration. Dans le Chapitre 5, nous prouvons une conjecture
de Raspaud et Wang affirmant que tout graphe planaire sans triangles intersectants
admet une sommet-arboricité au plus 2.

Enfin, au Chapitre 6, nous nous concentrons sur le problème d’homomorphisme
des graphes peu denses dans le graphe de Petersen. Plus précisément, nous prouvons
que tout graphe sans triangles ayant un degré moyen maximum moins de 5/2 admet
un homomorphisme dans le graphe de Petersen. En outre, nous montrons que la
borne sur le degré moyen maximum est la meilleure possible.

Mots clefs : graphe planaire, coloration acyclique, coloration étoilée, sommets-
arboricité, homomorphisme, degré moyen maximum, graphe de Petersen, cycle.
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Many real world situations can conveniently be described by means of a diagram
consisting of a set of points together with lines joining certain pairs of these points.
For example, the points could represent people, with lines joining pairs of friends; or
the points might be communication centers, with lines representing communication
links. Notice that in such diagrams one is mainly interested in whether two given
points are joined by a line; the manner in which they are joined is immaterial. A
mathematical abstraction of situations of this type gives rise to the concept of a
graph. The basic concepts of graph theory are simple and can be used to express
problems from many different subjects.

Graph coloring is an important field in graph theory. It has a central position
in discrete mathematics and is of interest for its applications. Graph coloring deals
with the fundamental problem of partitioning a set of objects into classes, according
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to certain rules. Time tabling, sequencing, and scheduling problems, in their many
forms, are basically of this nature.

Most of graph coloring problems come from the famous Four Color Problem
which states that any map in a plane can be colored using four colors in such a way
that regions sharing a common boundary (other than a single point) have distinct
colors. This was a question which Francis Guthrie asked his brother Frederick
Guthrie, who was a student of De Morgan in mathematics. In 1976, the Four Color
Problem was proved by Appel and Haken [AH76] using computer. So, the Four
Color Problem has been changed into the Four Color Theorem ever since.

In this thesis, we mainly study the vertex coloring of graphs via the Discharging
Method, which was used to solve the Four Color Problem (and which we extensively
use in this thesis). So, in Section 1.3, we start with an introduction of what Dis-
charging Method is and how it works. Before that, we need to define some basic
notation used throughout the thesis in Section 1.1 and Section 1.2, followed by an
overview of all results (in Section 1.4) of the thesis.

1.1 Definition

1.1.1 Definition of graphs

A graph G is an ordered pair (V, E), where V stands for a finite set whose elements
are called vertices and E is a set of 2-subsets of V whose elements are called edges.
We note that with our definition a graph is finite and simple (i.e., no loops and
multiple edges). The order of G is the number of vertices in G, written as |G|. The
size of G is the number of edges in G, denoted by ||G||. Sometimes, we use |E|
instead of ||G||.

An edge {x, y} is said to join the vertices x and y and is denoted by xy. The
vertices x and y are the endvertices of the edge xy. If xy ∈ E(G), then we say that
x and y are adjacent vertices of G, and the vertices x and y are incident with the
edge xy. We say two edges e and e′ are adjacent if they have exactly one common
endvertex.

The graph with no vertices (and hence no edges) is the null graph and the graph
with just one vertex is the trivial graph. All other graphs are nontrivial. An empty
graph is a graph in which no two vertices are adjacent; that is, its edge set is empty.

1.1.2 Vertex degrees

The degree of a vertex v in a graph G, denoted by dG(v) or d(v), is the number of
edges of G incident with v. A vertex of degree zero is called an isolated vertex. A
vertex of degree k is called a k-vertex. A k+-vertex (or k−-vertex) is a vertex of
degree at least (or at most) k. Sometimes, a k-vertex v is said to be a k(d)-vertex
if v is adjacent to d 2-vertices. An edge uv is said a (b1, b2)-edge if d(u) = b1 and
d(v) = b2. We call NS(v) = {u|u ∈ S, uv ∈ E(S)} the neighborhood of v in S. In
particular, if S = V (G), we write N(v) instead of NV (G)(v). Observe that if G is
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a simple graph, d(v) is the number of neighbors of v in G and thus d(v) = |N(v)|.
We define N∗

S(v) = NS(v) ∪ {v}.
The number δ(G) = min{d(v), v ∈ V (G)} is the minimum degree of G. The

number ∆(G) = max{d(v), v ∈ V (G)} is the maximum degree of G. If all the
vertices in G are of degree k, then we call G a k-regular graph. In particular, a
3-regular graph is called cubic and a graph G with ∆(G) 6 3 is called subcubic.

The well known Handshake Lemma establishes a fundamental identity relating
the degrees of the vertices of a graph and the number of its edges.
Lemma 1.1.1 If G is a plane graph, then∑

v∈V (G)

d(v) = 2|E(G)|.

This seemingly simple fact plays a prominent role in graph theory, especially
in the discharging argument, which will be introduced in Section 1.3. The number
ad(G) =

∑
v∈V (G) d(v)

|V (G)| = 2|E(G)|
|V (G)| is called an average degree of G. The maximum

average degree of G, denoted by Mad(G), is the maximum average degree over all
induced subgraphs of G, i.e., Mad(G) = max{2|E(H)|

|V (H)| : H ⊆ G}.

1.1.3 Paths, threads and cycles

A walk in a graph G is a non-empty alternating sequence of vertices and edges
denoted by W = v0e1v1e2 · · · ekvk, where ei = vi−1vi for each 1 6 i 6 k. v0 and vk

are both called endvertices of W . The length of W is the number of its edges, i.e.,
k. This walk W is called a trail of G if all its edges are distinct and is called a path
of G if all vertices are distinct. Notice that each path is a trail but the converse is
not true.

Suppose P = v0v1 · · · vk−1vk is a path. We say that v0, vk are the two endvertices
of P and v1, · · · , vk−1 are the internal vertices of P . Moreover, we call such path
P a (v0,vk)-path. A thread of G is a path whose all internal vertices are of degree
2 in G. We use k-thread to denote a thread with exactly k internal 2-vertices (and
length j+1). A maximal thread is a thread whose two endpoints are both 3-vertices.
A k-vertex v is a (j1, j2, · · · , jk)-vertex if there are maximal threads starting from v
which have j1, j2, · · · , jk internal vertices, respectively.

A closed walk is a walk whose endvertices coincide. A closed path with length
at least 3 is called a cycle. A cycles with length k is called a k-cycle. A k+-cycle (or
k−-cycles) is a cycle with length at least (or at most) k. A triangle is synonymous
with a 3-cycle. The girth of a graph G is the length of its shortest cycle. Similarly,
the odd girth of a graph G is the length of a shortest odd cycle in G (∞ if G is
bipartite).

For u, v ∈ V (G), the distance between u and v, denoted dist(u, v), is the number
of edges in a shortest path connecting them. The distance between two triangles
T and T ′ is defined as the value min{dist(x, y)|x ∈ V (T ) and y ∈ V (T ′)}. In
particular, two triangles are said to be intersecting if they have distance 0. The
diameter of G is the greatest distance between any two vertices in G.
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1.1.4 Subgraphs and operations

Let G = (V, E) and G′ = (V ′, E ′) denote two graphs. We say that G′ is a subgraph
of G if V ′ ⊆ V and E ′ ⊆ E. For convenience, we write G′ ⊆ G. If V ′ = V and
G′ ⊆ G, then G′ is said to be a spanning subgraph of G. If G′ contains all edges of
G that join two vertices in V ′, then G′ is said to be the subgraph induced by V ′ and
is denoted by G[V ′].

We shall often construct new graphs from old ones by deleting or adding some
vertices and edges. Suppose G is a graph. If S ⊂ V (G), then G− S = G[V \ S] is
the subgraph of G obtained by deleting the vertices in S and all edges incident with
them. Similarly, if E ′ ⊆ E(G), then G − E ′ = (V (G), E(G) \ E ′). If S = {s} and
E ′ = {xy}, then this notation is simplified to G− s and G− xy. Similarly, if x and
y are non-adjacent vertices of G, then G + xy is obtained from G by joining x to y.

1.1.5 Connectivity

Let G be a non-empty graph. We say that G is connected if, for each pair u, v ∈
V (G), there always exists a path connecting them; otherwise G is disconnected. A
maximal connected subgraph of G is a subgraph that is connected and is not properly
contained in any other connected subgraph of G. The components of a graph G are
its maximal connected subgraphs. A cut-edge or cut-vertex of G is an edge or vertex
whose deletion increases the number of components. The connectivity of a connected
graph G, written as κ(G), is the minimum size of a vertex set S such that G− S is
disconnected or has only one vertex. A graph G is called k-connected if κ(G) > k.

1.1.6 Special families of graphs

A complete graph is a simple graph in which any two vertices are adjacent. If it has
n vertices, we denote it by Kn. Obviously, a complete graph with n vertices is an
(n − 1)-regular graph. A graph is bipartite if its vertex set can be partitioned into
two subsets X and Y so that every edge has one endvertex in X and one endvertex
in Y ; such a partition (X,Y ) is called a bipartition of the graph, and X and Y
its parts. We denote a bipartite graph G with bipartition (X,Y ) by G[X,Y ]. If
G[X,Y ] is simple and every vertex in X is joined to every vertex in Y , then G is
called a complete bipartite graph and denoted by Kn,m, where |X| = n and |Y | = m.

A graph without any cycles is a forest, or an acyclic graph. A tree is a connected
forest. The relation of a tree to a forest sounds less absurd if we note that a forest is
a disjoint union of trees. In other words, a forest is a graph whose every component
is a tree.

1.1.7 Oriented graphs

An oriented graph is graph G which consists of a vertex set V (G) and an edge set
E(G) whose elements are ordered pairs of vertices. An orientation of a graph G is
obtained by choosing an orientation x → y or y → x for each edge xy ∈ E(G).
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An arc e = (x, y) is considered to be directed from x to y; y is called the head
and x is called the tail of the arc. For a vertex v in G, the number of tail endvertices
adjacent to v is called the indegree of v, denoted by d−(v), and the number of head
endvertices is its outdegree, denoted by d+(v).

1.1.8 Planar graphs

Let us first read the following brain teaser introduced in [Wes02], which was appeared
as early as in [Dud17].

Gas-Water-Electricity Problem Three sworn enemies A, B, C live in houses in
the woods. They make paths so that each has a path to each of three utilities, which
by tradition are gas, water, and electricity. In order to avoid confrontations, they
do not want any of the paths to cross. Can this be done?

This question can be asked in terms of graph theory that whether K3,3 can be
drawn in the plane without edge crossings. To answer this question, we start with
the following definitions.

A graph G is planar if it has a drawing without crossings in the plane. Such a
drawing is a planar embedding of G. A plane graph is a particular embedding of a
planar graph. A planar embedding of a graph G cuts the plane into a number of
arcwise-connected open sets. These sets are called the faces of G, denoted by F (G).
Each plane graph has exactly one unbounded face, called the outer face and others
called internal faces. A face is said to be incident with the vertices and edges in its
boundary. The dual graph G∗ of a plane graph G is a plane graph whose vertices
correspond to the faces of G. Two vertices in G∗ are adjacent if the corresponding
faces in G are adjacent.

The next lemma may be regarded as a dual version of Lemma 1.1.1.

Lemma 1.1.2 If G is a plane graph, then
∑

f∈F (G)

d(f) = 2|E(G)|.

There is a simple formula relating the numbers of vertices, edges, and faces in
a connected plane graph. It was first established for polyhedral graphs by Euler
in 1752, and is known as Euler’s Formula, which plays a key role in our proofs,
and in general, in the proofs of problems on planar graphs that use the Discharging
Method.

Theorem 1.1.3 (Euler’s Formula)
Let G be a connected plane graph G with n vertices, m edges, and f faces. Then

n−m + f = 2.

Using the following corollaries of this theorem one can prove that dense graphs
are not planar.
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Corollary 1.1.4 If G is a planar graph with girth g(G), then

|E(G)| 6 g(G)

g(G)− 2
(|V (G)| − 2).

Corollary 1.1.5 If G is a planar graph with girth g(G), then

Mad(G) < 2g(G)
g(G)−2

.

Now for example we give a negative answer to the Gas-Water-Electricity Prob-
lem. On the one hand, we notice that a solution to this problem is equivalent to a
planar embedding of K3,3. On the other hand, since g(K3,3) = 4, this graph does
not satisfy the condition of Corollary 1.1.4.

1.1.9 Basic notation

This section is dedicated to some basic notion used throughout the thesis. We
will use i+ to denote a number equal or greater than i. Let G be a plane graph.
For a face f ∈ F (G), we use b(f) to denote the boundary walk of f and write
f = [u1u2 · · ·un] if u1, u2, · · · , un are the vertices of b(f) appearing in a boundary
walk of f . Sometimes, we write simply V (f) = V (b(f)). A face f is simple if b(f)
forms a cycle. The degree, denoted by d(f), of a face f is the number of edges in its
boundary b(f). Note that each cut-edge is counted twice. A k+-face (or k−-face)
is a face of degree at least (or at most) k. We say that two cycles (or faces) are
adjacent if they share at least one edge. Moreover, two adjacent cycles (or faces)
are said to be normally adjacent if they share exactly two vertices.

For x ∈ V (G) ∪ F (G), if there is no special mention, we usually use t(x) to
denote the number of 3-faces adjacent/incident to x and use nj(x) to denote the
number of j-vertices adjacent/incident to x, where j is an integer and j > 2. For
f = [u1u2 · · ·un], we use fuiui+1

to denote the face adjacent to f by a common
edge uiui+1, where i is taken modulo n. A k-face f = [v1v2 · · · vk] is called an
(a1, a2, · · · , ak)-face if the degree of the vertex vi is ai for i = 1, 2, · · · , k. A 3-vertex
v is light if it is incident to a 3-face. If a vertex u is adjacent to a 3-vertex v such
that the edge uv is not incident to any 3-face, then we call v a pendant 3-vertex
of u. A pendant light 3-vertex is a light and pendant 3-vertex. If v is a pendant
light 3-vertex which is incident to an (a1, a2, a3)-face, then we call v is a pendant
light (a1, a2, a3)-vertex. Let p3(u) denote the number of pendant light 3-vertices of
a vertex u.

Sometimes, for simplicity, we use {c1, c2, · · · , ck}-cycles to denote the cycles of
lengths c1, c2, · · · , and ck, where k is a positive integer. For all figures in this thesis,
a vertex is represented by a solid point when all of its incident edges are drawn;
otherwise it is represented by a hollow point.

1.2 Graph coloring

A proper vertex coloring of G is an assignment π of integers (as colors) to the vertices
of G such that π(u) 6= π(v) if the vertices u and v are adjacent in G. A k-coloring
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is a proper vertex coloring using k colors. Each color class forms an independent set
of vertices; that is, no two of them are joined by an edge. The chromatic number,
denoted by χ(G), is the least cardinal k for which G has a proper k-coloring. Let α,
β be any 2 colors. An alternating (α, β)-path in G is a path in G with each vertex
colored α or β.

A homomorphism of a graph G to a graph H is a mapping f : V (G) → V (H) such
that f(x)f(y) ∈ E(H) if xy ∈ E(G). The graph homomorphisms have been studied
as extension of graph colorings. Note that a graph G has a k-coloring if and only if G
has a homomorphism to the complete graph Kk. Therefore, the chromatic number
of a graph G can be equivalently defined to be the minimum number of vertices in
a graph H such that G has a homomorphism to H. In general, a homomorphism of
G to a graph H is called an H-coloring of G.

We say that L is an assignment for the graph G if it assigns a list L(v) of possible
colors to each vertex v of G. If G has a proper coloring π such that π(v) ∈ L(v)
for all vertices v, then we say that G is L-colorable or π is an L-coloring of G. The
graph G is k-choosable (or k-list colorable) if it is L-colorable for every assignment
L satisfying |L(v)| > k for all vertices v. The list chromatic number of G, denoted
χl(G), is the smallest integer k such that G is k-choosable.

The concepts of L-list coloring were introduced by both Vizing [Viz76] in 1976
and Erdős, Rubin and Taylor [ERT79] in 1979. We note that χl(G) > χ(G) but
χl(G) can be arbitrarily larger than χ(G). For example, the 2-colorable graph K3,3

is not L-colorable for L which is given in Figure 1.1.

Figure 1.1: The bipartite graph K3,3 is 2-colorable but not 2-list colorable.

1.3 Discharging method

As we mentioned before, the Four Color Theorem was proved by Appel and
Haken [AH76] in 1976. In fact, its computer-assisted proof used the Discharging
Method. This method has increasingly been used to solve problems for graphs
with or without assistance of a computer. The method is mostly used for graphs
embedded on a surface because of the Euler’s formula.
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Let C be the class of planar graphs and suppose we want to prove that every
graph in C has a property P . To do this using the Discharging Method we have 6
main steps below:

Step 1 Suppose G ∈ C is a graph which does not satisfy the property P . Most of
the time, we choose such a graph G to be minimal.

Step 2 Show that G cannot contain certain subgraphs (this is normally done using
minimality of G). Such subgraphs are called reducible configurations.

Step 3 Assign initial weights to the vertices and the faces of G.

Step 4 Use Euler’s formula, |V (G)|−|E(G)|+ |F (G)| = 2, and Handshake Lemma∑
v∈V (G) d(v) =

∑
f∈F (G) d(f) = 2|E(G)| to show that the total sum of initial

weights is equal to some constant.

Step 5 [Discharging] Design appropriate discharging rules and redistribute
weights accordingly, while preserving the total weights. Once the discharging is
finished, a new weight for each vertex and face is produced.

Step 6 Using the absence of reducible configurations, we show that the total sum
of new weights is now different from the total sum of initial weights. This obvious
contradiction demonstrates that such counterexample G does not exist. Therefore,
every graph in C has the property P .

This process may also be called a discharging argument. For x, y ∈ V (G)∪F (G),
we usually use τ(x → y) to denote the amount of weights transferred from x to y in
the discharging argument of the thesis. Step 5, the discharging part, is a crucial step
of this argument. Finding the reducible configurations in Step 2 is also an important
part of the proof. However, sometime finding such reducible configurations together
with appropriate discharging rules could be extremely difficult just as in the case of
the Four Color Theorem.

In most cases of the thesis, we use one standard weight assignment in Step 3.
Namely, we assign each vertex v an initial weight ω(v) = 2d(v)− 6 and each face f
an initial weight ω(f) = d(f) − 6. The following lemma shows that the total sum
of initial weights is equal to −12.

Lemma 1.3.1 Let G be a connected plane graph with n vertices, m edges and f
faces. Then ∑

v∈V (G)

(2d(v)− 6) +
∑

f∈F (G)

(d(f)− 6) = −12. (1.1)

Proof. Euler’s formula n − m + f = 2 yields (4m − 6n) + (2m − 6f) = −12.
This identity and the Handshake Lemma

∑
v∈V (G) d(v) =

∑
f∈F (G) d(f) = 2m imply

(1.1). This proves Lemma 1.3.1.
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1.4 Presentation of results

In this thesis, we are interested in various graph coloring problems, including proper
vertex coloring, acyclic coloring, star coloring, forest coloring, fractional coloring and
the list version of most of these concepts on planar graphs and sparse graphs. In
each of the following parts, we will give a short survey and present our results.

******

As we mentioned in Section 1.2, Vizing [Viz76] and Erdős, Rubin and Tay-
lor [ERT79] independently introduced the concepts of L-list coloring and choos-
ability. An easy consequence of Euler’s formula is that every planar graph has a
5−-vertex. It implies that every planar graph is 6-choosable. Thomassen improved
this result by showing the following:

Theorem 1.4.1 [Tho94] Every planar graph is 5-choosable.

The bound in Theorem 1.4.1 is best possible, since Voigt [Voi93] and Mirza-
khani [Mir96] independently, gave examples to show that there exists a non-4-
choosable planar graph. All 2-choosable graphs were characterized completely in
[ERT79]. So characterizing planar graphs that are 3- or 4-choosable turned out to
be interesting problems in graph coloring. However, Gutner [Gut96] proved that
both these problems are NP-complete. Some sufficient conditions for planar graphs
to be 4-choosable were established (see more details in Chapter 5).

In 1958, Grötzsch [Grö59] proved that planar graphs without 3-cycles are 3-
colorable. But not every triangle-free planar graph is 3-choosable. The first example
of such graphs was provided by Voigt [Voi95]. Moreover, Thomassen [Tho95] proved
that planar graphs with girth at least 5 are 3-choosable. In 1976, Steinberg [JT95b]
proposed the following conjecture:

Conjecture 1.4.2 Every planar graph without 4-cycles and 5-cycles is 3-colorable.

This challenging conjecture still remains unsolved. In 1990, Erdös suggested
the following relaxation of Steinberg’s conjecture: What is the smallest integer k
such that every planar graph without i-cycles for 4 6 i 6 k is 3-colorable. The
best known upper bound is k 6 7 obtained by Borodin, Glebov, Raspaud and
Salavatipour [BGRS05]. Recently, Borodin et al. [BGMR09] improved this result
by showing that planar graphs without 5-, 7-cycles and adjacent triangles are 3-
colorable. It is natural to ask the same question for choosability:

Question 1.4.3 What is the smallest integer k such that every planar graph without
i-cycles for 4 6 i 6 k∗ is 3-choosable?

Borodin [Bor96] proved that k 6 9 and Voigt [Voi07] proved that k > 6
by constructing a non-3-choosable planar graph which contains neither 4- nor 5-
cycles. Moreover, for a planar graph G, χl(G) 6 3 was obtained in the following
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cases: if G has no {4, 5, 6, 9}-cycles (Zhang and Wu [ZW05]); or without {4, 5, 7, 9}-
cycles (Zhang and Wu [ZW04]); or without {4, 6, 7, 9}-cycles (Chen, Lu and Wang
[CLW08]); or without {4, 6, 8, 9}-cycles (Shen and Wang [SW07]); or {4, 5, 8, 9}-
cycles (Wang, Lu and Chen [WLC10]); or {4, 7, 8, 9}-cycles (Chen, Shen and Wang
[CSW10]).

In Chapter 2, we will consider the 3-choosability of planar graphs in which
each vertex is not incident to some cycles of given lengths, but all vertices can
have different restrictions. In other words, we only forbid a certain set of cycles for
each vertex and these sets of forbidden cycles are not necessarily the same. More
precisely, we will prove that a planar graph G is 3-choosable if it is satisfied one of
the following conditions:

• each vertex x is neither incident to cycles of lengths 4, 9, ix with ix ∈ {5, 7, 8},
nor incident to 6-cycles adjacent to a 3-cycle.

• each vertex x is not incident to cycles of lengths 4, 7, 9, ix with ix ∈ {5, 6, 8}.

This work is jointly done with Montassier and Raspaud [CMR] and extends five
known results in [ZW04, ZW05, SW07, CLW08, CSW10].

******

We say a proper vertex coloring of a graph G is acyclic if there is no bicolored
cycle in G. In other words, every cycle uses at least three colors. The acyclic
chromatic number of a graph G, denoted by χa(G), is the smallest integer k such
that G has an acyclic k-coloring. It is obvious that χ(G) 6 χa(G) for any graph G.

The notion of acyclic coloring of graphs was introduced by Grünbaum [Grü73] in
1973 and studied by Mitchem [Mit74], Albertson and Berman [AB77] and Kostochka
[Kos76]. In 1979, Borodin [Bor79] proved Grünbaum’s conjecture that every planar
graph is acyclically 5-colorable. This bound is best possible. In 1973, Grünbaum
[Grü73] gave an example of a 4-regular planar graph which is not acyclically 4-
colorable. Furthermore, bipartite planar graphs which are not acyclically 4-colorable
were constructed in [KM76], see Figure 1.2.

Figure 1.2: Examples of Grünbaum and Kostochka Mel’nikov.
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Given an assignment L = {L(v)|v ∈ V (G)} of colors to the vertices of a graph
G, we say G is acyclically L-list colorable if there is an acyclic coloring π of the
vertices such that π(v) ∈ L(v) for every vertex v. The coloring π is called an acyclic
L-coloring of G. If G is acyclically L-list colorable for any list assignment L with
|L(v)| > k for all v ∈ V , then G is acyclically k-choosable or acyclically k-list
colorable. The acyclic list chromatic number or acyclic choosability of G, denoted
by χl

a(G), is the smallest integer k such that G is acyclically k-choosable.
In 2002, Borodin, Fon-Der Flaass, Kostochka, Raspaud, and Sopena

[BFDFK+02] first investigated acyclic list coloring of planar graphs. They proved
that every planar graph is acyclically 7-choosable. They also put forward the fol-
lowing challenging conjecture:

Conjecture 1.4.4 [BFDFK+02] Every planar graph is acyclically 5-choosable.

This conjecture attracted much attention recently. If Conjecture 1.4.4 were
true, then it would strengthen the Borodin’s acyclic 5-color theorem [Bor79] and
the Thomassen’s 5-choosable theorem [Tho94] about planar graphs. However, this
challenging conjecture seems to be difficult. As yet, it has been verified only for sev-
eral restricted classes of planar graphs: those of girth at least 5 (Montassier, Ochem
and Raspaud [MOR06]); without 4-cycles and 5-cycles, or without 4-cycles and 6-
cycles (Montassier, Raspaud and Wang [MRW07]); without 4-cycles and without
triangles at distance less than 3 (Chen and Wang [CW08a]); with neither 4-cycles
nor chordal 6-cycles (Zhang and Xu [ZX09]). In particular, in [BI09a], Borodin
and Ivanova proved that a planar graph G is acyclically 5-choosable if G does not
contain an i-cycle adjacent to a j-cycle where 3 6 j 6 5 if i = 3 and 4 6 j 6 6
if i = 4. This result absorbs most of the previous work in this direction, including
[MRW07].

Wang and Chen [WC09] proved that every planar graph without 4-cycles is
acyclically 6-choosable. To attack Conjecture 1.4.4, in [CW08a], they proposed the
following weak version of Conjecture 1.4.4:

Conjecture 1.4.5 [CW08a] Every planar graph without 4-cycles is acyclically 5-
choosable.

As far as we know, Conjecture 1.4.5 is still open. In Section 3.2 of Chapter 3,
we will prove the following result:

Theorem 1.4.6 [CR10d] Every planar graph with neither 4-cycles nor intersecting
triangles is acyclically 5-choosable.

This result partially confirms the Conjecture 1.4.5 and gives an improvement to
the result in [CW08a].

Some sufficient conditions for a planar graph to be acyclically 4-choosable (or
colorable) are also obtained. It is proved in [Bor10] that χa(G) 6 4 if G contains no
{4, 5}-cycles. Moreover, χl

a(G) 6 4 was obtained in the following cases: g(G) > 5
(Montassier [Mon07]), which extends two results in [MOR06] and [BKW99]; or if
G has no {4, 5, 6}-cycles, or without {4, 5, 7}-cycles, or without {4, 5}-cycles and
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intersecting 3-cycles (Montassier, Raspaud and Wang [MRW06a]); or with neither
{4, 5}-cycles nor 8-cycles having a triangular chord (Chen and Raspaud [CR10b]);
or without {4, 7, 8}-cycles (Chen et al. [CRRZ11]); or with neither 4-cycles nor 6-
cycles adjacent to a triangle (Borodin, Ivanova, and Raspaud [BIR10]). Moreover,
in [MRW06b], Montassier, Raspaud and Wang proposed the following conjecture
which is still unsettled.

Conjecture 1.4.7 (“Domaine de la Solitude 2000”Conjecture)
Every planar graph without 4-cycles is acyclically 4-choosable.

In Section 3.3 of Chapter 3, we will prove the following result:

Theorem 1.4.8 [CR10c] Planar graphs without 4-cycles and 5-cycle are acyclically
4-choosable.

This result is a new approach to the conjecture 1.4.7 and is best possible in the
sense that there are planar graphs without 4- and 5-cycles that are not 3-choosable
[Voi07]. Moreover, it extends some results in [Bor10, MRW06a, MRW07, CR09,
CR10b]. We remark that the same result is independently obtained by Borodin and
Ivanova [BI10] recently.

In the final section of Chapter 3, we will consider the acyclic 3-choosability of
planar graphs. More generally, we prove the following theorem:

Theorem 1.4.9 [BCIR10] Every graph G with Mad(G) < 14
5

and g(G) > 7 is
acyclically 3-choosable.

Since Mad(G) < 2g(G)
g(G)−2

for any planar graph G, we deduce from Theorem 1.4.9
that every planar graph with girth at least 7 is acyclically 3-choosable. This is
a common strengthening of the facts that such a graph is acyclically 3-colorable
(Borodin, Kostochka and Woodall [BKW99]) and that a planar graph of girth at
least 8 is acyclically 3-choosable (Montassier, Ochem and Raspaud [MOR06]).

******

The condition of no bicolored cycle in the definition of acyclic coloring can be
naturally strengthened to the requirement that every pair of colors induces a star
forest. A coloring satisfying such condition is called a star coloring. Star coloring
was also introduced by Grünbaum [Grü73]. The star chromatic number χs(G) is
defined to be the least number of colors required to obtain a star-coloring of G. The
star list chromatic number of G, denoted by χl

s(G), is defined analogously.
We notice that every star coloring is an acyclic coloring but a star coloring of

a graph may require more colors than that of acyclic coloring. In general, many
star coloring questions are not as well understood as their acyclic counterparts.
For example, as we mentioned before, Borodin’s acyclic 5-color theorem is the best
possible. On the other hand, Albertson et al. [ACK+04] proved that every planar
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graph is 20-star-colorable, and gave an example of a planar graph that requires 10
colors to star color. Albertson et al. [ACK+04] also noted that bounding the acyclic
chromatic number bounds the star chromatic number and showed that χs(G) 6
χa(G)(2χa(G)− 1) for any graph G. However, determining the minimum star (list)
chromatic number of many families of graphs is proved to be a challenging problem.
This is indeed the case for families as simple as subcubic graphs.

Figure 1.3: The Wagner graph GW with χs(GW ) = 6.

In 2001, Fertin, Raspaud and Reed [FRR01] proved that the Wagner graph is
not 5-star-cholorable, see Figure 1.3. In other words, we need to use at least 6 colors
to star color some subcubic graphs. On the other hand, Albertson et al. [ACK+04]
proved that every subcubic graph is 7-star-choosable. Since χs(G) 6 χl

s(G) for every
graph G, the above two facts imply the following:

Corollary 1.4.10 Let SC denote the family of subcubic graphs. We have that

6 6 χs(SC) 6 χl
s(SC) 6 7.

As far as we know, no any improvement of Corollary 1.4.10 has been done in
recent years. So the problem of deciding the star (list) chromatic number of subcubic
graphs becomes the main question we are concerned in Chapter 4. First, in Section
4.2 of Chapter 4, we prove that 6 colors are indeed enough to star color subcubic
graphs. More precisely, we prove the following result:

Theorem 1.4.11 [CRW10a] Every subcubic graph is 6-star-colorable.

Since the graph we considered in Theorem 1.4.11 is subcubic (not necessarily
planar), the proof of Theorem 1.4.11 is relied on a detailed analysis of the structure
properties rather than the discharging argument.

As Albertson et al. [ACK+04] investigated the star list chromatic number of
subcubic graphs, they also showed that there exists a planar subcubic graph (ob-
tained by adding a pendant vertex to each vertex in a cycle Cn) with arbitrarily
high girth that has star chromatic number 4. It means that there does not exist a
constant c such that every planar subcubic graph G with g(G) > c has χl

s(G) 6 3.
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So in Section 4.3 of Chapter 4, our focus is on the problem of finding star list chro-
matic number of planar subcubic graphs with the girth condition. More precisely,
we prove the following result:

Theorem 1.4.12 [CRW10b] Let G be a planar subcubic graph. Then

(1) χl
s(G) 6 6.

(2) If g(G) > 8, then χl
s(G) 6 5.

(3) If g(G) > 12, then χl
s(G) 6 4.

Notice that the conclusion (1) in Theorem 1.4.12 partially improves the right
side of the inequality in Corollary 1.4.10. Moreover, in proving Theorem 1.4.12, we
introduce a useful concept L-in-coloring which is a good tool to control the star list
chromatic number. This concept is an extension of the concept in-coloring which
was used implicitly by Nes̆etr̆il and Ossona de Mendez [NOdM03] and explicitly
by Albertson et al. [ACK+04]. More details about L-in-coloring can be found in
Section 4.3.1 of Chapter 4,

The maximum average degree of graphs is a conventional measure of the sparse-
ness of an arbitrary graph (not necessarily planar). In [KT10], Kündgen and Tim-
mons proved a theorem about the dependence between the maximum average degree
of graphs and their star list chromatic number. Their main result is the following:

Theorem 1.4.13 [KT10] Let G be a graph.

(1) If Mad(G) < 8
3
, then χl

s(G) 6 6.

(2) If Mad(G) < 14
5
, then χl

s(G) 6 7.

(3) If G is planar and g(G) > 6, then χl
s(G) 6 8.

In the final section of Chapter 4, we extend the conclusion (3) in Theorem
1.4.13 to a more general result, which avoids the planar constraint. The main result
is stated as follows:

Theorem 1.4.14 [CRW09] Every graph with Mad(G) < 3 is 8-star-choosable.

******

The vertex-arboricity of a graph G is the minimum number va(G) of subsets
into which the vertex set V (G) can be partitioned so that each subset induces a
forest. Clearly, va(G) > 1 for every nonempty graph G and va(G) = 1 if and only
if G itself is a forest. There is an equivalent definition to the vertex-arboricity in
terms of the coloring version. A k-forest-coloring of a graph G is a mapping π from
V (G) to the set {1, · · · , k} such that each color class induces a forest. The vertex-
arboricity va(G) of G is the smallest integer k such that G has a k-forest-coloring.
We should notice that two adjacent vertices can be assigned with the same color in
a k-forest-coloring.
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The vertex version of arboricity was first introduced by Chartrand, Kronk and
Wall [CKW68] in 1968, who named it point-arboricity. They proved that va(G) 6
d1+∆(G)

2
e for any graph G and va(G) 6 3 for any planar graph G. Chartrand and

Kronk [CK69] showed this bound is sharp, by giving a planar graph which has
vertex-arboricity 3. In fact, this graph was discovered by Tutte, which was used
to disprove the conjecture of Tait that every cubic polyhedral graph is hamiltonian
(see [Tut46]).

In 1979, Garey and Johnson [GJ79] proved that determining the vertex-arboricity
of a graph is NP-hard. Hakimi and Schmeichel [HS89] showed that determining
whether va(G) 6 2 is NP-complete for any maximal planar graph G. Recently,
Raspaud and Wang [RW08] proved the following theorem:

Theorem 1.4.15 [RW08] Let G be a planar graph.

(1) If G contains no k-cycles for some fixed k ∈ {3, 4, 5, 6}, then va(G) 6 2.

(2) If G contains no triangles at distance less than 2, then va(G) 6 2.

Moreover, they proposed the following conjecture:

Conjecture 1.4.16 [RW08] Every planar graph without intersecting triangles has
vertex-arboricity at most 2.

In Chapter 5, we will show that the above conjecture is true.

******

In the final chapter, we study homomorphisms of sparse graphs to the Petersen
graph. A homomorphism of G to H is a mapping h : V (G) → V (H) such that
if xy ∈ E(G) then h(x)h(y) ∈ E(H). For more details about homomorphisms see
the monograph of Hell and Nes̆etr̆il [HN04]. For positive integers k and n > 2k, an

(n, k)-coloring of a graph G is a mapping c: V (G) →
( {1, 2, · · · , n}

k

)
such that

for any two adjacent vertices x and y, c(x) and c(y) are disjoint. The concept of
(n, k)-coloring is a generalization of the conventional vertex coloring problem. In
fact, an (n, 1)-coloring is exactly an ordinary proper n-coloring.

The fractional chromatic number, denoted χf (G), of a graph G is the infimum
of the fractions n/k for which there exists an (n, k)-coloring of G. As is well-known,
the fractional chromatic number of a finite graph is always a rational number and
the infimum is actually a minimum. The Kneser graph, denoted by Kn:k, is defined
to be the graph in which vertices represent subsets of cardinality k taken from
{1, 2, · · · , n} and two vertices are adjacent if and only if the corresponding subsets
are disjoint. Note that K5:2 is the famous Petersen graph. It is easy to observe
that a graph G has an (n, k)-coloring if and only if there exists a homomorphism
of G to Kn:k. As a special case, a graph G is (5, 2)-colorable if and only if there
is homomorphism of G to the Petersen graph. Some background and more details
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about fractional coloring can be found in the monograph of Scheinerman and Ullman
[SU97].

In Chapter 6, we will prove that every triangle-free graph with Mad(G) < 5
2
is

homomorphic to the Petersen graph [CR10a]. In other words, such a graph is (5, 2)-
colorable. Moreover, we show that the bound on the maximum average degree in
our result is best possible. We also propose the following conjecture to conclude the
thesis.

Conjecture 1.4.17 Every graph G with odd girth 2k + 1 and Mad(G) < 2 + 1
k
has

a fractional (2k + 1, k)-coloring, where k is a positive integer.

20



Chapter 2

3-choosability of planar graphs
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In this chapter, we consider the problem of finding sufficient conditions for a
planar graph to be 3-choosable. More specifically, we consider the 3-choosability of
planar graphs in which each vertex is not incident to some cycles of given lengths,
but all vertices can have different restrictions. This generalizes the approach based
on forbidden cycles which corresponds to the case where all vertices have the same
restrictions on the incident cycles. We prove that a planar graph G is 3-choosable
if it is satisfied one of the following conditions:

• each vertex x is neither incident to cycles of lengths 4, 9, ix with ix ∈ {5, 7, 8},
nor incident to 6-cycles adjacent to a 3-cycle.

• each vertex x is not incident to cycles of lengths 4, 7, 9, ix with ix ∈ {5, 6, 8}.

This work extends five (published) results in [ZW04, ZW05, SW07, CLW08,
CSW10].

2.1 Introduction

In 1976, Steinberg conjectured that every planar graph without cycles of lengths 4
and 5 is 3-colorable (see Problem 2.9 [JT95b]). This conjecture remains unsettled.
Erdős [Ste93] asked if there exists an integer k such that the absence of cycles with
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size from 4 to k in a planar graph guarantees its 3-colorability? In [AZ91], Abbott
and Zhou showed that such k exists and k 6 11. This result was improved to k 6 9
by Borodin [Bor96] and, independently, Sanders and Zhao [SZ95], and then it was
improved to k 6 7 by Borodin et al. [BGRS05]. Today the best known upper bound
is k 6 7 [BGRS05]. So it is interesting to answer Erdős’s question by considering
some restricted planar graphs (i.e., without some lengths of cycles).

In a slightly different approach many authors considered coloring planar graphs
with 4 forbidden cycles, see [ZW04, ZW05, WC07a, CRW07, LCW07, SW07].
Strengthening results of these types, Wang and Chen [WC07b] proved that every
planar graph without 4-, 6- and 8-cycles is 3-colorable; Lu et al. [LWW+09] proved
that every planar graph without 4-, 7- and 9-cycles is 3-colorable; Borodin et al.
[BGMR09] proved that every planar graph without 5-cycles, 7-cycles and adjacent
3-cycles is 3-colorable, which implies that every planar graph without 4-, 5- and
7-cycles is 3-colorable. Some other results related to 3-colorable planar graphs can
be found in [BR03, MRW06b, CW08b, BMR10].

Naturally, we may propose the same question below for choosability:

Question 2.1.1 What is the smallest integer c such that every planar graph without
j-cycles for 4 6 j 6 k∗ is 3-choosable?

Notice that it is impossible to extend Steinberg’s conjecture to list coloring by
the example given by Voigt [Voi07] and independently, by Montassier [Mon05b].
Hence k∗ > 6. The best known upper bound is k∗ 6 9 obtained by Borodin [Bor96]
in 1996, i.e., every planar graph without {4, · · · , 9}-cycles is 3-choosable. These
results have also been improved by showing that forbidding 4 cycles of certain size
would lead to 3-choosability in planar graphs. We summarize these results in the
following theorem:

Theorem 2.1.2 A planar graph is 3-choosable if it has no

• (Zhang and Wu [ZW04]) 4-, 5-, 7-, and 9-cycles; or

• (Zhang and Wu [ZW05]) 4-, 5-, 6-, and 9-cycles; or

• (Chen, Lu and Wang [CLW08]) 4-, 6-, 7-, and 9-cycles; or

• (Shen and Wang [SW07]) 4-, 6-, 8-, and 9-cycles; or

• (Chen, Shen and Wang [CSW10]) 4-, 7-, 8-, and 9-cycles; or

• (Wang, Lu and Chen [WLC10]) 4-, 5-, 8-, and 9-cycles.

In this chapter we introduce a new approach to the problem of characterizing
planar graphs to be 3-choosable. Instead of forbidding certain cycles in the whole
graph, we forbid a certain set of cycles for each vertex and these sets of forbidden
cycles not necessarily are the same. More precisely, we prove the following theorems:

Theorem 2.1.3 Let G be a planar graph in which each vertex x is neither incident
to cycles of lengths 4, 9, ix with ix ∈ {5, 7, 8}, nor incident to 6-cycles adjacent to a
3-cycle. Then G is 3-choosable.
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6
∗
-face

(B)(A) (C)

3-face

5-face

Figure 2.1: (a) Orchid, (b) sunflower, and (c) lotus.

Theorem 2.1.4 Let G be a planar graph in which every vertex x is not incident to
cycles of lengths 4, 7, 9, ix with ix ∈ {5, 6, 8}. Then G is 3-choosable.

By Theorems 2.1.3 and 2.1.4, it is easy to deduce the following corollary which
covers all results in Theorem 2.1.2 except the last conclusion [WLC10].

Corollary 2.1.5 Every planar graph without {4, i, j, 9}-cycles with 5 6 i < j 6 8
and (i, j) 6= (5, 8) is 3-choosable.

We remark that this is a joint work with Montassier and Raspaud [CMR]. To
proceed with the proof of these theorems, we introduce some notation. Let G be
a plane graph. A cycle C or a face f is called triangle-far if it is not adjacent to
any 3-cycles. We call an i-face f an i∗-face if there is exactly one 3-face f ′ adjacent
to f , and furthermore f ′ is adjacent to f normally. Similarly, we call an i-cycle C
an i∗-cycle if there is exactly one 3-cycle C ′ adjacent to C, and furthermore C ′ is
adjacent to C normally.

An orchid is a simple 6-face incident to six 3-vertices and normally adjacent to
a 3-face. A sunflower is a simple 8-face incident to eight 3-vertices and adjacent to
at least seven 5-faces. A lotus is a simple 10-face f incident to ten 3-vertices and
adjacent to five clusters that are mutually disjoint with respect to f , where a cluster
is either a 3-face, or a 5-face, or a 6∗-face (see Figure 2.1).

2.2 Our main result

To obtain Theorems 2.1.3 and 2.1.4, we prove the following stronger Theorem 2.2.1,
whose proof will be postponed to Section 2.3.

Theorem 2.2.1 Let G be a planar graph with δ(G) > 3 and G does not contain
4-cycles and 9-cycles. If G further satisfies the following structural properties:
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(C1) a 5-cycle or a 6-cycle is adjacent to at most one 3-cycle;

(C2) a 5∗-cycle is neither normally adjacent to a 5∗-cycle, nor adjacent to an i-cycle
with i ∈ {7, 8};

(C3) a 6∗-cycle is neither adjacent to a 6-cycle, nor incident to an i-cycle C with
i ∈ {3, 5}, where C is opposite to such 6∗-cycle by a 4-vertex;

(C4) a triangle-far 7-cycle is not adjacent to two 5-cycles which are normally adja-
cent;

(C5) a 7∗-cycle is neither adjacent to a 5-cycle nor a 6∗-cycle.

Then G contains an orchid or a sunflower or a lotus.

Assuming Theorem 2.2.1, we can easily prove Theorems 2.1.3 and 2.1.4.

Proofs of Theorems 2.1.3 and 2.1.4: Suppose that G1 or G2 is a plane pre-
sentation of the counterexample to Theorem 2.1.3 and 2.1.4, respectively, with the
smallest number of vertices. Thus, Gi is connected (i = 1, 2). First, for each
i ∈ {1, 2}, we observe that δ(Gi) > 3. Otherwise, let ui be a vertex of minimum
degree in Gi. By the minimality of Gi, Gi − ui is 3-choosable. Obviously, we can
extend any L-coloring such that ∀x ∈ V (G) : |L(x)| > 3 of Gi−ui to Gi and ensure
that Gi is 3-choosable. Next, in each case, we will show that each Gi contains either
an orchid, or a sunflower, or a lotus. Denote Na, Nb, Nc be the set of black vertices
of (a), (b) and (c) in Figure 2.1, respectively. For each j ∈ {a, b, c}, one can easily
observe that we can extend any L-coloring such that for all x ∈ V (G) : |L(x)| > 3
of Gi −Nj to Nj and make sure that Gi is 3-choosable. Thus, G1 and G2 are both
3-choosable, which are contradictions.

Since Gi does not contain 4-cycles and 9-cycles, for each i ∈ {1, 2}, we only need
to verify if Gi satisfies all the structural properties (C1) to (C5).

(1) For G1, since each vertex x is not incident to 6-cycles adjacent to a 3-cycle,
we assert that there is neither 5∗-face nor 6∗-face in G1. Thus, (C1), (C2) and
(C3) are satisfied. It remains us to check the properties (C4) and (C5). If (C4) is
not satisfied, then there appears a vertex x which is incident to an ix-cycle with
ix ∈ {5, 7, 8}, which contradicts the assumption of G1. If (C5) is not satisfied, then
a vertex y is appeared such that y is incident to an iy-cycle with iy ∈ {5, 7, 8}, which
is a contradiction.

(2) For G2, because it does not contain 7-cycles, we confirm that there is no
6∗-cycle and 7∗-cycle in G2. Thus, we only need to check the properties (C1) and
(C2). It is easy to establish a 7-cycle or a 4-cycle if a 5-cycle or a 6-cycle is adjacent
to at least two 3-cycles. Thus, (C1) is satisfied. Let us check (C2). If there exist
two 5∗-cycles that are normally adjacent, then a 9-cycle is produced, which is a
contradiction. If a 5∗-cycle is adjacent to an 8-cycle, then there is a vertex incident
to a 5-cycle, a 6-cycle and an 8-cycle, which contradicts the assumption of G2.
Therefore, (C2) is satisfied.

This completes the proofs of Theorems 2.1.3 and 2.1.4.
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2.3 Proof of Theorem 2.2.1

Let G be a counterexample to Theorem 2.2.1, i.e., an embedded plane graph G
with δ(G) > 3, no cycles of lengths 4 and 9, satisfying the structural properties
(C1) to (C5), and containing no orchid, no sunflower, and no lotus (i.e., none of the
configurations depicted in Figure 2.1).

2.3.1 Proof of 2-connected case

First, we suppose that G is 2-connected. Thus, every face in G is simple. It means
that an m-face is exactly an m-cycle with m > 3. So all cycles mentioned in assump-
tions (C1) to (C5) can be regarded as faces. We need to discuss some properties of
G.

Claim 2.3.1 For some fixed i ∈ {5, 6, 7, 8}, if an i-face is adjacent to a 3-face, then
they are normally adjacent.

Proof. Suppose the claim is false. Let fi = [v1v2 · · · vi] be an i-face and f2 = [v1v2u]
be a 3-face such that f1 is adjacent to f2 and |V (f1) ∩ V (f2)| > 3. It means that u
is equal to some vj with j ∈ {3, 4, · · · , i}. According to the value of i, one can easily
observe that if u is a vertex vj with 3 6 j 6 i, then G contains either a 2-vertex or
a 4-cycle, which is a contradiction. This completes the proof of Claim 2.3.1.

Since G does not contain 9-cycles, we obtain Claims 2.3.2 and 2.3.3 easily by
Claim 2.3.1.

Claim 2.3.2 Each 7-face is adjacent to at most one 3-face.

Claim 2.3.3 No 8-face is adjacent to a 3-face.

Claim 2.3.4 If two 5-faces are adjacent to each other, then they are normally ad-
jacent.

Proof. Suppose that there are two adjacent 5-faces f1 = [v1v2 · · · v5] and f2 =
[v1v2uvw] with v1v2 as a common edge. If |V (f1) ∩ V (f2)| = 2, then Claim 2.3.4
follows. Otherwise, by symmetry, we only need to consider the following cases. If
w = v5, then d(v1) = 2 which is impossible. If w = v4, then G contains a 4-cycle
v1v2v3v4v1, which is a contradiction. This implies u /∈ V (f1) and w /∈ V (f1). If
v = v5 or v = v4, then a 4-cycle uv2v1v5u or wv1v5v4w can be easily established.
This contradiction completes the proof of Claim 2.3.4.

Together with (C2), we have:

Claim 2.3.5 There is no adjacent two 5∗-faces in G.

Claim 2.3.6 A triangle-far 5-face cannot be adjacent to a 5∗-face in G.
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Proof. Suppose to the contrary that a triangle-far 5-face f1 = [v1v2 · · · v5] is
adjacent to a 5∗-face f2 = [v1v2u3u4u5] by a common edge v1v2. By definition, f1

is not adjacent to any 3-face. By Claim 2.3.4, each ui cannot be equal to some vj

with i, j ∈ {3, 4, 5}. By symmetry, we have to handle the following two cases:

• Assume that v1u5u is a 3-face. By Claim 2.3.1, u 6= v2, u3, u4. Moreover,
u 6= v5 by the choice of f1. If u = v4 or u = v3, then G contains a 4-cycle,
which is impossible. Thus, u /∈ V (f1) ∪ V (f2) and thus G contains a 9-cycle
uv1v5v4v3v2u3u4u5u, which is a contradiction.

• Assume that u5u4u is a 3-face. Notice that u 6= v1, v2, u3 by Claim 2.3.1. If u ∈
{v3, v4, v5}, then a 4-cycle is easily obtained, which is a contradiction. Thus,
u /∈ V (f1) ∪ V (f2). Obviously, a 9-cycle uu5v1v5v4v3v2u3u4u is established.
This contradicts the absence of 9-cycles in G. Therefore, we complete the
proof of Claim 2.3.6.

Claim 2.3.7 No 3-vertex is incident to three 5-faces.

Proof. Suppose to the contrary that G contains a 3-vertex u adjacent to three
vertices v1, v2, v3 and incident to three 5-faces f1 = [uv1x1x2v2], f2 = [uv2y1y2v3],
and f3 = [uv3z1z2v1]. By Claim 2.3.4, fi and fj are normally adjacent for each
pair {i, j} ⊂ {1, 2, 3}. It implies that all vertices in (V (f1) ∪ V (f2) ∪ V (f3)) \
{u} are mutually distinct. However, a 9-cycle v1x1x2v2y1y2v3z1z2v1 is established,
contradicting the assumption on G. Thus, we complete the proof of Claim 2.3.7.

f2f1

Figure 2.2: A 6-face f1 is adjacent to a 5-face f2.

Claim 2.3.8 Up to isomorphism, a 6-face can be adjacent to a 5-face in an unique
way as depicted in Figure 2.2.

Proof. Assume that a 6-face f1 = [v1v2 · · · v6] is adjacent to a 5-face f2 = [v1v2uvw]
with v1v2 as a common edge. We first suppose that u,w /∈ V (f1). By the absence
of 4-cycles in G, we deduce that v 6= v3 and v 6= v4. Otherwise, there is a 4-cycle
either wv1v2v3w or uv4v3v2u. So by symmetry, we have that v /∈ {v5, v6}. However,
one can easily check that a 9-cycle v2v3v4v5v6v1wvuv2 is established, which is a
contradiction.

Now, w.l.o.g., we may suppose that w ∈ V (f1). The following argument is
divided into four cases.
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• Assume that w = v6. Then v1 is a 2-vertex, which is a contradiction.

• Assume that w = v5. Obviously, u 6= v3 and u 6= v4. Otherwise, either
d(v2) = 2 or a 4-cycle v1wuv2v1 is established, which are both contradictions.
So we may suppose that u /∈ V (f1). If v = v3, then a 4-cycle wv1v2vw is
formed. If v = v4, then a 4-cycle vv3v2uv is formed. A contradiction is always
obtained, which implies that v /∈ V (f1) and thus we are done, see Figure 2.2.

• Assume that w = v4. Then a 4-cycle v1v6v5wv1 is constructed, which is
impossible.

• Assume that w = v3. Since G is the plane graph, we see that u, v /∈ V (f1).
However, v2uvwv2 is a 4-cycle, which is a contradiction.

Therefore, we complete the proof of Claim 2.3.8.

Claim 2.3.9 No 3-vertex is incident to two 5-faces and one 6-face.

Proof. Suppose the claim is not true. We assume that there exists a 3-vertex
u adjacent to three vertices v1, v2, v3 and incident to two 5-faces f1 = [uv1x1x2v2],
f2 = [uv2y1y2v3], and one 6-face f3 = [uv3z1z2z3v1].

x1

y1

f1

z3

v2

v1z2

x2

y2

u

v3

z1

f3

f2

Figure 2.3: A 3-vertex u incident to two 5-faces f1 and f2 and a 6-face f3.

By Claim 2.3.8, z2 = y2 = x1, see Figure 2.3. Hence a 4-cycle z2v1uv3z2 exists
which is a contradiction. Thus, we complete the proof of Claim 2.3.9.

Claim 2.3.10 No 3-vertex is incident to one 5-face and two 6-faces.

Proof. Suppose to the contrary that there exists a 3-vertex u adjacent to three
vertices v1, v2, v3 and incident to two 6-faces f1 = [uv3y1y2y3v1], f2 = [uv2z1z2z3v3],
and one 5-face f3 = [uv1x1x2v2]. By Claim 2.3.8, we see that f1 and f3 can only
be adjacent to each other in an unique way as depicted in Figure 2.2. One can
easily observe that x1 = y2 or v2 = y1, see Figure 2.4. Next, we will make use of
contradictions to show that f2 cannot exist in G. We have to deal with the following
two cases.
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f3

y2

y3

x2 v1

u

x1

x2

y1

y2

y3

v3

z3

z2

z1

x1
f1

f2 f2

f1 f3

v2u

v1

v2v3

z1

z2

z3

y1

Figure 2.4: A 3-vertex u incident to one 5-face f3 and two 6-faces f1 and f2.

• x1 = y2. For simplicity, denote x∗ = x1 = y2. By Claim 2.3.8, we see that
x2 = z2. Then a 5-face x∗v1uv2x2x

∗ adjacent to two 3-cycles x∗y3v1x
∗ and

v2z1x2v2 is produced. This contradicts (C1).

• v2 = y1. Clearly, uv3y1u is a 3-cycle which is not a 3-face. For simplicity,
let y∗ = v2 = y1. Obviously, {z1, z2, z3} ∩ {y2, y3, x1, x2} = ∅ because of the
planarity of G. However, a 9-cycle y∗z1z2z3v3uv1x1x2y

∗ is easily established,
which is impossible. This completes the proof of Claim 2.3.10.

Claim 2.3.11 No 6∗-face is adjacent to a 5-face in G.

Proof. Suppose to the contrary that there exists a 6-face f1 = [v1v2 · · · v6] adjacent
to a 5-face f2 = [v1v2uvw] by a common edge v1v2. By Claim 2.3.8, w.l.o..g, suppose
that w = v5. Note that f1 is adjacent to a 3-cycle v1v5v6v1 which is not a 3-face.
Thus, f1 cannot be adjacent to any other 3-face by (C1), which means that f1 cannot
be a 6∗-face. This completes the proof of Claim 2.3.11.

The following claim is immediately obtained by Claim 2.3.11.

Claim 2.3.12 No 6∗-face is adjacent to a 5∗-face in G.

By (C1) and a similar proof of Claim 2.3.11, we have:

Claim 2.3.13 No 5∗-face is adjacent to a 6-face in G.

Furthermore, (C3) implies the following claim:

Claim 2.3.14 There is no adjacent 6∗-faces in G.

Since G contains no 4- and 9-faces, it is easy to deduce the following claim by
Claim 2.3.6, Claim 2.3.5, Claim 2.3.13 and (C2).

Claim 2.3.15 No 5∗-face is adjacent to an i-face in G, where i ∈ {4, · · · , 9}.
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Discharging procedure:

We complete the proof with a discharging procedure. We first assign to each
vertex v an initial charge ω(v) such that for all v ∈ V (G), ω(v) = 2d(v) − 6 and
to each face f an initial charge such that for all f ∈ F (G), ω(f) = d(f) − 6. By
Lemma 1.3.1, we see that

∑
x∈V (G)∪F (G) ω(x) = −12.

Before stating the discharging rules, we need to give some notation that will be
frequently used in the following argument. For a vertex v ∈ V (G) and for an integer
i > 5, let mi(v) and mi∗(v) denote the number of triangle-far i-faces and i∗-faces
incident to v, respectively. Furthermore, we denote Mi(v) = mi(v)+mi∗(v) and call
a face f a non-3-face if d(f) 6= 3. Let f1 = [xuvy · · · ] and f2 = [zuvt · · · ] denote
two adjacent faces by a common edge uv, where f1 is a 7+-face while f2 is a 5- or
5∗- or 6∗-face. If both zu and vt are non-triangular edges of f2, then we call uv a
good common edge. We further call such uv a good common (b1, b2)-edge if uv is a
(b1, b2)-edge.

The discharging rules are defined as follows:

(R1) Each 5+-face sends 1 to its adjacent 3-face.
(R2) Let v be a 4-vertex.

(R2a) If t(v) = 2, then for each non-3-face f , τ(v → f) = 1.
(R2b) If t(v) = 1, then let f1 denote the incident 3-face and f ′ be the opposite

face of f1.
(R2b1) If f ′ is a triangle-far 5-face, then v sends 2

3
to each incident face

different from f1.
(R2b2) Otherwise, v sends 1 to each incident face which is adjacent to f1.

(R2c) If t(v) = 0, let f1, f2, f3, and f4 denote the faces of G incident to v in a
cyclic order such that the degree of f1 is the smallest one among all faces incident
to v, then we do as follows:

(R2c1) if M5(v) = 0, then v sends 1
2
to each incident face.

(R2c2) if M5(v) = 1, then v sends 2
3
to each of f1, f2, and f4 when f1 is a

triangle-far 5-face; or v sends 1 to each of f2 and f4 when f1 is a 5∗-face.
(R2c3) if M5(v) = 2, then
(R2c3.1) v sends 2

3
to each triangle-far 5-face and 1

3
to each other incident

face when m5(v) = 2.
(R2c3.2) v sends 2

3
to each incident face of v except the unique 5∗-face when

m5(v) = 1 and m5∗(v) = 1.
(R2c3.3) v sends 1 to each incident face that is not a 5∗-face when m5∗(v) = 2.
(R2c4) if M5(v) = 3, then v gives 2

3
to each incident triangle-far 5-face.

(R2c5) if M5(v) = 4, then v gives 1
2
to each incident triangle-far 5-face.

(R3) Let v be a 5-vertex and f be a non-3-face incident to v. Then
(R3a) τ(v → f) = 4

3
if t(v) = 2.

(R3b) τ(v → f) = 1 if t(v) = 1.
(R3c) if t(v) = 0, v sends 1 to each incident face different from 5∗-faces when

m5∗(v) > 1; or sends 5
6
to each incident 6∗-face and sends 4− 5

6
m6∗ (v)

5−m6∗ (v)
to each other

incident face when m5∗(v) = 0.
(R4) Let f be a 7+-face. If f ′ is adjacent to f by a good common edge e, then
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(R4a) τ(f → f ′) = 1
3
if f ′ is a triangle-far 5-face and e is a (3, 3)-edge.

(R4b) τ(f → f ′) = 1
6
if f ′ is a 6∗-face and e is a (3, 3)-edge or a (3, 4)-edge.

(R5) Each 10+-face sends 1 to each adjacent 5∗-face by a good common (3+, 3+)-
edge.
(R6) Each 6+-vertex sends 1 to each incident face.

In the following, we will prove that the new weight function satisfies ω∗(x) > 0
for all x ∈ V (G) ∪ F (G), which leads to an obvious following contradiction

−12 =
∑

x∈V (G)∪F (G)

ω(x) =
∑

x∈V (G)∪F (G)

ω∗(x) > 0

and hence we complete the proof of 2-connected case of Theorem 2.2.1.
The following observation obviously holds by the absence of 4-cycles in G.

Observation 2.3.1 For v ∈ V (G), we have t(v) 6
⌊

d(v)
2

⌋
.

Since δ(G) > 3, d(v) > 3 for each vertex v ∈ V (G). We have to handle the
following cases, depending on the value of d(v).

Case 1 d(v) = 3.

It is easy to see that ω∗(v) = ω(v) = 2× 3− 6 = 0 by (R1) to (R6).

Case 2 d(v) = 4.

Clearly, ω(v) = 2 and v is incident to at most two 3-faces by Observation 2.3.1.
If t(v) = 2, then we deduce that ω∗(v) = 2 − 2 × 1 = 0 by (R2a). If t(v) = 1 (v is
incident to exactly one 3-face), then depending on the opposite face of such 3-face,
v gives either 2

3
× 3 = 2, or 1 × 2 = 2 by (R2b1) or (R2b2). Hence, ω∗(v) = 0.

Finally, we only need to consider the case of t(v) = 0. We divide the discussion into
five subcases in the light of the value of M5(v).

Subcase 2.1 M5(v) = 0.

This implies that the degree of each face incident to v is at least 6 by the absence
of 4-faces. According to (R2c1), ω∗(v) > 2− 1

2
× 4 = 0.

Subcase 2.2 M5(v) = 1.

It is easy to observe that v sends either 2
3
× 3 = 2 if m5(v) = 1, or 1 × 2 = 2

if m5∗(v) = 1 by (R2c2). Thus, v gives totally at most 2 to incident faces. Hence,
ω∗(v) > 2− 2 = 0.

Subcase 2.3 M5(v) = 2.

If m5(v) = 2, then ω∗(v) > 2 − 2
3
× 2 − 1

3
× 2 = 0 by (R2c3.1). If m5(v) =

m5∗(v) = 1, then such triangle-far 5-face and 5∗-face cannot be adjacent to each
other by Claim 2.3.6. Thus, applying (R2c3.2), ω∗(v) > 2− 2

3
× 3 = 0. Otherwise,

suppose m5∗(v) = 2. Notice that v is incident to two 5∗-faces which are opposite to
each other by Claim 2.3.5. Thus, ω∗(v) > 2− 1× 2 = 0 by (R2c3.3).

Subcase 2.4 M5(v) = 3.
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Figure 2.5: Discharging rules (R1) to (R3).
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We first notice that m5∗(v) 6= 3 since there are no adjacent 5∗-faces in G by
Claim 2.3.5. If 1 6 m5∗(v) 6 2, then there exists at least one triangle-far 5-face
adjacent to one 5∗-face, contradicting the Claim 2.3.6. Thus, m5∗(v) = 0, which
implies that m5(v) = 3. According to (R2c4), we have that ω∗(v) > 2− 2

3
× 3 = 0.

Subcase 2.5 M5(v) = 4.

One can observe that m5∗(v) = 0 by Claim 2.3.6 and Claim 2.3.5. It implies
that v is incident to exactly four triangle-far 5-faces. Consequently, we have that
ω∗(v) > 2− 1

2
× 4 = 0 by (R2c5).

Case 3 d(v) = 5.

Obviously, ω(v) = 4 and t(v) 6 2 by Observation 2.3.1. It is easy to observe
that v sends either 4

3
× 3 = 4 by (R3a) if t(v) = 2, or 1× 4 = 4 by (R3b) if t(v) = 1.

Therefore, ω∗(v) > 4− 4 = 0 if t(v) > 0. Now we may assume that t(v) = 0. This
implies that each face incident to v is a 5+-face combining the fact that G does not
contain any 4-faces. By Claim 2.3.5, we have that m5∗(v) 6 2. Moreover, the degree
of the face adjacent to a 5∗-face is at least 10 by Claim 2.3.15. So by (R3c), ω∗(v) >
4− 1× 4 = 0 if m5∗(v) > 1; or ω∗(v) > 4− 5

6
m6∗(v)− 4− 5

6
m6∗ (v)

5−m6∗ (v)
(5−m6∗(v)) = 0 if

m5∗(v) = 0.

Case 4 d(v) > 6.

According to (R6), we have that ω∗(v) > (2d(v)− 6)− 1× d(v) = d(v)− 6 > 0.

Let f ∈ F (G). Then b(f) is a cycle since G is 2-connected. Clearly, d(f) 6= 4 and
d(f) 6= 9 by the absence of 4- and 9-cycles. We write f = [v1v2 · · · vd(f)] and suppose
that fi is the face of G adjacent to f with vivi+1 as a common edge, where (and in
the following discussion) all indices are taken modulo d(f). Let m5(f), m5∗(f), and
m6∗(f) denote the number of triangle-far 5-faces, 5∗-faces, and 6∗-faces adjacent to
f .

Case 5 d(f) = 3.

Let f be a 3-face and then ω(f) = −3. Since δ(G) > 3, f is adjacent to three
faces and each adjacent face is neither a 3-face nor a 4-face by the absence of 4-
cycles in G. It implies that f gets 3 × 1 from its adjacent faces by (R1). Thus,
ω∗(f) > −3 + 1× 3 = 0.

Case 6 d(f) = 5.

Let f = [v1 · · · v5] and then ω(f) = −1. Clearly, f is adjacent to at most one
3-face by (C1).

6.1 First assume that f is a triangle-far 5-face. It follows that there is no 3-face
adjacent to f . Thus, f sends nothing to all its adjacent faces. Moreover, each
fi cannot be a 5∗-face by Claim 2.3.6. We need to deal with the following
three possibilities, depending on the value of n3(f).

a) n3(f) = 5. It means that vi is a 3-vertex for all i = 1, . . . , 5. If there exists
a 6-face adjacent to f , then by Claim 2.3.8 we see that they are adjacent
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to each other in an unique way as depicted in Figure 2.2. It is easy
to see that there is one 4+-vertex belonging to V (f), which contradicts
n3(f) = 5. Thus, each face adjacent to f is either a triangle-far 5-face
or a 7+-face by the absence of 4-faces. Furthermore, we notice that f
is adjacent to at most two triangle-far 5-faces which are not adjacent by
Claim 2.3.7. So f is adjacent to at least three 7+-faces such that each 7+-
face is adjacent to f by a good common (3, 3)-edge. Therefore, applying
(R4a), we obtain that ω∗(f) > −1 + 3× 1

3
= 0.

b) n3(f) = 4. Let v1 be such a 4+-vertex and vj be a 3-vertex for all
j = 2, 3, 4, 5. Clearly, v1 gives at least 1

2
to f by (R2) and (R3). Moreover,

f1 and f5 cannot be any 6-face by Claim 2.3.8. If d(f1) = 5 and d(f5) = 5,
then d(fj) /∈ {5, 6} with j ∈ {2, 4} according to Claim 2.3.7 and Claim
2.3.9. Thus, for j ∈ {2, 4}, fj is a 7+-face by the absence of 4-faces
and each fj is adjacent to f by a good common (3, 3)-edge. By (R4a),
we see that τ(f2 → f) = 1

3
and τ(f4 → f) = 1

3
. So we obtain that

ω∗(f) > −1 + 1
2

+ 1
3
× 2 = 1

6
> 0.

Now we may suppose that there exists at least one face of f1 and f5 which
is a 7+-face, i.e., d(f1) > 7. Then by (R2), (R3) and (R6), we see that
τ(v1 → f) > 2

3
. Clearly, for each i ∈ {2, 3, 4}, fi is adjacent to f by

a good common (3, 3)-edge. According to Claim 2.3.7, Claim 2.3.9 and
Claim 2.3.10, we see that there exists at least one face of f2, f3, f4 which
is a 7+-face. Hence, ω∗(f) > −1 + 1

3
+ 2

3
= 0 by (R4a).

c) n3(f) 6 3. It follows that there are at least two vertices whose degree
are both at least 4. By (R2), (R3) and (R6), we derive that ω∗(f) >
−1 + 1

2
× 2 = 0.

6.2 Now assume that f is a 5∗-face. It implies that f is adjacent to exactly
one 3-face. W.l.o.g., let f1 = [vv1v2] be such a 3-face that it is adjacent to
f . By Claim 2.3.1, v 6= vi for all i = 3, 4, 5. Since δ(G) > 3, d(vi) > 3
with i ∈ {1, 2, · · · , 5}. By Claim 2.3.15, for each j ∈ {2, 3, 4, 5}, we see that
d(fj) > 10 and thus both v3v4 and v4v5 are good common (3+, 3+)-edges. By
(R5), τ(f3 → f) = 1 and τ(f4 → f) = 1. Hence, ω∗(f) > −1− 1 + 1× 2 = 0
by (R1).

Case 7 d(f) = 6.

Let f = [v1 · · · v6] and then ω(f) = 0. If f is a triangle-far 6-face, then ω∗(f) =
ω(f) = 0 by (R1) to (R6). Now, we assume that f is a 6∗-face. W.l.o.g., assume
f1 = [vv1v2] is a 3-face adjacent to f . It is obvious that v /∈ V (f) by Claim 2.3.1.
Furthermore, f is adjacent to at most one 3-face by (C1). So f only need to send
1 to the unique 3-face f1. Obviously, for each j ∈ {2, · · · , 6}, d(fj) /∈ {3, 4, 5, 6}
by (C1), (C3), Claim 2.3.11 and the absence of 4-cycles in G. Again, by (C1) and
the absence of 4-cycles, we assert that v3v5 /∈ E(G) and v3v6 /∈ E(G). It implies
that each vi has at least one outgoing neighbor which does not belonging to V (f).
Since there is no orchid in G, f is incident to at least one 4+-vertex. It implies that
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n3(f) 6 5. Next, in each case, we will show that the total charge f obtained is at
least 1 and thus ω∗(f) > −1 + 1 = 0.

Subcase 7.1 n3(f) = 5.

It means that there is exactly one 4+-vertex incident to f . If d(v2) > 4, then
τ(v2 → f) > 1 by (R2b2), (R3a), (R3b) and (R6) since d(f2) 6= 5. Otherwise, by
symmetry, suppose some vi is a 4+-vertex, where i ∈ {3, 4}. Denote v∗ be such a
4+-vertex. First, we observe that each adjacent face different from f1 is a 7+-face
by the discussion above. If d(v∗) > 5, then τ(v∗ → f) > 5

6
by (R3) and (R6). Since

v5v6 is a good common (3, 3)-edge, f5 sends 1
6
to f by (R4b). Thus, f gets at least

5
6
+ 1

6
= 1 from v∗ and f5. If d(v∗) = 4, then the opposite face of f , which is incident

to f by v∗, cannot be a 3-face or a 5-face by (C3). So v∗ is incident to four 6+-faces
and thus v∗ gives 1

2
to f by (R2c1). Consequently, f gets at least 1

2
+ 1

6
× 3 = 1 by

(R4b).

Subcase 7.2 0 6 n3(f) 6 4.

It implies that there are at least two 4+-vertices incident to f . It is easy to
see that every 5+-vertex sends at least 5

6
to f by (R3) and (R6). Moreover, every

4-vertex vi sends at least 1
2
to f since the opposite face to f by vi cannot be any

3-face or 5-face by (C3). Hence, f receives at least 1
2
× 2 = 1 from its incident

4+-vertices.

In what follows, for simplicity, let p5(f), p5∗(f), and p6∗(f) denote the number of
triangle-far 5-face, 5∗-face, and 6∗-face receiving a charge 1

3
, 1, 1

6
from f , respectively.

Clearly, p5(f) 6 m5(f), p5∗(f) 6 m5∗(f) and p6∗(f) 6 m6∗(f).

Case 8 d(f) = 7.

Then ω(f) = 1 and Claim 2.3.2 implies that f is adjacent to at most one 3-face.

8.1 First assume that f is a triangle-far 7-face. Noting that d(fi) > 5 since G
contains no 4-faces. By (C2), m5∗(f) = 0. By (C4), p5(f) 6 3. We will divide
the argument into four subcases according to the value of p5(f).

a) p5(f) = 3. Suppose f1, f3, f5 are such three 5-faces that each of them
takes a charge 1

3
from f . By (R4a), we see that all common edges v1v2,

v3v4 and v5v6 are good (3, 3)-edges. This implies that d(vi) = 3 with
i ∈ {1, · · · , 6}. By Claim 2.3.11, one can easily deduce that none of
f2, f4, f6, f7 is a 6∗-face. Thus, p6∗(f) 6 m6∗(f) = 0. Consequently, we
deduce that ω∗(f) > 1− 1

3
× 3 = 0 by (R4a).

b) p5(f) = 2. We may suppose that fi is a 5-face which takes 1
3
from f .

It means that d(vi) = d(vi+1) = 3 and vivi+1 is a good common edge.
Thus, fi−1 and fi+1 cannot be any 6∗-face by Claim 2.3.11. It follows
immediately that p6∗(f) 6 7− (2+3) = 2 since p5(f) = 2. Consequently,
we have that ω∗(f) > 1− 1

3
× 2− 1

6
× 2 = 0 by (R4).

c) p5(f) = 1. W.l.o.g., let f1 be such a triangle-far 5-face that v1v2 be a
good common (3, 3)-edge. This implies that neither f2 nor f7 is a 6∗-face.
Thus, p6∗(f) 6 7− 3 = 4. Hence, we have ω∗(f) > 1− 1

3
− 1

6
× 4 = 0 by

(R4a) and (R4b).
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d) p5(f) = 0. If p6∗(f) = 0, then according to (R4), we obtain that ω∗(f) >
1− 0 = 1. Otherwise, we may let f1 be a 6∗-face, which takes a charge 1

6

from f . It is obvious that f1 must be adjacent to f by a good common
(3, 3)-edge or (3, 4)-edge, i.e., d(v1) = 3 and d(v2) ∈ {3, 4}. It is easy
to observe that f7 cannot be any 6∗-face because of Claim 2.3.14. Thus,
p6∗(f) 6 6 and ω∗(f) > 1− 1

6
× 6 = 0 by (R4b).

8.2 Now, w.l.o.g., we assume that f is adjacent to a 3-face f1 = [vv1v2]. Then
τ(f1 → f) = 1. By Claim 2.3.1, we confirm that v /∈ V (f). Moreover, for each
j ∈ {2, · · · , 7}, we deduce that fj is neither a 5-face nor a 6∗-face by (C5). It
implies that f sends nothing to each fj with j ∈ {2, · · · , 7}. Applying (R1),
we deduce that ω∗(f) > 1− 1 = 0.

Case 9 d(f) = 8.

Clearly, ω(f) = 2 and f cannot be adjacent to any 3-face by Claim 2.3.3. So we
only need to consider the size of p5(f) and p6∗(f) since they may take charge from
f . It is easy to obtain p5(f) 6 6 because there is no sunflower in G. We need to
consider the following possibilities by the value of p5(f).

Subcase 9.1 p5(f) = 6.

It implies that f is incident to at least seven 3-vertices. Thus, the remaining
two faces adjacent to f , which are not triangle-far 5-faces, cannot be any 6∗-faces
by Claim 2.3.11. So ω∗(f) > 2− 6× 1

3
= 0 by (R4).

Subcase 9.2 p5(f) = 5.

Notice that at most one of fi, with i ∈ {1, 2, · · · , 8}, can be a 6∗-face because
no 5-face can be adjacent to a 6∗-face by Claim 2.3.11 again. Therefore, ω∗(f) >
2− 5× 1

3
− 1

6
= 1

6
> 0.

Subcase 9.3 0 6 p5(f) 6 4.

By (R4), we derive that

ω∗(f) > 2− 1

3
p5(f)− 1

6
p6∗(f)

> 2− 1

3
p5(f)− 1

6
(8− p5(f))

=
2

3
− 1

6
p5(f)

> 2

3
− 1

6
× 4

= 0.

Next, we will discuss several cases where d(f) > 10. Let f be a 10+-face and f ′ a
face adjacent to f . We call f ′ special if it takes charge 1 from f . Let |Fs(f)| denote
the number of adjacent special faces. Let Si be a face adjacent to f by an edge ei

for i = 1, 2. If e1 is not incident to e2, then we say that S1 and S2 are mutually
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disjoint. According to (R1) and (R5), we see that only 3-faces and 5∗-faces may
take charge 1 from f . It implies that each special face is either a 3-face or a 5∗-face.
We first observe the following:

Observation 2.3.2 If f is adjacent to two special faces by two consecutive edges
uv and vw of b(f), then τ(v → f) > 1.

Proof. Let fuv and fvw denote such two special faces adjacent to f by sharing the
edges uv and vw, respectively. It suffices to consider the following three cases.

• Assume that fuv and fvw are both 3-faces. By the absence of 4-cycles, we see
that d(v) > 4 and thus τ(v → f) > 1 by (R2a), (R3a) and (R6).

• Assume that fuv and fvw are both 5∗-faces. By Claim 2.3.5, d(v) > 4. So by
(R2c3.3), (R3c) and (R6), we derive that τ(v → f) = 1.

• Finally, w.l.o.g., we assume that fuv is a 3-face and fvw is a 5∗-face. By (R5),
we know that the edge vw is a good common (3+, 3+)-edge, which implies that
d(v) > 4. Applying (R2b2), (R3b) and (R6), we have that τ(v → f) = 1.

This completes the proof of Observation 2.3.2.

If there exist two special faces which share at least one vertex v that is lied on
b(f), i.e., let fi and fi+1 be such two special faces that vi+1 ∈ V (fi) ∩ V (fi+1) and
vi+1 ∈ V (f), then we see that τ(vi+1 → f) > 1 by Observation 2.3.2 and f sends at
most 2× 1 to fi and fi+1. It means that f takes charge 1 from vi+1 and then sends
it to fi+1. Thus, we can consider that fi+1 takes nothing from f . So in what follows,
our main focus is on the special faces adjacent to f that are mutually disjoint. For
our convenience, we let |F ∗

s (f)| denote the maximal number of special faces adjacent
to f which are mutually disjoint. Obviously, |F ∗

s (f)| 6
⌊

d(f)
2

⌋
.

Observation 2.3.3 p5(f) + p6∗(f) 6 d(f)− 2|F ∗
s (f)|.

Proof. W.l.o.g., suppose that fi is a special face such that neither fi−1 nor fi+1 is
a special face. In order to prove Observation 2.3.3, it suffices to show that fi−1 gets
nothing from f if it is a 5- or 6∗-face.

First suppose that fi is a 3-face. If fi−1 takes a charge 1
3
or 1

6
, then by (R4a) and

(R4b), we see that d(vi) = 4 and fi−1 is a 6∗-face. This contradicts (C3). Now we
assume that fi is a 5∗-face. If d(vi) = 3, then fi−1 cannot be any triangle-far 5-face
by Claim 2.3.6 and any 6∗-face by Claim 2.3.12 and thus we are done. Now suppose
that d(vi) > 4. Note that if fi−1 is a triangle-far 5-face, then f sends nothing to it
because vi−1vi is not a (3, 3)-edge. If fi−1 is a 6∗-face, then we discuss as follows:
when vi is a 5+-vertex, then τ(f → fi−1) = 0 since vi−1vi is neither a (3, 3)-edge nor
a (3, 4)-edge; when vi is a 4-vertex, then fi is the opposite face of fi−1 by a 4-vertex
vi, which contradicts (C3). This completes the proof of Observation 2.3.3.

Case 10 d(f) = 10.

36



2.3. Proof of Theorem 2.2.1

Then ω(f) = 4 and |F ∗
s (f)| 6 5. We divide the argument into the following

three subcases in light of |F ∗
s (f)|.

Case 10.1 |F ∗
s (f)| = 5.

By definition, f is adjacent to five special faces that are mutually disjoint.
W.l.o.g., suppose that f1, f3, f5, f7, f9 are all these special faces. If fj is a spe-
cial face for some fixed j ∈ {2, 4, 6, 8, 10}, then τ(f → fj) = 1, while τ(vj → f) > 1
and τ(vj+1 → f) > 1 by Observation 2.3.2. Therefore, ω∗(f) > 4−1×5−|F ∗∗

s (f)|+
2|F ∗∗

s (f)| = −1 + |F ∗∗
s (f)| > 0, where |F ∗∗

s (f)| denotes the number of special faces
among f2, f4, f6, f8, f10. In what follows, for each j ∈ {2, 4, 6, 8, 10}, we suppose
that fj is not a special face. Since G does not contain lotus, there exists at least one
4+-vertex on b(f), say v1. If v1 is a 5+-vertex, then v1 sends at least 1 to f by (R3)
and (R6). If v1 is a 4-vertex, then we have two cases: If d(v10) = 3, then f10 is not
a triangle-far 5-face since f9 is a special face. So τ(v1 → f) = 1 by (R2b2), (R2c2)
and (R2c3.3); otherwise, d(v10) > 4 and f receives at least 2

3
× 2 = 4

3
from v1 and

v10 in total by (R2b1), (R2b2), (R2c2), (R2c3.2) and (R2c3.3). Thus, in each case,
we always have that ω∗(f) > 4− 1× 5 + 1 = 0.

Case 10.2 |F ∗
s (f)| = 4.

It implies that f is adjacent to exactly four special faces by four common edges
which are disjoint each other. Denote Si be such a special face adjacent to f by a
common edge ei, where i = 1, 2, 3, 4. Noting that ei cannot be incident to ej for
each pair (i, j) ⊂ {1, · · · , 4}. Thus, it follows that there exist two vertices vj, vk lied
on b(f) which are not incident to any common edge ei with i ∈ {1, · · · , 4}. W.l.o.g.,
assume j < k.

First we consider the case that k = j + 1. Namely, vjvk is an edge of b(f).
W.l.o.g., we assume that vjvk = v10v9 such that f1, f3, f5, f7 are special faces and
f9 is not. By the proof of Observation 2.3.3, we assert that none of f2, f4, f6, f8, f10

gets charge from f if it is a 5- or 6∗-face. It follows that p5(f) + p6∗(f) 6 1. If
p5(f) + p6∗(f) = 0, then we are done since ω∗(f) > 4 − 1 × 4 = 0. Otherwise,
suppose that f9 is a triangle-far 5-face or a 6∗-face which gets a charge 1

3
or 1

6
from

f , respectively. It follows that neither f8 nor f10 is a special face. If fj is a special
face for some j = 2, 4, 6, then similarly we have that ω∗(f) > 4−1×4− 1

3
−|F ∗∗

s (f)|+
2|F ∗∗

s (f)| = |F ∗∗
s (f)| − 1

3
> 2

3
, where |F ∗∗

s (f)| denotes the number of special faces
among f2, f4, f6. So in the following, we assume that fj is not a special face for
each j = 2, 4, 6. By the absence of lotus in G, there exists at least one vertex in
V (f) whose degree is at least 4. Let v∗ be such a 4+-vertex. W.l.o.g., we have two
subcases below, according to the situation of v∗.

• Assume that v∗ = v1. If d(v∗) > 5, then v∗ sends at least 1 to f by (R3)
and (R6). Otherwise, d(v∗) = 4. By (R2b1), (R2b2), and (R2c2), we see
that τ(v1 → f) > 2

3
. Thus, in each case, we always have that ω∗(f) >

4− 1× 4− 1
3

+ 2
3

= 1
3
.

• Assume that v∗ = vi, where i ∈ {2, · · · , 7}. Then by a similar discussion as
the proof of Case 10.1, we have that ω∗(f) > 4− 1× 4− 1

3
+ 1 = 2

3
.
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• Assume that v∗ = v9. Namely, d(v9) > 4. Moreover, we may further assume
that f9 is a 6∗-face (otherwise, f9 gets nothing from f by (R4a)). If d(v9) > 5,
then τ(v9 → f) > 4

5
by (R3) and (R6). If d(v9) = 4, then according to (R2c2),

(R2c3.2) and (R2c3.3), it is obvious that v9 sends at least 2
3
to f . Thus, we

have that ω∗(f) > 4− 1× 4− 1
3

+ 2
3

= 1
3

> 0.

Now we suppose that k > j + 1. It means that vkvj /∈ E(f). In this case, it is
easy to deduce that p5(f) + p6∗(f) = 0 by the proof of Observation 2.3.3. In other
words, f only sends charges to its special faces. Therefore, ω∗(f) > 4 − 1 × 4 = 0
by (R1) and (R5).

Case 10.3 0 6 |F ∗
s (f)| 6 3.

If |F ∗
s (f)| = 3, by a careful inspection, one can easily obtain that p5(f)+p6∗(f) 6

10− (3+4) = 3. So, ω∗(f) > 4−3×1− 1
3
×3 = 0 by (R4). If 0 6 |F ∗

s (f)| 6 2, then
by Observation 2.3.3, we have that p5(f) + p6∗(f) 6 10 − 2|F ∗

s (f)| and therefore,
ω∗(f) > 4− |F ∗

s (f)| − 1
3
(10− 2|F ∗

s (f)|) = 2
3
− 1

3
|F ∗

s (f)| > 2
3
− 1

3
× 2 = 0.

Case 11 d(f) = 11.

Clearly, ω(f) = 5 and |F ∗
s (f)| 6 5. If |F ∗

s (f)| = 5, then p5(f) + p6∗(f) 6
11− (5+6) = 0. So ω∗(f) > 5−1×5 = 0. If 0 6 |F ∗

s (f)| 6 4, then p5(f)+p6∗(f) 6
11− 2|F ∗

s (f)| by Observation 2.3.3. Then ω∗(f) > 5− |F ∗
s (f)| − 1

3
(11− 2|F ∗

s (f)|) =
4
3
− 1

3
|F ∗

s (f)| >= 0.

Case 12 d(f) > 12.

By Observation 2.3.3, we have that p5(f) + p6∗(f) 6 d(f)− 2|F ∗
s (f)|. Moreover,

|F ∗
s (f)| 6 b1

2
d(f)c. Thus, we have that

ω∗(f) > (d(f)− 6)− |F ∗
s (f)| − 1

3
(d(f)− 2|F ∗

s (f)|)

=
2

3
d(f)− 6− 1

3
|F ∗

s (f)|

> 2

3
d(f)− 6− 1

3
× d(f)

2

=
1

2
d(f)− 6

> 1

2
× 12− 6

= 0.

Therefore, we complete the proof of 2-connected case of Theorem 2.2.1.

2.3.2 Proof of non-2-connected case

In what follows, we suppose that G is not a 2-connected plane graph and we will
construct a 2-connected plane graph G∗ with δ(G∗) > 3 having neither 4-cycles

38



2.3. Proof of Theorem 2.2.1

nor 9-cycles and satisfying all structural properties (C1) to (C5). This obviously
contradicts the result just established before.

We remark that the following proof is stimulated by the technique used in
[CLW08].

Let B be an end block of G with the unique cut-vertex x. Let f be the outside
face of G. Notice that dB(x) > 2 and dB(v) > 3 for each v ∈ V (B)\{x}. Choosing
another vertex y of B such that y 6= x and y lies on the boundary of B. Obviously,
x and y are both belonging to b(f). Then we take ten copies of B, i.e., Bk with
k = 1, · · · , 10. In each copy Bk, the vertices corresponding to x and y are denoted
by xk and yk, respectively. Then one can embed Bk, k = 1, · · · , 10, into f in
the following way: first, let B = B1. Next, for each k = 2, · · · , 10, consecutively
embed Bk into f by identifying xk with yk−1. Finally, identify y10 with a vertex
u ∈ V (f)\V (B). Then the first resulting graph, denoted by G1.

Obviously, in the processing of constructing G1, we confirm that there are no
new adjacent cycles established. Furthermore, no 4-cycles and 9-cycles are formed.
Thus, it is easy to deduce that G1 satisfies the following structural properties.

(A1) Fewer end blocks than G.

(A2) The minimum degree is at least 3.

(A3) Neither 4-cycles nor 9-cycles.

(A4) A 5-cycle or a 6-cycle is adjacent to at most one 3-cycle.

(A5) A 5∗-cycle is neither adjacent to a 5∗-cycle normally, nor adjacent to an i-cycle
with i ∈ {7, 8}.

(A6) A 6∗-cycle is not adjacent to a 6-cycle.

(A7) A triangle-far 7-cycle is not adjacent to two 5-cycles which are normally adja-
cent;

(A8) A 7∗-cycle is neither adjacent to a 5-cycle nor a 6∗-cycle.

Furthermore, we confirm that G1 also satisfies the following two structural prop-
erties:

(P1) G1 has neither orchid, nor sunflower, nor lotus.

(P2) A 6∗-cycle is not incident to an i-cycle C with i ∈ {3, 5}, where C is opposite
to such 6∗-cycle by a 4-vertex.

(P1) For some k ∈ {2, · · · , 10}, notice that we just identify some vertex xk with
yk−1. It implies that any new cycle, which is not completely belong to some Bk,
must be an 11+-cycles, i.e., C∗ = x1 · · ·x10u · · ·x1. Thus, any orchid, sunflower, or
lotus cannot be established.

(P2) Assume to the contrary that G1 contains a 6∗-cycle, denoted by C∗
6 , which is

incident to a 3-cycle C3 or a 5-cycle C5 by a 4-vertex v∗. Clearly, v∗ must be equal to
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u or some vertex xk with k ∈ {2, · · · , 10}. However, dG1(u) = dB10(u) + dG\B1(u) >
2 + 3 = 5 or dG1(xk) = dBk−1

(xk) + dBk
(xk) > 3 + 2 = 5 for all k ∈ {2, · · · , 10}. We

always get a contradiction to dG1(v
∗) = 4.

Now, if G1 is 2-connected, then we are done. Otherwise, we may repeat the
process described above and finally obtain a desired G∗.

Thus, we complete the proof of Theorem 2.2.1.

2.4 Further research

In 2005, Bordoin, Glebov, Raspaud, and Salavatipour [BGRS05] proved that every
planar graph without 4-, 5-, 6- and 7-cycles is 3-colorable. This is a big step to
the previous results on a long-standing conjecture of Steinberg. Some authors use
a similar way as that of [BGRS05] to obtain some sufficient conditions for planar
graphs to be 3-colorable. Among most of them, we are more interested in the results
of 3-colorable planar graphs without cycles of three lengths. We summarize them
again as follows:

Theorem 2.4.1 A planar graph is 3-colorable if it has no

• (Wang and Chen [WC07b]) 4-, 6-, and 8-cycles; or

• (Lu et al. [LWW+09]) 4-, 7-, and 9-cycles; or

• (Borodin et al. [BGMR09]) 4-, 5-, and 7-cycles.

We would like to put forward the following three problems to conclude this
chapter.

Problem 2.4.2 Is every planar graph without 4-, 5-, and 6-cycles 3-colorable?

Problem 2.4.3 Is every planar graph without 4-, 6-, and 7-cycles 3-colorable?

Problem 2.4.4 Is every planar graph without 4-, 5-, and 8-cycles 3-colorable?

40



Chapter 3

Acyclic choosability

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Acyclic coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.2 Acyclic L-coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.3 The relationship between χa(G) and χl
a(G) . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Acyclic 5-choosability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Known results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Proof of Theorem 3.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Acyclic 4-choosability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 Known results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.2 Proof of Theorem 3.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Acyclic 3-choosability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4.2 Reducible configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4.3 Proof of Theorem 3.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

In the previous chapter, we studied the 3-choosability of planar graphs with
restrictions. In this chapter, we are interested in a proper L-coloring such that
the union of any two color classes induces a forest. Such a coloring is called an
acyclic L-coloring. In Section 3.1, we give a general introduction and a short survey
about acyclic coloring and acyclic L-coloring. In Sections 3.2 to 3.4, we will study,
respectively, the acyclic k-choosability of planar graphs for each k = 5, 4, 3.
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3.1 Introduction

3.1.1 Acyclic coloring

A proper vertex coloring of a graph G is acyclic if there is no bicolored cycle in G.
Namely, the union of any two color classes induces a forest. The acyclic chromatic
number, denoted by χa(G), of a graph G is the smallest integer k such that G has
an acyclic k-coloring.

The notion of acyclic coloring of graphs was introduced by Grünbaum [Grü73] in
1973 and studied by Mitchem [Mit74], Albertson and Berman [AB77] and Kostochka
[Kos76]. In 1979, Borodin [Bor79] confirmed the conjecture of Grünbaum by proving
that

Theorem 3.1.1 [Bor79] Every planar graph is acyclically 5-colorable.

The bound in Theorem 3.1.1 is sharp. In 1973, Grünbaum [Grü73] gave an
example of a 4-regular planar graph which is not acyclically 4-colorable; furthermore,
bipartite planar graphs which are not acyclically 4-colorable were constructed in
[KM76], see Figure 3.1.

Figure 3.1: Examples of Grünbaum and Kostochka Mel’nikov.

In 1999, Borodin, Kostochka and Woodall improved this bound for planar graphs
with large girth.

Theorem 3.1.2 [BKW99]

(1) If G is planar with girth g > 5, then χa(G) 6 4.

(2) If G is planar with girth g > 7, then χa(G) 6 3.

3.1.2 Acyclic L-coloring

We say that G is acyclically L-list colorable if for a given list assignment L = {L(v) :
v ∈ V }, there exists a proper acyclic coloring π of G such that π(v) ∈ L(v) for all
v ∈ V . If G is acyclically L-list colorable for any list assignment with |L(v)| > k for
all v ∈ V , then G is acyclically k-choosable or acyclic k-list colorable.

In 2002, Borodin, Fon-Der Flaass, Kostochka, Raspaud, and Sopena
[BFDFK+02] first investigated the acyclic list coloring of planar graphs to show
the following:
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Theorem 3.1.3 [BFDFK+02] Every planar graph is acyclically 7-choosable.

Moreover, they proposed the challenging conjecture as follows:

Conjecture 3.1.4 [BFDFK+02] Every planar graph is acyclically 5-choosable.

If Conjecture 3.1.4 were true, then it would strengthen both the Borodin’s acycli-
cally 5-colorable theorem [Bor79] and the Thomassen’s 5-choosable theorem [Tho94]
about planar graphs. However, this challenging conjecture seems to be difficult. As
yet, it has been verified only for several restricted classes of planar graphs. Wang
and Chen [WC09] proved that every planar graph without 4-cycles is acyclically
6-choosable.

Montassier, Ochem and Raspaud [MOR06] studied the acyclic choosability of
graphs with bounded maximum average degree.

Theorem 3.1.5 [MOR06]

(1) Every graph G with Mad(G) < 8
3
is acyclically 3-choosable.

(2) Every graph G with Mad(G) < 19
6
is acyclically 4-choosable.

(3) Every graph G with Mad(G) < 24
7
is acyclically 5-choosable.

By the well-known relationship Mad(G) < 2g(G)
g(G)−2

for any planar graph G, it is
easy to deduce the following:

Corollary 3.1.6 [MOR06]

(1) Every planar graph G with g(G) > 8 is acyclically 3-choosable.

(2) Every planar graph G with g(G) > 6 is acyclically 4-choosable.

(3) Every planar graph G with g(G) > 5 is acyclically 5-choosable.

3.1.3 The relationship between χa(G) and χl
a(G)

The notion of acyclic coloring is different from the notion of acyclic list coloring.
For any graph G, it is obvious that χl

a(G) > χa(G). Until now, there is no up-
per bounds of χl

a(G) in terms of χa(G). Montassier [Mon05a] proved that the list
acyclic chromatic number could be strictly greater than the acyclic chromatic num-
ber by showing an example (see Figure 3.2) which is acyclically 3-colorable but not
acyclically 3-choosable.

3.2 Acyclic 5-choosability

3.2.1 Known results

In this section, we summarize some sufficient conditions for a planar graph to be
ayclically 5-choosable. Montassier, Raspaud and Wang [MRW07] proved that every
planar graph G without 4-cycles and 5-cycles, or without 4-cycles and 6-cycles is
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{3,1, 2}{3,1, 2}{3,1, 2}{3,1, 2}{4,1, 2}{4,1, 2}{3,1, 2}{3,1, 2} {4,1, 2}{4,1, 2}{4,1, 2}{4,1, 2}{5,1, 2}{5,1, 2}{5,1, 2}{5,1, 2}{5,1, 2}{5,1, 2}

{3, 4, 5}

{6, 7,8}

{7,1, 2}{7,1, 2}{8,1, 2}{8,1, 2}{6,1, 2}{6,1, 2}{7,1, 2}{7,1, 2}{8,1, 2}{8,1, 2}{6,1, 2}{6,1, 2}{7,1, 2}{7,1, 2}{8,1, 2}{8,1, 2}{6,1, 2}{6,1, 2}

Figure 3.2: The graph G with χa(G) = 3 and χl
a(G) 6= 3.

acyclically 5-choosable. Chen and Wang [CW08a] studied the 3-cycles at distance
d and proved that every planar graph without 4-cycles and without triangles at dis-
tance less than 3 is acyclically 5-choosable. Recently, Zhang and Xu [ZX09] proved
that every planar graph with neither 4-cycles nor chordal 6-cycles is acyclically 5-
choosable. Note that in all these results cycles of length 4 are forbidden. In [BI09a],
a common extension of the results in [MRW07] is given: a planar graph is acyclically
5-choosable if it does not contain an i-cycle adjacent to a j-cycle where 3 6 j 6 5
if i = 3 and 4 6 j 6 6 if i = 4.

To attack Conjecture 3.1.4, Chen and Wang [CW08a] proposed a weak version
about this conjecture:

Conjecture 3.2.1 Every planar graph without 4-cycles is acyclically 5-choosable.

Conjecture 3.2.1 is still open. In this section, we prove the following result.

Theorem 3.2.2 [CR10d] Every planar graph with neither 4-cycles nor intersecting
triangles is acyclically 5-choosable.

Our result is a new approach to Conjecture 3.2.1 and gives an improvement to
the result in [CW08a].

3.2.2 Proof of Theorem 3.2.2

The proof of Theorem 3.2.2 is proceeded by a contradiction. We suppose that G is
a minimal counterexample (i.e., with the least number of vertices) to the Theorem
3.2.2 which is embedded in the plane. Thus G is connected. We first investigate the
structural properties of G in Section 3.2.2.1, then use Euler’s formula and discharg-
ing argument to derive a contradiction in Section 3.2.2.2.
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3.2.2.1 Structural properties

First we have the following Lemmas 3.2.3 to 3.2.6, whose proofs were provided in
[MRW07, CW08a, BI09b].

Lemma 3.2.3 [MRW07]
(C1) There are no 1-vertices.
(C2) No 2-vertex is adjacent to a 4−-vertex.
(C3) Let v be a 3-vertex. Then

(C3.1) If v is adjacent to a 3-vertex, then v is not adjacent to other 4−-vertex;
(C3.2) v is not adjacent to any pendant light 3-vertex.

(C4) Let v be a 5-vertex. Then
(C4.1) v is adjacent to at most one 2-vertex;
(C4.2) If n2(v) = 1, then v is not adjacent to any pendant light 3-vertex.

(C5) Let v be a 6-vertex. Then
(C5.1) v is adjacent to at most four 2-vertices;
(C5.2) If n2(v) = 4, then v is not adjacent to any 3-vertex.

(C6) Each 7-vertex is adjacent to at most five 2-vertices.
(C7) No 3-face [xyz] with d(x) 6 d(y) 6 d(z) satisfies one of the following:

(C7.1) d(x) = 2;
(C7.2) d(x) = d(y) = 3 and d(z) 6 5;
(C7.3) d(x) = 3 and d(y) = d(z) = 4.

Lemma 3.2.4 [CW08a] Suppose that v is a 5-vertex with n2(v) = 1. If v is incident
to a 3-face f , then n3(f) = 0.

Lemma 3.2.5 [CW08a] Suppose that v is a 6-vertex. Then the following hold:
(A1) If n2(v) = 2 and v is incident to a (3, 3, 6)-face, then n3(v) 6 2;
(A2) If n2(v) = 3, then n3(v) 6 1;
(A3) If n2(v) = 4, then t(v) = 0.

Lemma 3.2.6 [CW08a] Let v be a 7-vertex. Then
(B1) If n2(v) = 4, then n3(v) 6 2;
(B2) If n2(v) = 5, then n3(v) = 0 and t(v) = 0.

Lemma 3.2.7 [BI09a] If v is a pendant light 3-vertex of v3, i.e., f = [vv1v2] is a
3-face, then d(v3) > 5.

In what follows, let L be a list assignment of G with |L(v)| = 5 for all v ∈
V (G). In the following proofs of Lemmas 3.2.8 to 3.2.11, for v ∈ V (G), we let
v1, v2, · · · , vd(v) denote the neighbors of v in clockwise order. If vi is a 2-vertex, we
use ui to denote the neighbor of vi different from v. If vj is a pendant light 3-vertex,
we use xj and yj to denote the neighbors of vj different from v such that [vjxjyj] is
a 3-face.

Lemma 3.2.8 Suppose that v is a 5-vertex with n2(v) = 0. Then the following
hold:
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(F1) p3(v) 6 3;
(F2) If t(v) = 1, then p3(v) 6 2;
(F3) If v is incident to a (5, 3, 4)-face, then p3(v) 6 1;
(F4) If v is incident to a (5, 3, 5+)-face and p3(v) = 2, then n3(v) 6 3.

Proof. We will make use of contradictions to show (F1)-(F4).
(F1) Suppose to the contrary that p3(v) > 4. Assume, without loss of generality,

that v1, · · · , v4 are adjacent pendant light 3-vertices of v. By the minimality of G,
G− {v, v1, · · · , v4} admits an acyclic L-coloring π. It is obvious that π(xi) 6= π(yi)
for all i = 1, · · · , 4. Let S = {x1, · · · , x4, y1, · · · , y4}. Note that |L(v) \ {π(v5)}| > 4
and |S| = 8. It follows that there exists a color c ∈ L(v) \ {π(v5)} appearing at
most twice on the set S, say π(x1) = π(x2) = c. Then we color v with c, v1 with
a color a ∈ L(v1) \ {c, π(v5), π(y1)}, v2 with a color b ∈ L(v2) \ {a, c, π(v5), π(y2)},
and vi with a color different from c, π(xi), π(yi) for i = 3, 4. Since a 6= b, we see that
any cycle containing edges v1v and vv2 is not bicolored. Therefore, the resulting
coloring is an acyclic L-coloring because none of x3, y3, x4, y4 is colored with c.

1
v

2
v

3
x

v

3
v

4
v5

y
5

v

3
y

4
x

4
y5

x

Figure 3.3: A 5-vertex v with t(v) = 1 and p3(v) = 3.

(F2) Assume to the contrary that [vv1v2] is a 3-face and v3, v4, v5 are adjacent
pendant light 3-vertices such that v1, v2, x3, y3, x4, y4, x5, y5 are in clockwise order, see
Figure 3.3. Let G′ = G− {v, v3, v4, v5}. Obviously, G′ admits an acyclic L-coloring
π by the minimality of G. Moreover, π(v1) 6= π(v2) and π(xi) 6= π(yi) for each i ∈
{3, 4, 5}. Denote S = {x3, x4, x5, y3, y4, y5}. Notice that |L(v) \ {π(v1), π(v2)}| > 3
and |S| = 6. This implies that there exists a color in L(v)\{π(v1), π(v2)} appearing
at most twice on the set S. We have to consider two cases below.

If there exists a color c ∈ L(v) \ {π(v1), π(v2)} which appears at most once on
the set S, i.e., π(x3) = c, we can color v with c, v3 with a color different from
c, π(v1), π(v2), π(y3), and finally color vi with a color different from c, π(xi), π(yi) for
i = 4, 5.

Now we assume that L(v) = {1, 2, 3, 4, 5}, π(v1) = 1, π(v2) = 2, and each color in
{3, 4, 5} appears exactly twice on the set S. W.l.o.g., assume that π(x3) = π(x5) = 3,
π(y4) = π(y5) = 4 and π(y3) = π(x4) = 5. If there is no alternating (5, 1)-path in
G′ connecting with y3 and v1, then color v with 5, v4 with a ∈ L(v4) \ {1, 2, 4, 5},
v3 with b ∈ L(v3) \ {2, 3, 5, a}, and finally color v5 with a color distinct to 3, 4, 5.
If there is no alternating (4, 2)-path in G′ connecting with y5 and v2, then color v
with 4, v4 with c ∈ L(v4) \ {1, 2, 4, 5}, v5 with d ∈ L(v5) \ {1, 3, 4, a}, and finally
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color v3 with a color distinct to 3, 4, 5. Now, suppose that G′ contains an alternating
(5, 1)-path connecting with y3 and v1 and an alternating (4, 2)-path connecting with
y5 and v2. Obviously, it is impossible, since G is an embedded plane graph.

(F3) Assume to the contrary that [vv1v2] is a (5, 3, 4)-face, i.e., d(v1) = 3
and d(v2) = 4, and v3, v4 are adjacent pendant light 3-vertices. Denote N(v1) =
{v′1, v2, v} and N(v2) = {v1, v

′
2, v

′′
2 , v}. Let G′ = G − {v, v1, v3, v4}. Clearly, G′ ad-

mits an acyclic L-coloring π by the minimality of G. Moreover, for each i ∈ {3, 4},
π(xi) 6= π(yi). Denote S = {v′1, x3, y3, x4, y4}. We have to consider following two
cases, depending on the colors of v2 and v5.

• π(v2) 6= π(v5). Note that |L(v) \ {π(v2), π(v5)}| > 3 and |S| = 5. It im-
plies that there exists a color c ∈ L(v) \ {π(v2), π(v5)} appearing at most
once on the set S. We first color v with c. If π(v′1) = c, then assign a color
in L(v1) \ {π(v2), π(v5), c} to v1, and then color vi with a color different from
c, π(xi), π(yi) for i = 3, 4. Otherwise, assume, w.l.o.g., that π(x3) = c. We may
color v3 with a color belonging to L(v3)\{c, π(v2), π(v5), π(y3)} and then color
v4 with a color different from c, π(x4), π(y4). We further color v1 in the follow-
ing way: If π(v′1) 6= π(v2), we color v1 with a color distinct to c, π(v′1), π(v2); If
π(v′1) = π(v2), we color v1 with a color distinct to c, π(v2), π(v′2), π(v′′2). In each
case, it is easy to verify that the resulting coloring is acyclic. This contradicts
the choice of G.

• π(v2) = π(v5). If π(v′2) = π(v′′2), then there exists a color in L(v) \
{π(v2), π(v′2)} which appears at most once on the set S. Then the proof
can also be given with a similar argument to the previous case. Otherwise, we
first recolor v2 with a color differen from π(v2), π(v′2), π(v′′2) and then reduce
the proof to the former case.

(F4) Assume to the contrary that [vv1v2] is a (5, 3, 5+)-face, i.e., d(v1) = 3 and
d(v2) > 5, v3, v4 are adjacent pendant light 3-vertices and v5 is a 3-vertex. Let
N(v1) = {v′1, v2, v} and N(v5) = {v, v′5, v

′′
5}. Let G′ = G − {v, v3, v4}. By the

minimality of G, G′ admits an acyclic L-coloring π. It is obvious that π(v1) 6= π(v2)
and π(xi) 6= π(yi) for each i ∈ {3, 4}. Denote S = {x3, y3, x4, y4}. Depending on
the colors of v1, v2, v5, we need to consider the following three cases.

(1) Assume that v1, v2, v5 have pairwise distinct colors. W.l.o.g, suppose that
π(v1) = 1, π(v2) = 2 and π(v5) = 3. If there exists a color c ∈ L(v) \ {1, 2, 3} which
appears at most once on the set S, say π(x3) = c, we first color v with c and v4

with a color different from c, π(x4), π(y4). Then we color v3 with a color α different
from 2, 3, c, π(y3). If such coloring is not acyclic, there is only one possible case that
α = 1 and π(v′1) = c. So we need to further recolor v1 with a color different from
1, 2, 3, c.

Now assume, w.l.o.g., that L(v) = {1, 2, 3, 4, 5} and π(x3) = π(x4) = 4
and π(y3) = π(y4) = 5. If π(v′1) 6= 2, then recolor v1 with a color a ∈
L(v1)\{1, 2, 3, π(v′1)}, color v with 1 and finally color vi with a color distinct to
1, 4, 5 for each i ∈ {3, 4}. Otherwise, suppose that π(v′1) = 2. If π(v′5) = π(v′′5), then
color v with a color b ∈ {4, 5} \ {π(v′5)}, v3 with a color c ∈ L(v3) \ {2, 4, 5} and
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v4 with a color d ∈ L(v4) \ {2, 4, 5, c}. If π(v′5) 6= π(v′′5), we first recolor v5 with a
color different from 2, 3, π(v′5), π(v′′5), then color v with 3 and finally give a proper
coloring for v3 and v4.

(2) Assume that π(v5) = π(v1) = 1 and π(v2) = 2. If π(v′1) 6= 2, recolor v1 with
a color different from 1, 2, π(v′1) and then go back to the previous Case (1). Now
suppose that π(v′1) = 2. It is easy to observe that there exists a color c belonging
to L(v) \ {1, 2} which appears at most once on the set S, w.l.o.g., say π(x3) = c.
We can color v with c, v3 with a color in L(v3) \ {1, 2, c, π(y3)}, and finally color v4

with a color different from c, π(x4), π(y4).
(3) Assume that π(v5) = π(v2) = 1 and π(v1) = 2. If π(v′5) 6= π(v′′5), then recolor

v5 with a color different from 1, 2, π(v′5), π(v′′5) and then reduce to the previous Case
(1). Now suppose that π(v′5) = π(v′′5). If there exists a color c ∈ L(v) \ {1, 2, π(v′5)}
appearing at most once on the set S, say π(x3) = c, then first color v with c,
v3 with a color distinct to 1, 2, c, π(y3)}, and finally color v4 with a color different
from c, π(x4), π(y4). Otherwise, w.l.o.g., assume that L(v) = {1, 2, π(v′5), 4, 5} and
π(x3) = π(x4) = 4 and π(y3) = π(y4) = 5. If π(v′1) 6= 1, we recolor v1 with a
color a ∈ L(v1) \ {1, 2, π(v′1)} and then reduce the proof to the previous case (1).
Otherwise, we may color v with 4, v3 with a color b ∈ L(v3) \ {1, 4, 5} and v4 with
a color in L(v4) \ {1, 4, 5, b}.

Lemma 3.2.9 Suppose that v is a 6-vertex. Then the following hold:
(Q1) If n2(v) = 3 and t(v) = 1, then p3(v) = 0;
(Q2) If n2(v) = 2, then p3(v) 6 2;
(Q3) If n2(v) = 2 and t(v) = 1, then p3(v) 6 1;
(Q4) If n2(v) = 1, then p3(v) 6 4;
(Q5) If n2(v) = 1 and v is incident to a (3, 3, 6)-face, then p3(v) 6 1;
(Q6) If n2(v) = 0 and v is incident to a (3, 3, 6)-face, then p3(v) 6 2;
(Q7) If v is incident to a (3, 4, 6)-face, then

(Q7.1) n2(v) 6 2;
(Q7.2) If n2(v) = 1, then p3(v) 6 2.

Proof. (Q1) Assume to the contrary that [vv1v2] is a incident 3-face, v3, v4, v5 are
2-vertices and v6 is an adjacent pendant light 3-vertex. By the minimality of G,
G− {v, v3, v4, v5, v6} admits an acyclic L-coloring π. Obviously, π(v1) 6= π(v2). Let
S = {u3, u4, u5, x6, y6}. Since |L(v) \ {π(v1), π(v2)}| > 3 and |S| = 5, there exists a
color c ∈ L(v) \ {π(v1), π(v2)} appearing at most once on the set S. So we may first
color v with c. In order to color the remanent uncolored vertices, w.l.o.g., we have
to consider following two cases.

• If π(u3) = c, then color vi with a color different from c, π(v1), π(v2), π(ui) for
i = 3, 4, 5, and v6 with a color different from c, π(x6), π(y6) successfully.

• If π(x6) = c, then color vi with a color different from c, π(ui) for i = 3, 4, 5,
and v6 with a color different from c, π(v1), π(v2), π(y6) successfully.

(Q2) Suppose to the contrary that v1, v2 are 2-vertices and v3, v4, v5 are adjacent
pendant light 3-vertices. By the minimality of G, G − {v, v1, v2, · · · , v5} has an
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acyclic L-coloring π. It is obvious that π(xi) 6= π(yi) for all i = 3, 4, 5. Let S =
{u1, u2, x3, y3, x4, y4, x5, y5}. Since |L(v) \ {π(v6)}| > 4 and |S| = 8, there exists a
color belonging to L(v) \ {π(v6)} appearing at most twice on the set S.

First assume that there exists a color c ∈ L(v) \ {π(v6)} which appears at most
once on the set S. We color v with c, vi with a color different from c, π(v6), π(ui)
for i = 1, 2, and vj with a color different from c, π(v6), π(xj), π(yj) for j = 3, 4, 5.

Now assume, w.l.o.g., that L(v) = {1, 2, 3, 4, 5}, π(v6) = 1, and each color
belonging to {2, 3, 4, 5} appears exactly twice on the set S. One can easily observe
that there exist two vertices x and y, where x, y ∈ S\{u1, u2}, such that π(x) = π(y).
W.l.o.g., assume that π(x3) = π(x4) = 2. We color v with 2, v3 with a color
a ∈ L(v3) \ {1, 2, π(y3)}, v4 with a color b ∈ L(v4) \ {1, 2, a, π(y4)}, vi with a color
different from 2, π(ui) for i = 1, 2, and finally color v6 with a color different from
2, π(x6), π(y6).

(Q3) Assume to the contrary that [vv1v2] is a incident 3-face, v3, v4 are 2-vertices
and v5, v6 are adjacent pendant light 3-vertices. By the minimality of G, G −
{v, v3, v4, v5, v6} admits an acyclic L-coloring π. Notice that π(v1) 6= π(v2) and
π(xi) 6= π(yi) for each i ∈ {5, 6}. Let S = {u3, u4, x5, y5, x6, y6}. It is easy to
observe that |L(v) \ {π(v1), π(v2)}| > 3 and |S| = 6. Basing on this fact, we assert
that there exists a color belonging to L(v) \ {π(v1), π(v2)} appearing at most twice
on the set S,

First assume that there exists a color c ∈ L(v) \ {π(v1), π(v2)} appearing at
most once on the set S. By symmetry, we may color v with c. Then we color
the remanent uncolored vertices in the following way: If π(u3) = c, color v3 with
a color different from c, π(v1), π(v2), and then assign vi with a color different from
that of its neighbors for i = 4, 5, 6. If π(x5) = c, color v5 with a color different
from c, π(v1), π(v2), π(y5), and then assign vj with a color different from that of its
neighbors for j = 3, 4, 6.

Now, assume that L(v) = {1, 2, 3, 4, 5}, π(v1) = 1, π(v2) = 2 and each color
in {3, 4, 5} appears exactly twice on the set S. If π(u3) = π(u4), say π(u3) =
π(u4) = 3, then color v with 3, v3 with a color a ∈ L(v3) \ {1, 2, 3}, v4 with a color
b ∈ L(v4) \ {1, 2, 3, a}, and finally color vi with a color distinct to 3, π(xi), π(yi) for
i = 5, 6. Otherwise, w.l.o.g., suppose that π(u3) = π(x5) = 3. Then color v with 3,
v5 with c ∈ L(v5) \ {1, 2, 3, π(y5)}, v3 with d ∈ L(v3) \ {1, 2, 3, c}, and finally assign
a proper coloring for v4 and v6 easily.

(Q4) Assume to the contrary that v1 is a 2-vertex and v2, v3, · · · , v6 are adjacent
pendant light 3-vertices. Let G′ = G− {v, v1, v2, · · · , v6}. By the minimality of G,
G′ admits an acyclic L-coloring π. Moreover, π(xi) 6= π(yi) for all i > 2 since xi

is adjacent to yi in G′. Let S = {u1, x2, y2, · · · , x6, y6}. Note that |L(v)| = 5 and
|S| = 11. Thus, there exists a color c ∈ L(v) which appears at most twice on the
set S. We color v with c. If π(u1) = π(x2) = c, color v1 with a color a different from
c, π(u1), v2 with a color different from c, a, π(y2), and vi with a color different from
c, π(xi), π(yi) for i = 3, · · · , 6. If π(x2) = π(x3) = c, color v2 with a color b different
from c, π(y2), v3 with a color different from c, b, π(y3), and vi with a color different
from its neighbors for i = 1, 4, 5, 6.
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(Q5) Assume to the contrary that [vv1v2] is (6, 3, 3)-face, i.e., d(v1) = d(v2) = 3,
v3 is a 2-vertex, and v4, v5 are adjacent pendant light 3-vertices. Let N(v1) =
{v′1, v2, v} and N(v2) = {v′2, v1, v}. By the minimality of G, G − {v, v1, v2, · · · , v5}
admits an acyclic L-coloring π. Obviously, π(xi) 6= π(yi) for each i ∈ {4, 5}. Let
S = {v′1, v′2, u3, x4, y4, x5, y5}. Since |L(v) \ {π(v6)}| > 4 and |S| = 7, there exists a
color c ∈ L(v) \ {π(v6)} which appears at most once on the set S. Then we color v
with c, v1 with a color a ∈ L(v1) \ {c, π(v6), π(v′1), π(v′2)}, v2 with a color different
from a, c, π(v6), π(v′2), v3 with a color different from π(v6), c, π(u3), and finally color
vi with a color different from c, π(v6), π(xi), π(yi) for i = 4, 5 successfully.

(Q6) Assume to the contrary that [vv1v2] is (6, 3, 3)-face, i.e., d(v1) = d(v2) = 3,
and v3, v4, v5 are adjacent pendant light 3-vertices. Let N(v1) = {v′1, v2, v} and
N(v2) = {v′2, v1, v}. By the minimality of G, G − {v, v1, v2, · · · , v5} has an
acyclic L-coloring π. Notice that π(xi) 6= π(yi) for each i ∈ {3, 4, 5}. Let
S = {v′1, v′2, x3, y3, x4, y4, x5, y5}. Since |L(v) \ {π(v6)}| > 4 and |S| = 8, there
exists a color belonging to L(v) \ {π(v6)} appearing at most twice on the set S.
If there exists a color in L(v) \ {π(v6)} appearing at most once on S, the proof
can also be given with a similar argument to the (Q5). Now assume, w.l.o.g., that
L(v) = {1, 2, 3, 4, 5}, π(v6) = 1, and each color in {2, 3, 4, 5} appears exactly twice
on the set S. It is easy to see that there exist two vertices x, y ∈ {x3, y3, x4, y4, x5, y5}
having the same color, set π(x3) = π(x4) = 2. We can color v with 2, v1 with a color
a different from 2, π(v′1), π(v′2), v2 with a color different from a, 2, π(v′2), v3 with a
color b ∈ L(v3) \ {1, 2, π(y3)}, v4 with a color c ∈ L(v4) \ {1, 2, b, π(y4)}, and finally
assign a proper coloring for v5.

(Q7) Suppose that [vv1v2] is (6, 3, 4)-face such that d(v1) = 3 and d(v2) = 4.
Let N(v1) = {v′1, v2, v} and N(v2) = {v′2, v′′2 , v1, v}. We need to consider two cases
as follows.

(7.1) Assume to the contrary that v3, v4, v5 are 2-vertices. By the minimality
of G, G − {v, v3, v4, v5} admits an acyclic L-coloring π. Obviously, π(v1) 6= π(v2).
First suppose that v1, v2, v6 are colored mutually distinct. We confirm that there
exists a color c belonging to L(v)\{π(v1), π(v2), π(v6)} which appears at most once
on the set {u3, u4, u5}, i.e., π(u3) = c. So we color v with c, v3 with a color different
from c, π(v1), π(v2), π(v6), and then color vi with a color distinct to c, π(ui) for
i = 4, 5. Next, suppose that π(v6) = π(v1). If π(v′1) = π(v2), then recolor v1 with
a color different from π(v1), π(v2), π(v′2), π(v′′2) and then go back to the former case.
Otherwise, we also can recolor v1 with a color different from π(v1), π(v2), π(v′1) and
then reduce the argument to the previous case. Finally, suppose that π(v2) = π(v6).
If π(v′2) = π(v′′2), there exists a color c′ ∈ L(v)\{π(v1), π(v2), π(v′2)} appearing at
most once on the set {u3, u4, u5} and then the proof can also be given with a similar
argument to the previous case. Now we assume that π(v′2) 6= π(v′′2). If π(v1) ∈
{π(v′2), π(v′′2)}, we first recolor v2 with a color distinct to π(v′1), π(v2), π(v′2), π(v′′2)
and then reduce to the previous case. Otherwise, v1, v

′
2, v

′′
2 have pairwise distinct

colors. We may first recolor v2 with a color distinct to π(v1), π(v2), π(v′2), π(v′′2) and
reduce the argument to the previous case.

(7.2) Assume to the contrary that v3 is a 2-vertex and v4, v5, v6 are adjacent
pendant light 3-vertices. By the minimality of G, G − {v, v1, v3, v4, v5, v6} admits
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an acyclic L-coloring π. Let S = {v′1, u3, x4, y4, x5, y5, x6, y6}. It is easy to see that
there exists a color belonging to L(v) \ {π(v2)} appearing at most twice on the set
S, since |L(v) \ {π(v2)}| > 4 and |S| = 8. We will discuss the following two cases.

First assume that there exists a color c ∈ L(v) \ {π(v2)} which appears at most
once on the set S. We color v with c firstly, then color v3 with a color different from
c, π(u3), π(v2), and vi with a color different from c, π(v2), π(xi), π(yi) for i = 4, 5, 6.
We further color v1 in the following way: If π(v′1) = π(v2), then assign v1 with a color
in L(v1)\{c, π(v2), π(v′2), π(v′′2)}. Otherwise, assign a color in L(v1)\{c, π(v2), π(v′1)}
to v1.

Now assume, w.l.o.g., that L(v) = {1, 2, 3, 4, 5}, π(v2) = 1, and each color in
{2, 3, 4, 5} appears exactly twice on the set S. It follows easily that there exist two
vertices x and y belonging to {x4, y4, x5, y5, x6, y6} having the same color. W.l.o.g.,
assume that π(x4) = π(x5) = 2. We may first color v with 2, v3 with a color
different from 2, π(u3), v4 with a color a ∈ L(v4) \ {1, 2, π(y4)}, v5 with a color
b ∈ L(v5) \ {1, 2, a, π(y5)}, v6 with a color different from 2, π(x6), π(y6), and finally
color v1 in the following way: If π(v′1) = π(v2) = 1, then assign v1 with a color in
L(v1) \ {1, 2, π(v′2), π(v′′2)}. Otherwise, assign a color in L(v1) \ {1, 2, π(v′1)} to v1.

Lemma 3.2.10 Suppose that v is a 7-vertex. Then the following hold:
(P1) If n2(v) = 4 and t(v) = 1, then p3(v) = 0;
(P2) If n2(v) = 3 and v is incident to a (7, 3, 3)-face, then p3(v) 6 1;

Proof. (P1) Suppose to the contrary that [vv1v2] is a 3-face, v3, v4, v5, v6 are
2-vertices and v7 is an adjacent pendant light 3-vertex. By the minimality of G,
G−{v, v3, v4, · · · , v7} admits an acyclic L-coloring π. Let S = {u3, u4, u5, u6, x7, y7}.
Obviously, |L(v)\{π(v1), π(v2)}| > 3 and |S| = 6. This fact implies that there exists
a color belonging to L(v) \ {π(v1), π(v2)} appearing at most twice on the set S. If
there is a color c ∈ L(v) \ {π(v1), π(v2)} appearing at most once on the set S, then
proof can also be given with a similar argument to the previous case (Q1). In what
follows, suppose that L(v) = {1, 2, 3, 4, 5}, π(v1) = 1, π(v2) = 2 and each color
belonging to {3, 4, 5} appears exactly twice on the set S. Moreover, there are two
vertices u,w ∈ {u3, u4, u5, u6} given the same color, say π(u3) = π(u4) = 3. We may
color v with 3. Then color v3 with a ∈ L(v3)\{1, 2, 3}, v4 with b ∈ L(v4)\{1, 2, 3, a},
vi with a color different from 3, π(ui) for i = 5, 6 and v7 with a color different from
3, π(x7), π(y7).

(P2) Suppose to the contrary that [vv1v2] is a (7, 3, 3)-face such that v1

and v2 are both 3-vertices, v3, v4, v5 are 2-vertices and v6, v7 are adjacent pen-
dant light 3-vertices. By the minimality of G, G − {v, v1, v2, · · · , v7} admits an
acyclic L-coloring π. Let N(v1) = {v′1, v2, v} and N(v2) = {v1, v

′
2, v}. Let

S = {v′1, v′2, u3, u4, u5, x6, y6, x7, y7}. Since |L(v)| = 5 and |S| = 9, there exists a
color c ∈ L(v) appearing at most once on the set S. We can extend π to G in
the following way: color v with c, v1 with a color a different from c, π(v′1), π(v′2), v2

with a color different from a, c, π(v′1), π(v′2), vi with a color different from c, π(ui)
for i = 3, 4, 5 and vj with a color different from c, π(xj), π(yj) for each j ∈ {6, 7}.
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Lemma 3.2.11 Suppose that v is an 8-vertex. Then the following hold:
(S1) n2(v) 6 6;
(S2) If t(v) = 1, then n2(v) 6 5.

Proof. (S1) The proof is similar to (C6) in Lemma 3.2.3.
(S2) Assume to the contrary that v1, v2, · · · , v6 are 2-vertices and [vv7v8] is

a 3-face. Let π be an acyclic L-coloring of G − {v, v1, v2, · · · , v6}. Obviously,
π(v7) 6= π(v8). Let S = {u1, u2, u3, u4, u5, u6}. Then there exists a color c ∈
L(v) \ {π(v7), π(v8)} appearing at most twice on the set S, say π(u1) = π(u2) = c.
Then color v with c, v1 with a color a different from π(v7), π(v8), c, v2 with a color
different from a, c, π(v7), π(v8), and finally color vi with a color different from c, π(ui)
for i = 3, 4, 5, 6.

3.2.2.2 Discharging argument

We complete the proof with a discharging procedure. We first assign to each vertex
v an initial charge ω(v) such that for all v ∈ V (G), ω(v) = 2d(v) − 6 and to each
face f an initial charge such that for all f ∈ F (G), ω(f) = d(f) − 6. Suppose that
f = [v1v2v3] is a 3-face with d(v1) 6 d(v2) 6 d(v3). We use (d(v1), d(v2), d(v3)) →
(c1, c2, c3) to denote that the vertex vi gives f the amount of weight ci for i = 1, 2, 3.

Our discharging rules are as follows:

(R1) Every 5+-vertex sends 1 to each adjacent 2-vertex, and 1
2
to each adjacent

pendant light 3-vertex.

(R2) Let f = [v1v2v3] be a 3-face with d(v1) 6 d(v2) 6 d(v3). We set

• (3, 3, 6+) → (1
2
, 1

2
, 2);

• (3, 4, 5+) → (1
2
, 1, 3

2
);

• (3, 5+, 5+) → (1
2
, 5

4
, 5

4
);

• (4+, 4+, 4+) → (1, 1, 1).

(R3) Every 4+-vertex v gives 1
5−n2(f)−n3(f)

to each incident 5-face f .

Claim 3.2.1 Suppose that f = [v1v2 · · · v5] is a 5-face. Let i ∈ {1, 2, · · · , 5}.
(1) If d(vi), d(vi+1) > 4, where i is taken modulo 5, then τ(vi → f) 6 1

3
and

τ(vi+1 → f) 6 1
3
;

(2) If d(vi) = 4, then τ(vi → f) 6 1
3
;

(3) If d(vi) > 5, then τ(vi → f) 6 1
2
.

Proof. (1) Assume, w.l.o.g., that i = 1. Namely, d(v1), d(v2) > 4. It follows
directly from (C2) and (C3.1) that there are at most two 3−-vertices among the
vertices of v3, v4, v5. This implies that n2(f) + n3(f) 6 2 and therefore (1) holds by
(R3).
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(2) Assume, w.l.o.g., that v1 is a 4-vertex. If either v2 or v5 is a 4+-vertex, then
we are done by (1). Otherwise, suppose that d(v2) = d(v5) = 3 by (C2). For each
i ∈ {3, 4}, d(vi) 6= 2 by (C2) and d(vi) 6= 3 by (C3.1). This means that both v3 and
v4 are 4+-vertices and thus (2) holds by (R3).

(3) It follows immediately from (C2) and (C3.1) that there are at most three
3−-vertices incident to f . Hence, (3) holds by (R3).

Similarly, to complete the proof of Theorem 3.2.2, we only need show that the
new weight function satisfies ω∗(x) > 0 for all x ∈ V (G) ∪ F (G).

Lemma 3.2.12 For every face f , ω∗(f) > 0.

Proof. Since G does not contain 4-cycles, there is no 4-faces. Depending on the
degree of f , we divide the proof into three cases.

Case 1 d(f) = 3.

The initial charge is ω(f) = −3. Let f = [xyz] such that d(x) 6 d(y) 6 d(z). By
(C7.1), d(x) > 3. By (C7.2) and (C7.3), f is either a (3, 3, 6+)-face, or a (3, 4, 5+)-
face, or a (3, 5+, 5+)-face, or a (4+, 4+, 4+)-face. In each case, by (R2), we have
ω∗(f) > −3+1

2
×2+2 = 0, or ω∗(f) > −3+1

2
+1+3

2
= 0, or ω∗(f) > −3+1

2
+5

4
×2 = 0,

or ω∗(f) > −3 + 1× 3 = 0.

Case 2 d(f) = 5.

Obviously, the initial charge of f is ω(f) = −1. It is easy to see by (C2) and
(C3.1) that 5− n2(f)− n3(f) > 2. Thus ω∗(f) > −1 + 1

5−n2(f)−n3(f)
× (5− n2(f)−

n3(f)) = 0 by (R3).

Case 3 d(f) > 6.

It is trivial that ω∗(f) = ω(f) = d(f)− 6 > 0.
This completes the proof of Lemma 3.2.12.

It remains to show that for each vertex v, ω∗(v) > 0. Let v ∈ V (G). By (C1),
d(v) > 2. In the following, let v1, v2, · · · , vd(v) denote the neighbors of v in a cyclic
order, and let fi denote the incident face of v with vvi and vvi+1 as two boundary
edges for i = 1, 2, · · · , d(v), where indices are taken modulo d(v).

If d(v) = 2, then the initial charge is ω(v) = −2. By (C2), v is adjacent to two
5+-vertices. Therefore, ω∗(v) > −2+1×2 = 0 by (R1). If d(v) = 3, then the initial
charge is ω(v) = 0 and t(v) 6 1 by the absence of intersecting triangles. If t(v) = 0,
then no charge is sent out. So the final charge is also 0. Otherwise, assume that v
is incident to a 3-face [vv1v2]. Lemma 3.2.7 confirms that v3 is a vertex of degree at
least 5. It follows from (R1) and (R2) that τ(v3 → v) = 1

2
and v sends 1

2
to [vv1v2].

Thus, ω∗(v) > 0− 1
2
+ 1

2
= 0. In the following, we consider the charge of 4+-vertices.

Let v ∈ V (G), we use m5(v) to denote the number of 5-faces incident to v. By the
absence of intersecting triangles, t(v) 6 1 for v ∈ V (G). This straightforward fact
is tacitly used in the following proofs.

Lemma 3.2.13 If d(v) = 4, then ω∗(v) > 0.
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Proof. The initial charge is ω(v) = 2. Observe that n2(v) = 0 by (C2) and
p3(v) = 0 by Lemma 3.2.7. Therefore, ω∗(v) > 2− t(v)− 1

3
(4− t(v)) = 2

3
− 2

3
t(v) > 0

by (R2) and (2) of Claim 3.2.1. This completes the proof of Lemma 3.2.13.

A 5-face f incident to v is called weak if v gives to f a charge exactly 1
2
. Let

m′
5(v) denote the number of weak 5-faces incident to v. First we have the following

observation.

Observation 3.2.14 For any 5+-vertex v, we have that n2(v) + 2t(v) + m′
5(v) 6

d(v).

Proof. Suppose that v is a 5+-vertex. Let

A = {u ∈ N(v) : d(u) = 2},
B = {u ∈ N(v) : vu is contained in a triangle}.

It follows from the definition and (C7.1) that A,B are disjoint and n2(v) = |A|, and
2t(v) = |B|. Suppose that fi = [vviwiwi+1vi+1] is a weak 5-face. That is to say that
fi gets 1

2
from v. Thus both vi and vi+1 are both 3−-vertices by (1) of Claim 3.2.1

and n2(fi) + n3(fi) = 3 by (R3). By symmetry, we have to consider the following
three cases, depending on the degree of vi and vi+1.

• d(vi) = d(vi+1) = 2. Then d(wi), d(wi+1) > 5 by (C2), which is a contradiction
to the fact that n2(fi) + n3(fi) = 3.

• d(vi) = 3 and d(vi+1) = 2. By (C2), d(wi) > 3 and d(wi+1) > 5. Since
n2(fi) + n3(fi) = 3, we deduce that d(wi) = 3. Noting that vi /∈ A. Moreover,
vi /∈ B by Lemma 3.2.7. If either fi−1 is not a weak 5-face or fi−1 is a weak
5-face but vi−1 does not belong to A ∪ B, then we are done, since m′

5(v) 6
d(v)− |A ∪B| = d(v)− |A| − |B| = d(v)− n2(v)− 2t(v). Otherwise, suppose
that fi−1 = [vvi−1ui−1uivi] is a weak 5-face and vi−1 ∈ A∪B. By (1) of Claim
3.2.1, d(vi−1) 6 3. If vi−1 ∈ A, i.e., d(vi−1) = 2, then d(ui−1) > 5 by (C2).
If vi−1 ∈ B, i.e., fi−2 = [vvi−2vi−1] is a 3-face, then d(ui−1) > 5 by Lemma
3.2.7. So, in each case, we always have that d(ui−1) > 5. On the other hand,
d(ui) > 5 by (C3.1) because d(wi) = 3. So n2(fi−1) + n3(fi−1) = 3 and thus v
sends at most 1

3
to fi−1 by (R3). This contradicts the assumption of fi−1.

• d(vi) = d(vi+1) = 3. By (C2), wi and wi+1 are vertices of degree at least 3.
Since n2(fi) + n3(fi) = 3, w.l.o.g., set d(wi) = 3 and d(wi+1) > 4. It follows
that vi /∈ A and vi /∈ B by Lemma 3.2.7. By using a similar discussion as above
paragraph, we derive that fi−1 cannot be a weak 5-face such that vi−1 ∈ A∪B
and thus m′

5(v) 6 d(v)− n2(v)− 2t(v).

This completes the proof of Observation 3.2.14.

In the following argument, let m be the charge transferring from v to its incident
3-face (if exists). To estimate the total amount of charge sent from a 5+-vertex v to
its incident 3-face, 5-faces, and adjacent 2-vertices and pendant light 3-vertices, by
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Observation 3.2.14, we make a rough calculation for v according to (R1) to (R3) as
follows:

ω∗(v) > 2d(v)− 6−m− n2(v)− 1

2
p3(v)− 1

2
m′

5(v)− 1

3
(m5(v)−m′

5(v))

= 2d(v)− 6−m− n2(v)− 1

2
p3(v)− 1

6
m′

5(v)− 1

3
m5(v)

> 2d(v)− 6−m− n2(v)− 1

2
p3(v)− 1

6
(d(v)− n2(v)− 2t(v))− 1

3
(d(v)− t(v))

=
3

2
d(v)− 6−m− 5

6
n2(v)− 1

2
p3(v) +

2

3
t(v) ≡ σ(v) (∗).

Lemma 3.2.15 If d(v) = 5, then ω∗(v) > 0.

Proof. The initial charge is ω(v) = 4. By (C4.1), n2(v) 6 1. Moreover, t(v) 6 1.
According to the value of t(v), the following proof is divided into two cases.

Case 1 t(v) = 0.

It follows that m = 0. By (∗), we have that σ(v) = 3
2
× 5 − 6 − 5

6
n2(v) −

1
2
p3(v) = 3

2
− 5

6
n2(v) − 1

2
p3(v) ≡ σ∗(v). If n2(v) = 1, then p3(v) = 0 by (C4.2)

and thus σ∗(v) = 3
2
− 5

6
= 2

3
. If n2(v) = 0, then p3(v) 6 3 by (F1) and thus

σ∗(v) = 3
2
− 1

2
× 3 = 0.

Case 2 t(v) = 1.

Let f1 = [vv1v2] be the 3-face incident to v. By (∗), we have

σ(v) =
3

2
× 5− 6−m− 5

6
n2(v)− 1

2
p3(v) +

2

3
=

13

6
−m− 5

6
n2(v)− 1

2
p3(v) ≡ σ∗(v).

If n2(v) = 1, then p3(v) = 0 by (C4.2) and f1 must be a (5, 4+, 4+)-face by
Lemma 3.2.4. By (R2), τ(v → f1) = 1. Thus, σ∗(v) = 13

6
− 1− 5

6
= 1

3
. Now, assume

that n2(v) = 0. By (C7), we see that f1 is either a (5, 3, 4+)-face or a (5, 4+, 4+)-face.
We only need to consider the following three cases, according to the situation of f1.

• Assume that f1 is a (5, 3, 4)-face. It follows from (F3) that p3(v) 6 1. Moreover,
v sends 3

2
to f1 by (R2). Thus, σ∗(v) = 13

6
− 3

2
− 1

2
= 1

6
.

• Assume that f1 is a (5, 3, 5+)-face. Namely, d(v1) = 3 and d(v2) > 5. Let v′1
be the other neighbor of v1 not on f1. Then τ(v → f1) = 5

4
by (R2). By (F2),

p3(v) 6 2. If p3(v) 6 1, then σ∗(v) = 13
6
− 5

4
− 1

2
= 5

12
. Now assume that p3(v) = 2.

If m5(v) 6 3, then ω∗(v) > 4 − 5
4
− 1

2
× 2 − 1

2
× 3 = 1

4
by (R1) and (3) of Claim

3.2.1. Otherwise, suppose that fi is a 5-face for all i = 2, 3, 4, 5. By (F4), n3(v) 6 3.
It implies that the vertex vi with i ∈ {3, 4, 5} which is not a pendant light 3-vertex
must be a 4+-vertex. By (1) of Claim 3.2.1, each of fi−1 and fi gets at most 1

3
from

v, respectively. Therefore, ω∗(v) > 4− 5
4
− 1

2
× 2− 1

3
× 2− 1

2
× 2 = 1

12
by (R1) and

(3) of Claim 3.2.1.
• Assume that f1 is a (5, 4+, 4+)-face. By (R2), τ(v → f1) = 1. Moreover,

p3(v) 6 2 by (F2). Thus, σ∗(v) = 13
6
− 1− 1

2
× 2 = 1

6
.

This completes the proof of Lemma 3.2.15.

Lemma 3.2.16 If d(v) = 6, then ω∗(v) > 0.
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Proof. The initial charge is ω(v) = 6. By (C5.1), n2(v) 6 4. Moreover, t(v) 6 1.
Depending on the value of t(v), the following proof is divided into two cases.

Case 1 t(v) = 0.

Then m = 0 and by (∗) we obtain that

σ(v) =
3

2
× 6− 6− 5

6
n2(v)− 1

2
p3(v) = 3− 5

6
n2(v)− 1

2
p3(v) ≡ σ∗(v).

• n2(v) = 4. Then n3(v) = 0 by (C5.2). It means that p3(v) = 0 and vi is
either a 2-vertex or a 4+-vertex for all i = 1, · · · 6. If m′

5(v) = 0, then ω∗(v) >
6 − 1 × 4 − 1

3
× 6 = 0 by (R1). Otherwise, assume that fi = [vviuiui+1vi+1] is a

weak 5-face, where i ∈ {1, · · · , 6} and i is taken modulo 6. By (1) of Claim 3.2.1,
we assert that d(vi) = d(vi+1) = 2. So both ui and ui+1 are 5+-vertices by (C2).
It follows that τ(v → fi) 6 1

3
by (R3), which contradicts the definition of a weak

5-face.
• n2(v) = 3. Then p3(v) 6 1 by (A2). Thus, σ∗(v) = 3− 5

6
× 3− 1

2
= 0.

• n2(v) = 2. Then p3(v) 6 2 by (Q2) and hence σ∗(v) = 3− 5
6
× 2− 1

2
× 2 = 1

3
.

• n2(v) = 1. Then p3(v) 6 4 by (Q4) and hence σ∗(v) = 3− 5
6
− 1

2
× 4 = 1

6
.

• n2(v) = 0. Then p3(v) 6 6. Thus, σ∗(v) = 3− 1
2
× 6 = 0.

Case 2 t(v) = 1.

Let f1 = [vv1v2] be the 3-face incident to v. Obviously, d(v1), d(v2) > 3 by
(C7.1). First we deduce by (∗) that

σ(v) =
3

2
× 6− 6−m− 5

6
n2(v)− 1

2
p3(v) +

2

3
=

11

3
−m− 5

6
n2(v)− 1

2
p3(v) ≡ σ∗(v).

First assume that f1 is a (6, 3, 3)-face. Then τ(v → f1) = 2 by (R2) and
n2(v) 6 2 by (C5.2) and (A2). By (A1), (Q5) and (Q6), n2(v) + p3(v) 6 2. Thus,
σ∗(v) > 11

3
− 2− 5

6
n2(v)− 1

2
(2− n2(v)) = 2

3
− 1

3
n2(v) > 2

3
− 1

3
× 2 = 0.

Next assume that f1 is a (6, 3, 4)-face. It follows from (R2) that τ(v → f1) = 3
2
.

By (Q7.1), we see that n2(v) 6 2. If 1 6 n2(v) 6 2, then n2(v) + p3(v) 6 3 by (Q3)
and (Q7.2). Thus, σ∗(v) = 11

3
− 3

2
− 5

6
n2(v)− 1

2
(3−n2(v)) = 2

3
− 1

3
n2(v) > 2

3
− 1

3
×2 = 0.

If n2(v) = 0, then p3(v) 6 4 and therefore σ∗(v) > 11
3
− 3

2
− 1

2
× 4 = 1

6
.

Next assume that f1 is a (6, 3, 5+)-face, i.e., d(v1) = 3 and d(v2) > 5. We have
that τ(v → f1) = 5

4
by (R2). Moreover, n2(v) 6 3 by (A3).

• n2(v) = 3. Then n3(v) 6 1 by (A2). It means that p3(v) = 0 and vi is either a
2-vertex or a 4+-vertex, where i ∈ {3, 4, 5, 6}. One can easily check that fi cannot
be a weak 5-face for all i = 2, · · · , 5. Therefore, ω∗(v) > 6− 5

4
− 1× 3− 1

3
× 5 = 1

12

by (R1).
• n2(v) = 2. Then p3(v) 6 1 by (Q3). It follows that σ∗(v) = 11

3
−5

4
−5

6
×2−1

2
= 1

4
.

• n2(v) 6 1. We conclude that σ∗(v) = 11
3
− 5

4
− 5

6
n2(v) − 1

2
(4 − n2(v)) =

5
12
− 1

3
n2(v) > 5

12
− 1

3
= 1

12
.

Finally suppose that f1 is a (6, 4+, 4+)-face. By (R2), v sends 1 to f1. By (A3),
n2(v) 6 3. If n2(v) = 3, then p3(v) = 0 by (Q1) and thus σ∗(v) = 11

3
−1− 5

6
×3 = 1

6
.
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If n2(v) 6 2, then p3(v) 6 4−n2(v) and thus σ∗(v) > 11
3
−1− 5

6
n2(v)− 1

2
(4−n2(v)) =

2
3
− 1

3
n2(v) > 2

3
− 1

3
× 2 = 0.

This completes the proof of Lemma 3.2.16.

Lemma 3.2.17 If d(v) = 7, then ω∗(v) > 0.

Proof. The initial charge is ω(v) = 8. By (C6), n2(v) 6 5. Moreover, t(v) 6 1.
Depending on the value of t(v), the following proof is divided into two cases.

Case 1 t(v) = 0.

It follows that m = 0. By (∗), we have

σ(v) =
3

2
× 7− 6− 5

6
n2(v)− 1

2
p3(v) =

9

2
− 5

6
n2(v)− 1

2
p3(v) ≡ σ∗(v).

• n2(v) = 5. Then p3(v) = 0 by (B2) and thus σ∗(v) = 9
2
− 5

6
× 5 = 1

3
.

• n2(v) = 4. Then p3(v) 6 2 by (B1). So σ∗(v) = 9
2
− 5

6
× 4− 1

2
× 2 = 1

6
.

• n2(v) 6 3. It is easy to deduce that σ∗(v) > 9
2
− 5

6
n2(v) − 1

2
(7 − n2(v)) =

1− 1
3
n2(v) > 1− 1

3
× 3 = 0.

Case 2 t(v) = 1.

Let f1 = [vv1v2] be the 3-face incident to v. By (∗), we derive that

σ(v) =
3

2
× 7− 6−m− 5

6
n2(v)− 1

2
p3(v) +

2

3
=

31

6
−m− 5

6
n2(v)− 1

2
p3(v) ≡ σ∗(v).

First assume that f1 is a (7, 3, 3)-face, i.e., d(v1) = d(v2) = 3. It follows from
(B1) that vi is either a 2-vertex or a 4+-vertex for each i ∈ {3, · · · , 7}. By (C2)
and (1) of Claim 3.2.1, one can easily check that v cannot be incident to any weak
5-face, which implies that τ(v → fi) 6 1

3
for all i = 2, · · · , 7. Therefore, ω∗(v) >

8− 2− 1× 4− 1
3
× 6 = 0 by (R1) and (R2).

Next, suppose that n2(v) = 3. Then p3(v) 6 1 by (P2) and thus σ∗(v) =
31
6
− 2 − 5

6
× 3 − 1

2
= 1

6
. Finally, suppose that n2(v) 6 2. It follows immediately

that p3(v) 6 5 − n2(v) and therefore σ∗(v) = 31
6
− 2 − 5

6
n2(v) − 1

2
(5 − n2(v)) =

2
3
− 1

3
n2(v) > 2

3
− 1

3
× 2 = 0.

Now assume that f1 is a (7, 3, 4)-face. According to (R2), τ(v → f1) 6 3
2
. If

n2(v) = 4, then p3(v) = 0 by (P1). So σ∗(v) = 31
6
− 3

2
− 5

6
× 4 = 1

3
. If n2(v) 6 3,

then p3(v) 6 5 − n2(v) and therefore σ∗(v) > 31
6
− 3

2
− 5

6
n2(v) − 1

2
(5 − n2(v)) =

7
6
− 1

3
n2(v) > 7

6
− 1

3
× 3 = 1

6
.

Finally assume that f1 is a (7, 3+, 5+)-face. By (R2), τ(v → f1) 6 5
4
. Moreover,

n2(v) 6 4 by (B2). Therefore, σ∗(v) > 31
6
− 5

4
− 5

6
n2(v)− 1

2
(5−n2(v)) = 17

12
− 1

3
n2(v) >

17
12
− 1

3
× 4 = 1

12
.

This completes the proof of Lemma 3.2.17.

Lemma 3.2.18 If d(v) > 8, then ω∗(v) > 0.
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Proof. We recall that σ(v) = 3
2
d(v)− 6−m− 5

6
n2(v)− 1

2
p3(v) + 2

3
t(v).

First assume that t(v) = 0. Then m = 0. If d(v) > 9, then σ(v) > 3
2
d(v)− 6−

5
6
n2(v)− 1

2
(d(v)−n2(v)) = d(v)−6− 1

3
n2(v) > d(v)−6− 1

3
×d(v) = 2

3
d(v)−6 > 0. If

d(v) = 8, then n2(v) 6 6 by (S1) and thus σ(v) > 3
2
×8−6− 5

6
n2(v)− 1

2
(8−n2(v)) =

2− 1
3
n2(v) > 2− 1

3
× 6 = 0.

Now assume that t(v) = 1. If d(v) > 9, then m 6 2 by (R2) and thus σ(v) >
3
2
d(v) − 6 − 2 − 5

6
n2(v) − 1

2
(d(v) − n2(v) − 2) + 2

3
= d(v) − 19

3
− 1

3
n2(v) > d(v) −

19
3
− 1

3
(d(v) − 2) = 2

3
d(v) − 17

3
> 1

3
. If d(v) = 8, then n2(v) 6 5 by (S2) and thus

σ(v) > 3
2
× 8− 6− 2− 5

6
n2(v)− 1

2
(8− n2(v)− 2) + 2

3
= 5

3
− 1

3
n2(v) > 0.

This completes the proof of Lemma 3.2.18.

3.3 Acyclic 4-choosability

3.3.1 Known results

In this section, we study the acyclic 4-choosability of planar graphs. In [Mon07],
Montassier considered the planar graphs with girth at least 5 and improved the
result on acyclically 4-colorable [BKW99] to acyclically 4-choosable. In [MRW06a],
Montassier, Raspaud andWang proved that every planar graph G without 4-, 5-, and
6-cycles, or without 4-, 5-, and 7-cycles, or without 4-cycles, 5-cycles and intersecting
3-cycles is acyclically 4-choosable. Moreover, they proposed the following conjecture:

Conjecture 3.3.1 (“Domaine de la Solitude 2000”Conjecture)
Every planar graph without 4-cycles is acyclically 4-choosable.

This conjecture is stronger than Conjecture 3.2.1, which is still unsettled. It
seems to be much more difficult. Some sufficient conditions for planar graphs with-
out specific short cycles to be acyclically 4-choosable were established. It is proved
in [CRRZ11] that every planar graph without 4-, 7-, and 8-cycles is acyclically 4-
choosable. Chen and Raspaud [CR09] proved that every planar graph without 4-,
5-, and 8-cycles is acyclically 4-choosable. Later, they showed in [CR10b] that a
planar graph G is still acyclically 4-choosable if G contains no 4-cycles, 5-cycles
and an 8-cycle having a triangular chord. Recently, Borodin, Ivanova and Raspaud
[BIR10] showed that every planar graph with neither 4-cycles nor triangular 6-cycles
is acyclically 4-choosable, which implies that every planar graph without 4- and 6-
cycles is acyclically 4-choosable. Note that in all these results cycles of length 4 are
forbidden. In this section, we prove the following:

Theorem 3.3.2 [CR10c] Planar graphs without 4-cycles and 5-cycle are acyclically
4-choosable.

Our result is a new approach to the conjecture 3.3.1 and is best possible in the
sense that there are planar graphs without 4- and 5-cycles that are not 3-choosable
[Voi07]. Moreover, it extends some results in [Bor10, MRW06a, MRW07, CR09,
CR10b]. We remark that the same result is independently obtained by Borodin and
Ivanova [BI10] recently.
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3.3. Acyclic 4-choosability

3.3.2 Proof of Theorem 3.3.2

Suppose to the contrary that Theorem 3.3.2 is not true. Let G be a counterexample
to Theorem 3.3.2 with the least number of vertices. Thus G is connected. We first
investigate the structural properties of G in Section 3.3.2.1, then use Euler’s formula
and discharging technique to derive a contradiction in Section 3.3.2.2.

3.3.2.1 Structural properties

First, we give the following Lemmas 3.3.3 to 3.3.5, whose proof were provided in
[MRW06a] and [CR10b], respectively.

0
C9: G

1
C10: G

2
C11: G

3
C12: G

4
C13: G

Figure 3.4: Some of reducible configurations in Lemma 3.3.3.

Lemma 3.3.3 [MRW06b] (C1) There are no 1-vertices.
(C2) A 2-vertex is not incident to a 3-face.
(C3) A 2-vertex is not adjacent to a vertex of degree at most 3.
(C4) A 3-vertex is adjacent to at most one 3-vertex.
(C5) A 4-vertex is adjacent to at most one 2-vertex.
(C6) There is no 3-face incident to two 3-vertices and one 4-vertex.
(C7) A 5-vertex is adjacent to at most three 2-vertices.
(C8) There is no 5-vertex incident to a 3-face, adjacent to three 2-vertices.
(C9) G does not contain G0 as a subgraph.
(C10) G does not contain G1 as a subgraph.
(C11) G does not contain G2 as a subgraph.
(C12) G does not contain G3 as a subgraph.
(C13) G does not contain G4 as a subgraph.

It is worthy of being mentioned that (C4) was proved independently by Borodin,
Kostochka and Woodall in [BKW99] for the acyclic 4-colorings. However, the proof
in [BIR10] also works for the acyclic 4-choosability with almost no changes.

Lemma 3.3.4 [CR10b] If v is a pendant light 3-vertex of v3, i.e., f = [vv1v2] is a
3-face, then d(v3) > 4.

We remark that the proof of Lemma 3.3.4 was inspired from Lemma 1 in [BIR10].
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Lemma 3.3.5 [CR10b] Let v be a 5-vertex with t(v) = 2. If one incident 3-face of
v is a (3, 3, 5)-face, then n2(v) = 0.

In what follows, let L be a list assignment of G with |L(v)| = 4 for all v ∈ V (G).

Lemma 3.3.6 If v is a 5-vertex incident to a (5, 3, 3)-face and a (5, 3, 3+)-face,
then p3(v) = 0.

Proof. Suppose to the contrary that f = [vv1v2] is a (5, 3, 3)-face, f ′ = [vv4v5]
is a (5, 3, 3+)-face and v3 is a pendant light 3-vertex such that [v3x3y3] is a 3-face.
By definition, we see that v1, v2, v4 are all 3-vertices. For each i ∈ {1, 2, 4}, let wi

denote the another neighbor of vi not on its incident 3-face.
By the minimality of G, G − {v, v1, v2, v3} has an acyclic L-coloring π. Notice

that π(x3) 6= π(y3) and π(v4) 6= π(v5). Denote S = {w1, w2, x3, y3}. Since |L(v) \
{π(v4), π(v5)}| > 2 and |S| = 4, there exists a color c ∈ L(v) \ {π(v4), π(v5)}
appearing at most twice on the set S. We first suppose that such color c appears
at most once on the set S. If one of w1, w2 is colored with c, say w1, then it
is easy to extend π to G by coloring v with c, v1 with a color a different from
c, π(v4), π(v5), v2 with a color different from a, c, π(w2), and v3 with a color different
from c, π(x3), π(y3). Otherwise, w.l.o.g., suppose that π(x3) = c. We may color
v with c, v1 with a color a different from c, π(w1), π(w2), v2 with a color different
from a, c, π(w2), and v3 with a color b different from c, π(y3), π(v5). If the resulting
coloring is not acyclic, we deduce that π(w4) = c and π(v4) = b. We only need to
recolor v4 with a color in L(v4) \ {b, c, π(v5)}.

So, in what follows, w.l.o.g., we suppose that L(v) = {1, 2, 3, 4}, π(v4) = 1,
π(v5) = 2, π(w1) = π(x3) = 3 and π(w2) = π(y3) = 4. Obviously, there is a color
a ∈ {3, 4}\{π(w4)}. Without loss of generality, assume a = 3. We first color v with
3, then color v3 with a color b different from 2, 3, 4, v1 with a color d different from
2, 3, b, and finally color v2 with a color different from 3, 4, d.

Let v be a 4-vertex. If v is incident to exactly two non-adjacent 3-faces, then we
call v a 4∗-vertex. If a 3-face f = [v1v2v3] is incident to a 4∗-vertex, say v1, then we
call f a (4∗, d(v2), d(v3))-face.

v

1
v

u w
1

u

2
u

2
w

1
w

2
x

2
y

1
y

1
x

Figure 3.5: A (3, 4∗, 4∗)-face [vwu].

60



3.3. Acyclic 4-choosability

Lemma 3.3.7 Suppose G contains a (3, 4∗, 4∗)-face [vwu], depicted in Figure 3.5.
Let π be an acyclic L-coloring of G− v and L(v) = {1, 2, 3, 4}. Then

(i) w.l.o.g., π(v1) = π(w) = 1 and π(u) = 2;

(iii) L(w) = L(u) = {1, 2, 3, 4}:
(iii) {π(w1), π(w2)} = {π(u1), π(u2)} = {3, 4};
(iv) 1 ∈ N(wi) \ {w} and 1 ∈ N(ui) \ {u}.

Proof. Obviously, π(u) 6= π(w). If π(v1), π(u), π(w) are mutually distinct, we
are easily done by coloring v with a color in L(v) \ {π(v1), π(u), π(w)}. Otherwise,
by symmetry, we may suppose that π(v1) = π(w). If there exists a color c ∈
L(v) \ {π(v1), π(u), π(w1), π(w2)}, then it suffices to color v with c. Otherwise, if
v cannot be acyclically colored, we may suppose, w.l.o.g., that π(v1) = π(w) = 1,
π(u) = 2, {π(w1), π(w2)} = {3, 4}, and 1 ∈ N(wi) \ {w} for each i ∈ {1, 2}. If
L(w) 6= {1, 2, 3, 4}, then we recolor w by a color in L(w) \ {1, 2, 3, 4} and then go
back to the previous case. So, in the following, assume that L(w) = {1, 2, 3, 4}.
Now we erase the color of u and recolor w with 2. Notice that neither u1 nor
u2 is colored with 2. If L(u) 6= {1, 2, π(u1), π(u2)}, then color u with a color in
L(u)\{1, 2, π(u1), π(u2)} and then reduce the proof to the previous case. Otherwise,
assume that L(u) = {1, 2, π(u1), π(u2)} and assign 1 to u. If v cannot be further
given the color 3 or the color 4, then it follows immediately that {π(u1), π(u2)} =
{3, 4} and 1 ∈ N(ui) \ {u} for each i ∈ {1, 2} and thus L(u) = {1, 2, 3, 4}.

v
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v

u w
1

u

2
u

2
w

1
w

2
x

2
y

1
y

1
x

Figure 3.6: The configuration (F).

Lemma 3.3.8 Suppose that G contains the configuration (F), depicted in Fig-
ure 3.6. Let π be an acyclic L-coloring of G − v and L(v) = {1, 2, 3, 4}. If
π(xi) 6= π(yi) for some fixed i ∈ {1, 2}, then L(wi) = {π(w1), π(w2), π(xi), π(yi)}.

Proof. By symmetry, suppose that π(x1) 6= π(y1). By (i) of Lemma 3.3.7, we
may assume that π(v1) = π(w) = 1 and π(u) = 2 (otherwise, we swap the colors
of w and u). By (ii) to (iv) of Lemma 3.3.7, we further suppose, w.l.o.g., that
π(x1) = π(x2) = 1, π(w1) = π(u1) = 3, π(w2) = π(u2) = 4, and L(w) = L(u) =
{1, 2, 3, 4}. First, suppose that π(y1) = 4. We may first recolor w1 with a in
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(B3) (B4) (B5)

(B2)

Figure 3.7: The configurations (B1) to (B5).

L(w1) different from 1, 3, 4. If π(y2) 6= a, we are done by coloring v with 3.
Otherwise, suppose π(y2) = a. We can recolor w2 with a color b ∈ L(w2) \ {1, 4, a}
and finally color v with 4 successfully. Now assume that π(y1) 6= 4. If L(w1) 6=
{π(w1), π(w2), π(x1), π(y1)} = {1, 3, 4, π(y1)}, we can extend π to G by recoloring
w1 with a color in L(w1) \ {1, 3, 4, π(y1)} and coloring v with 3. This contradicts
the assumption of G and thus we complete the proof of Lemma 3.3.8.

Lemma 3.3.9 G does not contain the configurations (B1) to (B5) depicted in
Figure 3.7.

Proof. In each of the following Case i with i ∈ {1, · · · , 5}, we suppose that G
contains the configuration (Bi) and let π be an acyclic L-coloring of G − v by
the minimality of G. W.l.o.g., suppose that L(v) = {1, 2, 3, 4}. By (i) to (iii)
of Lemma 3.3.7, we may suppose, w.l.o.g., that π(v1) = π(w) = 1, π(u) = 2,
π(w1) = π(u1) = 3, π(w2) = π(u2) = 4, and L(w) = L(u) = {1, 2, 3, 4}. Next, in
each case, we will make use of contradictions to show that (Bi) cannot exist in G.

Case 1 G contains (B1).
W.l.o.g, we have that π(t1) = 1 and 1 ∈ {π(x1), π(x)} by (iv) of Lemma 3.3.7.

1.1 π(x1) = 1. For our convenience, we denote π(x) = α∗ and π(t2) = β∗.
Notice that α∗ could be equal to β∗. By Lemma 3.3.8, we have that L(w1) =
{1, 3, 4, β∗} and L(w2) = {1, 3, 4, α∗}. It follows that α∗, β∗ /∈ {3, 4}. We first
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erase the color of w2. If x can be assigned a feasible color γ such that the
resulting coloring of G − {v, w2} is still acyclic, then we can extend π to G
properly in the following way: If γ = 3, then recolor w1 with 4, and color w2

with α∗ and v with 3; otherwise, we only need to color w2 with α∗ and color
v with 4. Next, we will show how to recolor x with such a feasible color.

1.1.1 1 /∈ {π(y), π(z)}. Denote π(y) = γ1 and π(z) = γ2. If L(x) 6=
{1, α∗, γ1, γ2}, then a color c ∈ L(x) \ {1, α∗, γ1, γ2} is feasible for x of
G−{v, w2} and thus we are done. Now suppose L(x) = {1, α∗, γ1, γ2} and
erase the color of x. First, we assume that π(z1) 6= γ1. We recolor z with
a color different from γ1, γ2, π(z1) and then color x with a feasible color
γ2. Otherwise, suppose π(z1) = γ1. If γ2 ∈ {π(y1), π(y2)}, we can recolor
y with a color different from γ1, π(y1), π(y2) and then color x with a fea-
sible color γ1. Now suppose that γ2, π(y1), π(y2) are pairwise distinct. In
this case, we may first recolor y with a color c ∈ L(y) \ {γ1, π(y1), π(y2)}.
If c = γ2, we further recolor z with a color c′ ∈ L(z)\{1, γ1, γ2} and then
assign the feasible color γ1 for x. If c 6= γ2, it suffices to color x with the
feasible color γ1.

1.1.2 π(y) = 1 and π(z) 6= 1. We need to consider two possibilities below.

• π(y1), π(y2), π(z) are mutually distinct. We first recolor y with c
belonging to L(y) \ {1, π(y1), π(y2)}. If c /∈ {α∗, π(z)}, then go back
to the previous case 1.1.1. If c = α∗, then recolor x with a feasible
color d ∈ L(x)\{1, α∗, π(z)}. Now we suppose that c = π(z). In this
case, we first recolor z with a color c′ different from 1, π(z1), π(z).
If c′ 6= α∗, we may also reduce the proof to the previous case 1.1.1.
If c′ = α∗, we only need to recolor x with a feasible color d′ ∈
L(x) \ {1, α∗, c}.

• π(y1) = π(z). Denote π(y1) = γ1 and π(y2) = γ2. Observe that
L(x) = {1, α∗, γ1, γ2}; otherwise, there exists a feasible color belong-
ing to L(x) \ {1, α∗, γ1, γ2} for x and thus we are done. If π(z1) 6= 1,
we recolor z with a color distinct to 1, γ1, π(z1) and then assign the
feasible color γ1 to x. If π(z1) = 1, we may recolor y with a color
different from 1, γ1, γ2 and then assign the feasible color γ2 to x.

1.1.3 π(z) = 1 and π(y) 6= 1. Similarly, we observe that L(x) =
{1, α∗, π(y), π(z1)}; otherwise, there is a feasible color in L(x) \
{1, α∗, π(y), π(z1)} for x and thus we are done. This observation im-
plies that π(y) 6= π(z1). If there is a color c in L(z) \ {1, α∗, π(y), π(z1)},
then recolor z with c and then go back to the previous case 1.1.1. Now
assume that L(z) = {1, α∗, π(y), π(z1)}. We only need to recolor z with
α∗ and then assign the feasible color π(z1) to x.

1.2 π(x) = 1. Similarly, denote π(x1) = α∗ and π(t2) = β∗. By Lemma 3.3.8, we
have that L(w1) = {1, 3, 4, β∗} and L(w2) = {1, 3, 4, α∗}. If 3 /∈ {π(y), π(z)},
then recolor w2 with 3, w1 with 4, and finally color v with 3 successfully. If
4 /∈ {π(y), π(z)}, then color v with 4 easily. Now assume that {π(y), π(z)} =
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Chapter 3. Acyclic choosability

{3, 4}. We may further deduce that π(z1) = 1 and 1 ∈ {π(y1), π(y2)}, say
π(y1) = 1. If there exists a color c ∈ L(x) \ {1, 3, 4, α∗}, then recolor x with c
and color v with 4. Otherwise, assume that L(x) = {1, 3, 4, α∗}. If π(z) = 3,
then recolor x with 3, z with a color different from 1, 3, 4 and finally color v
with 4. If π(z) = 4, then recolor x with 4, w2 with 3, w1 with 4, z with a color
different from 1, 3, 4 and finally color v with 3.

Case 2 G contains (B2).
By (iv) of Lemma 3.3.7, w.l.o.g., we assume that π(t1) = 1 and 1 ∈ {π(x), π(z)}.

2.1 π(x) = 1. It follows immediately that π(x1) = 4. By Lemma 3.3.8, we see
that L(w2) = {1, 3, 4, π(z)}. Observe that π(z) 6= 4. So we can recolor w2

with 1, x with a color different from 1, 4, π(z), w with 4, and finally color v
with 3.

2.2 π(z) = 1. It follows that at least one of z1, z2, z3 is colored with 4. For
simplicity, we denote π(x) = α∗ and π(t2) = β∗. According to Lemma 3.3.8,
we have that L(w1) = {1, 3, 4, β∗} and L(w2) = {1, 3, 4, α∗}. We have two
subcases, depending on the color of x1.

a) π(x1) 6= 1. It is easy to extend π to G by recoloring w2 with α∗, x with
a color different from 1, α∗, π(x1), and finally coloring v with 3.

b) π(x1) = 1. Observe that at least one of z1, z2, z3 is colored with 3; other-
wise, we can recolor w1 with 4, w2 with 3 and color v with 3 successfully.
This observation reminds us that the color 3 and the color 4 are both
appeared on the set {z1, z2, z3}. Now we first recolor z with a color
c ∈ L(z) \ {1, π(z2), π(z3)}. If c = 3, then π(z1) = 3 and thus we first
recolor z1 with a color different from 3, π(y) and then color v with 4.
Similarly, if c = 4, then π(z1) = 4 and hence we can first recolor z1 with
a color different from 4, π(y), w2 with 3, w1 with 4, and then color v with
3. So, in the following, we suppose c /∈ {3, 4}. First assume that c 6= α∗.
If c 6= π(y), it is enough to recolor z1 with a color distinct to c, π(y),
and then color v with 4. Otherwise, we recolor z1 with a color different
from c, π(z2), π(z3) and then color v with 4. Now assume that c = α∗.
We need to first recolor x with a color different from 1, 4, α∗ and then
go back to the previous case.

Case 3 G contains (B3).
W.l.o.g, we assume that π(t1) = 1 and 1 ∈ {π(z), π(x)} by (iv) of Lemma 3.3.7.

3.1 π(z) = 1. We first recolor w2 with a in L(w2) different from 1, 3, 4. If
π(x1) 6= a, we need to further recolor x with a color different from a, π(x1)
and color v with 4. Otherwise, suppose π(x1) = a. Then we can recolor x
with a color different from 1, 3, a and finally color v with 4.

3.2 π(x) = 1. In this case, we may further suppose that π(x1) = 4; otherwise, we
can color v with 4 successfully. So π(x) 6= π(z). By Lemma 3.3.8, we have
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3.3. Acyclic 4-choosability

that L(w2) = {1, 3, 4, π(z)}. Therefore, we can first recolor w2 with 1 and w
with 4, then recolor x with a color different from 1 and 4, and finally color v
with 3.

Case 4 G contains (B4).
By (iv) of Lemma 3.3.7, we may assume, w.l.o.g., that π(t1) = π(x) = 1. More-

over, at least one of x1, x2 is colored with 4; otherwise, we can extend π to G easily
by assigning the color 4 to v. By symmetry, assume that π(x1) = 4. The following
argument is divided into two cases, according to the color of z.

4.1 π(z) = 1. We first recolor w2 with a ∈ L(w2) \ {3, 4, π(x2)}. If a 6= 1, then
further color v with 4. Otherwise, suppose a = 1. Then recolor x with a color
in L(x) \ {1, 4, π(x2)}, z with a color in L(z) \ {1, π(z1), π(z2)}, w with 4, and
finally color v with 3.

4.2 π(z) 6= 1. By Lemma 3.3.8, we see that L(w2) = {1, 3, 4, π(z)}. We first
recolor w2 with 1, then recolor x with a color distinct to 1, 4, π(x2) and recolor
w with 4, and finally color v with 3.

Case 5 G contains (B5).
By (iv) of Lemma 3.3.7, we see that either x or z is colored with 1.

5.1 π(x) = 1. It it easy to obtain that π(x1) = 4. Notice that π(z) 6= 4. If there
exists a color c in L(x) \ {1, 3, 4, π(z)}, then recolor x with c and color v with
4. Now assume that L(x) = {1, 3, 4, π(z)}. It follows that π(z) 6= 3. We need
to recolor x with 3, w2 with a color different from 3, 4, π(z), w with 4 and
finally color v with 3 successfully.

5.2 π(z) = 1. By symmetry, we may assume that π(z1) = 4. First suppose that
π(x) = 3. We first recolor w2 with a in L(w2) different from 1, 3, 4. If
π(x1) 6= a, it is easy to color v with 4. If π(x1) = a, we recolor x with a color
b ∈ L(x) \ {1, 3, a} and then color v with 4. Now suppose that π(x) 6= 3.
If there exists a color c ∈ L(w2) \ {1, 3, 4, π(x)}, we recolor w2 with c and
then color v with 4. So, in what follows, suppose that L(w2) = {1, 3, 4, π(x)}.
Denote π(x) = α∗. We have two subcases, depending on the color of x1.

• π(x1) = 1. Firstly, we recolor x with a different from 1, 4, α∗. If π(z2) 6= a,
we continue to recolor w2 with α∗, w with 4 and finally color v with 3.
Otherwise, suppose that π(z2) = a. It means that z, z1, z2 have distinct
colors. Then we further recolor z with b different from 1, 4, a. If b 6= 3,
we only need to color v with 4. If b = 3, then we recolor w2 with 1, w
with 4, and finally color v with 3.

• π(x1) 6= 1. It is easy to extend π to G by recoloring w2 with α∗, x with
a color different from 1, α∗, π(x1), and afterwards coloring v with 4.

Lemma 3.3.10 G does not contain the configurations (Q1) to (Q4) depicted in
Figure 3.8.
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Chapter 3. Acyclic choosability

Proof. In each of the following Case i with i ∈ {1, · · · , 4}, we suppose that G
contains the configuration (Qi) and let π be an acyclic L-coloring of G − v by
the minimality of G. W.l.o.g., suppose that L(v) = {1, 2, 3, 4}. By (i)-(iv) of
Lemma 3.3.7, we may suppose, w.l.o.g., that π(v1) = π(w) = π(t1) = π(s1) = 1,
π(u) = 2, π(w1) = 3, π(w2) = 4, {π(u1), π(u2)} = {3, 4}, 1 ∈ {π(x), π(z)}, and
L(w) = L(u) = {1, 2, 3, 4}. First we assume, in the following each case, that
π(z) = 1. By Lemma 3.3.8, we obtain that L(w1) = {1, 3, 4, π(t2)} and L(w2) =
{1, 3, 4, π(x)}. Now we swap the colors of w and u. By Lemma 3.3.8 again, we
deduce that π(z1) /∈ {3, 4}. So at most one of the colors 3 and 4 is appeared on
z2. If π(z2) = 4, we recolor w2 with 3, w1 with 4, w with 1, u with 2, and then
color v with 3 successfully. Otherwise, we recolor w with 1, u with 2, and color
v with 4. We always derive a contradiction. So, in the following, by symmetry,
we assume π(x) = π(u3) = 1. For simplicity, denote π(z) = α∗ and π(t2) = β∗.
Again L(w1) = {1, 3, 4, β∗} and L(w2) = {1, 3, 4, α∗} by Lemma 3.3.8. It means
that α∗, β∗ /∈ {3, 4}. Next, in each case, we will make use of contradictions to show
that (Qi) cannot exist in G.
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Figure 3.8: The configurations (Q1) to (Q4).

Case 1 G contains (Q1).
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By using a similar argument as above, we deduce that {π(x1), π(x2)} = {3, 4}.
We first recolor x with c ∈ L(x) \ {1, 3, 4}. If c 6= α∗, then we color v with 4 suc-
cessfully. Otherwise, we continue to recolor z with d different from α∗, π(z1), π(z2).
It is easy to check that the resulting coloring is acyclic. If d = 1, then go back to
the previous case. If d = 4, then recolor w2 with 3, w1 with 4, and color v with 3.
Otherwise, we color v with 4 easily.

Case 2 G contains (Q2).
Note that π(z1) 6= 1. Moreover, π(z1) /∈ {3, 4} by Lemma 3.3.8. It implies that

π(z1) 6= π(u1). We first recolor z with a color c ∈ L(z) \ {1, π(z1), α
∗}, w2 with

α∗, w1 with a ∈ {3, 4} \ {c}, and finally color v with a color in {3, 4} different
from a. If the resulting coloring is not acyclic, then we deduce that π(z4) = c
and π(z2) ∈ {1, π(z1)}. It suffices to further recolor z2 with a color different from
1, c, π(z1).

Case 3 G contains (Q3).
Notice that π(u3) = 1. First, we recolor u with 1 and w with 2. By Lemma

3.3.8, L(u2) = {1, 3, 4, π(z1)}. It implies that π(z1) 6= π(u1), since π(u1) ∈ {3, 4}.
So we can extend π to G easily by recoloring z1 with c ∈ L(z1) \ {1, α∗, π(z1)}, u2

with π(z1), and afterwards coloring v with a color in {3, 4} \ {π(u1)}.
Case 4 G contains (Q4).

Denote π(z1) = γ∗. Similarly, by Lemma 3.3.8, we deduce that L(u2) =
{1, 3, 4, γ∗}. The argument is divided into two subcases, depending on the color
of z2.

4.1 π(z2) 6= 1. We first recolor z with c distinct to 1, α∗, π(z2). If c 6= γ∗, we
need to recolor w2 with α∗ and then color v with 4 successfully. Otherwise,
assume L(z) = {1, α∗, γ∗, π(z2)}. By symmetry, we easily obtain that L(z1) =
{1, α∗, γ∗, π(z2)}. Now we recolor z with γ∗, z1, w2 with α∗ and afterwards
color v with 4. It is easy to check that the resulting coloring is acyclic.

4.2 π(z2) = 1. First recolor z2 with a color a ∈ L(z2) \ {1, π(z3), π(z4)}. If
a /∈ {α∗, γ∗}, then reduce the proof to the previous Case 4.1. Otherwise, by
symmetry, suppose that a = α∗. We first recolor z with a color c distinct to
1, α∗, γ∗, then recolor w2 with α∗ and w1 with a color c′ in {3, 4} \ {c}, and
finally color v with a color in {3, 4} different from c′ successfully.

3.3.2.2 Discharging argument

We complete the proof with a discharging procedure. As usual, we assign to each
vertex v an initial charge ω(v) = 2d(v) − 6 and to each face f an initial charge
ω(f) = d(f) − 6. Before stating discharging rules, we need to give some notation
used in the rest part of this section.

If a 4-vertex v with t(v) = 2 is incident to a (3, 4∗, 4∗)-face, then we call v a
special 4-vertex. Suppose that f = [xyz] is a (3, 4∗, 4∗)-face such that d(x) = 3,
d(y) = d(z) = 4 and t(y) = t(z) = 2. Let f ∗ denote the face adjacent to f by the
common edge yz and let f ′, f ′′ denote the opposite face to f by y and z, respectively.
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Chapter 3. Acyclic choosability

If both f ′ and f ′′ are (4∗, 4∗, 4∗)-faces, then we say that f ∗ is heavy. By the absence
of 4- and 5-cycles, we observe that d(f ∗) > 6. Moreover, by definition, each heavy
6+-face is adjacent to at least five triangles. For v ∈ V (G), we denote by m∗

6(v) the
number of heavy 6-faces incident to v.

Suppose that f = [v1v2 · · · v6] is a heavy 6-face such that fv1v2 is a (3, 4∗, 4∗)-face
and fv2v3 , fv6v1 are (4∗, 4∗, 4∗)-faces. If t(f) = n4(f) = 6 and fv3v4 is a (4, 4, 5+)-face,
then we call f a strong 6-face of the edge v3v4.

Our discharging rules are defined as follows:

(R0) Every 3-vertex sends 0.5 to each of its incident 3-face.
(R1) Every 4+-vertex sends 1 to its adjacent 2-vertex and 0.5 to each of its pendant
light 3-vertex.
(R2) Let v be a 4-vertex and f1, f2, f3, f4 denote the faces of G incident to v in a
cyclic order.

(R2a) Assume t(v) = 2 such that f1, f3 are both 3-faces. Then
(R2a1) τ(v → f1) = 1.5 and τ(v → f3) = 0.5 if f1 is a (3, 4∗, 4∗)-face and f3

is not a (4∗, 4∗, 4∗)-face;
(R2a2) τ(v → f1) = τ(v → f3) = 1, otherwise.

(R2b) Assume t(v) = 1 such that f1 is a 3-face. Then
(R2b1) τ(v → f1) = 1.5 if f1 is either a (3, 4, 4)-face or a (4, 4, 4)-face incident

to a special 4-vertex;
(R2b2) τ(v → f1) = 1, otherwise.

(R3) Let v be a 5+-vertex incident to a 3-face f = [vxy]. Then
(R3a) τ(v → f) = 2 if f is a (5+, 3, 3)-face;
(R3b) τ(v → f) = 1.5 if f is either a (5+, 3, 4)-face or a (5+, 4, 4)-face incident

to a special 4-vertex;
(R3c) τ(v → f) = 1.25 if f is either a (5+, 3, 5+)-face, or a (5+, 4, 5+)-face

incident to a special 4-vertex, or a (5+, 4∗, 4∗)-face such that fxy is a strong 6-face
of the edge xy;

(R3d) τ(v → f) = 1, otherwise.
(R4) Every heavy 6+-face sends 0.5 to each of its adjacent (3, 4∗, 4∗)-faces.
(R5) Suppose f = [v1v2 · · · v6] is a heavy 6-face such that fv1v2 is a (3, 4∗, 4∗)-face.

(R5a) Assume d(fv4v5) = 3. Then
(R5a1) τ(fv3v4 → f) = τ(fv5v6 → f) = 0.25 if d(v4) = d(v5) = 4;
(R5a2) τ(v4 → f) = 0.5 if d(v4) > 5 and d(v5) = 4;
(R5a3) τ(v4 → f) = τ(v5 → f) = 0.25, otherwise.

(R5b) Assume d(fv4v5) 6= 3. Then
(R5b1) τ(v4 → f) = 0.5 if d(v5) = 3 and d(v4) > 5;
(R5b2) τ(v4 → f) = 0.5 if d(v5) = 4 with n2(v5) = 1 and d(v4) > 5;
(R5b3) τ(v4 → f) = τ(v5 → f) = 0.25, otherwise.

Similarly, to complete the proof of Theorem 3.3.2, it suffices to show that the
new weight function satisfies ω∗(x) > 0 for all x ∈ V (G) ∪ F (G). Obviously, G
contains no 4- and 5-faces. We divide the proof into the following several cases:

Case 1 d(f) = 3.
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Then ω(f) = −3. Let f = [v1v2v3] such that d(v1) 6 d(v2) 6 d(v3). By (C2),
we derive that d(v1) > 3. By the absence of 4- and 5-cycles, d(fvivi+1

) > 6, where
i ∈ {1, 2, 3} and i is taken modulo 3. By (C4) and (C6), we see that f is either a
(3, 3, 5+)-face, or a (3, 4+, 4+)-face, or a (4+, 4+, 4+)-face.

If f is a (3, 3, 5+)-face, then ω∗(f) > −3 + 0.5 × 2 + 2 = 0 by (R0) and (R3a).
If f is a (3, 4, 5+)-face, i.e., d(v2) = 4 and d(v3) > 5, then v2 cannot be a special
4-vertex by (C13) and thus ω∗(f) > −3+0.5+1+1.5 = 0 by (R0), (R2) and (R3b).
If f is a (3, 5+, 5+)-face, then ω∗(f) > −3 + 0.5 + 1.25× 2 = 0 by (R0) and (R3c).
If f is a (4, 5+, 5+)-face, then ω∗(f) > −3 + 0.5 + 1.25× 2 = 0 by (R2a1) and (R3c)
or ω∗(f) > −3 + 1 × 3 = 0 by (R2) and (R3d). If f is a (5+, 5+, 5+)-face, then by
(R3d), we conclude that ω∗(f) > −3 + 1× 3 = 0.

Now suppose that f is a (4, 4, 5+)-face. Namely d(v1) = d(v2) = 4 and d(v3) > 5.
If neither v1 nor v2 is a special 4-vertex, then τ(vi → f) > 1 by (R2) for each i = 1, 2.
Then ω∗(f) > −3 + 1 + 1× 2 = 0 by (R3d) or ω∗(f) > −3 + 1× 2 + 1.25− 0.25 = 0
by (R3c) and (R5a1). Otherwise, by symmetry, assume that v1 is a special 4-
vertex. By the absence of (B5), v2 cannot be a special 4-vertex. It follows from
(R2) and (R3b) that τ(v1 → f) = 0.5, τ(v2 → f) > 1 and τ(v3 → f) = 1.5. Thus,
ω∗(f) > −3 + 0.5 + 1 + 1.5 = 0.

Next suppose that f is a (3, 4, 4)-face. Namely d(v1) = 3 and d(v2) = d(v3) = 4.
Denote f ′, f ′′ be respectively, the opposite face to f by v2 and v3. If at least one
of f ′ and f ′′ is a 6+-face, say f ′, then v2 sends 1.5 to f by (R2b1). Moreover, v3

cannot be a special 4-vertex by (C13). Thus ω∗(f) > −3+0.5+1.5+1 = 0 by (R0)
and (R2). Now, assume that d(f ′) = d(f ′′) = 3. By definition, v2, v3 are special
4-vertices. It is easy to deduce that both f ′ and f ′′ are (4+, 4+, 4+)-faces by (C13).
If at least one of f ′, f ′′ is not a (4∗, 4∗, 4∗)-face, say f ′, then by (R2a1), v2 sends 1.5
to f . Thus, ω∗(f) > −3 + 0.5 + 1.5 + 1 = 0 by (R0) and (R2). So now assume
that f ′ and f ′′ are both (4∗, 4∗, 4∗)-faces. This implies that fv2v3 is a heavy 6+-face,
which sends charge 0.5 to f by (R4). Thus, ω∗(f) > −3 + 0.5 + 1× 2 + 0.5 = 0 by
(R0) and (R2a).

Finally suppose that f is a (4, 4, 4)-face. By (R2), for each i ∈ {1, 2, 3}, f
gets either 0.5 or at least 1 from vi. If τ(vi → f) > 1 for all i = 1, 2, 3, then
ω∗(f) > −3+1× 3 = 0. Otherwise, by (R2a1), w.l.o.g., suppose that v1 is a special
4-vertex and the opposite face to f by v2 is of degree at least 6. Again by the absence
of (B5), v3 cannot be a special 4-vertex. Therefore, ω∗(f) > −3 + 0.5 + 1.5 + 1 = 0
by (R2).

Case 2 d(f) = 6.

Then ω(f) = 0. By (R4), only heavy 6-faces send charges to its adjacent
(3, 4∗, 4∗)-faces. Moreover, every 6-face is adjacent to at most one (3, 4∗, 4∗)-face
by the reducible configurations (B1) and (B5). Suppose f = [v1v2 · · · v6] is a
heavy 6-face such that fv1v2 is a (3, 4∗, 4∗)-face. First assume fv4v5 is a 3-face. If
d(v4) = d(v5) = 4, then both fv3v4 and fv5v6 are (4, 4, 5+)-face by the absence of (Q1).
So ω∗(f) > 0−0.5+0.25×2 = 0 by (R5a1). Otherwise, f gets either 0.5 by (R5a2)
or 0.25 × 2 by (R5a3) in total from v4, v5 and thus ω∗(f) > 0 − 0.5 + 0.5 = 0.
Now assume d(fv4v5) 6= 3. By the absence of (Q2) and (Q3), we obtain that
ω∗(f) > 0− 0.5 + 0.5 = 0 or ω∗(f) > 0− 0.5 + 0.25× 2 = 0 by (R5b).
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Case 3 d(f) > 7.

Denote by t∗(f) be the number of (3, 4∗, 4∗)-faces adjacent to f . By the absence
of (B1) and (B5), we see that any two (3, 4∗, 4∗)-faces adjacent to f must be at
distance at least 3 on the boundary of f . It follows that t∗(f) 6 bd(f)

4
c. By (R4),

ω∗(f) > d(f)− 6− 1
2
t∗(f) > d(f)− 6− 1

2
× d(f)

4
= 7

8
d(f)− 6 > 1

8
.

Let v ∈ V (G). Let v1, v2, · · · , vd(v) denote the neighbors of v in a cyclic order.
Let fi denote the incident face of v with vvi and vvi+1 as two boundary edges for
i = 1, 2, · · · , d(v), where indices are taken modulo d(v). By definition, we first
observe the following

Observation 3.3.11 Every heavy 6-face f is satisfying that 5 6 t(f) 6 6, n4(f) >
4, and n2(v) = 0.

By (C1), d(v) > 2. If d(v) = 2 then we easily obtain that ω∗(v) > −2+1×2 = 0
by (C3) and (R1). If d(v) = 3, then ω∗(v) > 0 − 0.5 + 0.5 = 0 by (R0), (R1) and
Lemma 3.3.4. So, in what follows, we will show that ω∗(v) > 0 for each 4+-vertex
v. The proof is divided into three cases according to the value of d(v).

Case 4 d(v) = 4.

We have that ω(v) = 2, t(v) 6 2 and n2(v) 6 1 by (C5). We have to consider
the following three subcases in light of the size of t(v).

(4.1) Assume t(v) = 2. Clearly, n2(v) = p3(v) = 0 by (C2) and the absence of
4-cycles. By (R2a), v sends in total either 1.5 + 0.5 = 2 or 1 + 1 = 2 to incident
3-faces. By (R5), v sends nothing to its incident 6+-faces. Thus, ω∗(v) > 2− 2 = 0.

(4.2) Assume t(v) = 1. Let f1 = [v1vv2] be a 3-face. Then p3(v) 6 2. If
n2(v) = 1, then p3(v) = 0 by (C9) and f1 is a (4, 4+, 4+)-face by (C10). By the
absence of (B3), v sends at most 1 to f1 by (R2b). Moreover, v sends nothing to
f2, f3, f3 by (R5) and Observation 3.3.11. Therefore ω∗(v) > 2− 1− 1 = 0 by (R1).

Now suppose that n2(v) = 0. By Observation 3.3.11, we see that only f2 and
f4 could be heavy 6-faces. By (R5b3), we deduce that if f2 is a heavy 6-face, then
d(v3) > 4. It follows that v3 cannot be a pendant light 3-vertex. So if m∗

6(v) = 2
then p3(v) = 0 and thus ω∗(v) > 2− 1.5− 0.25× 2 = 0 by (R2). Next suppose that
m∗

6(v) = 0. If p3(v) = 2 then f1 is a (4+, 4+, 4+)-face by (C11). Moreover, if f1 is
a (4, 4, 4)-face, then neither v1 nor v2 is a special 4-vertex by the absence of (B4).
Thus ω∗(v) > 2− 1− 0.5× 2 = 0 by (R2a2). Otherwise, ω∗(v) > 2− 1.5− 0.5 = 0
by (R2a1). Finally, w.l.o.g., suppose that f2 = [vv2w1w2w3v3] is a heavy 6-face such
that fw1w2 is a (3, 4∗, 4∗)-face and both fv2w1 and fw2w3 are (4∗, 4∗, 4∗)-faces. So v2 is
not a special 4-vertex. If d(v1) = 3, the configuration (B5) is established, which is a
contradiction. If v1 is a special 4-vertex, i.e., the opposite 3-face to f1 is a (3, 4∗, 4∗)-
face, then the configuration (B1) is formed, which is also a contradiction. Therefore,
by (R2b2), τ(v → f1) = 1 and we have that ω∗(v) > 2− 1− 0.25− 0.5 = 0.25.

(4.3) Assume t(v) = 0. By Observation 3.3.11, m∗
6(v) = 0. If n2(v) = 0, then

ω∗(v) > 2 − 4 × 0.5 = 0 by (R1). Otherwise, we suppose n2(v) = 1, which implies
that p3(v) = 0 by (C9). By (R1) we conclude that ω∗(v) > 2− 1 = 1.

To well estimate the total charge sent out from a 5+-vertex, we begin with the
following claim.
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Claim 3.3.1 Suppose that v is a 5+-vertex incident to a 3-face f1 and a heavy 6-face
f2. Then τ(v → f1) 6 1.5. In particular, τ(v → f1) 6 1 if f1 is a (5+, 4+, 4+)-face
and d(f3) 6= 3.

Proof. Suppose that f2 = [vv2w1w2w3v3] is a heavy 6-face. By definition, we see
that d(v2) > 4 and thus τ(v → f1) 6 1.5 by (R3). Now assume that d(f3) 6= 3 and
f1 is a (5+, 4+, 4+)-face. There is only one possible case that fw1w2 is a (3, 4∗, 4∗)-
face and fv2w1 and fw2w3 are both (4∗, 4∗, 4∗)-faces. We notice that v2 is a 4-vertex
but not special. If v1 is a special 4-vertex, i.e., the opposite face to f1 by v1 is a
(3, 4∗, 4∗)-face, then the configuration (B1) is established, which is a contradiction.
So, in order to prove τ(v → f1) 6 1, by (R3c), we only need show that fv1v2 (the face
adjacent to f1 by the common edge v1v2) is not a strong 6-face of the edge v1v2. Let
fv1v2 = [v1u1u2u3u4v2] be a 6-face adjacent to six 3-faces. By definition, either fu3u4

or fu1u2 is a (3, 4∗, 4∗)-face. If fu3u4 is a (3, 4∗, 4∗)-face, then the configuration (B5)
is formed. If fu1u2 is a (3, 4∗, 4∗)-face, then the configuration (Q4) is constructed.
We always obtain a contradiction.

Case 5 d(v) = 5.

The initial charge is ω(v) = 4. According to (C7), n2(v) 6 3. Moreover, t(v) 6 2
by the absence of 4-cycles. We need to handle the following three cases, depending
on the value of t(v).

(5.1) Assume t(v) = 2. W.l.o.g., let f1 = [vv1v2] and f3 = [vv3v4] be two 3-faces.
It follows from (C2) that vi is neither a 2-vertex nor a pendant light 3-vertex of v
for each i ∈ {1, 2, 3, 4}. So n2(v) + p3(v) 6 1. By (R3), τ(v → fi) 6 2 for each
i = 1, 2.

First suppose that at least one of f1, f3 taking charge 2 from v. W.l.o.g., suppose
f1 is a (5, 3, 3)-face by (R3a). It follows from (A1) that n2(v) = 0. Moreover,
by (R5), one can easily check that v sends nothing to f2 and f5 since d(v1) =
d(v2) = 3. So m∗

6(v) 6 1. If f3 gets a charge 2 from v, then f3 is a (5, 3, 3)-face
by (R3a). Moreover, p3(v) = 0 by Lemma 3.3.6. Similarly, v sends nothing to f4

since d(v4) = 3. Thus, ω∗(v) > 4 − 2 × 2 = 0. Now assume that τ(v → f3) 6 1.5.
If p3(v) + m∗

6(v) 6 1, then ω∗(v) > 4 − 2 − 1.5 − 0.5 = 0. Otherwise, assume that
v5 is a pendant light 3-vertex and f4 is a heavy 6-face. In light of Lemma 3.3.6, f3

is a (5, 4+, 4+)-face. It follows immediately from Claim 3.3.1 that τ(v → f3) 6 1.
Therefore, ω∗(v) > 4− 2− 1− 0.5− 0.5 = 0 by (R1).

Next suppose that τ(v → fi) 6 1.5 for each i = 1, 3. We first assume that
n2(v) = 1. By Observation 3.3.11, we see that neither f4 nor f5 is a heavy 6-face. If
f2 is not a heavy 6-face, then we are done since ω∗(v) > 4−1.5×2−1 = 0. Otherwise,
suppose f2 = [vv2u1u2u3v3] is a heavy 6-face such that fu1u2 is a (3, 4∗, 4∗)-face and
fv2u1 and fu2u3 are both (4∗, 4∗, 4∗)-faces. If d(v1) = 3, then the configuration (B2) is
established, which is a contradiction. So d(v1) > 4. By a similar argument as Claim
3.3.1, we obtain that τ(v → f1) 6 1 and thus ω∗(v) > 4− 1.5− 1− 0.5− 1 = 0. So
in the following, we assume that n2(v) = 0 and v5 is a pendant light 3-vertex. By
the absence of (B5), we observe that at most one of f4, f5 can be a heavy 6-face. It
means that m∗

6(v) 6 2. If m∗
6(v) = 2, say f2 and f5, then τ(v → f1) 6 1 by Claim
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3.3.1. Hence ω∗(v) > 4− 1.5− 1− 0.5− 0.5× 2 = 0. Otherwise, we conclude that
ω∗(v) > 4− 1.5× 2− 0.5− 0.5 = 0.

(5.2) Assume t(v) = 1. W.l.o.g., let d(f1) = 3. By Observation 3.3.11, we see
that only f2 and f5 can be a heavy 6-face and thus m∗

6(v) 6 2. Moreover, n2(v) 6 2
by (C8). We have three cases, depending on n2(v).

(a) n2(v) = 2. Then m∗
6(v) 6 1 since at least one of v3, v5 is a 2-vertex. If f1

is a (3, 3, 5)-face, then p3(v) = 0 by (C12) and m∗
6(v) = 0. Thus ω∗(v) >

4 − 2 − 1 × 2 = 0 by (R1) and (R3). Otherwise, f1 gets at most 1.5 from v.
If m∗

6(v) + p3(v) 6 1, then ω∗(v) > 4 − 1.5 − 1 × 2 − 0.5 = 0. Now assume
that p3(v) = m∗

6(v) = 1. By (C12) again, d(v1), d(v2) > 4. By Claim 3.3.1,
τ(v → f1) 6 1. Therefore, ω∗(v) > 4− 1− 1× 2− 0.5× 2 = 0.

(b) n2(v) = 1. Then p3(v) 6 2 and m∗
6(v) 6 2. If m∗

6(v) + p3(v) 6 2, then
ω∗(v) > 4 − 2 − 1 − 0.5 × 2 = 0. If m∗

6(v) + p3(v) = 3, then f1 cannot be
a (5, 3, 3)-face. Thus ω∗(v) > 4 − 1.5 − 1 − 0.5 × 3 = 0. So assume that
m∗

6(v) = p3(v) = 2. Similarly, by Claim 3.3.1, we affirm that f1 gets at most
1 from v and therefore ω∗(v) > 4− 1− 1− 0.5× 4 = 0.

(c) n2(v) = 0. Then p3(v) 6 3 and m∗
6(v) 6 2. If f1 is a (3, 3, 5)-face, then

m∗
6(v) = 0 and ω∗(v) > 4− 2− 0.5× 3 = 0.5. Otherwise, τ(v → f1) 6 1.5 and

hence ω∗(v) > 4− 1.5− 0.5× 5 = 0.

(5.3) Assume t(v) = 0. By (C7), n2(v) 6 3. Clearly, m∗
6(v) = 0. Thus,

ω∗(v) > 4− 3× 1− 0.5× 2 = 0.

Case 6 d(v) > 6.

By (R0)-(R5), we notice that the faces getting charge from v are only 3-faces
and heavy 6-faces. Suppose f2 is a heavy 6-face. By (R5), τ(v → f2) 6 0.5. By
definition, at least one of f1 and f3 is a 3-face. If d(f1) = d(f3) = 3, then we
may consider this charge 0.5 (from v to f2) to be firstly given on average to f1 and
f3 and then transferred from f1, f3 to f2, respectively. If f1 is a 3-face and f3 is
not, then we may consider this charge 0.5 (from v to f2) to be directly given to
f1 and then transferred to f2. By Claim 3.3.1, it is easy to deduce that v sends a
charge at most 2 to each incident 3-faces and nothing to heavy 6-faces. Therefore,
ω∗(v) > 2d(v)− 6− 2t(v)−n2(v)− 0.5p3(v) > 2d(v)− 6− 2t(v)− (n2(v) + p3(v)) >
2d(v)− 6− 2t(v)− (d(v)− 2t(v)) = d(v)− 6 > 0.

Therefore, we complete the proof of Theorem 3.3.2.

3.4 Acyclic 3-choosability

In this section, we prove the following theorem:

Theorem 3.4.1 Every planar graph with girth 7 is acyclically 3-choosable.
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This is a common strengthening of the facts that such a graph is acyclically
3-colorable (Borodin, Kostochka and Woodall [BKW99]) and that a planar graph
with girth 8 is acyclically 3-choosable (Montassier, Ochem and Raspaud [MOR06]).
More generally, we prove the following theorem:

Theorem 3.4.2 Every graph G with Mad(G) < 14
5

and g(G) > 7 is acyclically
3-choosable.

We remark that this work is jointly done with Borodin, Ivanova and Raspaud.
It has been published in Discrete Mathematics [BCIR10]. The organizing of this
section is as follows: In Section 3.4.1, we will give some useful preliminaries of G.
Then, in Section 3.4.2, we will show some reducible configurations. Finally, we
use the Discharging argument to derive a contradiction in Section 3.4.3 and thus
complete the proof of Theorem 3.4.2. We begin with some notation.

v

(1) A minor vertex .v (2) An ugly 3-vertex .v (3) A special ugly 3-vertex .v (4) A heavy 3-vertex .v

3 3 v v v

Figure 3.10: Four definitions of a 3-vertex v.

Let G be a plane graph. A 3-vertex v is called minor if n2(v) = 1, see Figure 3.10
(1). By definition, we see that each minor vertex is also a (1+, 0, 0)-vertex. A minor
vertex v is called ugly if v is adjacent to a minor vertex, see Figure 3.10 (2). A
special ugly 3-vertex is an ugly 3-vertex that is not adjacent to any 4+-vertex, see
Figure 3.10 (3). We call a 3-vertex v heavy if n2(v) = 0 and v is adjacent to one
minor vertex and one special ugly 3-vertex, see Figure 3.10 (4).

3.4.1 Preliminaries

Suppose to the contrary that Theorem 3.4.2 is false. Let G be a counterexample to
Theorem 3.4.2 with the least number of vertices. Thus, G is connected. In what
follows, let L be a list assignment of G with |L(v)| = 3 for all v ∈ V (G).

Lemma 3.4.3 Suppose v is an ugly 3-vertex as depicted in Figure 3.11 (A). Let π
be an acyclic L-coloring of G − v and L(v) = {1, 2, 3}. Then, π(u1) = π(u3) = i
and π(v3) = π(u2) = j, where {i, j} ⊆ {1, 2, 3}.

Proof. The proof is divided into the following three cases, depending on the colors
of v1, v2 and v3.

Case 1 Assume π(v1), π(v2) and π(v3) are mutually distinct.
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(A) An ugly 3-vertex .v
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(B) A special ugly 3-vertex .v
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1
w
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Figure 3.11: The configurations (A) and (B) in Lemmas 3.4.3-3.4.4.

If there exists a color c belonging to L(v) \ {π(v1), π(v2), π(v3)}, it is easy to
extend π to G by coloring v with c. Now, w.l.o.g., suppose that π(v1) = 1, π(v2) = 2
and π(v3) = 3. We only need to recolor v1 with a color in L(v1) \ {1, π(u1)} and
then color v with 1.

Case 2 Assume exactly two vertices of v1, v2, v3 are colored with the same color.

(2.1) π(v1) = π(v2) 6= π(v3). If there exists a color c in L(v) \ {π(v1), π(v3), π(u1)},
then we assign v with c properly. Otherwise, w.l.o.g., assume that π(v1) =
π(v2) = 1, π(v3) = 2 and π(u1) = 3. If L(v1) 6= {1, 2, 3}, we recolor v1 with
a color in L(v1) \ {1, 2, 3} and then go back to the previous Case 1. So in
the following, we suppose L(v1) = {1, 2, 3}. If v cannot be colored with 3, we
affirm that there is an alternating (1, 3)-path starting from v1 and ending at
v2. We have two possibilities below:

• π(u3) = 3. Namely, π(u3) = π(u1). If π(u2) = π(v3) = 2, then we
are done. Otherwise, we first erase the color of w1. Then recolor v1

with 2, color v with 1, and recolor v2 with a color c different from 1, 3. If
π(u2) 6= c, it suffices to further color w1 with a color in L(w1)\{c, π(u2)}.
Otherwise, we may color w1 with a color distinct to c and 3.

• π(u3) 6= 3. It implies that π(w1) = 3 and π(u2) = 1. Erase the colors of v2

and w1. We first recolor v1 with 2, color v with 1, and then color v2 with
c∗ in the following way: If π(u2) = 1, set c∗ ∈ L(v2) \ {1, 2}; otherwise,
set c∗ ∈ L(v2) \ {1, π(u3)}. Finally, color w1 with a color distinct to c∗

and 1.

(2.2) π(v1) = π(v3) 6= π(v2). Similarly, if there exists a color c in L(v) \
{π(v1), π(v2), π(u1)}, then we assign v with c properly. Otherwise, w.l.o.g.,
assume that π(v1) = π(v3) = 1, π(v2) = 2 and π(u1) = 3. We may first recolor
v1 with a color c ∈ L(v1) \ {1, 3} and then go back to the previous Case 2.1
or Case 1.

(2.3) π(v2) = π(v3) 6= π(v1). First assume π(v2) /∈ {1, 2, 3}. We first color v with
a color c different from π(w1) and π(u3). If c 6= π(v1), then the resulting
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coloring is obviously acyclic, which is a contradiction. Otherwise, we only
need to further recolor v1 with a color distinct to c and π(u1). So, in what
follows, w.l.o.g., assume π(v2) = π(v3) = 1. If π(u2) = 1, we can first recolor
v2 with a color c distinct to 1 and π(u3), then recolor w1 with a color different
from 1, c, and then go back to the previous Case 1 or Case 2.1 depending on
the color c. Now we may suppose that π(u2) 6= 1. Firstly, color v with a color
c′ different from 1, π(u3). Similarly, if c′ 6= π(v1), then the resulting coloring is
obviously acyclic, which is a contradiction. Otherwise, we only need to further
recolor v1 with a color distinct to c′ and π(u1).

Case 3 Assume that π(v1) = π(v2) = π(v3).

It is easy to recolor v1 with a color different from π(v1) and π(u1) and thus we
go back to the former Case 2.

In each possible case, we are always able to extend π to G, which contradicts
the assumption of G. Therefore, we complete the proof of Lemma 3.4.3.

Lemma 3.4.4 Suppose v is a special ugly 3-vertex as depicted in Figure 3.11 (B).
Let π be an acyclic L-coloring of G− v and L(v) = {1, 2, 3}. Then

(P1) {π(y1), π(y2), π(v3)} = {1, 2, 3};
(P2) L(v3) = {1, 2, 3};
(P3) There exist an alternating (π(v3), π(y1))-path v3y1 · · · and an alternating
(π(v3), π(y2))-path v3y2 · · · in G− v.

Proof. By Lemma 3.4.4, w.l.o.g., we assume that π(u1) = π(u3) = 1 and π(v3) =
π(u2) = 3. If L(v1) 6= {1, 2, 3}, we first recolor v1 with a ∈ L(v1) \ {1, 2, 3}, v2 with
b ∈ L(v2) \ {1, 3}, w1 with a color distinct to 1, 3, and then color v like this: If
b 6= a, color v with 1; otherwise, color v with 2. So, in the following, we suppose
that L(v1) = {1, 2, 3}. To show (P1) to (P3), we will make use of contradictions.

(P1) Assume to the contrary that {π(y1), π(y2)} 6= {1, 2}. If neither y1 nor y2

is colored with 1, then we give the color 1 to v, a color different from 1, π(v2) to
v1 and thus an acyclic L-coloring is obtained. Now suppose that neither y1 nor y2

is colored with 2. We first erase the color of w1. Then color v with 2, recolor v1

with 3, recolor v2 with a color c∗ ∈ L(v2) \ {1, 2}, and finally color w1 with α in the
following way: If c∗ = 3, set α ∈ L(w1) \ {1, 3}; otherwise, set α ∈ L(w1) \ {3, c∗}.

(P2) Assume to the contrary that L(v3) 6= {1, 2, 3}. By (P1), {π(y1), π(y2)} =
{1, 2}, since π(v3) = 3. We may give a new color belonging to L(v3) \ {1, 2, 3} to v3

to obtain an acyclic L-coloring of G− v, which contradicts Lemma 3.4.3.

(P3) By symmetry, assume π(y1) = 1 and π(y2) = 2 by (P2). If none of paths
v3y1 · · · is an alternating (3, 1)-path, then we can extend π to G by coloring v with
1 and recoloring v1 with a color different from 1, π(v2). If none of paths v3y2 · · ·
is an alternating (3, 2)-path, we first erase the color of w1. Then, color v with 2,
recolor v1 with 3, recolor v2 with c∗ ∈ L(v2) \ {1, 2}, and finally color w1 with α in
the following way: If c∗ = 3, set α ∈ L(w1) \ {1, 3}; or else, set α ∈ L(w1) \ {3, c∗}.
We always obtain a contradiction to the assumption of G. Therefore, (P3) holds.
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Figure 3.12: Two subgraphs G0 and G1 mentioned in Lemmas 3.4.5-3.4.6.

Lemma 3.4.5 Suppose G contains the subgraph G0 depicted in Figure 3.12. Let π
be an acyclic L-coloring of G − v1 and L(v1) = {1, 2, 3}. Then π(p2) = π(v2) =
π(w1).

Proof. By Lemma 3.4.3, w.l.o.g., we assume that π(u2) = π(p1) = 1 and π(v2) =
π(w1) = 3. Moreover, L(v2) = {1, 2, 3} and {π(k2), π(u3)} = {1, 2} by (P1)-(P2) of
Lemma 3.4.4.

Assume to the contrary that π(p2) 6= π(v2), namely, π(p2) 6= 3. For our con-
venience, denote π(k2) = a and π(u3) = b. Recall that L(v2) = {3, a, b}. Since
π(p2) 6= 3, we affirm that π(q2) = 3 and π(w2) = a by (P3) of Lemma 3.4.4. Erase
the color of k2. We first recolor v2 by a, then color k2 with c∗ ∈ L(k2) \ {a, π(p2)},
and finally recolor q2 with a color different from a and c∗. It is easy to check that
the resulting coloring of G − v1 is still acyclic. However, now the colors of w1 and
v2 are different. This contradicts Lemma 3.4.3 and thus we complete the proof of
Lemma 3.4.5.

Lemma 3.4.6 Suppose G contains a subgraph G1 depicted in Figure 3.12. Let π be
an acyclic L-coloring of G− v1 and L(v1) = {1, 2, 3}. Then

(i) π(w2) = π(u3);

(ii) {π(u3), π(z1), π(z2)} = {1, 2, 3};
(iii) L(u3) = {1, 2, 3}.

Proof. By Lemma 3.4.3, w.l.o.g., we assume that π(u2) = π(p1) = 1 and π(v2) =
π(w1) = 3. It implies that π(p2) = 3 by Lemma 3.4.5. Moreover, by (P1)-(P2)
of Lemma 3.4.4, we have that L(v2) = {1, 2, 3} and {π(k2), π(u3)} = {1, 2}. By
symmetry, let π(k2) = 1 and π(u3) = 2.

(i) Assume to the contrary that π(w2) 6= π(u3), namely π(w2) 6= 2. Erase the
colors of k2 and q2. We first recolor v2 with 1, color k2 with α ∈ L(k2) \ {1, 3},
and then do as follows: If α = 2, we further color q2 with a color different from
2 and π(w2); If α = π(w2), we further choose a color in L(q2) \ {α, 3} for q2;
if α /∈ {2, π(w2)}, we further color q2 with a color distinct to α and π(w2). In
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each case, one can easily check that the resulting coloring of G− v1 is still acyclic.
However, the (new) colors of w1 and v2 are different. This contradicts Lemma 3.4.3.

(ii) Obviously, at least one of z1, z2 is colored with 3 by (P3) of Lemma 3.4.4.
By symmetry, assume π(z1) = 3. In order to show (ii), we only need to show that
π(z2) = 1. Now we suppose to the contrary that π(z2) 6= 1. We may first recolor
v2 with 1, k2 with α ∈ L(k2) \ {1, 3}, and further recolor q2 with β in the following
way: If α = 2, set γ ∈ L(q2) \ {2, 3}, since π(w2) = π(u3) = 2 by (i); otherwise,
set γ ∈ L(q2) \ {2, α}. It is easy to verify that in each case the resulting coloring of
G− v1 is acyclic. But the (new) colors of w1 and v2 are different. This contradicts
Lemma 3.4.3.

(iii) If L(u3) 6= {1, 2, 3}, we may recolor u3 with a color in L(u3) \ {1, 2, 3} and
thus obtain a contradiction to (P1) of Lemma 3.4.4.

3.4.2 Reducible configurations

In this section, we show several configurations which cannot exist in G.

Claim 3.4.1 (F1) There is no 1-vertex.
(F2) There is no i-vertex with 2 6 i 6 4 adjacent to i− 1 2-vertices.
(F3) A 3-vertex is not adjacent to one 2-vertex and two minor vertices.
(F4) A 3-vertex is not adjacent to three minor vertices.

Proof. In each of following cases, we will show how to derive an acyclic L-coloring
of G, which contradicts the choice of G.

(F1) Obvious.

(F2) Suppose to the contrary that G contains an i-vertex v adjacent to i − 1
2-vertices v1, v2, · · · , vi−1 such that d(v1) = d(v2) = · · · = d(vi−1) = 2. For each
j ∈ {1, · · · , i − 1}, let v′j denote the other neighbor of vj different from v. Clearly,
G − {v, v1, · · · , vi−1} admits an acyclic L-coloring π by the minimality of G. It is
easy to deduce that there is a color c belonging to L(v) \ π(vi) appeared at most
once on the set {v′1, · · · , v′i−1}. By symmetry, assume π(v′1) = c. We first color v
with c, then color v1 with a color different from c and π(v4), and finally color vj

with a color different from its neighbors for each j = 2, · · · , i− 1.

(F3) Suppose to the contrary that G contains a 3-vertex v adjacent to a 2-vertex
v1, and two minor vertices v2 and v3, depicted in Figure 3.13. Obviously, G−v has an
acyclic L-coloring π by the minimality of G. Let L(v) = {1, 2, 3}. By Lemma 3.4.3,
w.l.o.g., suppose that π(u1) = π(k1) = 1 and π(v3) = π(u2) = 3. According to (P1)-
(P2) of Lemma 3.4.4, we have that L(v3) = {1, 2, 3} and {π(k2), π(w2)} = {1, 2}.
Moreover, we definitely assert that π(u3) = 3 by (P3) of Lemma 3.4.4. Now we first
recolor v3 with π(w2), w2 with a color different from 3, π(w2), and then obtain a
contradiction to Lemma 3.4.3, since the (new) colors of u2 and v3 are distinct.

(F4) Suppose to the contrary that G contains a 3-vertex v adjacent to three
minor vertices as depicted in Figure 3.13. Obviously, G − w1 has an acyclic L-
coloring π by the minimality of G. Let L(w1) = {1, 2, 3}. If π(u1) 6= π(v1), it is
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Figure 3.13: Two reducible configurations (F3) and (F4) in Claim 3.4.1.

easy to color w1. Now, we suppose that π(u1) = π(v1). If w1 cannot be colored
properly, w.l.o.g., assume that π(u1) = π(v1) = 1, π(k1) = 2, π(v) = 3 and 1 ∈
{π(v2), π(v3)}. If L(v1) 6= L(w1), namely, L(v1) 6= {1, 2, 3}, then recolor v1 with a
color in L(v1) 6= {1, 2, 3} and then go back to the previous case. In what follows, we
suppose L(v1) = {1, 2, 3}. The following proof is divided into two case, depending
on the colors of v2 and v3.

Case 1 π(v2) = π(v3) = 1.

If none of w2, k2, w3, k3 is colored with 3, then it is easy to assign 3 to w1.
Otherwise, by symmetry, we have to consider the following two possibilities.

(1.1) Assume that 3 /∈ {π(k2), π(k3)}. Then, w.l.o.g., we may suppose that π(w2) =
3 and π(u2) = 1.

• π(k2) 6= 2. We recolor v with c ∈ L(v) \ {1, 3}, v1 with 3, and color w1

with 2. If the obtained coloring is not acyclic, we deduce that π(k2) = c
and c ∈ {π(w3), π(k3)}. So only we need to further recolor v2 with
c∗ ∈ L(v2) \ {c, 1} and w2 with a color distinct to c∗ and 1.

• π(k2) = 2. If L(v) 6= {1, 2, 3}, then recolor v with c ∈ L(v) \ {1, 2, 3}
and color w1 with 3 successfully. Now suppose L(v) = {1, 2, 3}. We first
recolor v with 2, v1 with 3 and then color w1 by 2. If the resulting coloring
is not acyclic, we deduce that 2 ∈ {π(w3), π(k3)}. If L(v2) 6= {1, 2, 3},
it is easy to obtain an acyclic L-coloring of G by further recoloring v2

with a color not in {1, 2, 3}. Now suppose L(v2) = {1, 2, 3}. We can first
reassign v2 with 3, w2 with a color different from 1 and 3, v with 1, v3

with a color a ∈ L(v3) \ {1, π(k3)}, and then reassign w3 with γ in the
following way: If π(u3) = a, set γ ∈ L(w3) \ {a, π(k3)}; otherwise, set
γ ∈ L(w3) \ {a, π(u3)}.

(1.2) Assume that 3 ∈ {π(k2), π(k3)}. W.l.o.g., suppose π(k2) = 3. We first recolor
v with c ∈ L(v) \ {1, 3}, v1 with 3, and then color w1 with 2. If such coloring
is not acyclic, we derive that π(w2) = c, π(u2) = 1 and c ∈ {π(w3), π(k3)}. If

79



Chapter 3. Acyclic choosability

L(v2) 6= {1, 3, c}, we further recolor v2 with a color in L(v2)\{1, 3, c} to obtain
an acyclic L-coloring of G. If L(v) 6= {1, 3, c}, we also can further recolor v
with a color in L(v) \ {1, 3, c} to obtain an acyclic L-coloring of G. These
contradictions mean that L(v) = L(v2) = {1, 3, c}.

• π(k3) 6= c. Then π(w3) = c and π(u3) = 1. So we can continue to recolor
v2 with c, w2 with a color different from 1, c, v with 1, v3 with c′ different
from 1, π(k3), and finally recolor w3 with a color distinct to c′ and 1. By
a careful inspection, one can deduce that the resulting coloring is acyclic,
which is a contradiction.

• π(k3) = c. We continue to recolor v2 with c, w2 with a color different
from 1, c, v with 1, v3 with a color c∗ belonging to L(v3) \ {1, c}, and
further recolor w3 with γ as follows: If π(u3) = c∗, set γ ∈ L(u3)\{c∗, c};
otherwise, set γ ∈ L(u3) \ {c∗, π(u3)}.

Case 2 π(v2) = 1 and π(v3) 6= 1.

If there exits a color c ∈ L(v) \ {1, 3, π(v3)}, recolor v with c, v1 with 3
and then color w1 with 2 successfully. Now suppose L(v) = {1, 3, π(v3)}. If
3 /∈ {π(w2), π(k2)}, then it is easy to color w1 with 3 to extend π to G success-
fully. Otherwise, we need to deal with the following two subcases.

(2.1) π(k2) 6= 3. It follows immediately that π(w2) = 3 and π(u2) = 1. Thus, we can
first recolor v2 with c ∈ L(v2) \ {1, π(k2)}, w2 with a color different from 1, c,
and then recolor v with 1, v1 with 3, and finally color w1 with 2 successfully.

(2.2) π(k2) = 3. If π(w2) = 3, then reduce to the previous case. So assume that
π(w2) 6= 3. We first recolor v2 with c∗ ∈ L(v2) \ {1, 3}, v with 1, v1 to 3, then
color w1 with 2, and finally recolor w2 in this way: If π(u2) 6= c∗, recolor w2

with a color distinct to π(u2), c
∗; otherwise, keep the color of w2 as before.

4
k

3
u

2
u

2
p

2
v

1
p

2
w

3
w

v
1

v

3
k

1
w

3
p

1
k

3
v

1
u

2
k

Figure 3.14: The subgraph G2 in Claim 3.4.2.

Claim 3.4.2 G does not contain the subgraph G2 as shown in Figure 3.14.
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3.4. Acyclic 3-choosability

Proof. Suppose to the contrary that G contains such a subgraph G2. By definition,
we observe that v is an special ugly 3-vertex. Obviously, G − v admits an acyclic
L-coloring π by the choice of G. Let L(v) = {1, 2, 3}. By Lemma 3.4.3, w.l.o.g.,
assume that π(u1) = π(k1) = 1 and π(v2) = π(k3) = 3. According to (P1)-(P2) of
Lemma 3.4.4, we have that L(v2) = {1, 2, 3} and {π(w1), π(p2)} = {1, 2}.
Case 1 Assume π(w1) = 1 and π(p2) = 2.

By Lemma 3.4.5 and (i) of Lemma 3.4.6, we have that π(p1) = π(v2) = 3
and π(w3) = π(p2) = 2. Moreover, by (ii)-(iii) of Lemma 3.4.6, we know that
L(p2) = {1, 2, 3} and {π(u2), π(p3)} = {1, 3}. More specifically, π(u2) = 1 and
π(p3) = 3, since π(k3) = 3. The following proof is divided into two cases:

(1.1) π(u3) 6= 2. We first recolor v2 with 1, w1 with a color c different from 1, 3,
and then recolor w2 in this way: If c 6= 2, recolor w2 easily; otherwise, recolor
w2 with a color different from 2 and 3. It is easy to verify that the obtained
coloring of G−v is acyclic and thus a contradiction to Lemma 3.4.3 is produced,
since π(v2) = 1 6= 3 = π(k3).

(1.2) π(u3) = 2. We first color v with 2, recolor v1 with a color different from 1, 2,
and v3 with a color c different from 1, 2. If c 6= 3, we continue to color k2 with
a color different from 3 and c. By a careful inspection, the resulting coloring
is acyclic. If c = 3, we continue to recolor k2 with a color c′ distinct to 1, 3.
We note that if the resulting coloring is not acyclic, then c′ = 2 and π(k4) = 2
such that one of paths · · · p3p2v2vv3k2k3k4 · · · is an alternating (3, 2)-path.
So, we need to destroy such danger path by recoloring p2 with 1, u2 with
α ∈ L(u2) \ {1, 2}, k3 with a color different from 2, 3 if α = 3, then recolor w1

with a color β ∈ L(w1) \ {1, 3}, and finally recolor w2 with γ in the following
way: If β = 2, set γ ∈ L(w2) \ {2, 3}; otherwise, set γ ∈ L(w2) \ {2, β}.

Case 2 Assume π(w1) = 2 and π(p2) = 1.

Though the argument is very similar to the above Case 1, we like to write, for
completeness, its details.

By Lemma 3.4.5 and (i) of Lemma 3.4.6, we have that π(p1) = π(v2) = 3
and π(w3) = π(p2) = 1. Moreover, by (ii)-(iii) of Lemma 3.4.6, we know that
L(p2) = {1, 2, 3} and {π(u2), π(p3)} = {2, 3}. More specifically, π(u2) = 2 and
π(p3) = 3, since π(k3) = 3. The following proof is divided into two cases:

(2.1) π(u3) 6= 1. We first recolor v2 with 2, w1 with a color c different from 2, 3,
and then recolor w2 in this way: If c 6= 1, recolor w2 easily; otherwise, recolor
w2 with a color different from 1 and 3. It is easy to verify that the obtained
coloring of G−v is acyclic and thus a contradiction to Lemma 3.4.3 is produced,
since π(v2) = 2 6= 3 = π(k3).

(2.2) π(u3) = 1. We first color v with 2, recolor v1 with a color different from 1, 2,
and v3 with a color c different from 1, 2. If c 6= 3, we continue to color k2 with
a color different from 3 and c. By a careful inspection, the resulting coloring
is acyclic. If c = 3, we continue to recolor k2 with a color c′ distinct to 1, 3.

81



Chapter 3. Acyclic choosability

We note that if the resulting coloring is not acyclic, then c′ = 2 and π(k4) = 2
such that one of paths · · · p1w1v2vv3k2k3k4 · · · is an alternating (3, 2)-path.
So, we need to destroy such danger path by recoloring v2 with 1, p2 with 2, u2

with α ∈ L(u2) \ {1, 2}, and further recoloring k3 with a color different from
2, 3 if α = 3.

An m-cycle C = v1v2 · · · vmv1 is called an (a1, a2, · · · , am, a1)-cycle if the degree
of the vertex vi is ai for i = 1, 2, · · · ,m. Note that the 7-cycle C = k2v3vv2p2u2k3k2

depicted in G2 is a (2, 3, 3, 3, 3, 3, 3, 2)-cycle which is incident to a 2-vertex k2, a
special ugly 3-vertex v, a heavy 3-vertex v2 and other four 3-vertices v3, p2, u2, k3.
For convenience, we call C a bizarre (2, 3, 3SU , 3H , 3, 3, 3, 2)-cycle, where 3SU and 3H

denote that the corresponding vertex in C is a special ugly 3-vertex and a heavy
3-vertex, respectively.

In what follows, let B denote the set of black vertices in Figure 3.15 to Fig-
ure 3.17.
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Figure 3.15: Two reducible configurations (A1) and (A2) in Claim 3.4.3.

Claim 3.4.3 (A1) A 3-vertex is not adjacent to two special ugly 3-vertices.
(A2) A 3-vertex is not adjacent to a special ugly 3-vertex and a heavy 3-vertex.

Proof. (A1) Suppose to the contrary that G contains a 3-vertex v adjacent to
two special ugly 3-vertices v1 and v2, depicted in Figure 3.15 (A1). By (F2) and
the assumption of g(G) > 7, we assert that there is no cycle induced by the vertices
of B. By the minimality of G, G − v1 has an acyclic L-coloring π. Without loss
of generality, let L(v1) = {1, 2, 3}. According to Lemma 3.4.3, we may assume,
w.l.o.g., that π(w1) = π(p2) = 1 and π(v) = π(y1) = 3. Moreover, L(v) = {1, 2, 3}
and {π(v2), π(v3)} = {1, 2} by (P1)-(P2) of Lemma 3.4.4, respectively. The following
proof is divided into two cases below:

• Assume π(v3) = 1 and π(v2) = 2. By (P3) of Lemma 3.4.4, G− v1 contains at
least one alternating (3, 2)-path starting from the edge vv2. It follows that at
least one of q2, p1, w2 is colored with 2. Now we recolor v with 2 and erase the
color of v2. Then color v1 with 3, recolor u1 and k1 with a color different from
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3.4. Acyclic 3-choosability

1 and 3, respectively, and recolor q1 with a color different from its neighbors.
Obviously, the resulting coloring of G−v2 is acyclic. Denote L(v2) = {2, a, b}.
By Lemma 3.4.3, π(y2) = π(v) = 2 and π(w2) = π(p1) = a 6= 2, which is a
contradiction.

• Assume π(v3) = 2 and π(v2) = 1. We recolor v with 1 and erase the color of
v2. The following argument is similar to the above case.

(A2) Suppose to the contrary that G contains a 3-vertex v adjacent to a special
ugly 3-vertex v1 and a heavy 3-vertex v2, depicted in Figure 3.15 (A2). By (F2)
and the assumption of g(G) > 7, it is easy to deduce that if there is a cycle induced
by the vertices of B then q1 = q3. However, if q1 = q3, then the configuration G2 is
produced, which is contradiction to Claim 3.4.2. So in the following, we claim that
there is no cycle induced by the vertices of B.

Obviously, G − u2 admits an acyclic L-coloring π by the choice of G. W.l.o.g.,
let L(u2) = {1, 2, 3}. According to Lemma 3.4.3, we may assume, w.l.o.g., that
π(p3) = π(y2) = 1 and π(v2) = π(w3) = 3. Moreover, L(v2) = {1, 2, 3} and
{π(v), π(k2)} = {1, 2} by (P1)-(P2) of Lemma 3.4.4, respectively.

Case 1 Assume that π(v) = 2 and π(k2) = 1.

By Lemma 3.4.5 and (i) of Lemma 3.4.6, we have that π(p2) = π(v2) = 3
and π(w2) = π(v) = 2. Moreover, by (ii)-(iii) of Lemma 3.4.6, we know that
L(v) = {1, 2, 3} and {π(v1), π(v3)} = {1, 3}. We have two possibilities as follows.

(1.1) Assume π(v1) = 1 and π(v3) = 3. Erase the color of v1. We first color u2

with 3, then recolor v2 with 2, v with 1, u3, k3 with a color different from
1 and 3, respectively, and finally recolor q3 with a color different from its
neighbors. By a careful inspection, it is easy to see that the resulting coloring
of G−v1 is acyclic. By (P2) of Lemma 3.4.4, we deduce that L(v1) = {1, 2, 3},
since L(v) = {1, 2, 3}. However, none of paths vv2 · · · in G − v1 could be an
alternating (1, 2)-path, which contradicts (P3) of Lemma 3.4.4.

(1.2) Assume π(v1) = 3 and π(v3) = 1. The argument is very similar to the above
Case 1.1.

Case 2 Assume that π(v) = 1 and π(k2) = 3.

The proof is very similar to that of Case 1.

Claim 3.4.4 (B1) A 3-vertex is not adjacent to one heavy 3-vertex and two minor
vertices.

(B2) A 3-vertex is not adjacent to two heavy 3-vertices.

Proof. (B1) Suppose to the contrary that G contains a 3-vertex v adjacent to
a heavy 3-vertex v1 and two minor vertices v2 and v3, as depicted in Figure 3.16.
Since g(G) > 7 and G contains no adjacent 2-vertices by (F2), we affirm that there
is no cycle induced by the vertices of B.
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Figure 3.16: Reducible configuration (B1) in Claim 3.4.4.

Obviously, G−u1 has an acyclic L-coloring π. W.l.o.g., let L(u1) = {1, 2, 3}. By
Lemma 3.4.3, w.l.o.g., we may suppose π(z1) = π(p1) = 1 and π(v1) = π(k1) = 3.
By (P1)-(P2) of Lemma 3.4.4, L(v1) = {1, 2, 3} and {π(v), π(z3)} = {1, 2}. The
following proof is divided into two cases, according to the colors of v and z3.

Case 1 Assume π(z3) = 1 and π(v) = 2.

By Lemma 3.4.5 and (i) of Lemma 3.4.6, we see that π(p2) = π(v1) = 3 and
π(k2) = π(v) = 2. By (ii)-(iii) of Lemma 3.4.6, we know that L(v) = {1, 2, 3} and
{π(v2), π(v3)} = {1, 3}. By symmetry, let π(v2) = 1 and π(v3) = 2. Moreover,
either v1vv3q3k3 · · · or v1vv3p3 · · · is an alternating (3, 2)-path according to (P3) of
Lemma 3.4.4. We have to discuss two possibilities below.

(1.1) Assume v1vv3q3k3 · · · is an alternating (3, 2)-path. It implies that π(q3) = 2
and π(v3) = π(k3) = 3. We can recolor v with 3, v1 with 2, v3 with a color
c different from 3, π(p3), and q3 with a color different from 3, c. One can
easily check that the obtained coloring is acyclic. However, a contradiction to
Lemma 3.4.3 is obtained, since π(v1) = 2 6= 3 = π(k1).

(1.2) Assume v1vv3p3 · · · is an alternating (3, 2)-path. It follows that π(v3) = 3
and π(p3) = 2. We first recolor v with 3, v1 with 2, and v3 with a color
c different from 2, 3. If π(k3) 6= c, we continue to recolor q3 with a color
different from c, π(k3) and thus obtain an acyclic L-coloring of G − u1 such
that π(v1) = 2 6= 3 = π(k1). This contradicts Lemma 3.4.3. So now we
suppose that π(k3) = c. We continue to recolor q3 with c′ distinct to c, 2. If
the resulting coloring of G − u1 is not acyclic, we assert that c = 1, c′ = 3,
and either v2u2w2 · · · or v2w3 · · · is an alternating (1, 3)-path.

• Assume v2u2w2 · · · is an alternating (1, 3)-path. Then π(u2) = 3 and
π(w2) = 1. If π(w3) 6= 2, we may recolor v with 2 and v1 with 3 to
derive an acyclic L-coloring of G − u1 such that {π(v), π(v2), π(v3)} =
{1, 2} 6= {1, 2, 3}, which is a contradiction to (ii) of Lemma 3.4.6. So
now we suppose that π(w3) = 2. We first recolor u2 with a color α ∈
L(u2) \ {1, 3}. If α 6= 2, then such coloring is an acyclic L-coloring of
G − u1 with π(v1) = 2 6= 3 = π(k1), which contradicts Lemma 3.4.3.
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3.4. Acyclic 3-choosability

So suppose α = 2. In this case, we continue to recolor v2 with a color
β ∈ L(v2) \ {1, 2}. If β 6= 3, then we are done by similar reason as above.
If β = 3, we further recolor v with 1, v3 with 3, and q3 with a color
distinct to 1, 3. By careful inspection, the obtained coloring is acyclic.
However, π(v1) = 2 6= 3 = π(k1), which contradicts Lemma 3.4.3.

• Assume v2w3 · · · is an alternating (1, 3)-path. Similarly, we deduce that
π(u2) = 2 and π(w2) = 1. This case seems to be easy to discuss. We first
recolor u2 with a color α ∈ L(u2)\{1, 2}. If α 6= 3, then further recolor v
with 2 and v1 with 3 to obtain an acyclic L-coloring of G− u1 such that
{π(v2), π(v3), π(v)} = {1, 2} 6= {1, 2, 3}. This contradicts (ii) of Lemma
3.4.6. If α = 3, we continue to recolor v2 with a color different from 1, 3,
and thus similarly derive a contradiction to Lemma 3.4.3.

Case 2 Assume π(z3) = 2 and π(v) = 1.

The proof is very similar to that of Case 1.

(B2) Suppose to the contrary that G contains a 3-vertex v adjacent to two heavy
3-vertices v1 and v2 depicted in Figure 3.17 (1). We have to consider the following
two cases depending on the cycles formed by the vertices of B.
Case 1 There is no cycle induced by the vertices of B.

As Figure 3.17 (1) shown, it is obvious that G− u1 has an acyclic L-coloring π
by the choice of G. W.l.o.g., let L(u1) = {1, 2, 3}. By Lemma 3.4.3, w.l.o.g., we
may suppose π(k1) = π(y1) = 1 and π(v1) = π(p1) = 3. By (P1)-(P2) of Lemma
3.4.4, we have that L(v1) = {1, 2, 3} and {π(v), π(z2)} = {1, 2}.
Case 1.1 Assume π(z2) = 1 and π(v) = 2.

By Lemma 3.4.5 and (i) of Lemma 3.4.6, π(y2) = π(v1) = 3 and π(p2) = π(v) =
2. By (ii)-(iii) of Lemma 3.4.6, we know that L(v) = {1, 2, 3} and {π(v2), π(v3)} =
{1, 3}. We have two possibilities below.
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Figure 3.17: Reducible configuration (B2) in Claim 3.4.4.
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(1.1.1) π(v2) = 3 and π(v3) = 1. We first color u1 with 3, then recolor v with 3, v1 with
2, w1 with a color distinct to 1, 3, z1 with a color c distinct to 1, 3, and q1 with
a color different from the 3 and c. Now erase all the colors of v2, u2, z3, q3.
We continue to color v2 with a color a distinct to 1 and 3, z3 with a color
b different from a and π(y3), and then color q3 in this way: If b = π(p3),
color q3 with a color different from b and π(y3); otherwise, color q3 with a
color different from b and π(p3). By a careful inspection, we observe that the
resulting coloring of G− u2 is acyclic. Moreover, by definition, u2 is a special
ugly 3-vertex. So by (P1) of Lemma 3.4.4, we deduce that L(u2) = {3, a, b}.
Moreover, π(p4) = π(v2) = a and π(y4) = π(k2) ∈ {3, b} by Lemma 3.4.3.
Thus, a contradiction to (P3) of Lemma 3.4.4 is easily obtained, since there is
no alternating (a, 3)-path v2vv1 · · · in G− u2.

(1.2) π(v2) = 1 and π(v3) = 3. We first color u1 with 3, then recolor v with 1, v1

with 2, w1, z1 with a color distinct to 1, 3, respectively, and q1 with a color
different from the colors of p1 and z1. Now erase all the colors of v2, u2, z3, q3.
The following argument is similar to the proof of Case 1.1.1.

Case 1.2 Assume π(z2) = 2 and π(v) = 1.

The proof is very similar to that of Case 1.1.

Case 2 There exists a 7+-cycle induced by the vertices of B.
It follows that at least two of black vertices coincide. Denote B1 = {w1, w2, q1,

q2, q3, q4} be the set of black 2-vertices and B2 = {z1, z2, z3, z4, u1, u2, v1, v2, v} be
the set of black 3-vertices, respectively. It is obvious that x cannot coincide y if
x ∈ B1 and y ∈ B2. Furthermore, any two vertices in B2 cannot coincide because
g(G) > 7. All these facts imply that two vertices in B1 coincide. By symmetry, we
have to deal with the following three subcases:

(2.1) Assume w1 = q4. Denote w∗ = w1 = q4. Obviously, C = w∗z4u2v2vv1u1w
∗ is a

7-cycles. More specifically, C is a bizarre (2, 3, 3SU , 3H , 3, 3, 3, 2)-cycle, which
is a contradiction to Claim 3.4.2.

(2.2) Assume q1 = q3. Denote q∗ = q1 = q3. It is easy to see that C =
q1z1u1v1vv2z3q1 is a bizarre (2, 3, 3SU , 3H , 3, 3, 3, 1)-cycle, which contradicts
Claim 3.4.2.

(2.3) Assume q1 = q4. As Figure 3.17 (2) shown, we denote q∗ = q1 = q4. Noting
that C∗ = u1z1q

∗z4u2v2vv1u1 is an 8-cycle. Moreover, this is the unique cycle
induced by the vertices of B. Since G is the minimal counterexample, G− u1

has an acyclic L-coloring π. W.l.o.g., let L(u1) = {1, 2, 3}. By Lemma 3.4.3,
w.l.o.g., we may suppose π(k1) = π(y1) = 1 and π(v1) = π(z4) = 3. By (P1)-
(P2) of Lemma 3.4.4, L(v1) = {1, 2, 3} and {π(v), π(z2)} = {1, 2}. In this
thesis, we only show the proof of the case that π(z2) = 1 and π(v) = 2, since
the other case is very similar.

By Lemma 3.4.5 and (i) of Lemma 3.4.6, π(y2) = π(v1) = 3 and π(p2) =
π(v) = 2. By (ii)-(iii) of Lemma 3.4.6, we know that L(v) = {1, 2, 3} and
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{π(v2), π(v3)} = {1, 3}. Though the following discussion is very similar to
Case 1, we would like to complete its details.

• π(v2) = 3 and π(v3) = 1. We first color u1 with 3, then recolor v with
3, v1 with 2, w1 with a color distinct to 1, 3, z1 with a color c distinct
to 1, 3, and q∗ with a color different from 3 and c. Now erase all the
colors of v2, u2, z3, q3. We continue to color v2 with a color a distinct to
1 and 3, z3 with a color b different from a and π(y3), and then color q3

in this way: If b = π(p3), color q3 with a color different from b and π(y3);
otherwise, color q3 with a color different from b and π(p3). By a careful
inspection, one can easily check that the resulting coloring of G − u2 is
acyclic. By definition, u2 is a special ugly 3-vertex. So by (P1) of Lemma
3.4.4, we have that L(u2) = {3, a, b}. Thus, a contradiction to (P3) of
Lemma 3.4.4 is easily obtained, since there is no alternating (a, 3)-path
v2vv1 · · · in G− u2.

• π(v2) = 1 and π(v3) = 3. We first color u1 with 3, then recolor v with
1, v1 with 2, w1 with a color distinct to 1, 3, z1 with a color c distinct to
1, 3, and q∗ with a color different from 3 and c. Now erase all the colors
of v2, u2, z3, q3. The following argument is similar to the above case.

Since every ugly 3-vertex is a minor vertex, it is easy to deduce the following
Claim 3.4.5 by (B1) of Claim 3.4.4.

Claim 3.4.5 A 3-vertex is not adjacent to an ugly 3-vertex, a minor vertex and a
heavy 3-vertex.

3.4.3 Proof of Theorem 3.4.2

Now we use a discharging argument with initial charge ω(v) = d(v) at each vertex v
and with the following discharging rules (R1)-(R4). We write ω∗ to denote the charge
at each vertex v after we apply the discharging rules. Note that the discharging
rules do not change the sum of the charges. To complete the proof, we show that
ω∗(v) > 14

5
for all v ∈ V (G). This leads to the following obvious contradiction:

14
5

6
∑

v∈V (G) ω∗(v)

|V (G)| =
∑

v∈V (G) ω(v)

|V (G)| = 2|E(G)|
|V (G)| 6 Mad(G) < 14

5
.

Hence no counterexample can exist.

Our discharging rules are defined as follows:

(R1) Every 2-vertex gets a charge equal to 2
5
from each of its adjacent 3+-vertex.

(R2) Let v be a 3-vertex.

(R2.1) If v is an ugly 3-vertex, then v gets a charge equal to 1
5
from its neighbor

that is neither a 2-vertex nor a minor vertex.
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(R2.2) If v is a minor vertex that is not ugly, then v gets a charge equal to 1
10

from each of its neighbors of degree at least 3.

(R2.3) If v is a heavy 3-vertex, then v gets a charge equal to 1
10

from its neighbor
that is neither a minor vertex nor an ugly 3-vertex.

(R1)

3

3

2

5

v

2

5

1

5

v

v

3 3

1

10

1

10 1

10

(R2.1) (R2.2) (R2.3)

3

Figure 3.18: Discharging rules (R1) to (R2).

Let v ∈ V (G). Denote v1, v2, · · · , vd(v) be the neighbors of v in a cyclic order.
The proof is divided into four cases according to the value of d(v).

Case 1 d(v) = 2.

Then ω(v) = 2, d(v1), d(v2) > 3 by (F2). Thus, ω∗(v) > 2 + 2× 2
5

= 14
5
by (R1).

Case 2 d(v) = 3.

Then ω(v) = 3. Clearly, n2(v) 6 1 by (F2). It suffices to consider the following
two cases, depending on the value of n2(v).

(2.1) Assume n2(v) = 1. W.l.o.g., suppose that v1 is a 2-vertex. Namely, v is a
(1, 0, 0)-vertex. By (R1), τ(v → v1) = 2

5
. According to (F2), we assert that

there is at most one of v2 and v3 that is a minor vertex. By symmetry, we
have two possibilities below:

• Assume that v2 is a minor vertex. By definition, v is an ugly 3-vertex.
Since v3 is neither a 2-vertex nor a minor vertex, v gets 1

5
from v3 by

(R2.1). Moreover, v3 cannot be an ugly 3-vertex by (F2) again. If v3 is
a heavy 3-vertex, by definition, we may suppose that v3 is adjacent to
a minor vertex u1 and an ugly 3-vertex u2. It is easy to see that v3 is
adjacent to two ugly 3-vertices v and u2, which is a contradiction to (A1).
Thus, v sends nothing to v3 and we have that ω∗(v) > 3− 2

5
+ 1

5
= 14

5
by

(R1) and (R2).

• Now assume that neither v2 nor v3 is a minor vertex. This implies that
none of v, v2 and v3 is an ugly 3-vertex. If neither v2 nor v3 is a heavy
3-vertex, then we are done, since ω∗(v) > 3− 2

5
+2× 1

10
= 14

5
by (R1) and

(R2.2). Otherwise, by symmetry, assume v2 is a heavy 3-vertex. Denote
N(v2) = {v, u1, u2} such that u1 is a minor vertex and u2 is an ugly 3-
vertex. One can easily observe that u1, u2 are both minor vertices. This
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fact implies that v2 is adjacent to three minor vertices u1, u2, v, which
contradicts (F4).

(2.2) Assume n2(v) = 0. Then vi is a 3+-vertex for each i ∈ {1, 2, 3}. By (F4),
there are at most two minor vertices among v1, v2 and v3. By symmetry, we
have to handle the following three cases:

• First assume that v1 and v2 are minor vertices and v3 is not.

– If v1 and v2 are both ugly 3-vertices, then it contradicts (A1).
– If v1 is an ugly 3-vertex and v2 is not, then v is a heavy 3-vertex

by definition. So τ(v → v1) = 1
5
by (R2.1) and τ(v → v2) = 1

10

by (R2.2). On the other hand, v gets 1
10

from v3 by (R2.3), since
v3 is neither a minor vertex nor a ugly 3-vertex. Furthermore, we
notice that v3 cannot be a heavy 3-vertex by Claim 3.4.5. Therefore,
ω∗(v) > 3− 1

5
− 1

10
+ 1

10
= 14

5
.

– Now we assume that neither v1 nor v2 is ugly. According to (R2.2),
each of v1, v2 gets 1

10
from v. It is easy to observe that v3 is not ugly,

since it is not a minor vertex. Moreover, by (B1), we assert that v3

is not a heavy 3-vertex. All these facts ensure that v sends nothing
to v3. Therefore, ω∗(v) > 3− 2× 1

10
= 14

5
.

• Next assume that v1 is a minor vertex and v2, v3 are not.
It means that neither v2 nor v3 is an ugly 3-vertex. If v1 is not ugly, then
v sends at most 1

10
to v1 and there is at most one heavy 3-vertex of v2

and v3 by (B2). Hence, ω∗(v) > 3− 1
10
− 1

10
= 14

5
by (R2.2) and (R2.3).

Otherwise, we suppose v1 is an ugly 3-vertex. It follows from (R2.1) that
τ(v → v1) = 1

5
. By (A2), neither v2 nor v3 is a heavy 3-vertex. So v

sends nothing to v2 and v3. Hence, we conclude that ω∗(v) > 3− 1
5

= 14
5
.

• Finally assume that none of v1, v2 and v3 is a minor vertex.
It implies that none of v1, v2 and v3 is an ugly 3-vertex. According to (B2)
again, we defer that at most two vertices of v1, v2, v3 are heavy 3-vertices.
Thus, by (R2.3), ω∗(v) > 3− 2× 1

10
= 14

5
.

Case 3 d(v) = 4.

Obviously, the initial charge is ω(v) = 4 and n2(v) 6 2 by (F2). Thus ω∗(v) >
4− 2× 2

5
− 2× 1

5
= 14

5
by (R1) and (R2).

Case 4 d(v) > 5.

By (R1) and (R2), v sends a charge at most 2
5
to each of its neighbors. Thus,

ω∗(v) > d(v)− 2
5
d(v) = 3

5
d(v) > 3 > 14

5
.

Therefore, we complete the proof of Theorem 3.4.2.
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3.5 Concluding remarks

An oriented k-coloring of an oriented graph G = (V, A) is a mapping ϕ from V (G)
to a set of k colors such that (1) ϕ(u) 6= ϕ(v) whenever −→uv ∈ A, and (2) ϕ(u) 6= ϕ(y)
whenever −→uv,−→xy ∈ A and ϕ(v) = ϕ(x). In other words, an oriented k-coloring of an
oriented graph

−→
G is a partition of vertex set into k color classes such that no two

adjacent vertices belong to the same color class and all the arcs linking two color
classes have the same direction. The oriented chromatic number of an oriented
graph

−→
G , denoted by χo(

−→
G), is defined as the least integer k such that

−→
G admits

an oriented k-coloring. The oriented chromatic number of an undirected graph G,
denoted by χo(G), is defined as the maximum oriented chromatic number of its
orientations.

In 1994, Raspaud and Sopena [RS94] established an interesting relation between
the oriented chromatic number and the acyclic chromatic number of a graph G:

Theorem 3.5.1 [RS94] If χa(G) = k, then χo(G) 6 k · 2k−1.

By Borodin’s acyclic 5-color theorem [Bor79], it follows immediately from Theo-
rem 3.5.1 that the oriented chromatic number of a planar graph is at most 80. Since,
for any graph G, χa(G) 6 χl

a(G), our Theorem 3.3.2 implies clearly the following
result concerning the oriented chromatic number of planar graphs.

Theorem 3.5.2 If G is a planar graph without 4- and 5-cycles, then χo(G) 6 32.

Voigt [Voi95] constructed a planar triangle-free graph which is not 3-choosable,
and Thomassen [Tho95] proved that each planar graph with girth at least 5 is 3-
choosable. Combining our Theorem 3.4.2, we would like to propose the following
conjecture:

Conjecture 3.5.3 Every planar graph with girth at least 5 is acyclically 3-
choosable.
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Star coloring and star list coloring
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The results presented in this chapter are joint work [CRW10b, CRW10a, CRW09]
with Raspaud and Wang. In this chapter, we investigate the star (list) coloring of
graphs. First, in Section 4.1, we give a chief survey in this direction. Then, in
Section 4.2, we obtain a tight upper bound on star chromatic number of subcubic
graphs. Finally, in Sections 4.3 to 4.4, we study, respectively, the L-star-coloring of
planar subcubic graphs and sparse graphs.

4.1 Introduction

When Grünbaum [Grü73] introduced the acyclic notion, he also noted that the
condition that the union of any two color classes inducing a forest can be generalized
to other bipartite graphs. Among other problems, he suggested requiring that the
union of any pair of color classes induces a star forest, namely, a proper coloring
avoiding 2-colored paths with four vertices. A proper coloring of the vertices of a
graph G is called a star-coloring if the union of every two color classes induces a
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star forest. In other words, no path on four vertices is 2-colored. The star chromatic
number of G, denoted by χs(G), is the smallest integer k for which G admits a star
coloring with k colors.

Grünbaum noted (without proof) that bounding the acyclic chromatic number
bounds the star chromatic number. We state the result, a proof of which was given
by Fertin, Raspaud and Reed [FRR01].

Theorem 4.1.1 [FRR01] If χa(G) = k, then χs(G) 6 k · 2k−1.

Let P denote the family of planar graphs. By Borodin’s acyclically 5-colorable
theorem and Theorem 4.1.1, it is easy to obtain that χs(P) 6 80. In 2003, Nes̆etr̆il
and Ossona de Mendez [NOdM03] made a big step by showing that χs(P) 6 30. This
result also implies that every triangle-free planar graph can be star colored using 18
colors, whereas Kierstead, Kündgen, and Timmons [KKT09] gave an example of a
bipartite planar graph that requires 8 colors to star color. One year later, Albertson
et al. [ACK+04] further decreased the upper bound 30 to 20 and gave a lower bound
by showing an example of a planar graph H using at least 10 colors to star color.
It follows that 10 6 χs(P) 6 20. Moreover, they made an improvement of Theorem
4.1.1 by showing the following:

Theorem 4.1.2 [ACK+04] If χa(G) = k, then χs(G) 6 k(2k − 1).

In [BCM+09], Bu et al. studied the star chromatic number of graphs with given
maximum average degree by showing that:

Theorem 4.1.3 [BCM+09] Let G be a graph.

(1) If Mad(G) < 26
11
, then χs(G) 6 4.

(2) If Mad(G) < 18
7
and g(G) > 6, then χs(G) 6 5.

(3) If Mad(G) < 8
3
and g(G) > 6, then χs(G) 6 6.

By the well-known inequality Mad(G) < 2g(G)
g(G)−2

, it is easy to deduce from Theo-
rem 4.1.3 that for a planar graph G, χs(G) 6 4 if g(G) > 13, χs(G) 6 5 if g(G) > 9,
and χs(G) 6 6 if g(G) > 8.

Other star-coloring results related to planar graphs are provided in Timmons’s
master’s thesis [Tim07].

We say that G is L-star-colorable if for a given list assignment L there is a star-
coloring c such that c(v) ∈ L(v). If G is L-star-colorable for any list assignment L
with |L(v)| > k for all v ∈ V (G), then G is k-star-choosable. The star list chromatic
number, or star choice number, denoted by χl

s(G), of G is the smallest integer k
such that G is k-star-choosable.

L-star-coloring has been recently investigated by many authors. Kierstead,
Kündgen and Timmons [KKT09] showed that bipartite planar graphs are 14-star-
choosable. In [KT10], Kündgen and Timmons proved a theorem about the depen-
dence between the maximum average degree of graphs and their star list chromatic
number. Their main result is the following:
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Figure 4.1: A cubic graph Gs with χs(Gs) = 6.

Theorem 4.1.4 [KT10] Let G be a graph.

(1) If Mad(G) < 8
3
, then χl

s(G) 6 6.

(2) If Mad(G) < 14
5
, then χl

s(G) 6 7.

(3) If G is planar and g(G) > 6, then χl
s(G) 6 8.

We have to notice that the conclusion (1) in Theorem 4.1.4 is stronger than the
third conclusion in Theorem 4.1.3. By the relationship mentioned before and (1)
and (2) in Theorem 4.1.4, we immediately derive that for a planar graph G, we have
χl

s(G) 6 6 if g(G) > 8, and χl
s(G) 6 7 if g(G) > 7.

By definition, we see that every star coloring is an acyclic coloring but star color-
ing a graph typically requires more colors than acyclically coloring the same graph.
Moreover, determining the minimum (list) chromatic number of many families of
graphs is proved to be a challenging problem. This is indeed the case for families
as simple as subcubic graphs.

Basing on this point, in this chapter, we mainly work on subcubic graphs. More
specifically, in Section 4.2, we shall give an upper bound on star chromatic number
of subcubic graphs and show this bound is sharp and in Section 4.3, we obtain
some new upper bounds on star choosability of planar subcubic graphs with girth
condition. Finally, in Section 4.4, we extend the conclusion (3) in Theorem 4.1.4 to
a more general result, which avoids the planar constraint.

4.2 Subcubic graphs are 6-star-colorable

In this section, we prove the following theorem, which is best possible based on the
example showed by Fertin, Raspaud and Reed in [FRR01], see Figure 4.1.

Theorem 4.2.1 [CRW10a] Every subcubic graph is 6-star-colorable.

Proof. Let C = {1, 2, · · · , 6} denote a set of six colors. Suppose to the contrary
that the theorem is not true. Let G be a counterexample with the least number of
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vertices, i.e., a subcubic graph without any 6-star-coloring by using color set C, but
for any subgraph G′ with |G′| < |G| admits a 6-star-coloring using C. Therefore, G
is connected. We need to discuss some properties of G.

Claim 4.2.1 G does not contain 1-vertices.

Proof. Suppose that x is a 1-vertex of G and y is the neighbor of x. Since
∆(G) 6 3, there are at most two neighbors of y different from x. By the minimality
of G, G− x has a 6-star-coloring π by using C. Obviously, we can assign a color in
C to x, different from the colors of y and the neighbors of y. It follows that G is
6-star-colorable, which is a contradiction.

Claim 4.2.2 G does not contain 2-vertices.

Proof. Suppose to the contrary that there is a 2-vertex x adjacent to u and v.
Then, G′ = G− x has a 6-star-coloring π using C by the minimality of G. We will
extend π to x to derive a contradiction.

If |NG′(u) ∪ NG′(v) ∪ {u, v}| 6 5, we can color x with a color in C differ-
ent from the colors of all vertices in NG′(u) ∪ NG′(v) ∪ {u, v} because |C| = 6.
Otherwise, we may assume that |NG′(u) ∪ NG′(v) ∪ {u, v}| = 6, where NG′(u) =
{u1, u2}, NG′(v) = {v1, v2}, and u, v, u1, u2, v1, v2 are mutually distinct. If there
is c ∈ C\{π(u), π(v), π(u1), π(u2), π(v1), π(v2)}, we color x with c. Otherwise, we
may assume that π(u) = 1, π(v) = 2, π(u1) = 3, π(u2) = 4, π(v1) = 5, and
π(v2) = 6. If the color 1 did not appear in NG(u1)\{u} or not in NG(u2)\{u},
we color x with 3 or 4. If 1 appeared in both NG(u1)\{u} and NG(u2)\{u}, we
color x with 1, then recolor u with a color c ∈ C different from 3, 4 and those
colors used in (NG(u1) ∪ NG(u2)) \ {u}. Since the total number of colors used on
(NG(u1) ∪NG(u2)) \ {u} is at most 3, such color c exists.

Claim 4.2.1 and Claim 4.2.2 imply that G is 3-regular, i.e., every vertex in G
has exactly three neighbors.

Claim 4.2.3 G has no 3-cycle.

Proof. Suppose that T = v1v2v3v1 is a 3-cycle of G. For each i = 1, 2, 3, let ui be
the neighbor of vi not in V (T ), and xi, yi be two other neighbors of ui different from
vi. Let G′ = G − V (T ). Then G′ admits a 6-star-coloring π by the minimality of
G. It suffices to color v1 with a ∈ C \ {π(u1), π(u2), π(u3), π(x1), π(y1)}, v2 with b ∈
C\{a, π(u2), π(u3), π(x2), π(y2)}, and v3 with a color in C\{a, b, π(u3), π(x3), π(y3)}.
It is easy to verify that the extended coloring is a 6-star-coloring of G, deriving a
contradiction.

Claim 4.2.4 G has no 4-cycle.

Proof. Suppose that C4 = v1v2v3v4v1 is a 4-cycle of G. For i ∈ {1, 2, 3, 4}, let
ui denote the the neighbor of vi not in C4, and xi, yi be two other neighbors of ui

different from vi. By Claim 4.2.3, we see that v1v3 /∈ E(G) and v2v4 /∈ E(G). By
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the minimality of G, G′ = G− V (C4) admits a 6-star-coloring π by using the color
set C. First, we color v2 with a ∈ C \ {π(u1), π(u2), π(u3), π(x2), π(y2)} and v4 with
b ∈ C\{π(u1), π(u3), π(u4), π(x4), π(y4)}. Then we consider the following subcases:

Case 1 a 6= b.

For i = 1, 3, we color vi with a color in C \ {a, b, π(ui), π(xi), π(yi)}.
Case 2 a = b.

In this case, we assume that π(u1) = 1, π(u3) = 2, π(u2) = 3, π(x2) = 4,
π(y2) = 5, a = b = 6, and {π(u4), π(x4), π(y4)} = {3, 4, 5}. It means that u1,
u2, u3, u4 are mutually distinct. We first recolor v4 by 2, then color v3 with c ∈
C \ {2, 6, π(u4), π(x3), π(y3)}. Afterwards, we need to consider two possibilities as
follows:

(i) c = 3. This implies π(u4) 6= 3. We recolor v2 with 1, then color v1 with a
color in C \ {1, 2, 3, π(x1), π(y1)}.

(ii) c 6= 3. First, we assume that π(u4) = 3 and {π(x4), π(y4)} = {4, 5}. If
3 /∈ {π(x1), π(y1)}, then color v1 with 3. Otherwise, w.l.o.g., suppose π(x1) = 3.
Then recolor v2 with 2, and color v1 with d ∈ C \ {1, 2, 3, c, π(y1)}. Next, assume,
without loss of generality, that π(u4) = 4 and {π(x4), π(y4)} = {3, 5}. We color v1

with d ∈ C \ {1, 2, 6, π(x1), π(y1)}. If d = c, it follows that c = d /∈ {1, 2, 3, 4, 6}, we
need to recolor v4 with 1.

A partial coloring will denote a coloring of V ′ ⊆ V (G), such that the graph
G[V ′] induced by V ′ is 6-star-colorable. A color α ∈ C is feasible for a vertex v if
assigning color α to v still results in a partial coloring. Let π be a partial coloring
of G. For v ∈ V (G) and u ∈ N(v), we say that u is a nice neighbor of v if there
exists u′ ∈ N(u)\{v} such that π(v) = π(u′). Otherwise, we say u is a bad neighbor
of v. We call a feasible color α safe for v if at least two colored neighbors of v are
bad neighbors of v after coloring v with α.

In the following, we assume that G is a 3-regular graph with girth at least 5 by
Claim 4.2.3 and Claim 4.2.4. We begin with the following two claims, which play
an important role in proving Claim 4.2.7.

Claim 4.2.5 Let π be a partial coloring of G. Suppose x is a colored 3-vertex with
two colored neighbors x1, x2 and one uncolored neighbor x3. If both x1 and x2 are
nice neighbors of x, then there exists a partial coloring π′ and a safe color α ∈ C
for x such that both x1 and x2 become bad neighbors of x with respect to π′.

Proof. Denote N(x1) = {x, x′1, x
′′
1} and N(x2) = {x, x′2, x

′′
2}. By Claim 4.2.4, we see

that x′1, x
′′
1, x

′
2, x

′′
2 are mutually distinct. Since x1, x2 are both nice neighbors of x,

by symmetry, we may suppose that π(x′1) = π(x′2) = π(x). It follows immediately
that there exists a feasible color α ∈ C\{π(x), π(x1), π(x2), π(x′′1), π(x′′2)} because
|C| = 6. Let π′(x) = α and π′(u) = π(u) for colored vertex u ∈ V (G)\{x}. It is
easy to check that α is safe since x1 and x2 become bad neighbors of x. Moreover,
π′ is still a partial coloring of G. This completes the proof of Claim 4.2.5.
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Claim 4.2.6 Let π be a partial coloring of G. Suppose x is a colored 3-vertex with
two colored neighbors x1, x2 and one uncolored neighbor x3. If x1 is a nice neighbor,
then there exists a partial coloring π′ and a feasible color β ∈ C for x such that one
of the following holds:

(A1) π′(x) = β and π′(u) = π(u) for colored vertex u ∈ V (G)\{x} such that both x1

and x2 become bad neighbors of x with respect to π′;

(A2) π′(x) = β = π(x2), π′(x2) = β∗, where β∗ is a safe color for x2, and π′(u) =
π(u) for colored vertex u ∈ V (G)\{x, x2} such that both x1 and x2 become bad
neighbors of x with respect to π′;

(A3) π′(x) = β ∈ {π(x′2), π(x′′2)} and π′(u) = π(u) for colored vertex u ∈ V (G)\{x}
such that x1 becomes a bad neighbor of x with respect to π′.

Proof. Denote N(x1) = {x, x′1, x
′′
1} and N(x2) = {x, x′2, x

′′
2}. Notice that x3 /∈

{x′1, x′′1, x′2, x′′2} by the absence of 3-cycles in G. Furthermore, x′1, x
′′
1, x

′
2, x

′′
2 are mu-

tually distinct by Claim 4.2.4. Since x1 is a nice neighbor of x, without loss of
generality, we suppose that π(x′1) = π(x).

If there exists a color a different from the colors (if colored) of x, x1, x2, x′′1,
x′2, and x′′2, then we set π′(x) = β. For other colored vertex u ∈ V (G)\{x}, we set
π′(u) = π(u). It is easy to see that β is a feasible color for x and (A1) holds.

Otherwise, we may assume that π(x) = π(x′1) = 1, π(x1) = 2, π(x2) = 3,
π(x′′1) = 4, π(x′2) = 5, and π(x′′2) = 6. This means that x2 is a bad neighbor of x.
We first erase the color x and need to consider the following two cases.

(i) If x′2 and x′′2 are both nice neighbors of x2, there exists a safe color β∗ for x2

by Claim 4.2.5 and then we can set π′(x2) = β∗, π′(x) = π(x2) = 3, and finally set
π′(u) = π(u) for any colored vertex u ∈ V (G)\{x, x2}. Since all vertices x′1, x

′′
1, x

′
2, x

′′
2

keep the same colors as before and none of them was colored with 3, we deduce that
π′ is proper partial coloring and both x1 and x2 become bad neighbors of x with
respect to π′. Hence, (A2) holds.

(ii) Now, w.l.o.g., we may suppose that x′2 is a bad neighbor of x2, i.e., x2’s
two other neighbors different from x2 are not colored with 3. In this case, we can
set π′(x) = π(x′2) = 5, and π′(u) = π(u) for any colored vertex u ∈ V (G)\{x}.
One can easily check that such coloring still ensures that there is no 2-colored path
on four vertices. So π′ is also a partial coloring of G. Since {π′(x′1), π′(x′′1)} =
{π(x′1), π(x′′1)} = {1, 4}, x1 becomes a bad neighbor of x with respect to π′. There-
fore, we obtain (A3).

Remark 1: Let π be a partial coloring of G. Assume that x is adjacent to two
colored vertices x1, x2 and one uncolored vertex x3. We further suppose that x1 is a
nice neighbor of x. For each i ∈ {1, 2}, denote x′i, x′′i be the other two neighbors of
xi distinct to x. If (A2) of Claim 4.2.6 holds, then it follows from the proof of case
(i) that π′(x′2) = π(x′2) 6= π(x′′2) = π′(x′′2). Moreover, there exists u ∈ N(x′2)\{x2}
and v ∈ N(x′′2)\{x2} such that π′(u) = π′(v) = π(x2) = π′(x).

We will conclude the proof of Theorem 4.2.1 by showing the following Claim
4.2.7, which is a contradiction to the assumption of G.
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Claim 4.2.7 G contains no 3-vertex.

Proof. Suppose to the contrary that G contains a 3-vertex v adjacent to x, y and
z. We denote by x1, x2 (resp. y1, y2, z1, z2) the other two neighbors of x (resp. y,
z) different from v. Let S = {x1, x2, y1, y2, z1, z2}. For each vertex u ∈ S, let u′, u′′

denote the other two neighbors of u different from x, y, z, see Figure 4.2. For sim-
plicity, we use π(S) to denote the color set {π(x1), π(x2), π(y1), π(y2), π(z1), π(z2)}.
By Claim 4.2.3, S∩{x, y, z} = ∅. Moreover, |S| = 6 by Claim 4.2.4. Let G′ = G−v.
By the minimality of G, G′ admits a 6-star-coloring π by using the color set C. By
symmetry, the following proof is divided into three lemmas, each of which shows
that in any case π can be extended to v successfully. Thus, we always derive a
6-star-coloring of G and thus conclude the proof of Claim 4.2.7.
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Figure 4.2: A 3-vertex v is adjacent to x, y and z.

Lemma 4.2.2 If π(x) = π(y) = π(z), then π can be extended to v successfully.

Proof. Without loss of generality, we suppose that π(x) = π(y) = π(z) = 1. If
there is a ∈ C\({1} ∪ π(S)), we extend π to v by assigning v with a. Otherwise,
w.l.o.g., assume that π(x1) = 2, π(x2) = 3, π(y1) = 4, π(y2) = 5, π(z1) = 6 and
π(z2) ∈ {2, · · · , 6}. By symmetry, we further assume that π(z2) /∈ {4, 5}. Denote
S2 = {y′1, y′′1 , y′2, y′′2}. By Claims 4.2.3 and 4.2.4, S2 ∩ {y1, y2} = ∅ and |S2| = 4.
Moreover, any vertex in S2 could be coincide with the vertex in {x1, x2, z1, z2}.
Depending on the situations of y1 and y2, we have to handle three cases below.

Case 1 Assume that y1 and y2 are both nice neighbors of y.

By Claim 4.2.5, we may first recolor y with a safe color α. Obviously, α 6= 4
since π(y1) = 4. Then we color v with 4. Since none of vertex in S\{y1} is colored
with 4 and α /∈ {π(y′1), π(y′′1)}, the resulting coloring is a proper 6-star-coloring.

Case 2 Assume that exactly one of y1 and y2 is a nice neighbor of y.

By symmetry, assume that y1 is a nice neighbor of y and y2 is not, say π(y′1) = 1.
By Claim 4.2.6, we see that y can be given a feasible color β in three ways. So, we
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first recolor y with β. If either (A1) or (A3) holds, then in each case, y1 becomes a
bad neighbor of y after recoloring y and y2 still remains the same color as before.
So we finally color v with 4 properly since β 6= 4 and none of vertex in S\{y1} is
colored with 4.

Now, we suppose that (A2) holds. Namely, β = 5 and y2 has been already
recolored by a safe color, say β∗. In this case, we also color v with 4. It is easy
to check that the resulting coloring is a 6-star-coloring since none of x1, x2, z1, z2 is
colored with 4 and both y1 and y2 become nice neighbors of y after recoloring y and
y2.

Case 3 Assume that neither y1 nor y2 is a nice neighbor of y.

It follows immediately that 1 /∈ {π(y′1), π(y′′1), π(y′2), π(y′′2)}. For our convenience,
we write that π(y′1) = a, π(y′′1) = b, π(y′2) = c, π(y′′2) = d and notice that two of them
can be equal. If there exists a color α belonging to C\{1, 4, 5, a, b, c, d}, we recolor
y with α and then color v with 4. Otherwise, we obtain that 3 6 |{a, b, c, d}| 6 4
and thus {2, 3, 6} ⊆ {a, b, c, d} ⊆ {2, 3, 6, i}, where i ∈ {4, 5}. Assume, w.l.o.g., that
i = 4. We have to consider the following two subcases.

Case 3.1 {a, b, c, d} = {2, 3, 4, 6}.
Obviously, 4 ∈ {c, d} since π(y1) = 4. By symmetry, suppose that d = 4. It

follows easily that {a, b, c} = {2, 3, 6}. For u ∈ {y′1, y′′1}, if u is not a nice neighbor
of y1, we may first recolor y with the color of u and then color v with 5. So now,
suppose that both y′1 and y′′1 are nice neighbors of y1. Then erase the color of y.
By Claim 4.2.5, we assign a safe color α to y1. If α 6= 1, then color y with 1 and v
with 4 properly since α 6= 4 and π(z2) 6= 4. Otherwise, color y with a properly since
a ∈ {2, 3, 6} and v with 4 successfully.

Case 3.2 {a, b, c, d} = {2, 3, 6}.
By symmetry, we only need to consider the following two possibilities.
• a = b. Clearly, c 6= d. Similarly, for u ∈ {y′2, y′′2}, if u is not a nice neighbor

of y2, we can first recolor y with the color of u and then color v with 4. So now,
we suppose that both y′2 and y′′2 are nice neighbors of y2. Then erase the color of
y. According to Claim 4.2.5, we first recolor y2 with a safe color α. If α 6= 1, then
color y with 1 and v with 5 properly because α 6= 5, π(z2) 6= 5, and 1 /∈ {a, c, d}.
Otherwise, color y with 5 and v with 4 successfully by the fact that π(z2) 6= 4 and
a 6= 5.

• a = c. Obviously, b 6= d. If y′′1 is a bad neighbor of y1, we recolor y with b and
color v with 5 since π(z2) 6= 5 and b /∈ {a, d}. Otherwise, let N(y′1) = {y1, p1, p2},
N(y′′1) = {y1, p3, p4}, and by symmetry we suppose π(p3) = 4. We erase the color of
y. By Claim 4.2.6, we can give a feasible color β to y1 in three different ways. So,
we first recolor y1 with β. If β satisfies (A1) or (A3), then y′1 is still colored with
a and y′′1 is still colored with b. Moreover, after recoloring y1 with β, y′′1 becomes a
bad neighbor of y1. Afterwards, we color y and v in the following way: If β = 5,
color y with 1 and v with 4; Otherwise, first color y with b. Since π(y′1) = a 6= b
and b 6= d, the color b is feasible for y. Then we assign 4 to v successfully by the
fact that β 6= 4 and π(z2) 6= 4.
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Figure 4.3: (A2) holds and y′1 = x1.

Now, we suppose that (A2) holds. Namely, β = π(y′1) = a ∈ {2, 3, 6} and y′1
has been recolored by a safe color, say β∗. Moreover, both y′1 and y′′1 become nice
neighbors of y1 after recoloring y1. If y′1 /∈ {x1, x2, z1, z2}, then none of x1, x2, z1, z2

was recolored in the process of recoloring y′1. Thus, we color y with 4 properly since
4 /∈ {a, d}, and finally color v with 5 successfully because π(z2) 6= 5. Otherwise, one
of the following holds:

• y′1 = x1. W.l.o.g., set p1 = x and p2 = x′1, see Figure 4.3. Then there exists a
vertex in N(p1)\{x1} = {x2, v} colored with 2 by Remark 1. This is impossible
since x2 is colored with 3 and v remains uncolored.

• y′1 = x2. The proof if similar to the above case.
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Figure 4.4: (A2) holds and y′1 = z1.

• y′1 = z1. W.l.o.g., set p1 = z and p2 = z′′1 , see Figure 4.4. This implies that
β = a = π(y′1) = 6. If z2 is not colored with 6, then we deduce that this
case does not exist by using a similar proof as above. So, in what follows,
assume that π(z2) = 6. By Remark 1, we derive that π(p1) 6= π(p2) and
thus π(p2) 6= 1. Hence, we further color y with 4 properly since 4 /∈ {a, d}
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and 6 /∈ {π(p1), π(p2)}, and then color v with 5 easily since π(p2) 6= 1 and
π(z2) 6= 5.

• y′1 = z2. The proof is similar to the above case.

This completes the proof of Lemma 4.2.2.

Lemma 4.2.3 If π(x) = π(y) 6= π(z), then π can be extended to v successfully.

Proof. We suppose, w.l.o.g., that π(x) = π(y) = 1 and π(z) = 2. If there exists
a ∈ C\({1, 2} ∪ π(S)), we color v with a. Otherwise, there must be four vertices in
S colored with 3,4,5,6, respectively. For our convenience, we call such four vertices
special. Let S2 = {y′1, y′′1 , y′2, y′′2}. It follows from Claim 4.2.3 that S2∩{y1, y2} = ∅.
Moreover, |S2| = 4 by Claim 4.2.4. We have to notice that any vertex in S2 could
be coincide with the vertex in {x1, x2, z1, z2}. To extend π to v, we have to consider
the following four cases, according to the situations of those special vertices.

Case 1 {π(x1), π(x2), π(y1), π(y2)} = {3, 4, 5, 6}.
Without loss of generality, we set that π(x1) = 3, π(x2) = 4, π(y1) = 5 and

π(y2) = 6. We have to handle the following two subcases, according to the colors of
z1 and z2.

Case 1.1 Assume either {3, 4}∩ {π(z1), π(z2)} = ∅ or {5, 6}∩ {π(z1), π(z2)} = ∅.
W.l.o.g., we suppose that {5, 6} ∩ {π(z1), π(z2)} = ∅. Namely, the colors 5 and

6 do not appear on z1 and z2. We discuss the three possibilities below.

(a) Assume that y1 and y2 are both nice neighbors of y.
We may assume, w.l.o.g., that π(y′1) = π(y′2) = 1. If {π(y′′1), π(y′′2)} 6= {3, 4}, we

may first recolor y with a safe color α 6= 2 by Claim 4.2.5 and then color v with 5
successfully. Now, we may assume, w.l.o.g., that π(y′′1) = 3, π(y′′2) = 4 and erase the
color of y. If y′′1 is a bad neighbor of y1, then color y with 3 and v with 6. Otherwise,
let N(y′1) = {y1, p1, p2}, N(y′′1) = {y1, p3, p4}, and π(p3) = 5. By Claim 4.2.6, we
may assign y1 with a feasible color β in three ways.

If either (A1) or (A3) holds, then y′1 and y′′1 were not recolored in the process
of recoloring y1. In other words, both of them keep the same colors as before.
Furthermore, y′′1 becomes a bad neighbor of y1 after recoloring y1. It is obvious that
the color 5 is a safe color for y since 5 /∈ {π(y′1), π(y′′1), π(y′2), π(y′′2)} = {1, 3, 4}. So
we assign 5 to y. Then, assign 6 to v successfully since 6 /∈ {π(z1), π(z2)}.

Next, suppose that (A2) holds. Namely, β = π(y′1) = 1 and y′1 has been already
given a safe color β∗. Moreover, after recoloring y1 and y′1, both y′1 and y′′1 become
nice neighbors of y1. If y′1 /∈ {x1, x2, z1, z2}, then none of x1, x2, z1, z2 was recolored
in the process of recoloring y′1. Thus, we can extend π to G by assigning 5 to y and
6 to v. Otherwise, suppose that y′1 ∈ {z1, z2} since π(y′1) = 1. By symmetry, set
y′1 = z1, p1 = z and p2 = z′′1 , see Fig. 4. By Remark 1, π(p2) 6= π(z). In other
words, π(p2) 6= 2. Therefore, it is easy to color y with 5 and v with 6 to derive a
6-star-coloring of G.

(b) Assume that exactly one of y1 and y2 is a nice neighbor of y.
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Without loss of generality, assume that π(y′1) = 1 and 1 /∈ {π(y′2), π(y′′2)}. We
first erase the color of y.

(b1) First assume that there is a color a belonging to C \ {1, 5, 6, π(y′′1), π(y′2),
π(y′′2)}. If a 6= 2, then color y with a and v with 5. Otherwise, we may suppose
that {3, 4} ⊆ {π(y′′1), π(y′2), π(y′′2)}. This implies that |{π(y′′1), π(y′2), π(y′′2)}| > 2.
Furthermore, we note that 2 /∈ {π(y′′1), π(y′2), π(y′′2)}.

(b1.1) If y′2 and y′′2 are both nice neighbors of y2, we first recolor y2 with a safe
color α by Claim 4.2.5. If α = 1, color y with a color b in {π(y′2), π(y′′2)}\{5, π(y′′1)}.
Clearly, such color b exists and b /∈ {1, 2}. We further color v with 5 properly
since b /∈ {π(y′1), π(y′′1), π(z1), π(z2)}. If α = 5, then color y with 2 and color
v with 6. It is easy to see that the resulting coloring is a 6-star-coloring since
2 /∈ {π(y′1), π(y′′1), π(y′2), π(y′′2)} and 6 /∈ {π(z1), π(z2)}. If α /∈ {1, 5}, we reassign
color 1 to y and assign color 6 to v.

(b1.2) If exactly one of y′2 and y′′2 is a nice neighbor of y2. Assume, w.l.o.g.,
that y′2 is a nice neighbor of y2. Let N(y′2) = {y2, q1, q2} and N(y′′2) = {y2, q3, q4}.
By symmetry, assume π(q1) = 6. By Claim 4.2.6, we first recolor y2 with a feasible
color β which is differen from 6 in the following three ways.

If either (A1) or (A3) holds, then y′2 and y′′2 still remain the same colors as before
and y′2 becomes a bad neighbor of y2 after recoloring y2. We further color y and
v in the following way: If β ∈ {1, 5}, color y with 2 and v with 6. It is easy to
verify that such coloring is proper since the color 2 does not appear on the vertex
in {y′1, y′′1 , y′2, y′′2} and the color 6 does not appear on z1 and z2. If β /∈ {1, 5},
reassign color 1 to y and assign color 6 to v successfully basing on the fact that
1 /∈ {π(y′2), π(y′′2)}.

Now, suppose that (A2) holds. It follows that β = π(y′′2) and y′′2 has been
recolored by a safe color, say β∗. Moreover, neither y′2 nor y′′2 is a nice neighbor of
y2 after recoloring y2. Obviously, β /∈ {1, 2} since the former color of y′′2 is neither 1
nor 2. It means that β ∈ {3, 4, 5}.

• y′′2 /∈ {x1, x2, z1, z2}. Then none of x1, x2, z1, z2 was recolored in the process of
recoloring y′′2 . Depending on β, we have two coloring ways to extend π to y
and v: Suppose β = 5. This implies that the former color of y′′2 was 5. Thus,
{π(y′′1), π(y′2)} = {3, 4}. If β∗ = 2, color y with 6 and v with 5. If β∗ 6= 2, we
color y with 2 and v with 6 properly. Now we suppose that β ∈ {3, 4}. We
reassign color 1 to y and assign color 6 to v properly.

• y′′2 ∈ {x1, x2, z1, z2}. Remark 1 and the fact that π(x1) 6= π(x2) imply that
y′′2 /∈ {x1, x2}. So, by symmetry, suppose that y′′2 = z1, q3 = z and q4 = z′′1 ,
see Figure 4.5. It is easy to deduce that β ∈ {3, 4} since the former color of
y′′2 was neither 1, nor 5, nor 6. Moreover, Remark 1 asserts that π(q4) 6= π(q3)
and hence π(q4) 6= 2. So we reassign color 1 to y and assign color 6 to v.

(b1.3) If neither y′2 nor y′′2 is a nice neighbor of y2, then we first color y
with a color b in {π(y′2), π(y′′2)}\{5, π(y′′1)}. Notice that such coloring b exists since
|{π(y′′1), π(y′2), π(y′′2)}| > 2 and {3, 4} ⊆ {π(y1)

′′), π(y′2), π(y′′2)}. By a careful inspec-
tion, we see that b is feasible for y. Moreover, b 6= 2 and y1 becomes a bad neighbor
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Figure 4.5: (A2) holds and y′′2 = z1.

of y after assigning color b to y. Therefore, we can further color v with 5 to extend
π to the whole graph G.

(b2) Now, we suppose that {π(y′′1), π(y′2), π(y′′2)} = {2, 3, 4}. It follows that
{π(y′1), π(y′′1), π(y′2), π(y′′2)} = {1, 2, 3, 4}.

(b2.1) If y′2 and y′′2 are both nice neighbors of y2, we recolor y2 with a safe color
α by Claim 4.2.5, color y with 6 properly since 6 /∈ {π(y′1), π(y′′1), π(y′2), π(y′′2)}, and
finally color v with 5 successfully by the fact that zi is not colored with 5 for each
i ∈ {1, 2}.

(b2.2) If exactly one of y′2 or y′′2 is a nice neighbor of y2. Assume, w.l.o.g., that
y′2 is a nice neighbor of y2. Let N(y′2) = {y2, q1, q2} and N(y′′2) = {y2, q3, q4}. By
symmetry, set π(q1) = 6. By Claim 4.2.6, we are able to give a feasible color β to
y2 such that (Ai) holds for some fixed i ∈ {1, 2, 3}.

First, suppose that either (A1) or (A3) holds. Notice that y′2 and y′′2 were
not recolored in the process of recoloring y2. Moreover, y′2 becomes a bad
neighbor of y2 after recoloring y2. Thus, we color y with 6 since β 6= 6 and
{π(y′1), π(y′′1), π(y′2), π(y′′2)} = {1, 2, 3, 4}, and finally color v with 5.

We now suppose that (A2) holds. Namely, β = π(y′′2) and y′′2 has been recolored
by a safe color β∗. Moreover, (A2) affirms that both y′2 and y′′2 become bad neighbors
of y2 after recoloring y2 and y′′2 . Obviously, β ∈ {2, 3, 4} since the former color of y′′2
belongs to {2, 3, 4}.

• y′′2 /∈ {x1, x2, z1, z2}. Then none of x1, x2, z1, z2 was recolored in the process of
recoloring y′′2 . We first reassign color 1 to y properly since β 6= 5. Then assign
color 6 to v successfully due to the fact that β 6= 6 and 6 /∈ {π(z1), π(z2)}.

• y′′2 ∈ {x1, x2, z1, z2}. Similarly, since π(x1) 6= π(x2) and v is still uncolored,
we deduce that y′′2 /∈ {x1, x2} by Remark 1. So, by symmetry, suppose that
y′′2 = z1, q3 = z and q4 = z′′1 , see Figure 4.5. Since π(z) = 2, we have that
β ∈ {3, 4}. Moreover, π(q4) 6= π(z) by Remark 1 and thus π(q4) 6= 2. So we
can extend π to the whole graph G by coloring y with 6 and v with 5.
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(b2.3) If neither y′2 nor y′′2 is a nice neighbor of y2, then color y with a color
a in {π(y′2), π(y′′2)}\{2}. We recall that {π(y′′1), π(y′2), π(y′′2)} = {2, 3, 4}. It implies
that such coloring a exists. Moreover, y1 becomes a bad neighbor of y after coloring
y with a. Afterwards, we color v with 5 to obtain a proper 6-star-coloring of G.

(c) Assume that neither y1 nor y2 is a nice neighbor of y.
It follows directly that none of y′1, y

′′
1 , y

′
2, y

′′
2 is colored with 1. We divide the

following proof into three subcases according to the situations of x1 and x2.
(c1) If x1 and x2 are both nice neighbors of x, i.e., π(x′1) = π(x′2) = 1, then x

can be given a safe color α different from 1 by Claim 4.2.5 Finally, color v with a
color belonging to {5, 6}\{α} properly since {5, 6} ∩ {π(z1), π(z2)} = ∅.

(c2) If exactly one of x1 and x2 is a nice neighbor of x, say x1 and π(x′1) = 1,
then we give a feasible color β to x in three ways by Claim 4.2.6. If either (A1) or
(A3) holds, then x1 and x2 still remain the same colors as before. This means that
β ∈ {2, 5, 6}. Furthermore, x1 becomes a bad neighbor of x after recoloring x with
β. If β = 2, then color v with 5 properly since neither z1 nor z2 is colored with 5.
Otherwise, suppose that β ∈ {5, 6}. We color v with a color in {5, 6}\{β} to obtain
a 6-star-coloring of G.

Now, suppose that (A2) holds. Namely, β = π(x2) = 4 and x2 has been recolored
by a safe color, say β∗. Moreover, both x1 and x2 become bad neighbors of x after
recoloring x and x2. In this case, we may further color v with 5 successfully.

(c3) Assume that neither x1 nor x2 is a nice neighbor of x. For simplicity, we
write that π(x′1) = r1, π(x′′1) = r2, π(x′2) = r3 and π(x′′2) = r4. So, 1 /∈ {r1, r2, r3, r4}.
If there exists a color a belonging to C\{1, 3, 4, r1, r2, r3, r4}, we recolor x with a,
and v with a color belonging to {5, 6}\{a}. Otherwise, suppose that {2, 5, 6} ⊆
{r1, r2, r3, r4}. This implies that |{r1, r2, r3, r4}| > 3. By symmetry, we need to
discuss the following two possibilities, depending on the value of r4.

(c3.1) Assume that r4 ∈ {3, r3}.
In each case, we always have that {r1, r2, r3} = {2, 5, 6}. Namely, all r1, r2, r3

are mutually different. If u ∈ {x′1, x′′1} is a bad neighbor of x1, we recolor x with
π(u), and then color v with a color in {5, 6}\{π(u)}. So, in the following discussion,
assume that both x′1 and x′′1 are nice neighbors of x1. We erase the color of x firstly.
By Claim 4.2.5, we assign a safe color α to x1. Next, we will show how to extend π
to G.

• α = 4. We further color x with 1. Obviously, the color 1 is a feasible color
for x since none of x′1, x

′′
1, x

′
2, x

′′
2 is colored with 1. Then, we color v with 3. If

such coloring is not feasible for v, then z must have a nice neighbor colored
with 3, i.e., π(z1) = 3 and π(z′1) = 2. We erase the color of v. By Claim 4.2.6,
z can be given a feasible color β in three different ways.

If either (A1) or (A3) holds, then z1 and z2 still remain the same colors as
before. Moreover, z1 becomes a bad neighbor of z after recoloring z. Thus,
we can color v with 2 to derive a 6-star-coloring of the whole graph G since
π(z2) 6= 2. Now, we suppose that (A2) holds. Namely, β = π(z2) and z2 has
been recolored by a safe color β∗. If β = 1, then reduce to the previous Lemma
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4.2.2. Otherwise, we can color v with 2 successfully since neither zz2z
′
2 nor

zz2z
′′
2 is 2-colored after recoloring z and z2.

• α 6= 4. We recall that {r1, r2, r3} = {2, 5, 6} and do as follows: If {r1, r2} =
{5, 6}, then α /∈ {5, 6} and r3 = 2. We color x with 5 and v with 6. Otherwise,
w.l.o.g., set r1 = 2. It follows that α 6= 2 and r3 ∈ {5, 6}. Since r4 ∈ {3, r3},
we deduce that r4 6= 2 and thus π(x′′2) 6= 2. Hence, we color x with 2 and
finally color v with a color in {5, 6}\{α}.

(c3.2) Assume that r4 ∈ {r1, r2}.
Without loss of generality, assume that r4 = r1. It means that r2 6= r3 and hence

{r1, r2, r3} = {2, 5, 6}. If x′′1 is not a nice neighbor of x1, then recolor x with r2

and finally color v with a color in {5, 6}\{r2}. Otherwise, let N(x′1) = {x1, p1, p2},
N(x′′1) = {x1, p3, p4} and suppose that π(p3) = 3. First we erase the color of x.
Then, by Claim 4.2.6, we give a feasible color β to x1 in three ways.

If either (A1) or (A3) holds, then x′1 and x′′1 keep the same colors as before.
Furthermore, x′′1 becomes a bad neighbor of x1 after recoloring x1. So, we can color
x with 3 properly since 3 /∈ {r1, r2, r3}, and finally color v with 5 successfully.

Now, suppose that (A2) holds. Namely, β = π(x′1) = r1 ∈ {2, 5, 6} and x′1
has been recolored by a safe color β∗. Noting that both x′1 and x′′1 become bad
neighbors of x1 after recoloring x1 and x′1. Depending on the situation of x′1, we
have to subcases below.

• x′1 /∈ {y1, y2, z1, z2}. Then none of y1, y2, z1, z2 was recolored in the process of
recoloring x1 and x′1. In this case, we may color x with 3 and v with a color
in {5, 6}\{r1} successfully.

• x′1 ∈ {y1, y2, z1, z2}. Since β = r1 ∈ {2, 5, 6} and {π(zi)} ∈ {1, 3, 4} for each
i ∈ {1, 2}, we derive that x′1 /∈ {z1, z2}. So, we suppose that x′1 ∈ {y1, y2}.
However, by Remark 1, it is impossible since π(y1) 6= π(y2).

Case 1.2 Assume that z1 ∈ {3, 4} and z2 ∈ {5, 6}.
Suppose, w.l.o.g., that z1 = 3 and z2 = 5. We begin with the following Claims

4.2.8 to 4.2.10.

Claim 4.2.8 x2 is a bad neighbor of x.

Proof. Suppose to the contrary that x2 is a nice neighbor of x. W.l.o.g., assume
that π(x′2) = 1. We first recolor x with a feasible color β by Claim 4.2.6. If either
(A1) or (A3) holds, then x1 and x2 keep the same colors as before. Namely, the color
of x1 is still 3 and the color of x2 is still 4. Moreover, x2 becomes a bad neighbor
of x after recoloring x. If β 6= 2, we can color v with 4 since β 6= 4. Otherwise, we
assign color 6 to v. If such coloring is not feasible for v, we infer that one of y′2 and
y′′2 is colored with 1, say y′2. Now, we erase the color 6 from v. By Claim 4.2.6, we
give a feasible color γ to y satisfying (A1), (A2) or (A3). If γ = 2, then reduce the
following proof to Lemma 4.2.2. Otherwise, in each case, we can color v with 1 to
derive a 6-star-coloring of G.
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Now, suppose that (A2) holds. Namely, β = π(x1) = 3 and x1 has been recolored
by a safe color β∗. By (A2), we assert that both x1 and x2 become bad neighbors of
x after recoloring x and x1. So, it is easy to color v with 4 to derive a 6-star-coloring
of G, which is a contradiction.

By a similar proof as Claim 4.2.8, we deduce the following Claim 4.2.9.

Claim 4.2.9 y2 is a bad neighbor of y.

Claim 4.2.10 z2 is a bad neighbor of z.

Proof. Assume to the contrary that z2 is a nice neighbor of z and suppose that
π(z′2) = 2. Then, we first recolor z with a feasible color β by Claim 4.2.6. If either
(A1) or (A3) holds, then z1 and z2 keep the same colors as before. Furthermore, z2

becomes a bad neighbor of z after recoloring z. If β = 1, then reduce to Lemma
4.2.2. Otherwise, we can color v with 2 successfully. Now, we suppose that (A2)
holds. Namely, β = π(z1) = 3 and z1 has been recolored by a safe color β∗. By
(A2), we see that both z1 and z2 become bad neighbors of z after recoloring z with
β and z1 with β∗. Therefore, we may color v with 2 to obtain a 6-star-coloring of
G, which contradicts the choice of G.

By Claim 4.2.9, the following proof is divided into two possible cases according
to the situation of y1.

(d1) Assume that y1 is a nice neighbor of y.
W.l.o.g., set π(y′1) = 1. Firstly, recolor y with a feasible color β by Claim 4.2.6. If

either (A1) or (A3) holds, then y1 and y2 keep the same colors as before. Moreover,
y1 becomes a bad neighbor of y after recoloring y. If β = 2, we color v with 4
properly by Claim 4.2.8. Otherwise, we color v with 5 properly by Claim 4.2.10.
Now, we suppose that (A2) holds. Namely, y is given a feasible color β which is
equal to π(z2) = 6 and y2 has been recolored by a safe color β∗. The condition (A2)
ensures that both y1 and y2 become bad neighbors of y after recoloring y with 6 and
y2 with β∗. Therefore, we further color v with 4 successfully by Claim 4.2.8.

(d2) Assume that y1 is a bad neighbor of y.
It means that none of y′1, y

′′
1 , y

′
2, y

′′
2 is colored with 1. For our convenience, we

write that π(y′1) = r1, π(y′′1) = r2, π(y′2) = r3 and π(y′′2) = r4.
(d2.1) Assume that there exists a ∈ C\{1, 5, 6, r1, r2, r3, r4}. Then we recolor

y with a. If a = 2, we further color v with 4 properly by Claim 4.2.8. Otherwise,
we color v with 6 successfully.

(d2.2) Now, assume that {2, 3, 4} ⊆ {r1, r2, r3, r4}. First erase the color of y.
Obviously, {r1, r2, r3, r4} ⊆ {2, 3, 4, i}, where i ∈ {5, 6}. We have to deal with the
following two subcases.

• Assume that {r1, r2} ∩ {r3, r4} = ∅. By symmetry, we have two subcases
below.

– r4 ∈ {5, r3}. It follows immediately that {r1, r2, r3} = {2, 3, 4}. If u ∈
{y′1, y′′1} is a bad neighbor of y1, we first color y with π(u) and then do
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as follows: If π(u) = 2, color v with 4 proper by Claim 4.2.8; Otherwise,
we color v with 6 properly since neither y′2 nor y′′2 is colored with π(u).
Now, we may assume that both y′1 and y′′1 are nice neighbors of y1. By
Claim 4.2.5, we may recolor y1 with a safe color α. If α = 6, then
color y with 1. Since 1 /∈ {r1, r2, r3, r4}, such coloring is feasible for y.
Finally, we color v with 5 successfully by Claim 4.2.10. If α = 4, then
{r1, r2} = {2, 3} and π(r3) = 4. We may color y with 3 and v with 6.
We easily observe that the resulting coloring is aa 6-star-coloring since
π(y′′2) ∈ {5, r3} = {5, 4}. If α /∈ {4, 6}, then color y with a color in
{r1, r2}\{4} and finally color v with 4 successfully by Claim 4.2.8.

– r1 ∈ {6, r2}. It follows that {r2, r3, r4} = {2, 3, 4}. If u ∈ {y′2, y′′2} is a
bad neighbor of y2, we color y with π(u). If π(u) = 2, we color v with
4 properly by Claim 4.2.8. If π(u) 6= 2, we color v with 5 successfully
according to Claim 4.2.10.
Now, we may assume that both y′2 and y′′2 are nice neighbors of y2. By
Claim 4.2.5, we recolor y2 with a safe color α. If α = 5, then color y with
1. Because 1 /∈ {r2, r3, r4} and r1 ∈ {6, r2}, such coloring is feasible for
y. Then, we further color v with 6. If α = 4, then {r3, r4} = {2, 3} and
π(r2) = 4. We may color y with 3 since neither y′1 nor y′′1 is colored with
3. Then, color v with 5 properly by Claim 4.2.10. If α /∈ {4, 5}, color
y with a color in {r3, r4}\{4} and afterward color v with 4 properly by
Claim 4.2.8.

• Assume that {r1, r2} ∩ {r3, r4} 6= ∅.
It is obvious that there is at most one color belonging to {r1, r2} ∩ {r3, r4}.
W.l.o.g., assume that r1 = r4. First, suppose that y′′1 is a bad neighbor of y1.
We color y with r2. If r2 = 2, then color v with 4 properly due to Claim 4.2.8.
Otherwise, we assign 6 to v since neither y′2 nor y′′2 is colored with r2. So next,
we let N(y′1) = {y1, p1, p2}, N(y′′1) = {y1, p3, p4} and, w.l.o.g., suppose that
π(p3) = 5. By Claim 4.2.6, we may recolor y1 with a feasible color β in three
ways.

– If either (A1) or (A3) holds, then y′1 and y′′1 were not recolored in the
process of recoloring y1. We further color y with 5 properly since 5 /∈
{r1, r2, r3, r4} and v with 4 properly by Claim 4.2.8.

– Now, we suppose that (A2) holds. It implies that β = π(y′1) = r1 =
r4 ∈ {2, 3, 4}. Moreover, y′1 has been recolored by a safe color β∗. After
recoloring y1 and y′1, both y′1 and y′′1 become bad neighbors of y1. On
the other hand, Remark 1 asserts that there exists u ∈ N(p1)\{y′1} and
w ∈ N(p2)\{y′1} such that u and w are both colored with r1. This fact
guarantees that y′1 cannot be coincided with a vertex in {x1, x2, z1, z2}. It
means that none of x1, x2, z1, z2 was recolored in the process of recoloring
y′1. Therefore, we can color y with 5 and v with 6. It is easy to verify
that the resulting coloring is a proper 6-star-coloring.
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Case 2 {π(x1), π(x2), π(yi), π(zj)} = {3, 4, 5, 6}, where i, j ∈ {1, 2}.
We assume, without loss of generality, that π(x1) = 3, π(x2) = 4, π(y1) = 5,

and π(z1) = 6. It is easy to see that π(y2) 6= 6. Otherwise, we are in the previous
Case 1 in this lemma. Moreover, π(z2) 6= 6. To see that, we do as follows: If
2 /∈ {π(z′1), π(z′′1 ), π(z′2), π(z′′2 )}, color v with 6; Otherwise, assume, w.l.o.g., that
π(z′1) = 2. Then recolor z with a color a different from 2, 6, π(z′′1 ), π(z′2) and π(z′′2 ).
If a = 1, then go back to the previous Lemma 4.2.2. Or else, we assign 6 to v
successfully. So next, suppose that π(z2) 6= 6 and z1 is a nice neighbor of z, say
π(z′1) = 2. By Claim 4.2.6, we may first recolor z with a feasible color β in three
ways.

If either (A1) or (A3) holds, then z1 and z2 keep the same colors as before. If
β = 1, then reduce to Lemma 4.2.2. Otherwise, we assign 6 to v properly since z1

becomes a bad neighbor of z after recoloring z by (A1) or (A3).
Now, suppose that (A2) holds. Namely, β = π(z2) 6= 6 and z2 has been recolored

by a safe color β∗. Moreover, after recoloring z with β and z2 with β∗, both z1 and
z2 become bad neighbors of z. If β = 1, the following proof is reduced to Lemma
4.2.2. Otherwise, we again assign 6 to v successfully.

Case 3 {π(x1), π(x2), π(z1), π(z2)} = {3, 4, 5, 6}.
Without loss of generality, we set π(x1) = 3, π(x2) = 4, π(z1) = 5 and π(z2) = 6.

For i ∈ {1, 2}, we have that π(yi) /∈ {5, 6}. Otherwise, we are in the previous Case
2. Moreover, both z1 and z2 are nice neighbors of z, since we may extend π to G
by coloring v with π(zi) if zi is a bad neighbor of z with i ∈ {1, 2}. Now, by Claim
4.2.5, we first recolor z with a safe color α. If α = 1, then go back to Lemma 4.2.2.
Otherwise, we assign 6 to v properly.

Case 4 {π(xi), π(yj), π(z1), π(z2)} = {3, 4, 5, 6}, where i, j ∈ {1, 2}.
We suppose, w.l.o.g., that π(x1) = 3, π(y1) = 4, π(z1) = 5 and π(z2) = 6.

If 5 ∈ {π(x2), π(y2)}, then we go back to the previous Case 2. Similarly, if 6 ∈
{π(x2), π(y2)}, then we may go back to the previous Case 2. Thus, in what follows,
assume that 5, 6 /∈ {π(x2), π(y2)}. One can easily observe that both z1 and z2 are
nice neighbors of z. If not, we may color v with π(zi), where zi is a bad neighbor
of z with i ∈ {1, 2}. Now, by Claim 4.2.5, we first recolor z with a safe color α. If
α = 1, then go back to Lemma 4.2.2. Otherwise, we assign 6 to v.

This completes the proof of Lemma 4.2.3.

Lemma 4.2.4 If π(x), π(y), π(z) are mutually different, then π can be extended to
v successfully.

Proof. By symmetry, we suppose that π(x) = 1, π(y) = 2 and π(z) = 3. We
recall that S = {x1, x2, y1, y2, z1, z2}. If π cannot be extended to v, there must exist
three vertices in S, say u1, u2, u3, such that {π(u1), π(u2), π(u3)} = {4, 5, 6} and
each ui is a nice neighbor of u ∈ {x, y, z} if uui ∈ E(G). We assume, w.l.o.g., that
π(u1) = 4, π(u2) = 5 and π(u3) = 6. By symmetry, we have to deal with two cases,
according to the situations of u1, u2, u3.

Case 1 u1 = x1, u2 = x2 and u3 = y1.
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It implies that π(x1) = 4, π(x2) = 5 and π(y1) = 6. Moreover, x1, x2 are
both nice neighbors of x and y1 is a nice neighbor of y. Basing on this fact, we
first recolor x with a safe color α by Claim 4.2.5. If α ∈ {2, 3}, then reduce
the following proof to Lemma 4.2.3. Otherwise, α = 6. If there exists a color
c ∈ {1, 4, 5}\{π(y2), π(z1), π(z2)}, then color v with c. Otherwise, we suppose that
{π(y2), π(z1), π(z2)} = {1, 4, 5}. This means that y2, z1, and z2 ar colored mutually
distinct. If y2 is not a nice neighbor of y, then we color v with π(y2) successfully.
Otherwise, by Claim 4.2.5, we can first recolor y with a safe color β and finally color
v with 2 successfully since 2 /∈ {π(x1), π(x2), π(y1), π(y2), π(z1), π(z2)}.
Case 2 u1 = x1, u2 = y1 and u3 = z1.

It follows that π(x1) = 4, π(y1) = 5 and π(z1) = 6. Moreover, x1 (resp. y1, z1)
is a nice neighbor of x (resp. y, z). Without loss of generality, set π(x′1) = 1. If
π(y2) = 4 and y2 is a nice neighbor of y, then reduce to the previous Case 1. So, if
π(y2) = 4 then y2 must be a bad neighbor of y. Similarly, if π(z2) = 4 then z2 must
be a bad neighbor of z.

First, assume that π(x2) = 4. Then, we recolor x with a proper color c belonging
to C\{1, 4, π(x′′1), π(x′2), π(x′′2)}. If c ∈ {2, 3}, then reduce the proof to Lemma 4.2.3.
Otherwise, we assign color 4 to v successfully.

Now, suppose that π(x2) 6= 4. It is easy to deduce that π(x2) ∈ {2, 3, 5, 6}.
Moreover, if π(x2) ∈ {5, 6} then x2 must be a bad neighbor of x since otherwise we
are in the previous Case 1. By Claim 4.2.6, we can recolor x with a feasible color
β in three ways. Notice that β 6= 4 since we did not recolor the vertex x1 in the
process of recoloring x.

• If either (A1) or (A3) holds, then after recoloring x, x1, x2 keep the same colors
as before and x1 becomes a bad neighbor of x. If β ∈ {2, 3}, the following
argument is reduced to Lemma 4.2.3. Otherwise, β ∈ {5, 6}. We further color
v with 4 successfully by the fact that none of vyy2y

′
2, vyy2y

′′
2 , vzz2z

′
2 and vzz2z

′′
2

is a 2-colored path.

• Now, suppose that (A2) holds. It means that β = π(x2) 6= 4 and x2 has
been recolored with a safe color β∗. By (A2), we see that x1 and x2 become
both bad neighbors of x after recoloring x and x2. If β ∈ {2, 3}, the proof
is reduced to Lemma 4.2.3. Otherwise, we color v with 4 to derive a proper
6-star-coloring of G.

This completes the proof of Lemma 4.2.4.

4.3 Star choosability of planar subcubic graphs

In this section, our main result is stated as follows:

Theorem 4.3.1 [CRW10b] Let G be a planar subcubic graph.

(1) χl
s(G) 6 6.
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(2) If g(G) > 8, then χl
s(G) 6 5.

(3) If g(G) > 12, then χl
s(G) 6 4.

We need to point out that the conclusion (1) in Theorem 4.3.1 partially improves
one result in [ACK+04], which says that every subcubic graph is 7-star-choosable.

Let Gn denote the graph obtained by adding a pendant vertex to each vertex in
a cycle, Cn, of length n. Albertson et al. [ACK+04] observed that χs(Gn) = 4 for
any n > 4 and n 6≡ 0 (mod 3). In other words, there exists a planar subcubic graph
with arbitrary high girth has star chromatic number 4. This example shows that
Theorem 4.3.1 is best possible in the sense that there does not exist a constant c
such that every planar subcubic graph G with g(G) > c has χl

s(G) 6 3.
In Section 4.3.1, we give some preliminary notation and facts, which are used in

the following sections. The proof of Theorem 4.3.1 is divided into three parts, which
are arranged in Section 4.3.2, Section 4.3.3, and Section 4.3.4, separately. Recall
that N∗

H(v) = NH(v)∪{v} for any v ∈ V (H). For simplicity, in the sequel, we write
N∗(v) instead of N∗

H(v) if there is no confusion about the context.

4.3.1 Preliminaries

In order to study the star chromatic number of graphs, we first introduce the fol-
lowing useful concept, which was used implicitly by Nes̆etr̆il and Ossona de Mendez
[NOdM03], and explicitly by Albertson et al. [ACK+04], who formalized the con-
nection to star coloring.

A proper coloring of an oriented graph G is called an in-coloring if for every 2-
colored P3 on three vertices in G, the edges are directed towards the middle vertex.
A coloring of G is an in-coloring if it is an in-coloring of some orientation of G. An
L-in-coloring of G is an in-coloring of G such that the colors are chosen from the
lists assigned to each vertex.

Though the proof of the following Lemma 4.3.2 is very similar to that of Lemma
3.2 in [ACK+04], we like to write, for completeness, its details.

Lemma 4.3.2 An L-coloring of a graph G is an L-star-coloring if and only if it is
an L-in-coloring of some orientation of G.

Proof. Given an L-star-coloring, we can construct an orientation by directing the
edges towards the center of the star in each star-forest corresponding to the union
of two color classes.

Conversely, consider an L-in-coloring of
−→
G , an orientation of G. Let P3 = uvwz

be any path on four vertices in G. We may assume the edge vw is directed towards
w in

−→
G . For the given coloring to be an L-in-coloring at v, we must have three

different colors on u, v and w.

4.3.2 General planar subcubic graphs

In this section, we prove the conclusion (1) in Theorem 4.3.1. That is, we have the
following:
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Theorem 4.3.3 If G is a planar subcubic graph, then χl
s(G) 6 6.

Proof. Suppose to the contrary that the theorem is not true. Let G be a counterex-
ample with the least vertex number, i.e., a plane subcubic graph without L-star-
coloring for some list assignment L such that |L(v)| = 6 for all vertices v ∈ V (G).

By a careful inspection, one may observe that the Claims 4.2.1-4.2.4 also work
in the 6-star-choosability. So in what follows, we may suppose that G is a 3-regular
plane graph with g(G) > 5. It follows that no k-cycle with 5 6 k 6 6 has a chord.
These facts immediately implies the following Claim 4.3.1 and Claim 4.3.2.

Claim 4.3.1 If f is a k-face with 5 6 k 6 6, then b(f) is a cycle.

Claim 4.3.2 If a k-face f , with 5 6 k 6 6, is adjacent to a 5-face f ′, then f and
f ′ are normally adjacent.

Claim 4.3.3 G contains no two 5-faces that are happily adjacent.

Proof. Assume that f = [v1v2v3v7v8] and f ′ = [v3v4v5v6v7] are adjacent 5-faces
with v3v7 as a common edge. By Claim 4.3.2, f and f ′ are normally adjacent, i.e.,
vi 6= vj for each pair {i, j} ⊆ {1, 2, · · · , 8}. For each i ∈ {1, 2, 4, 5, 6, 8}, let ui denote
the another neighbor of vi different from vi−1 and vi+1, where i is taken modulo 8,
and let xi, yi denote the other neighbors of ui different from vi. Now suppose to
the contrary that f and f ′ are happily adjacent. By definition, we see that each ui

does not belong to V (f)∪V (f ′). But we should notice that ui could be equal to uj,
where {i, j} ⊆ {1, 2, 4, 5, 6, 8}. If this indeed is the case, we still say that ui is the
another neighbor of vi and uj is the another neighbor of vj. Let G′ = G−V (f ∪f ′).
By the minimality of G, G′ admits an L-star-coloring π. In the following, for each
i ∈ {1, 2, 4, 5, 6, 8}, we set

L∗(vi) = L(vi) \ {π(ui), π(xi), π(yi)}.

Obviously, |L∗(vi)| > 3. We first color v1 with a ∈ L∗(v1) \ {π(u2), π(u8)}. Then
color v2 with b ∈ L∗(v2) \ {a, π(u1)} and v8 with c ∈ L∗(v8) \ {a, π(u1)}. To extend
π to G, we need to consider the following two cases, depending on the colors of b
and c.

Case 1 Assume that b 6= c.

It implies that a, b, c, π(u1) are mutually distinct colors. We first color v4 with
d1 ∈ L∗(v4) \ {b, π(u5)} and v6 with d2 ∈ L∗(v6) \ {c, π(u5)}. Then, it remains to
handle two possibilities as follows:

• Assume that d1 6= d2. We may assign a color d ∈ L∗(v5) \ {d1, d2} to v5

firstly. Then color v3 with α1 different from b, c, d1, d2 and v7 with α2 different
from b, c, d1, d2, α1. By a careful inspection, the resulting coloring of G is an L-star-
coloring, a contradiction.

• Assume that d1 = d2. It follows that L(v4) = {b, d1, π(u5), π(u4), π(x4), π(y4)}
and L(v6) = {c, d1, π(u5), π(u6), π(x6), π(y6)}. So b, c, d1, π(u5) are pairwise differ-
ent. Denote π(u5) = α. First assign the color α to v4. Then color v5 with d
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4.3. Star choosability of planar subcubic graphs

in L(v5) \ {d1, α, π(u4), π(x5), π(y5)}. Finally, we color v3 with α1 different from
b, c, d1, α, d and v7 with α2 different from b, c, d1, α, α1. It is easy to check that the
resulting coloring of G is an L-star-coloring, a contradiction.

Case 2 Assume that b = c.

It follows that L(vi) = {a, b, π(u1), π(ui), π(xi), π(yi)} for each i ∈ {2, 8}. Then
we color v5 with c ∈ L∗(v5) \ {π(u4), π(u6)}, v4 with d1 ∈ L∗(v4) \ {c, π(u5)} and v6

with d2 ∈ L∗(v6)\{c, π(u5)}. If d1 6= d2, then reduce to the previous Case 1. Other-
wise, suppose that d1 = d2. It follows that L(vi) = {d1, c, π(u5), π(ui), π(xi), π(yi)}
for each i ∈ {4, 6}. If b 6= d1, then color v3 with γ different from a, b, c, d1 and
v7 with γ′ different from γ, a, b, c, d1. Otherwise, suppose that b = d1. Namely,
v2, v4, v6, v8 have the same color b. Denote π(u5) = α. Then we first recolor v4 with
α, v6 with c, v5 with β ∈ L(v5) \ {c, α, π(u4), π(x5), π(y5)}, and then color v3 with
γ1 ∈ L(v3) \ {α, β, a, b, c} and v7 with γ2 ∈ L(v7) \ {γ1, α, a, b, c}. In each case, one
can easily check that the extending coloring is an L-star-coloring. This contradicts
the choice of G and thus we complete the proof of Claim 4.3.3.

In each proof of Claim 4.3.4 and Claim 4.3.5, we use B to denote the set of all
solid vertices, depicted in Figures 4.6-4.7. Let G′ = G − B. By the minimality of
G, G′ has an L-star-coloring π. By Lemma 4.3.2, G′ admits an L-in-coloring c for
some orientation

−→
G′ of G′. We give an orientation of the edge set E(G[B]) and those

edges between V (G′) and B, then extend c to B to obtain an L-in-coloring of
−→
G .

By Lemma 4.3.2, G has an L-star-coloring, which contradicts the choice of G. For
v ∈ B, we use S(v) to denote the set of vertices forbidden on v by the definition of
L-in-coloring when we are about to color v.

We remark that the followng proofs of Claim 4.3.4 and Claim 4.3.5 seem to
be easy but constructing proper orientations in each case is indeed very difficult;
especially the Case 1 of Claim 4.3.5.
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Figure 4.6: Two reducible configurations in Claim 4.3.3 and Claim 4.3.4.

Claim 4.3.4 G contains no adjacent 5-faces.

Proof. Suppose to the contrary that f = [v1v2v3v7v8] and f ′ = [v3v4v5v6v7] are
adjacent 5-faces with the common edge v3v5. Again, f and f ′ are normally adjacent
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by Claim 4.3.2. For each i ∈ {1, 2, 4, 5, 6, 8}, let ui denote the another neighbor
of vi different from vi−1 and vi+1, where i is taken modulo 8. By Claim 4.3.4, we
may further suppose that f and f ′ are not happily adjacent. Then only obstacle is
that v1v5 ∈ E(G) by the absence of 3- and 4-cycles in G. Let B = V (f) ∪ V (f ′)
and G′ = G − B. By the minimality of G, G′ has an L-in-coloring c for its some
orientation

−→
G′. We define orientations for E(G[B]) and those edges between V (G′)

and B, as shown in Figure 4.6 (1). Based on c, we can color v8, v6, v4, v2, v3, v1, v5, v7,
successively, since

S(v8) = N∗(u8), S(v6) = N∗(u6) ∪ {v8},
S(v4) = N∗(u4) ∪ {v6}, S(v2) = N∗(u2) ∪ {v4, v8},
S(v3) = {u2, v2, v4, v6, v8}, S(v1) = {v2, v3, v4, v6, v8},
S(v5) = {v1, v2, v4, v6, v8}, S(v7) = {v3, v4, v6, v8}.
Noting that |S(v)| 6 5 for each vertex v ∈ B and by a careful inspection, we can

show that the resulting coloring is an L-in-coloring of G. By Lemma 4.3.2, G has
an L-star-coloring, which is a contradiction.

Claim 4.3.5 There is no 5-face adjacent to a 6-face.

Proof. Suppose that there is a 5-face f = [v3v4v5v6v7] adjacent to a 6-face f ′ =
[v3v7v8v9v1v2] with v3v7 as their common edge. By Claim 4.3.2, f and f ′ are normally
adjacent. The proof is divided into two cases as follows:

Case 1 There is no strange edge e′.

It implies that there is no strange edge joining a vertex in {v1, v2, v8, v9} to a
vertex in {v4, v5, v6}. Both b(f) and b(f ′) are cycles without a chord by Claim 4.3.1
and Claim 4.3.2. Let B = V (f) ∪ V (f ′) and G′ = G − B. We define orientations
for E(G[B]) and those edges between V (G′) and B, as shown in Figure 4.6 (2). To
extend c to B, we can color v1, v8, v9, v6, v4, v2, v5, v3, v7, successively, because

S(v1) = N∗(x1) ∪ {x2, x7}, S(v8) = N∗(x3) ∪ {x2, v1},
S(v9) = N∗(x2) ∪ {v1, v8}, S(v6) = N∗(x4) ∪ {v8, x5},
S(v4) = N∗(x6) ∪ {x5, v6}, S(v2) = N∗(x7) ∪ {v1, v4},
S(v5) = N∗(x5) ∪ {v4, v6}, S(v3) = {v1, v2, v4, v6, v8},
S(v7) = {v2, v3, v4, v6, v8}.
Since |S(v)| 6 5 for each vertex v ∈ B, it is easy to show that the resulting

coloring is an L-in-coloring of G. This is impossible.

Case 2 There exists a strange edge.

This means that there is at least one strange edge vjvk, where j ∈ {1, 2, 8, 9}
and k ∈ {4, 5, 6}. In view of the previous analysis, all possible strange edges must
belong to the set {v4v9, v6v1, v1v5, v1v9} and, because of the plane embedding of G,
at most one of these edges occurs. By the symmetry, we only need to discuss the
following two subcases:
Case 2.1 v4v9 ∈ E(G).

Let B = V (f) ∪ V (f ′) and G′ = G − B. We define orientations for E(G[B])
and those edges between V (G′) and B, as shown in Figure 4.7(1). We color
v5, v6, v1, v8, v3, v7, v2, v4, v9, successively, such that
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Figure 4.7: Two reducible configurations of Case 2 in Claim 4.3.4.

S(v5) = N∗(x3) ∪ {x4}, S(v6) = N∗(x4) ∪ {v5},
S(v1) = N∗(x1) ∪ {x2}, S(v8) = N∗(x5) ∪ {v1, v6},
S(v3) = {x2, v1, v5, v6, v8}, S(v7) = {x4, v3, v5, v6, v8},
S(v2) = N∗(x2) ∪ {v1, v3}, S(v4) = {v1, v3, v5, v8},
S(v9) = {v1, v3, v4, v5, v8}.

Case 2.2 v1v5 ∈ E(G).

Let B = V (f) ∪ V (f ′) and G′ = G − B. We define orientations for E(G[B])
and those edges between V (G′) and B, as shown in Figure 4.7(2). We color
v9, v8, v6, v4, v2, v3, v1, v5, v7, successively, such that

S(v9) = N∗(x1) ∪ {x2}, S(v8) = N∗(x2) ∪ {v9},
S(v6) = N∗(x3) ∪ {v8}, S(v4) = N∗(x4) ∪ {v6},
S(v2) = N∗(x5) ∪ {v4, v9}, S(v3) = {x5, v2, v4, v6, v8},
S(v1) = {v2, v3, v4, v6, v9}, S(v5) = {v1, v2, v4, v6, v9},
S(v7) = {v3, v4, v6, v8, v9}.

We complete the proof with a discharging procedure. As usual, we define a
weight function ω on the vertices and faces of G by letting ω(v) = 2d(v) − 6 if
v ∈ V (G) and ω(f) = d(f) − 6 if f ∈ F (G). Our discharging rules are defined as
follows:

(R1) Every 5-face gives 1
5
to each incident vertex.

(R2) Let v be a 3-vertex incident to the faces f1, f2, f3 with d(f1) 6 d(f2) 6 d(f3).

(R2a) If d(f1) = 5 and d(f2) > 7, then fi gives 2
5
to v for each i = 2, 3.

(R2b) If d(f1) > 6, then fi gives 1
3
to v for each i = 1, 2, 3.

We only need to show that ω∗(x) > 0 for all x ∈ V (G) ∪ F (G).
Let v ∈ V (G). Then d(v) = 3 and ω(v) = −1. Let f1, f2, f3 denote the faces

incident to v in G with d(f1) 6 d(f2) 6 d(f3). Thus, d(fi) > 5 for all i = 1, 2, 3
because G contains no 3-faces and 4-faces.
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First, assume d(f1) = 5. Then d(f2) > 7 by Claim 4.3.4 and Claim 4.3.5. Thus
ω∗(v) > −1 + 1

5
+ 2

5
× 2 = 0 by (R1) and (R2a). Otherwise, d(f1) > 6. By (R2b),

we derive immediately that ω∗(v) > −1 + 1
3
× 3 = 0.

Let f ∈ F (G). Then d(f) > 5. We consider some cases, depending on the size
of d(f).

• d(f) = 5. Then ω(f) = 1. It is obvious that ω∗(f) > 1− 1
5
× 5 = 0 by (R1).

• d(f) = 6. By Claim 4.3.5, f is not incident to any 5-face. Every boundary
vertex of f must be incident to three 6+-faces. Thus, by (R2b), ω∗(f) >
2− 1

3
× 6 = 0.

• d(f) > 7. By Claim 4.3.4, every boundary vertex of f is incident to at most
one 5-face. Thus, f gives at most 2

5
to each boundary vertex by (R2), so that

ω∗(f) > d(f)− 4− 2
5
d(f) = 3

5
d(f)− 4 > 3

5
× 7− 4 = 1

5
.

This completes the proof of Theorem 4.2.

4.3.3 Planar subcubic graphs of girth at least 8

We start with some definitions. A 3-vertex v is said to be Type 1 if it is a (1, 1, 0)-
vertex; Type 2 if it is a (0, 0, 0)-vertex and is adjacent to exactly two Type 1 vertices;
and Type 3 if it is a (1, 0, 0)-vertex and is adjacent to exactly one Type 1 vertex.
Let Ti denote the set of Type i vertices in G for each i = 1, 2, 3.

Lemma 4.3.4 A planar subcubic graph with g(G) > 8 contains one of the following
eleven configurations:
(C1) A 1−-vertex.
(C2) Two adjacent 2-vertices.
(C3) A (1, 1, 1)-vertex.
(C4) Two adjacent (1, 1, 0)-vertices.
(C5) A (1, 0, 0)-vertex v is adjacent to one 2-vertex, one (1, 1, 0)-vertex and one
(1, 0, 0)-vertex.
(C6) A (0, 0, 0)-vertex is adjacent to two (1, 1, 0)-vertices and one (1, 0, 0)-vertex.
(C7) A (0, 0, 0)-vertex is adjacent to two Type 2 vertices.
(C8) A (0, 0, 0)-vertex is adjacent to two Type 3 vertices.
(C9) A (0, 0, 0)-vertex is adjacent to one Type 1 vertex and one Type 2 vertex.
(C10) A (0, 0, 0)-vertex is adjacent to one Type 1 vertex and one Type 3 vertex.
(C11) A (0, 0, 0)-vertex is adjacent to one Type 2 vertex and one Type 3 vertex.

Proof. Suppose that G is a counterexample of the lemma, i.e., a plane subcubic
graph with g(G) > 8 and containing none of the configurations (C1)-(C11), as
depicted in Figure 4.8.

Euler’s formula |V (G)| − |E(G)| + |F (G)| = 2 can be written as the following
new form:
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∑

v∈V (G)

(3d(v)− 8) +
∑

f∈F (G)

(d(f)− 8) = −16. (4.1)

We define an initial charge ω(v) = 3d(v) − 8 for each v ∈ V (G), and ω(f) =
d(f)− 8 for each f ∈ F (G). Then, we design the following discharging rules:

(R1) A (0, 0)-vertex gets 1 from each of its neighbors.

(R2) A Type 1 vertex gets 1 from its neighbor of degree 3.

(R3) A Type 2 vertex gets 1 from its neighbor of degree 3 that is not Type 1.

(R4) A Type 3 vertex gets 1 from its neighbor of degree 3 that is not Type 1.

Let ω∗(x) denote the new weight function after the discharging process is com-
plete. Similar to the proof of Theorem 4.3.3, it suffices to show that ω∗(x) > 0 for
all x ∈ V (G) ∪ F (G).

Let f ∈ F (G). Since g(G) > 8, d(f) > 8. Thus, ω∗(f) = d(f) − 8 > 0. Let
v ∈ V (G). Since (C1) is excluded from G, we see that 2 6 d(v) 6 3.

Case 1 d(v) = 2.

Then ω(v) = 3 × 2 − 8 = −2. Since G contains no (C2), v is adjacent to two
3-vertices, i.e., v is a (0, 0)-vertex. By (R1), ω∗(v) > −2 + 1× 2 = 0.

Case 2 d(v) = 3.

Then ω(v) = 3×3−8 = 1. Since G contains no (C2), v is not an initial vertex of k-
threads for any k > 2. Let v1, v2, v3 be the neighbors of v with d(v1) 6 d(v2) 6 d(v3).
Obviously, at most two of v1, v2, v3 are of degree 2 in G by the absence of (C3), i.e.,
d(v3) = 3. We need to consider the following subcases:

Case 2.1 v is a (1, 1, 0)-vertex.

Namely, v is a type 1 vertex such that d(v1) = d(v2) = 2 and d(v3) = 3. By (R1),
v gives 1 to each of v1 and v2. If v sends nothing to v3, then ω∗(v) > 1−2×1+1 = 0
by (R2). Otherwise, by (R1)-(R4), we deduce that v3 ∈ T1. Then we take v to be v,
and v3 to be t in Figure 4.8 and thus (C4) is established, which is a contradiction.

Case 2.2 v is a (1, 0, 0)-vertex.

We see that d(v1) = 2 and d(v2) = d(v3) = 3. Since G contains no (C2), v1 is a
(0, 0)-vertex. By (R1), v needs to give 1 to v1. For each i ∈ {2, 3}, let xi, yi denote
the other two neighbors of vi different from v. If v gives nothing to v2 and v3, then
ω∗(v) > 1− 1 = 0. Otherwise, we only need to consider the following three cases.

• Assume v2 ∈ T2. By definition, both x2 and y2 are of type 1, i.e., (1, 1, 0)-
vertices. Then we take v2 to be v, x2 to be w, y2 to be t, and v to be s in Figure
4.8 and thus (C6) is formed, which is a contradiction.

• Assume v2 ∈ T3. By definition, w.l.o.g., suppose that x2 is a 2-vertex and y2

is a (1, 1, 0)-vertex. Then we take v2 to be v, x2 to be w1, y2 to be u, and v to be t
in Figure 4.8 and thus (C5) is formed, which is a contradiction.
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• Finally assume that v2 ∈ T1 and v3 /∈ T2 ∪ T3. Since G contains no (C5), we
see that v3 /∈ T1. So by definition, v is a type 3 vertex, which gets 1 from v3 by
(R4). Therefore, ω∗(v) > 1− 1× 2 + 1 = 0 by (R1) and (R2).

Case 2.3 v is a (0, 0, 0)-vertex.

We see that d(vi) = 3 for all i = 1, 2, 3. If at most one of v1, v2, v3 gets 1 from v,
then ω∗(v) > 1− 1 = 0. Otherwise, we may assume that v gives 1 to each of v1 and
v2, respectively. By (R2)-(R4) and symmetry, there are some subcases to be argued
as follows.

• If v1, v2 ∈ T2, then we take v to be v, v1 to be u, v2 to be w, and v3 to be t in
Figure 4.8 and hence (C7) is established.

• If v1, v2 ∈ T3, then we take v to be v, v1 to be u, v2 to be w, and v3 to be t in
Figure 4.8 and hence (C8) is established.

• If v1 ∈ T1 and v2 ∈ T2, then we take v to be v, v1 to be u, v2 to be t, and v3

to be s in Figure 4.8 and hence (C9) is established.
• If v1 ∈ T1 and v2 ∈ T3, then we take v to be v, v1 to be u, v2 to be t, and v3

to be s in Figure 4.8 and hence (C10) is established.
• If v1 ∈ T2 and v2 ∈ T3, then we take v to be v, v1 to be u, v2 to be t, and v3

to be s in Figure 4.8 and hence (C11) is established.
• Assume that v1, v2 ∈ T1. By the absence of (C6), v3 /∈ T1 ∪ T3. It means that

v is a Type 2 vertex. Moreover, v3 /∈ T2 by a similar discussion as above. Thus, v3

gives 1 to v by (R3) and we have that ω∗(v) > 1− 2× 1 + 1 = 0.

Theorem 4.3.5 If G is a planar subcubic graph with g(G) > 8, then χl
s(G) 6 5.

Proof. We prove the theorem by induction on the vertex number of G. If |G| 6 3,
the result holds obviously. Let G be a planar subcubic graph with |G| > 4 and
g(G) > 8. Let L be an assignment for G such that |L(v)| = 5 for all v ∈ V (G). By
Lemma 4.3.4, G contains one of the configurations (C1)-(C11). For each case, we
use B to denote the set of all solid vertices and set G′ = G − B. Note that G′ is
a planar subcubic graph with g(G′) > g(G) > 8 and |G′| < |G|. By the induction
hypothesis, G′ has an L-in-coloring c for its orientation

−→
G′. To extend c to the whole

graph G, we need to handle, separately, Cases (C1)-(C11). Again, for v ∈ B, we use
S(v) to denote the set of vertices forbidden on v when we are about to color v.

(C1) There is a 1-vertex v adjacent to a vertex u.

Let B = {v} and G′ = G−B. We define an orientation for the edge uv, as shown
in Figure 4.8 (C1). We can color v with a color in L(v)\S(v) because S(v) = N∗(u)
and |N∗(u)| 6 3.

(C2) There are two adjacent 2-vertices u and v.

Let B = {u, v} and G′ = G − B. We define orientations for edges wu, uv, vt,
as shown in Figure 4.8 (C2). We can color u and v in such order, since S(u) =
N∗(w) ∪ {t} and S(v) = N∗(t) ∪ {u}.
(C3) There is a (1, 1, 1)-vertex v.
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Figure 4.8: Eleven key configurations in Lemma 4.3.4.
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Let B = {v, u, s, t} and G′ = G − B. We define orientations for edges
vu, vs, vt, uw, sx, ty, as shown in Figure 4.8 (C3). We color u, v, s, t, successively,
such that

S(u) = N∗(w), S(v) = {u,w, x, y},
S(s) = N∗(x) ∪ {v}, S(t) = N∗(y) ∪ {v}.

(C4) There are two adjacent (1, 1, 0)-vertices v and t.

Let B = {v, t, x1, y1, z1, w1} and G′ = G−B. We define orientations for E(G[B])
and those edges between V (G′) and B, as shown in Figure 4.8 (C4). We color
w1, x1, t, v, y1, z1, successively, such that

S(w1) = N∗(w), S(x1) = N∗(x) ∪ {w1}, S(t) = {y, z, w1, x1},
S(v) = {w1, x1, t}, S(y1) = N∗(y) ∪ {t}, S(z1) = N∗(z) ∪ {t}.

(C5) There is a (1, 0, 0)-vertex v adjacent to a 2-vertex w1, a (1, 1, 0)-vertex u and
a (1, 0, 0)-vertex t.

Let B = {v, u, t, w1, s1, x1, z1} and G′ = G − B. We define orientations for
E(G[B]) and those edges between V (G′) and B, as shown in Figure 4.8 (C5). We
color t, x1, w1, u, v, z1, s1, successively, such that

S(t) = N∗(y)∪{x}, S(x1) = N∗(x)∪{t}, S(w1) = N∗(w)∪{t},
S(u) = {w1, t, s, z}, S(v) = {t, w1, w, u}, S(z1) = N∗(z)∪ {u},
S(s1) = N∗(s) ∪ {u}.

(C6) There is a (0, 0, 0)-vertex v adjacent to two (1, 1, 0)-vertices w, t and a (1, 0, 0)-
vertex s.

Let B = {v, w, s, t, x1, y1, z1, u1, p1} and G′ = G− B. We define orientations for
E(G[B]) and those edges between V (G′) and B, as shown in Figure 4.8 (C6). We
color s, p1, w, t, v, x1, y1, z1, u1, successively, such that

S(s) = N∗(q) ∪ {p}, S(p1) = N∗(p) ∪ {s}, S(w) = {x, y, s},
S(t) = {z, u, w, s}, S(v) = {t, w, s}, S(x1) = N∗(x) ∪ {w},
S(y1) = N∗(y) ∪ {w}, S(z1) = N∗(z) ∪ {t}, S(u1) = N∗(u) ∪ {t}.

(C7) There is a (0, 0, 0)-vertex v adjacent to two Type 2 vertices u and w.

Let B = {v, u, w, p, q, x, y, p1, p2, q1, q2, x1, x2, y1, y2} and G′ = G− B. We define
orientations for E(G[B]) and those edges between V (G′) and B, as shown in Fig-
ure 4.8 (C7). We color p1, p2, q1, q2, u, v, p, q, x, y, w, x1, x2, y1, y2, successively, such
that

S(p1) = N∗(p3), S(p2) = N∗(p4) ∪ {p1}, S(q1) = N∗(q3),
S(q2) = N∗(q4) ∪ {q1}, S(u) = {p1, p2, q1, q2}, S(v) = N∗(t) ∪ {u}
S(p) = {p1, p2, u, v}, S(q) = {q1, q2, u, v}, S(x) = {x3, x4, v}
S(y) = {y3, y4, x, v}, S(w) = {v, x, y}, S(x1) = N∗(x3)∪{x}
S(x2) = N∗(x4)∪{x}, S(y1) = N∗(y3)∪{y}, S(y2) = N∗(y4)∪{y}.

(C8) There is a (0, 0, 0)-vertex v adjacent to two Type 3 vertices u and w.

Let B = {v, u, w, p1, u1, u2, u3, x, w1, x1, x3} and G′ = G − B. We define orien-
tations for E(G[B]) and those edges between V (G′) and B, as shown in Figure 4.8
(C8). We color p1, v, u1, u, u2, u3, w1, x, w, x1, x3, successively, such that

S(p1) = N∗(p), S(v) = N∗(t) ∪ {p1}, S(u1) = {u4, u5, v, p1},
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4.3. Star choosability of planar subcubic graphs

S(u) = {p1, u1, v}, S(u2) = N∗(u4) ∪ {u1}, S(u3) = N∗(u5) ∪ {u1},
S(w1) = N∗(w2) ∪ {v}, S(x) = {x2, x4, w1, v}, S(w) = {w1, x, v},
S(x1) = N∗(x2) ∪ {x}, S(x3) = N∗(x4) ∪ {x}.

(C9) There is a (0, 0, 0)-vertex v adjacent to a Type 1 vertex u and a Type 2 vertex
t.

Let B = {v, u, t, y, z, w1, x1, y1, y2, z1, z2} and G′ = G−B. We define orientations
for E(G[B]) and those edges between V (G′) and B, as shown in Figure 4.8 (C9).
We color v, u, w1, x1, y, z, t, y1, y2, z1, z2, successively, such that

S(v) = N∗(s), S(u) = {w, x, v, s}, S(w1) = N∗(w) ∪ {u},
S(x1) = N∗(x) ∪ {u}, S(y) = {y3, y4, v}, S(z) = {z3, z4, y, v},
S(t) = {y, z, v, u}, S(y1) = N∗(y3) ∪ {y}, S(y2) = N∗(y4) ∪ {y},
S(z1) = N∗(z3) ∪ {z}, S(z2) = N∗(z4) ∪ {z}.

(C10) There is a (0, 0, 0)-vertex v adjacent to a Type 1 vertex u and a Type 3
vertex t.

Let B = {v, u, t, w1, w2, t1, t3, t4, t5} and G′ = G− B. We define orientations for
E(G[B]) and those edges between V (G′) and B, as shown in Figure 4.8 (C10). We
color v, u, w1, w2, t1, t3, t, t4, t5, successively, such that

S(v) = N∗(s), S(u) = {w, x, v, s}, S(w1) = N∗(w) ∪ {u},
S(w2) = N∗(x) ∪ {u}, S(t1) = N∗(t2) ∪ {v}, S(t3) = {t1, t6, t7, v},
S(t) = {t1, t3, v, u}, S(t4) = N∗(t6) ∪ {t3}, S(t5) = N∗(t7) ∪ {t3}.

(C11) There is a (0, 0, 0)-vertex v adjacent to a Type 2 vertex u and a Type 3
vertex t.

Let B = {v, u, t, w, z, x, t1, w1, w2, z1, z2, x1, x2} and G′ = G − B. We define ori-
entations for E(G[B]) and those edges between V (G′) and B, as shown in Figure 4.8
(C11). We color v, w, z, u, w1, w2, z1, z2, t1, x, t, x1, x2, successively, such that

S(v) = N∗(s), S(w) = {v, w3, w4}, S(z) = {z3, z4, v, w},
S(u) = {w, z, v}, S(w1) = N∗(w3)∪{w}, S(w2) = N∗(w4)∪{w},
S(z1) = N∗(z3) ∪ {z}, S(z2) = N∗(z4) ∪ {z}, S(t1) = N∗(t2) ∪ {v},
S(x) = {x3, x4, v, t1}, S(t) = {t1, x, v}, S(x1) = N∗(x3) ∪ {x},
S(x2) = N∗(x4) ∪ {x}.

4.3.4 Planar subcubic graphs of girth at least 12

In this section, we prove the conclusion (3) in Theorem 4.3.1. That is, we have the
following:

Theorem 4.3.6 If G is a planar subcubic graph with g(G) > 12, then χl
s(G) 6 4.

Proof. Suppose to the contrary that G is a counterexample with the least number
of vertices, i.e., a plane subcubic graph with g(G) > 12, without L-star-coloring for
some assignment L with |L(v)| = 4 for all v ∈ V (G), but its any subgraph G′ with
|G′| < |G| admits an L-star-coloring. Clearly, G is connected. Similar to the proof
of Claim 4.2.1 in Theorem 4.2.1, we can conclude that G does not contain 1-vertices.
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Claim 4.3.6 There is no 2-vertex adjacent to two 2-vertices.

Proof. Assume that there is a 2-vertex x adjacent to two 2-vertices x1 and x2. For
i = 1, 2, let yi 6= x be the second neighbor of xi. Let G′ = G − {x, x1, x2}. By the
minimality of G, G′ has an L-star-coloring φ. We color x1 with a ∈ L(x1)\N∗(y1)
and color x2 with b ∈ L(x2)\N∗(y2). If a 6= b, we color x with a color in L(x)\{a, b}.
Otherwise, we color x with a color in L(x)\{a, φ(y1), φ(y2)}. Since |N∗(y1)| 6 3 and
|N∗(y2)| 6 3, the constructed coloring is an L-star-coloring of G, a contradiction.

Claim 4.3.7 If v is a (2, 1, 1)-vertex with three maximal threads vv1u1w1, vv2w2

and vv3w3, then the following statements hold:
(1) w1 is neither (2, 2, 0+)-vertex nor (2, 1+, 1+)-vertex.
(2) For each i = 2, 3, wi is neither (2, 1+, 0+)-vertex nor (1+, 1+, 1+)-vertex.

Proof. Assume that the claim is not true. By the minimality of G, G′ = G −
{v, v1, v2, v3, u1} has an L-star-coloring φ. We color u1 with a ∈ L(u1)\N∗(w1), v2

with b ∈ L(v2)\N∗(w2), and v3 with c ∈ L(v3)\N∗(w3). Let A = {b, c, φ(w2), φ(w3)}.
Then 2 6 |A| 6 4. We need to handle the following three possibilities according to
the value of |A|.

• |A| = 2.
If b = c and φ(w2) = φ(w3), we color v with d belonging to L(v)\{a, b, φ(w2)}

and v1 with a color in L(v1)\{a, d, φ(w1)}. Otherwise, we may set b = φ(w3) and c =
φ(w2). We color v with d ∈ L(v)\{a, b, c} and v1 with a color in L(v1)\{a, d, φ(w1)}.
Thus, φ is extended to the whole graph G, a contradiction.

• |A| = 4.
Without loss of generality, we may assume that b = 1, c = 2, φ(w2) = 3, and

φ(w3) = 4.
First, assume that a /∈ {3, 4}. We color v with d ∈ L(v)\{1, 2, a}. If d /∈ {3, 4},

we color v1 with a color in L(v1)\{a, d, φ(w1)}. Otherwise, say d = 3, we color v1

with a color in L(v1)\{1, 3, a}.
Next, assume that a ∈ {3, 4}, say a = 3. We color v with d ∈ L(v)\{1, 2, 3} and

v1 with a color in L(v1)\{2, 3, d}.
• |A| = 3.
(1) Assume that b = c, say b = c = 1, φ(w2) = 2, and φ(w3) = 3. If there is d ∈

L(v)\{1, 2, 3, a}, we color v with d, then color v1 with a color in L(v1)\{a, d, φ(w1)}.
Otherwise, we may assume that L(v) = {1, 2, 3, 4} and a = 4. We color v with 4
and v1 with a color in L(v1)\{1, 4, φ(w1)}.

(2) Assume that b 6= c, say b = 1 and c = 2. We have to consider two cases by
symmetry:

(2.1) φ(w2) = 3 and φ(w3) = 1.
If a = 3, we color v with d ∈ L(v)\{1, 2, 3} and v1 with a color in L(v1)\{3, d,

φ(w1)}. Otherwise, we can color v with d ∈ L(v)\{a, 1, 2} and v1 with a color in
L(v1)\{1, a, d}.

(2.2) φ(w2) = φ(w3) = 3.
If a ∈ {1, 2, 3}, then we color v with d ∈ L(v)\{1, 2, 3} and v1 with a color in

L(v1)\{a, d, φ(w1)}. Otherwise, we may assume that a = 4. If L(v) 6= {1, 2, 3, 4},
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4.3. Star choosability of planar subcubic graphs

then we color v with d ∈ L(v)\{1, 2, 3, 4} and v1 with a color in L(v1)\{4, d, φ(w1)}.
So suppose that L(v) = {1, 2, 3, 4}. If φ(w1) 6= 3, then we color v with 4 and v1 with
a color in L(v1)\{1, 2, 4}. Otherwise, we assume that φ(w1) = 3. Let p1 and p2 be
the neighbors of w1 different from u1. If there exists a′ ∈ L(u1)\{3, 4, φ(p1), φ(p2)},
then we recolor u1 with a′, color v with 4 and v1 with a color in L(v2)\{3, 4, a′}.
Thus, we may suppose that φ(p1) = α, φ(p2) = β and L(u1) = {3, 4, α, β}.

In order to derive a contradiction, it is enough to handle the following four cases
by symmetry:

(2.2.1) w1 is a (2, 1+, 1+)-vertex.
Let w1p1q1 and w1p2q2 be the two 1+-threads starting from w1. If either q1 or

q2 is not colored with 3, say φ(q1) 6= 3, then we can recolor u1 with α, color v with
4 and v1 with a color in L(v1)\{3, 4, α}. If φ(q1) = φ(q2) = 3, we recolor w1 with
γ ∈ L(w1)\{3, α, β} and u1 with a color in L(u1)\{α, β, γ}, and then reduce to the
previous case where a 6= 4.

(2.2.2) w1 is a (2, 2, 0+)-vertex.
Let w1p1q1p be the other 2-thread starting from w1, different from w1u1v1v. Let

u1, u2 be the neighbors of p2 different from w1. If φ(q1) 6= 3, we recolor u1 with α
and then reduce to the previous case where a 6= 4. If 3 /∈ {φ(u1), φ(u2)}, we have
a similar handling. Thus, we may suppose that φ(q1) = φ(u1) = 3. If L(w1) 6=
{3, α, β, φ(u2)}, then we recolor w1 with a color in L(w1)\{3, α, β, φ(u2)} and u1

with 3, then reduce to the previous case. So assume that L(w1) = {3, α, β, φ(u2)}.
We recolor w1 with α, u1 with 3, p1 with a color in L(p1)\{3, α, φ(p)}, and then
reduce to the previous case.

(2.2.3) w2 is a (1+, 1+, 1+)-vertex.
Let w2x1y1 and w2x2y2 be the two 1+-threads starting from w2, different from

w2v2v. Let φ(x1) = c1 and φ(x2) = c2. If L(v2) 6= {1, 3, c1, c2}, then we recolor
v2 with a color in L(v2)\{1, 3, c1, c2}, and color v with 1 and v2 with a color in
L(v2)\{1, 3, 4}. Thus, we may suppose that c1 6= c2 and L(v2) = {1, 3, c1, c2}. If at
most one of y1, y2 is colored with 3, say φ(y2) 6= 3, then we recolor v2 with c2, color
v with 1 and v1 with a color in L(v1)\{1, 3, 4}. If φ(y1) = φ(y2) = 3, we recolor w2

with a color in L(w2)\{3, c1, c2}, v2 with 3, then go back to the former case.
(2.2.4) w2 is a (2, 1+, 0+)-vertex.
Let w2s1s2s be the 2-thread starting from w2. Let t ∈ NG(w2)\{s1, v2} and

t1, t2 ∈ NG(t)\{w2}. Let φ(s1) = c1 and φ(t) = c2. If L(v2) 6= {1, 3, c1, c2},
then we recolor v2 with a color in L(v2)\{1, 3, c1, c2} and v with 1, then color
v2 with a color in L(v2)\{1, 3, 4}. Thus, we may suppose that c1 6= c2 and
L(v2) = {1, 3, c1, c2}. If φ(s2) 6= 3, we recolor v2 with c1, color v with 1 and v1

with a color in L(v1)\{1, 3, 4}. If 3 /∈ {φ(t1), φ(t2)}, we have a similar proof. So
assume that φ(s2) = 3 and φ(t1) = 3. If L(w2) 6= {3, c1, c2, φ(t2)}, then we recolor
w2 with a color in L(w2)\{3, c1, c2, φ(t2)} and v2 with 3, then go back to the previous
case. If L(w2) = {3, c1, c2, φ(t2)}, we recolor s1 with a color in L(s1)\{3, c1, φ(s)},
w2 with c1, v2 with 3, and then reduce to the former case.

By Lemma 4.3.2, any subgraph G′ with |G′| < |G| has an L-in-coloring c for its
some orientation

−→
G′. In the proofs of Claims 4.3.8-4.3.12, we first remove a proper

subset B of V (G) and let G′ = G−B, then establish an orientation for E(G[B]) and
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Figure 4.9: Five reducible configurations in Claims 4.3.8- 4.3.12.
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those edges between V (G′) and B, finally extend an L-in-coloring of
−→
G′ to the whole

graph
−→
G . Again, by Lemma 4.3.2, we get an L-star-coloring of G, contradicting the

choice of G.

Claim 4.3.8 G contains no (2, 2, 1+)-vertex.

Proof. Suppose to the contrary that G contains a (2, 2, 1+)-vertex v such
that vx1x2x, vy1y2y, and vz1z are three threads starting from v. Let B =
{v, x1, x2, y1, y2, z1} and G′ = G− B. We define orientations for E(G[B]) and those
edges between V (G′) and B, as shown in Figure 4.9 (1). We color x2, y2, z1, v, x1, y1,
successively, such that

S(x2) = N∗(x), S(y2) = N∗(y), S(z1) = N∗(z),
S(v) = {x2, y2, z1}, S(x1) = {x2, z1, v}, S(y1) = {v, z1, y2}.

Claim 4.3.9 There is no (2, 1+, 0+)-vertex adjacent to a (2, 2, 0)-vertex.

Proof. Suppose to contrary that there is a (2, 1+, 0+)-vertex v adjacent to (2, 2, 0)-
vertex u. Let B = {u, v, x1, x2, y1, z1, z2, w1, w2} and G′ = G − B. We define orien-
tations for E(G[B]) and those edges between V (G′) and B, as shown in Figure 4.9
(2). We color x2, y1, z2, w2, v, u, x1, z1, w1, successively, such that

S(x2) = N∗(x), S(y1) = N∗(y), S(z2) = N∗(z),
S(w2) = N∗(w), S(v) = {x2, y1, y}, S(u) = {z2, w2, v},
S(x1) = {x2, v}, S(z1) = {z2, u, v}, S(w1) = {w2, u, v}.

Claim 4.3.10 Suppose that v is a 3-vertex adjacent to u, z1, z2 such that d(u) = 3
and d(z1) = d(z2) = 2. Let z 6= v be the second neighbor of z1, and w 6= v be the
second neighbor of z2. If u is a (2, 2, 0)-vertex, then neither z nor w is a (2, 1, 1)-
vertex.

Proof. Suppose to the contrary that w is a (2, 1, 1)-vertex. Let B = {u, v, w, x1,
x2, y1, y2, z1, z2, s1, s2, t1} and G′ = G − B. We define orientations for E(G[B])
and those edges between V (G′) and B, as shown in Figure 4.9 (3). We color
x2, y2, z1, s2, t1, s1, w, v, u, x1, y1, z2, successively, such that

S(x2) = N∗(x), S(y2) = N∗(y), S(z1) = N∗(z),
S(s2) = N∗(s), S(t1) = N∗(t), S(s1) = {s, s2, t1},
S(w) = {t, s1, t1}, S(v) = {z, w, z1}, S(u) = {v, x2, y2},
S(x1) = {u, v, x2}, S(y1) = {u, v, y2}, S(z2) = {v, w, s1}.

Claim 4.3.11 There is no (2, 0, 0)-vertex adjacent to exactly two (2, 2, 0)-vertices.

Proof. Suppose to contrary that there is a (2, 2, 0)-vertex v adjacent to two (2, 2, 0)-
vertices p and q. Let B = {v, p, q, x1, x2, y1, y2, u1, u2, z1, z2, w1, w2} and G′ = G−B.
We define orientations for E(G[B]) and those edges between V (G′) and B, as shown
in Figure 4.9 (4). We color x2, y2, z2, w2, u2, p, q, v, x1, y1, z1, w1, u1, successively,
such that

S(x2) = N∗(x), S(y2) = N∗(y), S(z2) = N∗(z),
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S(w2) = N∗(w), S(u2) = N∗(u), S(p) = {y2, z2},
S(q) = {w2, u2, p}, S(v) = {x2, p, q}, S(x1) = {x2, v, p},
S(y1) = {y2, p}, S(z1) = {z2, p}, S(w1) = {w2, q, v},
S(u1) = {u2, q, v}.

Claim 4.3.12 Suppose that v is a 3-vertex adjacent to y, z, x1 such that d(y) =
d(z) = 3 and d(x1) = 2. Let x 6= v be the second neighbor of x1. If both y and z are
(2, 2, 0)-vertices, then x is not a (2, 1, 1)-vertex.

Proof. Suppose to the contrary that x is a (2, 1, 1)-vertex. Let B = {v, x, y, z,
x1, t1, w1, w2, u1, u2, s1, s2, p1, p2, q1, q2} and G′ = G− B. We define orientations for
E(G[B]) and those edges between V (G′) and B, as shown in Figure 4.9 (5). We
color w2, t1, p2, q2, s2, u2, x, w1, x1, z, y, v, s1, u1, p1, q1, successively, such that

S(w2) = N∗(w), S(t1) = N∗(t), S(p2) = N∗(p),
S(q2) = N∗(q), S(s2) = N∗(s), S(u2) = N∗(u),
S(x) = {w2, t, t1}, S(w1) = {w2, w, x}, S(x1) = {w1, x, t1},
S(z) = {s2, u2, x1}, S(y) = {p2, q2, x1}, S(v) = {x1, y, z},
S(s1) = {s2, v, z}, S(u1) = {u2, z, v}, S(p1) = {p2, y, v},
S(q1) = {q2, y, v}.

This time, we use the following rewritten Euler’s formula:
∑

v∈V (G)

(5d(v)− 12) +
∑

f∈F (G)

(d(f)− 12) = −24. (4.2)

We define ω(v) = 5d(v) − 12 for each v ∈ V (G) and ω(f) = d(f) − 12 for each
f ∈ F (G). New discharging rules are designed as follows:

(R1) Each (1, 0)-vertex gets 2 from its neighbor of degree 3.

(R2) Each (0, 0)-vertex gets 1 from each of its neighbors.

(R3) Suppose that v is a (2, 1, 1)-vertex with two 1-threads vv1u1 and vx2u2. Then
v gets 0.5 from each of u1 and u2.

(R4) Each (2, 2, 0)-vertex gets 1 from its neighbor of degree 3.

Let ω∗(x) denote the new charge function after the discharging process is com-
plete. It suffices to verify that ω∗(x) > 0 for all x ∈ V (G) ∪ F (G).

Let f ∈ F (G). Since g(G) > 12, d(f) > 12. So, ω∗(f) = d(f)− 12 > 0.
Let v ∈ V (G). Then 2 6 d(v) 6 3. We need to consider two cases:

Case 1 d(v) = 2.

We see that ω(v) = 5× 2− 12 = −2. By Claim 4.3.6, v is not a (1, 1)-vertex. If
v is a (1, 0)-vertex, then ω∗(v) > −2 + 2 = 0 by (R1). If v is a (0, 0)-vertex, then
ω∗(v) > −2 + 1 + 1 = 0 by (R2).

Case 2 d(v) = 3.
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4.4. Star choosability of sparse graphs

We see that ω(v) = 5× 3− 12 = 3. By Claim 4.3.8, v is not a (2, 2, 1+)-vertex.
So we have to consider several subcases as follows:

• v is a (2, 2, 0)-vertex.
Let z denote the neighbor of v with d(z) = 3. By Claim 4.3.9, v is not a

(2, 2, 0)-vertex. By (R4), v gets 1 from z. Hence, ω∗(v) > 3− 2× 2+1 = 0 by (R1).
• v is a (2, 1, 1)-vertex.
Let vy1y and vz1z be two 1-threads starting from v. By Claim 4.3.7, both y and

z are not a (2, 1, 1)-vertex. So v gets 0.5 from each of y and z by (R3). Consequently,
ω∗(v) > 3− 2− 1× 2 + 0.5× 2 = 0 by (R1) and (R2).

• v is a (2, 1, 0)-vertex.
Let vy1y denote the 1-thread starting from v, and z the neighbor of degree 3 of

v. By Claim 4.3.9, z is not a (2, 2, 0)-vertex, hence gets nothing from v. By Claim
4.3.7, y is not a (2, 1, 1)-vertex, hence gets nothing from v. By (R1) and (R2),
ω∗(v) > 3− 2− 1 = 0.

• v is a (2, 0, 0)-vertex.
Let y and z be the neighbors of degree 3 of v. By Claim 4.3.11, at most one of y

and z is a (2, 2, 0)-vertex, and hence v sends 1 to at most one of y and z. By (R1)
and (R4), ω∗(v) > 3− 2− 1 = 0.

• v is a (1, 1, 1)-vertex.
Let vx1x, vy1y and vz1z be three 1-threads starting from v. By Claim 4.3.7, each

of x, y, z is not a (2, 1, 1)-vertex, hence gets nothing from v. Since v gives exactly 1
to each of x1, y1, z1 by (R2), ω∗(v) > 3− 1× 3 = 0.

• v is a (1, 1, 0)-vertex.
Let vx1x and vy1y be two 1-threads starting from v, and z be the neighbor of

degree 3 of v. If z is not a (2, 2, 0)-vertex, then it is easy to deduce that ω∗(v) >
3 − 1 × 2 − 0.5 × 2 = 0 by (R2) and (R3). If z is a (2, 2, 0)-vertex, then neither x
nor y is a (2, 1, 1)-vertex by Claim 4.3.10. Thus, ω∗(v) > 3− 1× 3 = 0 by (R2) and
(R4).

• v is a (1, 0, 0)-vertex.
Let vx1x be the 1-thread starting from v. Let y and z be the neighbors of degree

3 of v. If at most one of y and z is a (2, 2, 0)-vertex, then ω∗(v) > 3−1−1−0.5 = 0.5
by (R2), (R3) and (R4). Otherwise, assume that y and z are both (2, 2, 0)-vertices.
By Claim 4.3.12, x cannot be a (2, 1, 1)-vertex. It follows that v sends at most 1 to
each of its neighbors by (R2) and (R4). Therefore, ω∗(v) > 3− 1× 3 = 0.

• v is a (0, 0, 0)-vertex.
It is easy to deriver that ω∗(v) > 3− 1× 3 = 0 by (R4).

4.4 Star choosability of sparse graphs

In this section, we extend the conclusion (3) in Theorem 4.1.4 to a more general
result, which avoids the planar constraint. More precisely, we prove the following:

Theorem 4.4.1 [CRW09] Every graph G with Mad(G) < 3 is 8-star-choosable.
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Suppose
−→
G is an oriented graph. For v ∈ V (

−→
G), we define the outdegree vertices

set of v by D+−→
G

(v) = {u|u ∈ N−→
G

(v) and v → u}. A special orientation
−→
G of G is an

orientation in which each vertex v satisfies |D+−→
G

(v)| 6 2.
So, in order to control the number of colors used in an in-coloring, it is useful

to bound the maximum outdegree of the orientation
−→
G . In 1981, Taris [Tar81]

observed a fact that a graph has an orientation with maximum outdegree at most d
if and only if Mad(G) 6 2d. This implies that every graph with Mad(G) < 3 has an
orientation with maximum outdegree at most 2. Therefore, to obtain our Theorem
4.4.1, we only need to prove the following Theorem 4.4.2 by Lemma 4.3.2.

Theorem 4.4.2 Every graph G with Mad(G) < 3 has an orientation of maximum
outdegree at most 2 which admits an 8-in-coloring.

4.4.1 Proof of Theorem 4.4.2

Suppose to the contrary that G is a counterexample with the least number of vertices
to Theorem 4.4.2. Thus G is connected. Moreover, for any subgraph H with |H| <
|G| admits an 8-in-coloring of some special orientation

−→
H . We first discuss some

properties of G, then use discharging technique to derive a contradiction.
In what follows, let L be a list assignment of G with |L(v)| = 8 for all v ∈ V (G).

By the definition of maximum average degree and Tarsi’s observation, we first note
the following statement.

Observation 4.4.3 Every subgraph H ⊆ G admits a special orientation.

So, in the following argument, we always admit a special orientation
−→
H of H.

Moreover, for v ∈ V (
−→
H ), define N∗−→

H
(v) = D+−→

H
(v)∪{v}. It is obvious that |N∗−→

G
(v)| 6

3. For simplicity, we write N∗(v) for N∗−→
H

(v). We further use S(v) to denote the set
of vertices forbidden on v by the definition of L-in-coloring when we are about to
color v.

Claim 4.4.1 G contains no 1-vertex.

Proof. Suppose that x is a 1-vertex of G and y is the neighbor of x. Let H =
G − {x}. By the minimality of G, H admits an L-in-coloring c of some special
orientation

−→
H . We orient x to y to establish an orientation

−→
G of G. Clearly, the

resulting orientation
−→
G is special. Now, we assign a color to x in L(x), different

from the colors of the vertices in N∗(y). It is easy to see that the color for x is
reasonable and thus we extend c to G. A contradiction.

In the proof of Claims 4.4.2 to 4.4.8, we use B to denote the set of all solid
vertices, depicted in Figure 4.10 to Figure 4.17. Let H = G−B. By the minimality
of G, H admits an L-in-coloring c of some special orientation

−→
H . We give an

orientation of G[B] and those edges between V (H) and B such that the resulting
orientation

−→
G is special. Then we extend c to B to obtain an L-in-coloring of

−→
G ,

which contradicts the choice of G.
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Figure 4.10: v is a k(k − 1)-vertex.

Claim 4.4.2 G contains no k(k − 1)-vertex for any 2 6 k 6 5.

Proof. Assume to the contrary that v is a k(k− 1)-vertex with 2 6 k 6 5. Denote
v1, · · · , vk be the neighbors of v. Without loss of generality, assume that d(vi) = 2
for all i ∈ {1, · · · , k − 1} and d(vk) > 2. For each i ∈ {1, · · · , k − 1}, let v′i be the
other neighbor of vi different from v.

Let B = {v, v1, · · · , vk−1} and H = G − B. By the minimality of G, H has an
L-in-coloring c of some special orientation

−→
H . We construct an orientation for the

edge set E(G[B]) and those edges between V (H) and B, as shown in Figure 4.10.
One can easily check that the resulting orientation

−→
G is also special. Notice that

|N∗(u)| 6 3 for each u ∈ {v′1, · · · , v′k−1, vk}. Based on c, we can color v, v1, · · · , vk−1,
successively, because

• S(v) = N∗(vk) ∪ {v′1, · · · , v′k−1};
• S(vi) = N∗(v′i) ∪ {v, vk}, for each i ∈ {1, · · · , k − 1}.
Obviously, for each vertex x ∈ B we have |S(x)| 6 3+(k−1) = k+2 6 7 because

2 6 k 6 5. By a careful inspection, the resulting coloring is an L-in-coloring of
−→
G .

A contradiction.

Assume that P = v1v2 · · · vn is an induced path with n > 3 and all internal
vertices are 3-vertices. If d(v1) = d(vn) = 2 then P is called a good path. If d(v1) = 2
and d(vn) > 4 then P is called a bad path. If d(v1) = 2 and d(vn) = 3 then P is
called a terrible path. For simplicity, we use P (v1 → vn) to denote an orientation
for the edge set E(P ) in such a way that vi → vi+1 for each i ∈ {1, · · · , n− 1}.
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v
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n
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v

Figure 4.11: A good path P = v1v2 · · · vn.

Claim 4.4.3 There is no good path in G.

Proof. Assume to the contrary that there exists a good path P = v1v2 · · · vn with
n > 3 in G. It implies that v1, vn are both 2-vertices and the remaining vertices are
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all 3-vertices. Since P is an induced path, for each vertex vi ∈ V (P ), we may let v′i
be the other neighbor of vi which is not on P .

Let B = {v1, · · · , vn} and H = G− B. By the minimality of G, H has an L-in-
coloring c of some special orientation

−→
H . We define an orientation for the edge set

E(G[B]) ∪ {v1v
′
1, · · · , viv

′
i, · · · , vnv

′
n} in the following way: P (v1 → vn) and vj → v′j

for each j ∈ {1, · · · , n}, as depicted in Figure 4.11. It is easy to check that the
resulting orientation

−→
G is special. We can color v1, v2, · · · , vn, successively, such

that
• S(v1) = N∗(v′1) ∪ {v′2};
• S(v2) = N∗(v′2) ∪ {v1, v

′
1, v

′
3};

• S(vi) = N∗(v′i) ∪ {vi−1, vi−2, v
′
i−1, v

′
i+1}, for each i ∈ {3, · · ·n− 1};

• S(vn) = N∗(v′n) ∪ {vn−1, vn−2, v
′
n−1}.

Since |S(v)| 6 7 for each vertex v ∈ B, the resultant coloring is an L-in-coloring
of G. A contradiction.
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Figure 4.12: A good cycle C = u1u2 · · ·umu1.

A cycle C is called good if C is formed from a good path P = v1v2 · · · vn by
identifying 2-vertices v1 and vn.

Claim 4.4.4 There is no good cycle in G.

Proof. Suppose to the contrary that C = u1u2 · · ·umu1 is a good cycle such that
d(u1) = 2 and d(ui) = 3 for all i ∈ {2, · · · ,m}. Notice that m > 3. Since C is
formed from a good path which is also an induced path, we may let u′i be the third
neighbor of ui that is not on C, for each i ∈ {2, · · · ,m}.

Let B = {u1, · · · , um} and H = G − B. By the choice of G, H admits an L-
in-coloring c of a special orientation

−→
H . We define an orientation for the edge set

E(G[B])∪{u2u
′
2, · · · , uiu

′
i, · · · , umu′m} in the following way: for each j ∈ {2, · · · ,m−

1}, set uj → uj+1, uj → u′j; we further set u1 → u2, um → u1 and um → u′m, see
Figure 4.12. We notice that the resulting orientation

−→
G is also special. Based on c,

we can color u2, u3, · · · , um, u1, successively, such that
• S(u2) = N∗(u′2) ∪ {u′3};
• S(ui) = N∗(u′i) ∪ {ui−1, ui−2, u

′
i−1, u

′
i+1}, for each i ∈ {3, · · · ,m− 1};

• S(um) = N∗(u′m) ∪ {u2, um−1, um−2, u
′
m−1};

• S(u1) = {u2, u
′
2, u3, um, u′m, um−1}.
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4.4. Star choosability of sparse graphs

Since |S(v)| 6 7 for each vertex v ∈ B, the resultant coloring is an L-in-coloring
of G.

A cycle C is called light if every vertex is of degree 3. C is called simple if it
has no chords. A simple light cycle is a light cycle that is simple. Suppose that
C = v1v2 · · · vnv1 is a simple light cycle. If there exists a terrible path P connecting
one vertex in C, say v1, such that V (P )∩V (C) = {v1}, then C is called a removable
cycle, where v1 is called a heavy 3-vertex of C.
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Figure 4.13: A removable cycle C = v1v2 · · · vmv1 with a heavy 3-vertex v1.

Claim 4.4.5 There is no removable cycle in G.

Proof. Suppose to the contrary that there exists a removable cycle C = v1v2 · · · vmv1

with a heavy 3-vertex v1 such that P = x1 · · ·xtv1 is a terrible path. Namely,
x1 is a 2-vertex and the remaining other vertices of P are 3-vertices such that
V (P ) ∩ V (C) = {v1}. For each i ∈ {2, · · · ,m}, let v′i be the another neighbor of vi

not on C. Since P is an induced path, we further let x′j be the another neighbor of
xj not on P for each j ∈ {1, · · · , t}. In the following, denote A1 = {x1, · · · , xt} and
A2 = {v2, · · · , vm}. We have to consider the following two cases.

Case 1 wz /∈ E(G) for all w ∈ A1 and z ∈ A2.

It means that the third neighbor of xj is not in C. Let B = V (C) ∪ V (P ) and
H = G−B. By the choice of G, H admits an L-in-coloring c of a special orientation−→
H . We define an orientation for the edge set E(G[B]) and those edges between V (H)

and B, as shown in Figure 4.13. By a careful inspection,
−→
G is a special orientation.

So we can color v2, · · · , vm, v1, xt, · · · , x1, successively, such that
• S(v2) = N∗(v′2) ∪ {v′3};
• S(vi) = N∗(v′i) ∪ {vi−1, vi−2, v

′
i−1, v

′
i+1}, for each i ∈ {3, · · · ,m− 1};

• S(vm) = N∗(v′m) ∪ {vm−1, vm−2, v
′
m−1, v2};

• S(v1) = {v2, v
′
2, v3, vm, v′m, vm−1};

• S(xt) = N∗(x′t) ∪ {x′t−1, v1, v2};
• S(xt−1) = N∗(x′t−1) ∪ {x′t−2, xt, x

′
t, v1};

• S(xj) = N∗(x′j) ∪ {x′j−1, xj+1, xj+2, x
′
j+1}, for each j ∈ {t− 2, · · · , 2};

• S(x1) = N∗(x′1) ∪ {x2, x
′
2, x3}.
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Case 2 wz ∈ E(G), where w ∈ A1 and z ∈ A2.

Case 2.1 w = x1 and z ∈ A2.

This means that x1vs ∈ E(G), where s ∈ {2, 3, · · · ,m}. If none of vs+1, · · · , vm is
adjacent to xj for some fixed j ∈ {2, · · · , t}, then x1x2 · · ·xtv1vm · · · vsx1 is a good cy-
cle, which contradicts Claim 4.4.4. Otherwise, we may suppose that xjvk ∈ E(G) for
some fixed k ∈ {s + 1, · · · ,m} such that there is no edge between {x2, x3 · · · , xj−1}
and {vs+1, vs+2, · · · , vk−1}. However, a good cycle x1x2 · · ·xjvkvk−1 · · · vsx1 is estab-
lished, contradicting Claim 4.4.4.

Case 2.2 w ∈ {x2, x3, · · · , xt} and z ∈ A2.

We may suppose that xjvs ∈ E(G) for some fixed s ∈ {2, · · · ,m} such that
there is no edge between {x2, x3 · · · , xj−1} and V (C) − {v1}. If xlvq /∈ E(G)
for all l ∈ {j + 1, j + 2, · · · , t} and q ∈ {s + 1, s + 2, · · · ,m}, then a remov-
able cycle xjxj+1 · · ·xtv1vm · · · vsxj with a heavy 3-vertex xj is formed and then
the proof is reduced to the former Case 1. Otherwise, we may suppose that
xkvq ∈ E(G) for some fixed q ∈ {s + 1, s + 2, · · · ,m} such that there is no edge
between {xj+1, xj+2, · · · , xk−1} and {vs+1, vs+2, · · · , vq−1}. However, a removable
cycle xjxj+1 · · ·xkvqvq−1 · · · vsxj with a heavy 3-vertex xj is constructed and then
go back to the previous Case 1.

Suppose that P = v1v2 · · · vn is a bad path such that d(v1) = 2, d(vn) > 4, and
d(vi) = 3 for all i ∈ {2, · · · , n − 1}. We say that vn is a sponsor of v2 and v2 is a
target of vn. Moreover, let T (vn) denote the set of targets of vn and let S(v2) denote
the set of sponsors of v2.

Claim 4.4.6 For each 4+-vertex v, we have |T (v)| 6 d(v)− n2(v).

Proof. Let x1 be a 3+-vertex adjacent to v. It suffices to show that there is at
most one bad path starting from edge vx1. If d(x1) > 4, then vx1 is not a bad path
and thus we are done. Otherwise, we may suppose that P = vx1 · · ·xm is a bad
path with a target xm−1 such that d(xm) = 2 and d(xi) = 3 for all i = 1, · · · ,m− 1.
Next, we are going to show that there is no other bad path starting from edge vx1

and thus conclude the proof of Claim 4.4.6.
Without loss of generality, assume that P 6= P ′ = vx1 · · ·xix

′
i+1 · · ·x′s−1x

′
s is

a bad path with a target x′s−1 of v. So d(x′s) = 2 and d(x′k) = 3 for all k ∈
{i + 1, · · · , s − 1}. Let B1 = {x′i+1, x

′
i+2, · · · , x′s} and B2 = {xi+1, xi+2, · · · , xm}.

The proof is divided into the two cases below.

Case 1 wz /∈ E(G) for all w ∈ B1 and z ∈ B2.

This implies that B1 ∩ B2 = ∅. It is easy to observe that a good path
xmxm−1 · · ·xi+1xix

′
i+1 x′i+2 · · ·x′s is established. This contradicts Claim 4.4.3.

Case 2 wz ∈ E(G), where w ∈ B1 and z ∈ B2.

By symmetry, we only need to consider the following two possibilities.

Case 2.1 w ∈ {x′i+1, x
′
i+2, · · · , x′s−1} and z ∈ {xi+1, xi+2, · · · , xm−1}.
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Denote z = xk for some fixed k ∈ {i + 1, i + 2, · · · ,m − 1}. We may assume
x′j = w such that x′jxk ∈ E(G) and x′j is the nearest 3-vertex to xi on P ′. In other
words, there is no edges between {x′i+1, x

′
i+2, · · · , xj−1} and {xi+1, xi+2, · · · , xk−1}.

It is obvious that xixi+1 · · ·xkx
′
jx
′
j−1 · · ·x′i+1xi is a simple light cycle with a heavy

3-vertex xk. So such kind of cycle is removable, a contradiction to Claim 4.4.5.

Case 2.2 w ∈ {x′i+1, x
′
i+2, · · · , x′s−1} and z = xm.

Denote w = xj, where j ∈ {i + 1, · · · , s− 1}. Clearly, xmxm−1 · · ·xi+1xix
′
i+1 · · ·

x′jxm is a good cycle, which is impossible by Claim 4.4.4.
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Figure 4.14: v is a 4(2)-vertex with a target zt−1.

Claim 4.4.7 If v is a 4(2)-vertex, then |T (v)| = 0.

Proof. Let v be a 4(2)-vertex with four neighbors x1, y1, w1, z1 such that d(x1) =
d(y1) = 2 and d(z1), d(w1) > 3. Suppose to the contrary that |T (v)| > 1. We
further suppose that P = vz1 · · · zt is a bad path connecting v and v’s target zt−1.
Let NG(x1) = {v, x′1} and NG(y1) = {v, y′1}. For each k ∈ {1, · · · , t}, let z′k be the
another neighbor of zk that is not on P . Obviously, x1 6= y1. Let B = V (P )∪{x1, y1}
and H = G − B. Let c denote an L-in-coloring of H for its special orientation

−→
H .

By symmetry of G, we only need to consider two cases below.

Case 1 zt /∈ {x1, y1}.
We define an orientation for the edge set E(G[B]) and those edges between V (H)

and B, as depicted in Figure 4.14 (1). It is easy to inspect that the resulting orien-
tation of

−→
G is a special orientation. Basing on c, we can color v, x1, y1, z1, · · · , zt,

successively, such that
• S(v) = N∗(w1) ∪ {x′1, y′1, z′1};
• S(x1) = N∗(x′1) ∪ {v, w1};
• S(y1) = N∗(y′1) ∪ {v, w1};
• S(z1) = N∗(z′1) ∪ {v, w1, z

′
2};

• S(z2) = N∗(z′2) ∪ {z1, z
′
1, v, z′3};

• S(zi) = N∗(z′i) ∪ {zi−1, zi−2, z
′
i−1, z

′
i+1}, for each i ∈ {3, · · · , t− 1};

• S(zt) = N∗(z′t) ∪ {zt−1, z
′
t−1, zt−2}.

Case 2 zt = y1.

131



Chapter 4. Star coloring and star list coloring

We define an orientation for the edge set E(G[B]) and those edges between V (H)

and B, as shown in Figure 4.14 (2). We observe that the resulting orientation of
−→
G

is special. Basing on c, we may color v, x1, z1, · · · , zt, successively, such that
• S(v) = N∗(w1) ∪ {x′1, z′1};
• S(x1) = N∗(x′1) ∪ {v, w1};
• S(z1) = N∗(z′1) ∪ {v, w1, z

′
2};

• S(z2) = N∗(z′2) ∪ {z1, z
′
1, v, z′3};

• S(zi) = N∗(z′i) ∪ {zi−1, zi−2, z
′
i−1, z

′
i+1}, for each i ∈ {3, · · · , t− 1};

• S(zt) = {v, w1, zt−1, z
′
t−1, zt−2}.

Therefore, we complete the proof of Claim 4.4.7.
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Figure 4.15: The Case 1 in Claim 4.4.8.

Claim 4.4.8 If v is a 4(1)-vertex, then |T (v)| 6 1.

Proof. Let v be a 4(1)-vertex with four neighbors x1, y1, w1, z1 such that x1 is a
2-vertex and y1, z1, w1 are all 3+-vertices. Suppose to the contrary that |T (v)| > 2.
Now, assume that there exist two bad paths P , P ′, respectively, starting from vy1,
vz1. We denote by P = vy1 · · · ys and P ′ = vz1 · · · zt. Obviously, d(ys) = d(zt) = 2
and the remaining internal vertices of P and P ′ are all 3-vertices. Denote x′1 be
the other neighbor of x1 distinct from v. Let y′j be the third neighbor of yj that is
not on P . Similarly, let z′k be the third neighbor of zk that is not on P ′. For our
convenience, we denote C1 = {y1, · · · , ys} and C2 = {z1, · · · , zt}. We only need to
consider the two cases as follows.

Case 1 yz /∈ E(G) for all y ∈ C1 and z ∈ C2

This implies that C1 ∩ C2 = ∅. Let B = V (P ) ∪ V (P ′) ∪ {x1} and H = G− B.
Let c denote an L-in-coloring of H for its special orientation

−→
H . To complete the

proof of Case 1, we have to discuss the following two possibilities, depending on the
situations of x1, ys and zt.

Case 1.1 x1 6= ys 6= zt 6= x1.

We define an orientation for the edge set E(G[B]) and those edges between
V (H) and B, as shown in Figure 4.15 (1). One can easily check that the resulting
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4.4. Star choosability of sparse graphs

orientation of
−→
G is also special. We color v, x1, y1, · · · , ys, z1, · · · , zt, successively,

such that
• S(v) = N∗(w1) ∪ {x′1, y′1, z′1};
• S(x1) = N∗(x′1) ∪ {v, w1};
• S(y1) = N∗(y′1) ∪ {v, w1, y

′
2};

• S(y2) = N∗(y′2) ∪ {y1, y
′
1, v, y′3};

• S(yj) = N∗(y′j) ∪ {yj−1, yj−2, y
′
j−1, y

′
j+1}, for each j ∈ {3, · · · , s− 1};

• S(ys) = N∗(y′s) ∪ {ys−1, y
′
s−1, ys−2};

• S(z1) = N∗(z′1) ∪ {v, w1, z
′
2};

• S(z2) = N∗(z′2) ∪ {z1, z
′
1, v, z′3};

• S(zi) = N∗(z′i) ∪ {zi−1, zi−2, z
′
i−1, z

′
i+1}, for each i ∈ {3, · · · , t− 1};

• S(zt) = N∗(z′t) ∪ {zt−1, z
′
t−1, zt−2}.

Case 1.2 x1 = ys 6= zt.

We define an orientation for the edge set E(G[B]) and those edges between
V (H) and B, as depicted in Figure 4.15 (2). It is easy to observe that the resulting
orientation of

−→
G is special. We color v, y1, · · · , ys, z1, · · · , zt, successively, such that

• S(v) = N∗(w1) ∪ {y′1, z′1};
• S(y1) = N∗(y′1) ∪ {v, w1, y

′
2};

• S(y2) = N∗(y′2) ∪ {y1, y
′
1, v, y′3};

• S(yj) = N∗(y′j) ∪ {yj−1, yj−2, y
′
j−1, y

′
j+1}, for each j ∈ {3, · · · , s− 2};

• S(ys−1) = N∗(y′s−1) ∪ {ys−2, y
′
s−2, ys−3, v};

• S(ys) = {v, w1, ys−1, y
′
s−1, ys−2};

• S(z1) = N∗(z′1) ∪ {v, w1, z
′
2};

• S(z2) = N∗(z′2) ∪ {z1, z
′
1, v, z′3};

• S(zi) = N∗(z′i) ∪ {zi−1, zi−2, z
′
i−1, z

′
i+1}, for each i ∈ {3, · · · , t− 1};

• S(zt) = N∗(z′t) ∪ {zt−1, z
′
t−1, zt−2}.
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Figure 4.16: The Case 2.1.1 in Claim 4.4.8.

Case 2 yz ∈ E(G), where y ∈ C1 and z ∈ C2.

We need to consider the following two subcases, according to the situation of z.

Case 2.1 z ∈ {z1, · · · , zt−1}.
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Chapter 4. Star coloring and star list coloring

We may denote z = zj such that zj is the nearest 3-vertex to v on P ′. The proof
is divided into two possibilities.

Case 2.1.1 y = ys.

This means that zjys ∈ E(G) for some fixed j ∈ {1, · · · , t}. Let B =
V (P ) ∪ {x1, z1, · · · , zj} and H = G− B. Let c denote an L-in-coloring of H for its
special orientation

−→
H . We define an orientation for the edge set E(G[B]) and those

edges between V (H) and B, as shown in Figure 4.16 (3). Obviously, the resulting
orientation

−→
G is special. We color v, x1, y1, · · · , ys−1, z1, · · · , zj, ys, successively, such

that
• S(v) = N∗(w1) ∪ {x′1, y′1, z′1};
• S(x1) = N∗(x′1) ∪ {v, w1};
• S(y1) = N∗(y′1) ∪ {v, w1, y

′
2};

• S(y2) = N∗(y′2) ∪ {y1, y
′
1, v, y′3};

• S(yk) = N∗(y′k) ∪ {yk−1, yk−2, y
′
k−1, y

′
k+1}, for each k ∈ {3, · · · , s− 2};

• S(ys−1) = N∗(y′s−1) ∪ {ys−2, y
′
s−2, ys−3};

• S(z1) = N∗(z′1) ∪ {v, w1, z
′
2};

• S(z2) = N∗(z′2) ∪ {z1, z
′
1, v, z′3};

• S(zi) = N∗(z′i) ∪ {zi−1, zi−2, z
′
i−1, z

′
i+1}, for each i ∈ {3, · · · , j − 2};

• S(zj−1) = N∗(z′j−1) ∪ {zj−2, z
′
j−2, zj−3, z

∗
j };

• S(zj) = N∗(z∗j ) ∪ {zj−1, z
′
j−1, zj−2, ys−1};

• S(ys) = {ys−1, y
′
s−1, ys−2, zj, z

∗
j , zj−1},

Case 2.1.2 y ∈ {y1, · · · , ys−1}.
Without loss of generality, we may let y = yk. If zjys ∈ E(G), then a good cycle

ysys−1 · · · ykzjys is formed, contradicting Claim 4.4.4. If zjyl ∈ E(G) for some fixed
l ∈ {k + 1, k + 2, · · · , s − 1}, then a removable cycle ylyl−1 · · · ykzjyl with a heavy
3-vertex yl is formed, contradicting Claim 4.4.5. So, in what follows, we suppose
that there is no edge connecting zj and one vertex belonging to {yk+1, · · · , ys}. On
the other hand, we recall that zq with q ∈ {1, · · · , j − 1} is not adjacent to any
vertex of yk+1, · · · , ys since zj is the nearest vertex to v on P ′.
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Figure 4.17: The Case 2.1.2 in Claim 4.4.8.
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4.4. Star choosability of sparse graphs

Let B = V (P )∪{x1, z1, · · · , zj} and H = G−B. Let c denote an L-in-coloring of
H for its special orientation

−→
H . We need to deal with the following two possibilities,

according to the situations of x1 and ys.

(i) x1 6= ys.

We define an orientation for the edge set E(G[B]) and those edges between
V (H) and B, as depicted in Figure 4.17 (1). Clearly, the resulting orientation of

−→
G

is special. We color v, x1, z1, · · · , zj, y1, · · · , ys, successively, such that
• S(v) = N∗(w1) ∪ {x′1, y′1, z′1};
• S(x1) = N∗(x′1) ∪ {v, w1};
• S(z1) = N∗(z′1) ∪ {v, w1, z

′
2};

• S(zi) = N∗(z′i) ∪ {zi−1, zi−2, z
′
i−1, z

′
i+1}, for each i ∈ {2, · · · , j − 2};

• S(zj−1) = N∗(z′j−1) ∪ {zj−2, z
′
j−2, zj−3, z

∗
j };

• S(zj) = N∗(z∗j ) ∪ {zj−1, zj−2, z
′
j−1};

• S(y1) = N∗(y′1) ∪ {v, w1, y
′
2};

• S(yl) = N∗(y′l) ∪ {yl−1, yl−2, y
′
l−1, y

′
l+1}, for each l ∈ {2, · · · , k − 2};

• S(yk−1) = N∗(y′k−1) ∪ {yk−2, yk−3, y
′
k−2, zj};

• S(yk) = {yk−1, yk−2, y
′
k−1, zj, zj−1, z

∗
j , y

′
k+1};

• S(yk+1) = N∗(yk+1) ∪ {yk, yk−1, zj, y
′
k+2};

• S(yp) = N∗(y′p) ∪ {yp−1, yp−2, y
′
p−1, y

′
p+1} for each p ∈ {k + 2, · · · , s− 1};

• S(ys) = N∗(y′s) ∪ {ys−1, y
′
s−1, ys−2}.

(ii) x1 = ys.

We define an orientation for the edge set E(G[B]) and those edges in V (H) and
B, as shown in Figure 4.17 (2). Noting that the resulting orientation of

−→
G is special.

We color v, z1, · · · , zj, y1, · · · , ys, successively, such that
• S(v) = N∗(w1) ∪ {y′1, z′1};
• S(z1) = N∗(z′1) ∪ {v, w1, z

′
2};

• S(zi) = N∗(z′i) ∪ {zi−1, zi−2, z
′
i−1, z

′
i+1}, for each i ∈ {2, · · · , j − 2};

• S(zj−1) = N∗(z′j−1) ∪ {zj−2, z
′
j−2, zj−3, z

∗
j };

• S(zj) = N∗(z∗j ) ∪ {zj−1, zj−2, z
′
j−1};

• S(y1) = N∗(y′1) ∪ {v, w1, y
′
2};

• S(yl) = N∗(y′l) ∪ {yl−1, yl−2, y
′
l−1, y

′
l+1}, for each l ∈ {2, · · · , k − 2};

• S(yk−1) = N∗(y′k−1) ∪ {yk−2, yk−3, y
′
k−2, zj};

• S(yk) = {yk−1, yk−2, y
′
k−1, zj, zj−1, z

∗
j , y

′
k+1};

• S(yk+1) = N∗(yk+1) ∪ {yk, yk−1, zj, y
′
k+2};

• S(yp) = N∗(y′p) ∪ {yp−1, yp−2, y
′
p−1, y

′
p+1} for each p ∈ {k + 2, · · · , s− 2};

• S(ys−1) = N∗(y′s−1) ∪ {ys−2, y
′
s−2, ys−3, v};

• S(ys) = {ys−1, y
′
s−1, ys−2, v, w1}.

Case 2.2 z = zt.

The proof can be reduced to the previous Case 2.1.1.
Therefore, we complete the proof of Claim 4.4.8

Now we use a discharging argument with initial charge ω(v) = d(v) at each
vertex v and with the following two discharging rules (R1) and (R2). We write
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Chapter 4. Star coloring and star list coloring

ω∗ to denote the charge at each vertex v after we apply the discharging rules. To
complete the proof, we show that ω∗(v) > 3 for all v ∈ V (G). This leads to the
following obvious contradiction:

3 6
∑

v∈V (G) ω∗(v)

|V (G)| =
∑

v∈V (G) ω(v)

|V (G)| = 2|E(G)|
|V (G)| 6 Mad(G) < 3.

Hence no counterexample can exist.
Our discharging rules are defined as follows:

(R1) Each 2-vertex gets 1
2
from each of its neighbors.

(R2) Each 3(1)-vertex gets 1
4
from each of its sponsors.

Let us check that ω∗(v) > 3 for each v ∈ V (G). By Claim 4.4.1, we derive that
δ(G) > 2. In the following argument, we let v1, v2, · · · , vd(v) denote all neighbors of
v in a cyclic order. The following discussion is divided into five cases.

Case 1 d(v) = 2.

Then ω(v) = 2. By Claim 4.4.2, there is no 2(1)-vertex. It means that v1, v2 are
both 3+-vertices. Therefore, ω∗(v) > 2 + 1

2
× 2 = 3 by (R1).

Case 2 d(v) = 3.

Obviously, ω(v) = 3. We begin with the following claim.

Claim 4.4.9 If v is a 3(1)-vertex, then |S(v)| > 2.

Proof. Without loss of generality, suppose that v1 is a 2-vertex and v2, v3 are
both 3+-vertices. By Claim 4.4.3, it is easy to deduce that there exist at least
two bad paths, respectively, starting from vv2 and vv3. It follows immediately that
|S(v)| > 2.

According to Claim 4.4.2, we infer that v is neither a 3(2)-vertex nor a 3(3)-
vertex. So, it suffices to consider the following two subcases.

• If v is a 3(0)-vertex, then v sends nothing to each vi by (R1) and (R2) and
thus ω∗(v) = 3.

• Now we suppose that v is a 3(1)-vertex. Without loss of generality, assume
d(v1) = 2 and d(v2), d(v3) > 3. By (R1), v sends a charge 1

2
to v1. On the other

hand, by Claim 4.4.9, we observe that v has at least two sponsors, each of which
sends a charge 1

4
to v by (R2). Therefore, ω∗(v) > 3− 1

2
+ 1

4
× 2 = 3.

Case 3 d(v) = 4.

This implies that ω(v) = 4. By using Claim 4.4.2, we derive that v is neither a
4(4)-vertex nor a 4(3)-vertex. If v is a 4(2)-vertex, then |T (v)| = 0 by Claim 4.4.7.
So, ω∗(v) > 4− 1

2
× 2 = 3 by (R2). If v is a 4(1)-vertex, then |T (v)| 6 1 by Claim

4.4.8 and therefore ω∗(v) > 4 − 1
2
− 1

4
× 1 = 31

4
> 3 by (R2). Finally, we suppose

that v is a 4(0)-vertex. It means that n2(v) = 0. Then |T (v)| 6 4 by Claim 4.4.6
and we conclude that ω∗(v) > 4− 1

4
× 4 = 3 by (R2).

136



4.5. Known bounds and open problems

Girth Best Known Bounds
g Lower bound Upper bound
3 10 [ACK+04] 20 [ACK+04]
4 8 [KKT09] 18 [NOdM03]
5 6 [Tim07] 16 [ACK+04]
6 5 [Tim07] 8 [KT10]
7 5[Tim08] 7 [Tim07]
8 4 [ACK+04] 6 [Tim07] [BCM+09]

9− 13 4 [ACK+04] 5 [Tim08]
14+ 4 [ACK+04] 4 [Tim08]

Table 4.1: Best known bounds

Case 4 d(v) = 5.

Obviously, ω(v) = 5. By Claim 4.4.2, we deduce that n2(v) 6 3. Moreover, it
follows immediately from Claim 4.4.6 that |T (v)| 6 5−n2(v). So, by applying (R1)
and (R2), we obtain that ω∗(v) > 5− 1

2
n2(v)− 1

4
|T (v)| > 5− 1

2
n2(v)− 1

4
(5−n2(v)) =

33
4
− 1

4
n2(v) > 33

4
− 1

4
× 3 = 3.

Case 5 d(v) > 6.

It follows directly from Claim 4.4.6 that ω∗(v) > d(v) − 1
2
n2(v) − 1

4
|T (v)| >

d(v)− 1
2
n2(v)− 1

4
(d(v)− n2(v)) = 3

4
d(v)− 1

4
n2(v) > 3

4
d(v)− 1

4
d(v) = 1

2
d(v) > 3.

4.5 Known bounds and open problems
The Table 4.1 shows the current best known bounds for the star chromatic number
of planar graphs with girth g. The best known bound is given along with the
corresponding reference.

By Table 4.1, we see that planar graphs with girth 4 are 18-star-colorable. Re-
cently, Kierstead, Kündgen and Timmons [KKT09] showed that bipartite planar
graphs are 14-star-choosable. Since the girth of bipartite planar graphs is also 4, it
seems to be interesting to study the following problem.

Problem 4.5.1 Can the upper bound 18 on star chromatic number of planar graphs
with girth 4 be improved to 14?

Besides, Table 4.1 also shows that planar graphs of girth at least 14 can be star
colored with 4 colors and there is a planar graph with girth 7 that requires 5 colors
to star color. Finally, we like to conclude this chapter by the following problem:

Problem 4.5.2 What is the smallest girth g such that planar graphs with girth g
is 4-star-colorable.
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Vertex arboricity
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In this chapter, we study the vertex-arboricity of graphs, which has significant
applications in various problems of colorings and partitions of graphs. In Section 5.1,
we will give a brief introduction. And then in Section 5.2, we prove the conjecture of
Raspaud and Wang in [RW08] asserting that every planar graph without intersecting
triangles has vertex-arboricity at most 2.

5.1 Introduction

The vertex-arboricity va(G) of a graph G is the minimum number of subsets into
which vertex set V (G) can be partitioned so that each subset induces a forest; such
a partition is called an acyclic partition of V (G). Clearly, va(G) > 1 for every
nonempty graph G and va(G) = 1 if and only if G itself is a forest.

This vertex version of arboricity was first introduced by Chartrand, Kronk, and
Wall [CKW68] in 1968, who named it point-arboricity. They proved that va(G) 6
d1+∆(G)

2
e for any graph G and va(G) 6 3 for any planar graph G. Chartrand and

Kronk [CK69] showed this bound is sharp, by giving a planar graph which has
vertex-arboricity 3. In fact, this graph was discovered by Professor W. T. Tutte,
which was used to disprove the conjecture of P. G. Tait that the graph of every
cubic convex polyhedron is hamiltonian (see [Tut46]).

The upper bound 3 for va(G) on planar graphs has also been studied by Char-
trand and Kronk [CK69], Grünbaum [Grü73], Goddard [God91], and Poh[Poh90].
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Among them, Goddard [God91] and Poh [Poh90], independently, proved a stronger
result that the vertex set of any planar graph can be partitioned into three
sets such that each set induces a linear forest. The path version of vertex-
arboricity, called linear vertex-arboricity, has also been studied extensively in
[Poh90, AGLW91, ALW94, Mat90].

In 1979, Garey and Johnson [GJ79] proved that determining the vertex-arboricity
of a graph is NP-hard. Hakimi and Schmeichel [HS89] showed that determining
whether va(G) 6 2 is NP-complete for maximal planar graphs G. Stein [Ste71]
characterizes completely maximal planar graph G with at least 4 vertices by proving
that va(G) = 2 if and only if its dual graph G∗ is Hamiltonian. This result was
further strengthened by Hakimi and Schmeichel [HS89] by showing that a plane
graph G has va(G) = 2 if and only if its dual graph G∗ contains a connected Eulerian
spanning subgraph. The reader is referred to [Bur86, CCC04, CH96, Coo74, Wan88,
S̆kr02] for other results about the vertex-arboricity of graphs.

Now we introduce an equivalent definition to the vertex-arboricity in terms of
the coloring version. A k-forest-coloring of a graph G is a mapping π from V (G) to
the set {1, · · · , k} such that each color class induces a forest. The vertex-arboricity
va(G) of G is the smallest integer k such that G has a k-forest-coloring. We should
notice that two adjacent vertices can be assigned with the same color in a k-forest-
coloring.

Raspaud and Wang [RW08] gave some sufficient conditions on a planar graph to
have vertex-arboricity at most 2. Their main results are stated as follows:

Theorem 5.1.1 [RW08] Let G be a planar graph.

(1) If G contains no k-cycles for some fixed k ∈ {3, 4, 5, 6}, then va(G) 6 2.

(2) If G contains no triangles at distance less than 2, then va(G) 6 2.

In 2000, Borodin, Kostochka and Toft [BKT00] first introduced the list vertex-
arboricity. In terms of the list coloring version, we say G is L-forest-colorable if for
any sets L(v) of cardinality at least k at its vertices, one can choose an element
(color) for each vertex v from its list L(v) so that the subgraph induced by every
color class is a forest (an acyclic graph). In [BI08a], Borodin and Ivanova improved
the conclusion (2) in Theorem 5.1.1 to the list vertex-arboricity.

Together with Raspaud and Wang, we give a positive answer to one of their
conjectures in [RW08]. More specifically, we prove the following:

Theorem 5.1.2 [CRW10c] Every planar graph G without intersecting triangles has
vertex-arboricity at most 2.

5.2 Proof of Theorem 5.1.2

Suppose to the contrary that the theorem is not true. Let G be a counterexample
with the least number of vertices. Thus, G is connected. Since G contains no
intersecting triangles, every subgraph of G also contains no intersecting triangles.
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This straightforward fact is tacitly used in the following proofs. In the following,
let C = {a, b} denote the color set. We first investigate the structural properties of
G in Section 5.2.1, then use Euler’s formula and discharging argument to derive a
contradiction in Section 5.2.2.

5.2.1 Structural properties

Claim 5.2.1 The minimum degree δ(G) > 4.

Proof. Assume to the contrary that G contains a 3−-vertex v. By the minimality
of G, G − {v} is 2-forest-colorable and thus it has an acyclic partition (V1, V2).
Obviously, there is some Vi, say V1, such that v is adjacent to at most one vertex
in V1. So (V1 ∪ {v}, V2) is an acyclic partition of G, which is a contradiction. This
completes the proof of Claim 5.2.1.

We begin with some basic definitions which are used throughout this section.
A k-face f = [u1u2 · · ·uk] of G is called light if d(ui) = 4 for all i = 1, · · · , k. Let
f = [v1v2 · · · v5] be a 5-face in G. If d(v1) = 5, d(vi) = 4 for all i = 2, 3, 4, 5, and f
is adjacent to exactly two light 4-faces by sharing edges v2v3 and v4v5, respectively,
then we call f bad. Otherwise, we call f good. For x ∈ V (G)∪F (G) and an integer
i > 3, we use mi(x) denote the number of i-faces incident or adjacent to x and
l(x) to denote the number of light 4-faces incident or adjacent to x. Obviously,
l(x) 6 m4(x).
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Figure 5.1: x1, y1, x2, y2, x3, y3, x4, y4 are all colored with a, i.e., red.

Lemma 5.2.1 Let f = [v1v2v3v4] be a light 4-face and H = G − V (f). If a 2-
forest-coloring π of G−V (f) cannot be extended to G, then the following conditions
hold.

(1) All vertices in
⋃i=4

i=1 NH(vi) are assigned with the same color, say a, see Fig-
ure 5.1.

(2) f is adjacent to at least one 5+-face.

Proof. For i ∈ {1, 2, 3, 4}, let xi, yi be the other two neighbors of vi not on f .
Suppose π is a 2-forest-coloring of G − V (f) which cannot be extended to G. Let
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fi be the face adjacent to f by the common edge vivi+1, where i is taken modulo 4.
Let S(a) denote the subset of {{x1, y1}, {x2, y2}, {x3, y3}, {x4, y4}} which satisfies
that all vertices in S(a) get the same color a in the coloring π. Thus 0 6 |S(a)| 6 4.
We will make contradiction to show (1) and (2).

(1) Suppose to the contrary that |S(a)| 6= 4. It implies that 0 6 |S(a)| 6 3.
Since G contains no adjacent triangles, v1v3 /∈ E(G) and v2v4 /∈ E(G). We have to
consider the following four cases, depending on the value of |S(a)|.

• |S(a)| = 3. Without loss of generality, assume that π(xi) = π(yi) = a for all
i = 1, 2, 3 and one of x4 and y4 is colored with b. We can color v1, v2, v3 with b, and
v4 with a.

• |S(a)| = 2. First assume, without loss of generality, that π(x1) = π(y1) =
π(x2) = π(y2) = a and π(x3) = π(x4) = b. If both y3 and y4 are colored with b, we
color v1, v2 with b and v3, v4 with a. Otherwise, w.l.o.g., assume that π(y3) = a. We
color v1, v2, v3 with b and v4 with a. Now assume, w.l.o.g., that π(x1) = π(y1) =
π(x3) = π(y3) = a and π(x2) = π(x4) = b. If π(y2) = π(y4) = b, then color v1, v3

with b and v2, v4 with a. Otherwise, at least one of y2 and y4 is colored with b, say
y2. Thus color v1, v2, v3 with b and v4 with a.

• |S(a)| = 1. Without loss of generality, assume that π(x1) = π(y1) = a and
π(x2) = π(x3) = π(x4) = b. If at least two of y2, y3, y4 are colored with b, then
reduce the proof to the former case. If none of y2, y3, y4 is colored with b, i.e.,
π(y2) = π(y3) = π(y4) = a, then we color v1, v3 with b and v2, v4 with a. Now,
suppose that exactly one of y2, y3, y4 is colored with b. If π(y2) = b, then π(y3) =
π(y4) = a and thus we may color v1, v3 with b and v2, v4 with a. If π(y3) = b, then
π(y2) = π(y4) = a and therefore we color v1, v4 with b and v2, v3 with a.

• |S(a)| = 0. It implies that {π(xi), π(yi)} = {a, b} for all i = 1, 2, 3, 4. Hence,
it suffices to color v1, v3 with a and v2, v4 with b.

It is easy to verify that in each possible case the extended coloring is a 2-forest-
coloring of G, driving a contradiction.

(2) Assume to the contrary that 3 6 d(fi) 6 4 for all i = 1, 2, 3, 4. It means
that either yi = xi+1 or yixi+1 ∈ E(G) for each i ∈ {1, 2, 3, 4} and i is taken modulo
4. Since π cannot be extended to V (f), we may assume that π(xi) = π(yi) = a for
all i = 1, 2, 3, 4 by (1). If there exists a vertex vi which can be given the color a
without arising any monochromatic cycle, then we color the remaining vertices with
b to obtain a 2-forest-coloring of G, a contradiction. Otherwise, suppose that for
each i ∈ {1, 2, 3, 4} there exists a path Pi connecting xi and yi in H such that all
vertices in Pi are colored with a. Therefore, a monochromatic cycle C formed by
∪i=4

i=1Pi and some edges y1x2, y2x3, y3x4 and y4x1 (if exist) is established in H. This
contradicts the choice of H.

Therefore, we complete the proof of Lemma 5.2.1.

Claim 5.2.2 There are no adjacent light 4-faces in G.

Proof. Suppose to the contrary that there are 4-faces f1 = [v1v2v5v6] and f2 =
[v2v3v4v5] adjacent by sharing one common edge v2v5 such that d(vi) = 4 for all i =
1, 2, 3, 4, 5, 6, see Figure 5.2. Since G does not contain adjacent triangles, v1, · · · , v6

are mutually distinct. Let H = G − V (f1). Then H admits a 2-forest-coloring π
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Figure 5.2: Adjacent light 4-faces f1 and f2.

by the minimality of G. If π can be extended to G, then we are done. Otherwise,
by Lemma 5.2.1, we suppose that x1, y1, x2, v3, v4, x5, x6, y6 are all colored with the
same color a. If at least one vertex in {x3, y3, x4, y4} is colored with a, i.e., π(x3) = a,
then recolor v3 with b, color v1, v5, v6 with b and v2 with a. Otherwise, it suffices to
color v1, v5, v6 with b and v2 with a. It is easy to see that π is extended to the whole
graph G in each possible case. This completes the proof of Claim 5.2.2.

The following claim was proved by Raspaud and Wang in [RW08].

Claim 5.2.3 G contains no 5-cycle C = v1v2 · · · v5v1 with a chord v2v5 such that
d(vi) = 4 for all i = 1, 2, · · · , 5.

Claim 5.2.4 A light 4-face cannot be adjacent to a light 5-face.

Proof. Suppose to the contrary that f = [v1v2v3v4] is a (4, 4, 4, 4)-face adjacent to
a (4, 4, 4, 4, 4)-face f ′ = [v2v3u1u2u3] by sharing a common edge v2v3, see Figure 5.3.
By definition, it is easy to know that d(vi) = 4 for all i = 1, · · · 4 and d(uj) = 4
for all j = 1, 2, 3. Moreover, u1, u3 /∈ V (f) by the absence of adjacent triangles in
G. If u2 = v1, then C = u3v1v4v3v2u3 is a 5-cycle with a chord v2v4 such that all
vertices in C are of degree 4. This contradicts Claim 5.2.3. Thus, V (f) ∩ V (f ′) =
{v2, v3}. By the minimality of G, G − V (f) admits a 2-forest-coloring π. If π
can be extended to G, then we are done. Otherwise, by Lemma 5.2.1, we suppose
that x1, y1, x2, u3, u1, x3, x4, y4 are all assigned with the same color a. The following
discussion is divided into two cases, according to the color of u2.

• π(u2) = a. If at most one of s1 and t1 is colored with b, we recolor u1 with
b and then color v1, v2, v4 with b and v3 with a. So assume π(s1) = π(t1) = b. By
symmetry, we also assume π(s3) = π(t3) = b. Then, we color v1, v2, v4 with b and v3

with a. If the resulting coloring is not a 2-forest-coloring, there is only one possible
case that one of s2 and t2 is colored with a, say s2. Therefore, we may further recolor
u2 with b to extend π to G successfully.

• π(u2) = b. If neither s1 nor t1 is colored with a, then color v1, v2, v4 with
b and v3 with a. So assume π(s1) = a. Similarly, we assume that π(s3) = a. If
π(s2) = π(t2) = a, then recolor u1 with b, color v1, v2, v4 with b and v3 with a.
Otherwise, recolor u1, u3 with b, u2 with a, color v1, v2, v4 with b and v3 with a.
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Figure 5.3: A light 4-face f is adjacent to a light 5-face f ′.

It is easy to check that the resulting coloring in each possible case does not
produce a monochromatic cycle, thus π is extended to a 2-forest-coloring of G, a
contradiction. Therefore, we complete the proof of Claim 5.2.4.

Claim 5.2.5 If a (5, 4, 4, 4, 4)-face is adjacent to a light 4-face, then they are nor-
mally adjacent.

Proof. Suppose that f ∗ = [v1v2 · · · v5] is a (5, 4, 4, 4, 4)-face adjacent to a (4,4,4,4)-
face f . Obviously, |V (f ∗)∩V (f)| 6= 4. If |V (f ∗)∩V (f)| = 2, then we are done. So,
in what follows, we assume that |V (f ∗)∩V (f)| = 3. By symmetry, we only need to
consider the following two cases.

Case 1 V (f ∗) ∩ V (f) = {v2, v3, v4}.
We first assume that f = [v2v3wv4]. Clearly, w /∈ {v4, v5}. Then two adjacent

triangles v2v3v4v2 and v3v4wv3 are formed, a contradiction. Now assume that f =
[v4v3wv2]. Similarly, w /∈ {v1, v5}. It is easy to observe that a 3-cycle v2v3v4v2 is
adjacent to a 3-cycle v2v3wv2, a contradiction.

Case 2 V (f ∗) ∩ V (f) = {v2, v3, v5}.
We first assume that f = [v2v3v5w]. Clearly, w /∈ {v1, v4}. It is easy to see that

C = v4v3v2wv5v4 is a 5-cycle with a chord v3v5 such that all vertices in C are of
degree 4. This contradicts Claim 5.2.3.

Now, assume that f = [v2v3wv5]. Notice that w /∈ {v1, v4}. Let w1, w2 be the
neighbors of w different from v3 and v5. Let x4, y4 be the neighbors of v4 different
from v3 and v5. Let x2 be the neighbor of v2 different from v1, v3 and v5. Let x3 be
the neighbor of v3 different from v2, v4 and w. By the minimality of G, G − V (f)
admits a 2-forest-coloring π. If π can be extended to G, then it contradicts the
choice of G. Otherwise, by Lemma 5.2.1, we suppose that v1, x2, x3, v4, w1, w2 are
all colored with the same color a. If neither x4 nor y4 is colored with a, then color
v3 with a and v2, v5, w with b. Otherwise, we first recolor v4 with b, and then
color v5 with a and v2, v3, w with b. In each case, we extend π to G successfully, a
contradiction.

Therefore, we complete the proof of Claim 5.2.5.
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Figure 5.4: The reducible configurations (B1) and (B2) in Claim 5.2.6.

Claim 5.2.6 Suppose that f1 = [vv1v2v3] and f2 = [vv4v5v6] are two light 4-faces
which intersect at the unique vertex v. Then G does not contain the configuration
(B1) and (B2) as shown in Figure 5.4.

Proof. In each case, let H = G−{v, v1, v2, v3}. By the minimality of G, H admits
a 2-forest-coloring π. Next, we will show that π can be extended to G and thus
arrive at a contradiction.

(1) Assume G contains (B1). If π cannot be extended to {v, v1, v2, v3}, by
Lemma 5.2.1, we suppose that x1, y1, x2, v4, x3, y3, v6 are all colored with a. In this
case, we color v with a and v1, v2, v3 with b. If the resulting coloring is not a 2-
forest-coloring, one of x4 and v5 must be colored with a. Then, we further recolor
v4 with b.

(2) Assume G contains (B2). Similarly, if π cannot be extended to {v, v1, v2, v3},
by Lemma 5.2.1, we suppose that x1, y1, x2, v5, x3, y3, v4, v6 are all colored with a. In
this case, we first recolor v5 with b and then extend π to the remaining uncolored
vertices easily by (1) of Lemma 5.2.1.

Thus, we complete the proof of Lemma 5.2.6.
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Figure 5.5: The configuration in Lemma 5.2.2.
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Lemma 5.2.2 Suppose that f ∗ = [vu1u2v1v2] is a (5, 4, 4, 4, 4)-face adjacent to two
light 4-faces f1 = [v1v2v3v4] and f2 = [u1u2u3u4] by the common edge v1v2 and u1u2,
respectively, see Figure 5.5. Let H = G−V (f1). If a 2-forest-coloring π of G−V (f1)
cannot be extended to G, then either f1 or f2 is adjacent to at least two 5+-faces.

Proof. By Claim 5.2.5, we see that {v3, v4} ∩ {v, u1, u2} = ∅ and {u3, u4} ∩
{v, v1, v2} = ∅. If u3 = v4, then C = u2v4v3v2v1u2 is a 5-cycle with a chord v1v4

such that all vertices in C have degree 4. This contradicts Claim 5.2.3. If u3 = v3,
then f1 intersects f2 at v3 such that v1 is adjacent to u2, contradicting to (B1).
So, suppose that u3 /∈ {v3, v4}. If u4 = v4, then f1 intersects f2 at v4 such that
v1u2 ∈ E(G), contradicting to (B1). If u4 = v3, then f1 and f2 intersect at v3

such that v1u2 ∈ E(G), which is a contradiction to (B2). Thus, in the following
argument, we suppose that {u3, u4}∩{v3, v4} = ∅. Let gi−1 denote the face adjacent
to f1 by the common edge vivi+1, where i ∈ {2, 3, 4} and i is taken modulo 4. Let
hj−1 denote the face adjacent to f2 by the common edge ujuj+1, where j ∈ {2, 3, 4}
and j is taken modulo 4, see Figure 5.5.

Assume to the contrary that 3 6 d(gi) 6 4 and 3 6 d(hj) 6 4 for all i, j = 1, 2, 3.
Denote H = G− V (f1). By the minimality of G, H has a 2-forest-coloring π. If π
can be extended to G, then we arrive at a contradiction to the assumption on G.
Otherwise, assume w.l.o.g., that u2, x1, x2, v, x3, y3, x4, y4 are all colored with a by
Lemma 5.2.1. We have to deal with the following five cases.

Case 1 Assume that at most one of u1, u3, s2 is colored with b.

Then recolor u2 with b, color v1 with a and v2, v3, v4 with b.

Case 2 Assume that all u1, u3, s2 are colored with b.

Then color v1 with a and v2, v3, v4 with b.

Case 3 Assume that π(u1) = a and π(u3) = π(s2) = b.

If there is no monochromatic cycle arising after recoloring u1 with b, then recolor
u1 with b firstly and then go back to the previous Case 2. Otherwise, suppose that
π(s1) = π(u4) = b. If one of s3 and t3 is colored with b, then recolor u3 with a, u2

with b and then color v1 with a and v2, v3, v4 with b. So assume that neither s3 nor
t3 is colored with b. If at least one of s4 and t4 is colored with b, then recolor u4

with a, u1 with b and then reduce the proof to the former Case 2. Now, assume
that b /∈ {π(s4), π(t4)}. Therefore, we firs recolor u2 with b, and then extend π to
G by coloring v1 with a and v2, v3, v4 with b.

Case 4 Assume that π(u3) = a and π(u1) = π(s2) = b.

If the color b did not appear on s1 and u4, then recolor u2 with b, and color
v1 with a and v2, v3, v4 with b. If the color a did not appear on s1 and u4, then
switch the colors of u1 and u2, then color v1 with a and finally color v2, v3, v4 with b.
Otherwise, suppose that {π(s1), π(u4)} = {a, b}. We have two possibilities below.

• π(s1) = b and π(u4) = a. If at most one of s4 and t4 is colored with b, then
recolor u2, u4 with b, u1 with a, and color v1 with a and v2, v3, v4 with b. Hence,
assume π(s4) = π(t4) = b. If at most one of s3 and t3 is colored with b, then
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recolor u3 with b and then go back to the previous Case 2. Otherwise, set
π(s3) = π(t3) = b. In this case, we may first switch the colors of u1 and u2

and then color v1 with a and v2, v3, v4 with b successfully.

• π(s1) = a and π(u4) = b. If b /∈ {π(s4), π(t4)}, then recolor u2 with b and color
v1 with a and v2, v3, v4 with b successfully. If a /∈ {π(s3), π(t3)}, then color v1

with a and finally color v2, v3, v4 with b. So, w.l.o.g., assume that π(s3) = a
and π(s4) = b. In this case, we can first switch the colors of u3 and u4 and
then reduce the proof to the former Case 2.

Case 5 Assume that π(s2) = a and π(u1) = π(u3) = b.

First we consider the case that π(u4) = a. If either π(s1) 6= b or b /∈
{π(s3), π(t3)}, then recolor u2 with b, color v1 with a and v2, v3, v4 with b. So,
w.l.o.g., assume that π(s1) = b and π(s3) = b. We first switch the colors of u1 and
u2, then color v1 with a and finally color v2, v3, v4 with b. If the resulting coloring is
not a 2-forest-coloring, at least one of s4 and t4 is colored with a. Thus, we further
recolor u3 with a and u4 with b.

Now we consider the case that π(u4) = b. If at most one of s3, t3 is colored
with a, then first switch the colors of u2 and u3, then color v1 with a and finally
color v2, v3, v4 with b. So assume that π(s3) = π(t3) = a. If at most one of s4, t4
is colored with a, then recolor u4 with a and then go back to the previous above
case. Hence, π(s4) = π(t4) = a. If π(s2) 6= a, then switch the colors of u1 and u2,
and assign color a to v1 and b to v2, v3, v4, respectively. So now assume π(s2) = a.
Notice that each of gi and hj is of degree at most 4 with i, j = 1, 2, 3. Moreover, for
i ∈ {1, 2, 3, 4}, in H, there exists a path denoted by Pi connecting two vertices of
NH(vi) such that all vertices in Pi are colored with a. Similarly, for j ∈ {1, 2, 3, 4},
in H, there exists a path denoted by P ′

j connecting two vertices of NH(uj) such that
all vertices in P ′

j are colored with a. However, a monochromatic cycle C is formed in
H by ∪i=4

i=1Pi, ∪j=4
j=1P

′
j and some edges x1x4, y4x3, y3x2, s1s4, t4s3 and t3s2 (if exist).

This contradicts the choice of H. Thus, we complete the proof of Lemma 5.2.2.
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Figure 5.6: f1 and f2 are adjacent (4, 4, 4, 5)-faces.

Claim 5.2.7 G does not contain two (4, 4, 4, 5)-faces f1 = [v2v1v6v5] and f2 =
[v2v3v4v5] sharing a unique common edge v2v5 and d(v5) = 5.
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Proof. Suppose on the contrary that G contains such adjacent (4, 4, 4, 5)-faces
f1 and f2, see Figure 5.6. Since there is no adjacent triangles, v1v5 /∈ E(G) and
v2v6 /∈ E(G). It implies that v1v2 · · · v6v1 is a 6-cycle. Let H = G − {v1, · · · , v6}.
Then H admits a 2-forest-coloring π by the minimality of G. Let S(a) denote the
subset of {{x1, y1}, {x3, y3}, {x4, y4}, {x6, y6}} which satisfies that all vertices in S(a)
get the same color a in the coloring π. Thus 0 6 |S(a)| 6 4. The following proof is
divided into five cases as follows, depending on the value of |S(a)|.
Case 1 |S(a)| = 4.

It implies that π(xi) = π(yi) = a for all i = 1, 3, 4, 6. If at most one of x5, y5 is col-
ored with b, color v1, v3, v4, v5, v6 with b and v2 with a. Otherwise, color v1, v3, v4, v6

with b and v2, v5 with a.

Case 2 |S(a)| = 3.

By symmetry, we have two possible cases below.
• Assume that π(xi) = π(yi) = a for all i = 1, 3, 4. W,l.o.g., assume that

π(x6) = b. If π(x5) = π(y5) = b, then color v1, v2, v3, v4 with b and v5, v6 with a.
Otherwise, color v1, v3, v4, v5 with b and v2, v6 with a.

• Assume that π(xi) = π(yi) = a for all i = 3, 4, 6. W.l.o.g., assume that
π(x1) = b. We first color v3, v4, v6 with b and v1 with a. If the color a appears at
most once on the set x5, y5, then further color v2 with b and v5 with a. Otherwise,
we assign v2 and v5 with b to extend π to G successfully.

Case 3 |S(a)| = 2.

By symmetry, we have four possible cases below.
• Assume that π(x1) = π(y1) = π(x3) = π(y3) = a. W.l.o.g., suppose that

π(x4) = π(x6) = b. We first color v1, v3 with b and v4, v6 with a. If at least one of
x5 and y5 is colored with a, then further color v2 with a and v5 with b. Otherwise,
suppose that π(x5) = π(y5) = b. In this case, we color v2, v5 with a. If the resulting
coloring is not a 2-forest-coloring, we assert that at least one of y4 and y6 is colored
with a, say y6. And thus we can reassign color b to v6 to derive a 2-forest-coloring
of G, a contradiction.

• Assume that π(x1) = π(y1) = π(x4) = π(y4) = a. W.l.o.g., assume that
π(x3) = π(x6) = b. We first color v1, v4 with b and v3, v6 with a. If π(x5) = π(y5) =
b, then further color v2 with b and v5 with a. Otherwise, w.l.o.g., suppose that
π(x5) = a. We further color v2, v5 with b. Similarly, if the resulting coloring is not
a 2-forest-coloring, we assert that π(x2) = π(y5) = b and thus reassign v2 with a to
obtain a 2-forest-coloring of G. This contradicts the choice of G.

• Assume that π(x1) = π(y1) = π(x6) = π(y6) = a. W.l.o.g., assume that
π(x3) = π(x4) = b. First assume that π(y3) = π(y4) = b. If at least one of x5, y5 is
colored with a, then color v1, v5, v6 with b and v2, v3, v4 with a. Otherwise, assume
that π(x5) = π(y5) = b and thus color v1, v2, v6 with b and v3, v4, v5 with a. Next
assume that π(y3) = b and π(y4) = a. If at least one of x5, y5 is colored with b, then
color v1, v2, v4, v6 with b and v3, v5 with a. Otherwise, assume that π(x5) = π(y5) = a
and hence we may color v1, v4, v5, v6 with b and v2, v3 with a. Finally assume that
π(y3) = π(y4) = a. If at least one of x5, y5 is colored with b, then color v1, v2, v4, v6
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with b and v3, v5 with a. Otherwise, assume that π(x5) = π(y5) = a and hence we
may color v1, v3, v5, v6 with b and v2, v4 with a.

• Assume that π(x4) = π(y4) = π(x6) = π(y6) = a. W.l.o.g., assume that
π(x1) = π(x3) = b. If π(x5) = π(y5) = a, then color v2, v4, v5, v6 with b and v1, v3

with a. Otherwise, we may color v2, v4, v6 with b and v1, v3, v5 with a.

Case 4 |S(a)| = 1.

By symmetry, we have two possible cases below.
• Assume that π(x1) = π(y1) = a. Assume, w.l.o.g., that π(x3) = π(x4) =

π(x6) = b. Moreover, we may suppose that at most one of y3, y4, y6 is colored with
b. Otherwise, we reduce the proof to the previous Case 2 or Case 3. First assume
that π(y3) = b and π(y4) = π(y6) = a. If π(x5) = π(y5) = a then color v1, v2, v5

with b and v3, v4, v6 with a. If π(x5) = π(y5) = b then color v1, v4, v6 with b and
v2, v3, v5 with a. Otherwise, assume that {π(x5), π(y5)} = {a, b}. If π(x2) = a,
then color v1, v2, v4, v6 with b and v3, v5 with a. Otherwise, color v1, v4, v6 with b
and v2, v3, v5 with a. Next assume that π(y4) = b and π(y3) = π(y6) = a. If
a ∈ {π(x5), π(y5)}, then color v1, v3, v5 with b and v2, v4, v6 with a. Otherwise,
assume that π(x5) = π(y5) = b and thus color v1, v3, v6 with b and v2, v4, v5 with a.
Finally assume that π(y3) = π(y4) = a and π(y6) ∈ {a, b}. If at least one of x5, y5 is
colored with a, then color v1, v3, v5 with b and v2, v4, v6 with a. Otherwise, assume
that π(x5) = π(y5) = b and thus color v1, v2, v4 with b and v3, v5, v6 with a.

• Assume that π(x6) = π(y6) = a. The argument is similar to the above case.

Case 5 |S(a)| = 0.

Without loss of generality, we may assume that π(xi) = a and π(yi) = b for all
i = 1, 3, 4, 6. If at least one of x5, y5 is colored with b, then color v2, v4, v6 with b
and v1, v3, v5 with a. Otherwise, assume that π(x5) = π(y5) = a and therefore we
can color v1, v3, v5 with b and v2, v4, v6 with a.

Thus, we complete the proof of Claim 5.2.7.
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Figure 5.7: The configuration in Claim 5.2.8.

Claim 5.2.8 G contains no a 5-cycle C = v1v2 · · · v5v1 with a chord v2v5 such that
d(vi) = 4 for all i = 1, 3, 4, 5 and d(v2) = 5.
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Proof. Suppose to the contrary that G contains a 5-cycle C = v1v2 · · · v5v1 with a
chord v2v5 such that d(vi) = 4 for all i = 1, 3, 4, 5 and d(v2) = 5, see Figure 5.7. Let
H = G−{v1, · · · , v5}. Then H admits a 2-forest-coloring π by the minimality of G.
For a ∈ C, let S(a) denote the subset of {{x1, y1}, {x3, y3}, {x4, y4}} which satisfies
that all vertices in S(a) get the same color a in the coloring π. Thus 0 6 |S(a)| 6 3.
The following proof is divided into four cases as follows, according to the value of
|S(a)|.
Case 1 |S(a)| = 3.

It implies that π(xi) = π(yi) = a for all i = 1, 3, 4. If at most one of x2, y2

is colored with b, then color v1, v2, v3, v4 with b and v5 with a. Otherwise, color
v1, v3, v4, v5 with b and v2 with a.

Case 2 |S(a)| = 2.

By symmetry, we have three possible cases below.
• Assume that π(x1) = π(y1) = π(x3) = π(y3) = a. W.l.o.g., assume that

π(x4) = b. If b ∈ {π(x2), π(y2)}, color v1, v3, v5 with b and v2, v4 with a. Otherwise,
assume that π(x2) = π(y2) = a. We color v1, v2, v3 with b and v4, v5 with a. If
the resulting coloring is not a 2-forest-coloring, y4 must be colored with a and thus
reassign v4 with b.

• Assume that π(x1) = π(y1) = π(x4) = π(y4) = a. W.l.o.g., assume that
π(x3) = b. If π(x2) = π(y2) = b, then color v1, v4, v5 with b and v2, v3 with a.
Otherwise, we color v1, v2, v4 with b and v3, v5 with a.

• Assume that π(x3) = π(y3) = π(x4) = π(y4) = a. W.l.o.g., assume that
π(x1) = b. If π(x2) = π(y2) = b, then color v3, v4, v5 with b and v1, v2 with a. So
suppose that π(x2) = a. If π(y1) = b, then color v2, v3, v4 with b and v1, v5 with a.
Hence π(y1) = a. If π(x2) = π(y2) = a, then color v1, v2, v3, v4 with b and v5 with a.
Otherwise, then color v1, v3, v4, v5 with b and v2 with a.

Case 3 |S(a)| = 1.

By symmetry, we have three possible cases below.
• Assume that π(x1) = π(y1) = a. W.l.o.g., assume that π(x3) = π(x4) = b.

Moreover, we may suppose that at most one of y3, y4 is colored with b. Otherwise, we
reduce the proof to the previous Case 2. First assume that π(y3) = b and π(y4) = a.
If at least one of x2, y2 is colored with a, then color v1, v2, v4 with b and v3, v5 with a.
Otherwise, assume that π(x2) = π(y2) = b and thus color v1, v5 with b and v2, v3, v4

with a. Next assume that π(y3) = a and π(y4) = b. If π(x2) = π(y2) = a, then color
v1, v2, v3 with b and v4, v5 with a. Otherwise, color v1, v3, v5 with b and v2, v4 with
a. Afterwards, assume that π(y3) = π(y4) = a. If π(x2) = π(y2) = a, then color
v1, v2, v4 with b and v3, v5 with a. Otherwise, color v1, v3, v5 with b and v2, v4 with
a.

• Assume that π(x3) = π(y3) = a. W.l.o.g., assume that π(x1) = π(x4) = b.
At first, assume that π(y1) = b. If π(y4) = b, then reduce to the previous Case
2. Otherwise, assume π(y4) = a. If at least one of x2, y2 is colored with b, then
color v3, v5 with b and v1, v2, v4 with a. Otherwise, assume that π(x2) = π(y2) = a
and thus color v2, v3, v5 with b and v1, v4 with a. Now assume that π(y1) = a.
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If π(x2) = π(y2) = b, then color v3, v5 with b and v1, v2, v4 with a. If π(x2) =
π(y2) = a, then color v2, v3, v5 with b and v1, v4 with a. Otherwise, assume that
{π(x2), π(y2)} = {a, b}. If π(x5) = a, then color v2, v3, v5 with b and v1, v4 with a.
Otherwise, assume that π(x5) = b. Then color v1, v3 with b and v2, v4, v5 with a. If
such coloring is not a 2-forest-coloring, y4 must be assigned with a and thus reassign
v4 with b to extend π to G successfully.

• Assume that π(x4) = π(y4) = a. W.l.o.g., assume that π(x1) = π(x3) = b.
Similarly, we deduce that at most one of y1 and y3 can be colored with b. If at least
one of x2, y2 is colored with a, then color v2, v4 with b, v1, v3 with a and finally color
v5 with a color different from π(x5). Otherwise, assume that π(x2) = π(y2) = b. If
π(y1) = π(y3) = a, then color v1, v3, v4 with b and v2, v5 with a. Otherwise, we can
extend π to G by coloring v1, v2, v3 with a and v4, v5 with b.

Case 4 |S(a)| = 0.

Without loss of generality, assume that π(xi) = a and π(yi) = b for all i = 1, 3, 4.
If x2, y2 are both colored with a, then color v1, v2, v4 with b and v3, v5 with a. If x2, y2

are both colored with b, then color v1, v2, v4 with a and v3, v5 with b. Otherwise,
assume that π(x2) = a and π(y2) = b. If π(x5) = a, then color v1, v3, v5 with b and
v2, v4 with a. If π(x5) = b, then color v1, v3, v5 with a and v2, v4 with b.

Thus, we complete the proof of Claim 5.2.8.

Claim 5.2.9 G does not contain the configuration (F1), as shown in Figure 5.8,
where f1, f2, f3 are all faces.

Proof. Assume G contains (F1). By Claim 5.2.8, d(v8) > 5. By Claim 5.2.5,
we deduce that f1 and f2 are normally adjacent. In other words, V (f1) ∩ V (f2) =
{v1, v4}. First we claim that V (f1) ∩ V (f3) = {v1}. It suffices to show that v9 /∈
{v2, v3, v4}. It is easy to see that v9 6= v4. If v9 = v2, a 3-cycle v1v10v2v1 is adjacent
to a 3-cycle v7v1v2v1, a contradiction. If v9 = v3, then v8 = v4, a contradiction since
d(v4) = 4. Next we claim that V (f2) ∩ V (f3) = {v1, v7}. To see that, we only need
to show that v9 6= v5 and v10 /∈ {v5, v6}. If v9 = v5, then v8 = v4, a contradiction.
If v10 = v5, then a 5-cycle v1v2v3v4v5v1 with a chord v1v4 such that d(vi) = 4 for all
i = 1, · · · , 5 exists in G, contradicting to Claim 5.2.3. If v10 = v6, then a 3-cycle
v1v7v6v1 is adjacent to a 3-cycle v9v7v6v9, a contradiction. Thus, in what follows,
we assume that all vertices in the set {v1, v2, · · · , v10} are mutually distinct.

Let H = G − V (f1). By the minimality of G, H admits a 2-forest-coloring π.
If π cannot be extended to G, by (1) of Lemma 5.2.1, we deduce that all vertices
in

⋃i=4
i=1 NH(vi) get the same color in the coloring π. Without loss of generality,

suppose that v7, v10, x2, y2, x3, y3, x4, v5 are all colored with a. We have to consider
two cases below by the color of v6.

Case 1 Assume π(v6) = a.

If at most one of x5 and y5 is colored with b, we recolor v5 with b, color v1, v2, v3

with b and v4 with a. So suppose that π(x5) = π(y5) = b. If at most one of x6 and
y6 is colored with b, we recolor v6 with b, color v1, v2, v3 with b and v4 with a. Now
suppose that π(x6) = π(y6) = b. If at most one of x7, v8, v9 is colored with b, then
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Figure 5.8: The configuration (F1) in Claim 5.2.9.

recolor v7 with b and thus we can color v1 with a and finally color v2, v3, v4 with
b. If the color a did not appear on the set {x7, v8, v9}, we can extend π to G by
coloring v1 with a and v2, v3, v4 with b. Thus, in what follows, assume that exactly
two of x7, v8, v9 are colored with b and one is colored with a. We need to discuss
three possibilities below.

• π(x7) = a and π(v8) = π(v9) = b. It is easy to derive that one of x10 and y10

is colored with a. Otherwise, we may give the color a to v1 and the color b to other
three remaining uncolored vertices. Therefore, we can first recolor v7, v10 with b, v9

with a and then extend π to G by coloring v1 with a and v2, v3, v4 with b.
• π(v8) = a and π(x7) = π(v9) = b. Similarly, we deduce that one of x10 and y10

is colored with a. Otherwise, we can color v1 with a and v2, v3, v4 with b to derive a
2-forest-coloring of G, a contradiction. Thus, we recolor v10 with b, color v1 with a
and v2, v3, v4 with b. If the resulting coloring is not a 2-forest-coloring, x9 must be
colored with b. Then we further switch the colors of v7 and v9.

• π(v9) = a and π(x7) = π(v8) = b. If at most one of x10 and y10 is colored
with b, we recolor v10 with b, color v1 with a and v2, v3, v4 with b. Now suppose
that π(x10) = π(y10) = b. If π(x9) = b, we color v1, v2, v3 with b and v4 with a.
Otherwise, recolor v9 with b and then color v1 with a and v2, v3, v4 with b.

Case 2 Assume π(v6) = b.

One can easily observe that one of x5, y5 is assigned with a. Otherwise, we may
color v4 with a and v1, v2, v3 with b. If the color b did not appear on the set {x5, y5},
we first recolor v5 with b and color v4 with a and v1, v2, v3 with b. So, w.l.o.g.,
assume that π(x5) = a and π(y5) = b. By a similar argument, we can deduce that
{π(x6), π(y6)} = {a, b}. If at most one of x7, v8, v9 is colored with b, then recolor
v7, v5 with b, v6 with a, and thus color v1 with a and finally color v2, v3, v4 with b. If
the color a did not appear on the set {x7, v8, v9}, we can extend π to G by coloring
v1 with a and v2, v3, v4 with b. Thus, in what follows, assume that exactly two of
x7, v8, v9 are colored with b and one is colored with a. The following proof is similar
to the previous Case 1.

Therefore, we complete the proof of Claim 5.2.9.
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Figure 5.9: The configuration (F2) in Claim 5.2.10.

Claim 5.2.10 G does not contain the configuration (F2), as shown in Figure 5.9.

Proof. Assume G contains (F2). Clearly, {v3, v4} ∩ {v6, v7} = ∅, since G contains
no adjacent triangles. It follows that C = v1v2 · · · v7v1 is a 7-cycle. Moreover, it is
easy to see that x2 /∈ C. By the minimality of G, G−{v2} admits a 2-forest-coloring
π. It is easy to observe that if there exists a color c appearing at most once on the
set {x2, v1, v3, v5}, we can color v2 with c to obtain a 2-forest-coloring of G. So, in
the following, we always assume that the colors a and b appear exactly twice on the
set {x2, v1, v3, v5}, respectively. We need to handle the following cases.

Case 1 π(x2) = π(v3) = a and π(v1) = π(v5) = b.

First consider the case that π(v4) = a. If a ∈ {π(x3), π(y3)}, recolor v3 with b
and color v2 with a. So assume π(x3) = π(y3) = b. If neither x4 nor y4 is colored
with a, we color v2 with a. If neither x4 nor y4 is colored with b, recolor v4 with
b and color v2 with a. Thus, in what follows, w.l.o.g., assume that π(x4) = a and
π(y4) = b. If at most one of x5, v6 is colored with a, then recolor v5 with a, v4 with
b, and color v2 with b. Otherwise, suppose that π(x5) = π(v6) = a. If x1, y1, v7 are
all colored with a, then recolor v4 with b and thus we can color v2 with a. If at
least two of x1, y1, v7 are colored with b, then recolor v1 with a and then color v2

with b. Otherwise, assume that exactly two of x1, y1, v7 are colored with a and one
is colored with b. By symmetry, we need to consider two subcases as follows.

• π(v7) = b and π(x1) = π(y1) = a. If neither x6 nor y6 is colored with a, switch
the colors of v4 and v5 and color v2 with b and afterwards color v2 with b. If neither
x7 nor y7 is colored with b, recolor v4 with b and color v2 with a. So, w.l.o.g., assume
that π(x6) = a and π(x7) = b. In this case, we may first switch the colors of v6 and
v7 and then go back to the previous case.

• π(x1) = b and π(y1) = π(v7) = a. If one of x6, y6 is colored with a, recolor
v4, v6 with b, v5 with a and color v2 with b. So assume that π(x6) = π(y6) = b.
Similarly, if one of x7, y7 is colored with a, recolor v7 with b, v1 with a and color v2

with b. So assume that π(x7) = π(y7) = b. Now, we can recolor v5 with a, v4 with
b, and color v2 with b to extend π to G successfully.

Now consider the case that π(v4) = b. If π(x3) = π(y3) = a, recolor v3 with b
and color v2 with a. If π(x3) = π(y3) = b, color v2 with a. So, w.l.o.g., assume that
π(x3) = a and π(y3) = b. If π(x4) = π(y4) = b, recolor v4 with a and then go back
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to the previous case. If {π(x4), π(y4)} = {a, b}, switch the colors of v3 and v4 and
color v2 with a. Now, suppose that π(x4) = π(y4) = a. If at most one of x5, v6 is
colored with a, then recolor v5 with a, and color v2 with b. Otherwise, suppose that
π(x5) = π(v6) = a. The following proof is similar to the first case.

Case 2 π(x2) = π(v5) = a and π(v1) = π(v3) = b.

We first consider the case that π(v4) = a. If π(x3) = π(y3) = a, color v2 with
b. If π(x3) = π(y3) = b, recolor v3 with a and color v2 with b. So, assume that
π(x3) = a and π(y3) = b. If a ∈ {π(x4), π(y4)}, recolor v4 with b, v3 with a and
color v2 with b. Now, suppose that π(x4) = π(y4) = b. If neither v6 nor x5 is colored
with a, then color v2 with a. If neither v6 nor x5 is colored with b, then recolor v5

with b and color v2 with a. So, assume that {π(x5), π(v6)} = {a, b}. We have two
cases below.

• π(v6) = a and π(x5) = b. If x1, y1, v7 are all colored with a, then recolor v5

with b and color v2 with a. If at least two of x1, y1, v7 are colored with b, then
recolor v1, v3 with a, v5 with b, and v2 with b. Otherwise, assume that exactly
two of x1, y1, v7 are colored with a and one is colored with b. By symmetry,
we need to handle the following two possibilities.

– π(x1) = b and π(y1) = π(v7) = a. If a ∈ {π(x6), π(y6)}, recolor v6

with b and then reduce the proof to the former case. Otherwise, set
π(x6) = π(y6) = b. If a ∈ {π(x7), π(y7)}, recolor v5, v7 with b, v1, v3

with a, and color v2 with b. Now we assert that π(x7) = π(y7) = b. In
this case, we can color v2 with a. It is easy to verify that the resulting
coloring of G is a 2-forest-coloring, a contradiction.

– π(v7) = b and π(x1) = π(y1) = a. If a /∈ {π(x6), π(y6)}, recolor v3 with
a and color v2 with b. If b /∈ {π(x7), π(y7)}, color v2 with b. Otherwise,
w.l.o.g., assume that π(x6) = a and π(x7) = b. We may first switch the
colors of v6 and v7, and then color v2 with a.

• π(v6) = b and π(x5) = a. Similarly, we deduce that exactly two of x1, y1, v7

are colored with a and one is colored with b. By symmetry, we need to handle
the following two possibilities.

– π(x1) = b and π(y1) = π(v7) = a. If a /∈ {π(x7), π(y7)}, recolor v1, v3

with a, v5 with b and color v2 with a. If b /∈ {π(x6), π(y6)}, recolor v5

with b and color v2 with a. Otherwise, recolor v1, v6 with a, v5, v7 with b
and color v2 with b.

– π(v7) = b and π(x1) = π(y1) = a. If b ∈ {π(x7), π(y7)}, recolor v7 with a
and then go back to the previous case. Now, assume π(x7) = π(y7) = a.
Similarly, if b ∈ {π(x6), π(y6)}, then color v6 with a, v5 with b and color
v2 with a. So, assume π(x6) = π(y6) = a. Therefore, we may color v2

with b successfully.
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Now we consider the case that π(v4) = b. If b ∈ {π(x3), π(y3)}, recolor v3 with
a and color v2 with b. So assume π(x3) = π(y3) = a. If π(x4) = π(y4) = a, color v2

with b. If π(x4) = π(y4) = b, recolor v4 with a and color v2 with b. Now, suppose
that {π(x4), π(y4)} = {a, b}. If neither v6 nor x5 is colored with a, then color v2

with a. If neither v6 nor x5 is colored with b, then recolor v5 with b, v4 with a, and
color v2 with a. So, assume that both colors a and b appear exactly once on the set
{x5, v6}. The following discussion is similar to the previous case.

Case 3 π(x2) = π(v1) = a and π(v3) = π(v5) = b.

First consider the case that π(v4) = a. If π(x3) = π(y3) = a, color v2 with b and
color v2 with b. If π(x3) = π(y3) = b, recolor v3 with a and color v2 with b. So,
assume that {π(x3), π(y3)} = {a, b}. If π(x4) = π(y4) = a, recolor v4 with b, v3 with
a and color v2 with b. If π(x4) = π(y4) = b, recolor v3 with a, and color v2 with
b. So, now assume that {π(x4), π(y4)} = {a, b}. If neither v6 nor x5 is colored with
a, then recolor v3, v5 with a, v4 with b, and color v2 with b. If neither v6 nor x5 is
colored with b, then color v2 with b. So, assume that both colors a and b appear on
the set {x5, v6}. We have two cases below.

• π(v6) = a and π(x5) = b. If x1, y1, v7 are all colored with b, then color v2 with
a. If at least two of x1, y1, v7 are colored with a, then recolor v1, v4 with b,
v3, v5 with a, and v2 with b. Otherwise, assume that exactly two of x1, y1, v7

are colored with b and one is colored with a. By symmetry, we need to deal
with the following two possibilities.

– π(v7) = a and π(x1) = π(y1) = b. If at least one of x7, y7 is colored
with a, then recolor v7 with b and color v2 with a. Otherwise, assume
π(x6) = π(y6) = b. If a /∈ {π(x6), π(y6)}, color v2 with a. Otherwise,
recolor v4, v6 with b and v3, v5 with a and color v2 with b.

– π(x1) = a and π(v7) = π(y1) = b. If b /∈ {π(x7), π(y7)}, recolor v1, v4 with
b, v3, v5 with a, and color v2 with b. If a /∈ {π(x6), π(y6)}, recolor v3, v5

with a, v4 with b, and color v2 with b. Otherwise, we can first recolor
v3, v5, v7 with a and v1, v4, v6 with b.

• π(v6) = b and π(x5) = a. By a similar argument as above, we may suppose
that exactly two of x1, y1, v7 are colored with b and one is colored with a. By
symmetry, we need to deal with the following two possibilities.

– π(v7) = a and π(x1) = π(y1) = b. If either a /∈ {π(x7), π(y7)} or b /∈
{π(x6), π(y6)}, then color v2 with a or b. Otherwise, set π(x7) = a and
π(x6) = b. Then, switch the colors of v6 and v7 and then color v2 with a
successfully.

– π(x1) = a and π(v7) = π(y1) = b. If b ∈ {π(x6), π(y6)}, recolor v6 with
a and color v2 with b. Hence π(x6) = π(y6) = a. If b ∈ {π(x7), π(y7)},
recolor v7 with a, v1 with b, and color v2 with a. Otherwise, color v2 with
b easily.
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Now consider the case that π(v4) = b. If b ∈ {π(x3), π(y3)}, recolor v3 with a and
color v2 with b. Otherwise, assume that π(x3) = π(y3) = a. If b ∈ {π(x4), π(y4)},
recolor v4 with a and then go back to the previous case. So we may assume that
π(x4) = π(y4) = a. If v5 can be given a new color a without arising any monochro-
matic cycle, we can further color v2 with b successfully. Otherwise, we have the
following two cases.

First assume that π(v6) = π(x5) = a. If x1, y1, v7 are all colored with b, then
color v2 with a. If at least two of x1, y1, v7 are colored with a, then recolor v1 with b,
and color v2 with a. Otherwise, assume that exactly two of x1, y1, v7 are colored with
b and one is colored with a. By symmetry, we need to deal with two possibilities
below.

• π(v7) = a and π(x1) = π(y1) = b. If a ∈ {π(x7), π(y7)}, recolor v7 with b and
color v2 with a. So assume that π(x7) = π(y7) = b. If a ∈ {π(x6), π(y6)}, recolor v6

with b, v5 with a and color v2 with b. Thus, π(x6) = π(y6) = b. In this case, we can
color v2 with a to derive a 2-forest-coloring of G, a contradiction.

• π(x1) = a and π(v7) = π(y1) = b. If b /∈ {π(x7), π(y7)}, recolor v1 with b and
color v2 with a. So, w.l.o.g., assume π(x7) = b. If a /∈ {π(x6), π(y6)}, recolor v7 with
a, v1 with b and finally color v2 with a. Otherwise, recolor v1, v6 with b v7 with a,
and color v2 with a.

Now assume that {π(v6), π(x5)} = {a, b}. The proof is similar to the previous
case.

Therefore, we complete the proof of Claim 5.2.10.

5.2.2 Discharging argument

We complete the proof with a discharging procedure. Similarly, we define a weight
function ω on the vertices and faces of G by letting ω(v) = 2d(v) − 6 if v ∈ V (G)
and ω(f) = d(f)− 6 if f ∈ F (G). Before showing discharging rules, we need to give
some notation used the following argument.

v

1
f

2
f

3
f

4
f

5
f

1
v

2
v

3
v

4
v

5
v

Figure 5.10: v is a special 5-vertex and f5 is a special 4-face.

Suppose v is a 5-vertex. Let v1, v2, · · · , v5 be the neighbors of v in a cyclic order.
Let fi be the face with vvi and vvi+1 as two boundary edges for i = 1, 2, · · · , 5,
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where indices are taken modulo 5. We call v a special 5-vertex of f5 if the following
conditions hold:

(1) d(f1) = 3;
(2) d(fi) = 4 for all i = 2, 3, 4, 5;
(3) f2 and f4 are both (5, 4, 4, 4)-faces.

Moreover, we call f5 a special 4-face with respect to v. Figure 5.10 shows a special
5-vertex v. By Claim 5.2.8 and Claim 5.2.10, we have to notice that such special
4-face is either a (5, 4, 4, 6+)-face or a (5, 4, 5+, 5+)-face. These two observations will
be used directly in the following proof. Recall that l(x) denotes the number of light
4-faces incident or adjacent to x. Our discharging rules are as follows:

(R1) Every 6+-vertex sends 1 to each incident 3+-face.
(R2) Let v be a 5-vertex incident to a face f . Then

(R2.1) τ(v → f) = 1, if f is either a 3-face or (5, 4, 4, 4)-face;
(R2.2) τ(v → f) = 2

3
, if f is either a non-special 4-face or a bad 5-face.

(R2.3) τ(v → f) = 1
3
, if f is either a special 4-face or a good 5-face.

(R3) Let v be a 4-vertex and f1, f2, f3, f4 denote the faces of G incident to v in a
cyclic order.
(R3.1) Assume m3(v) = 0. Then

(R3.1.1) If l(v) = 0, then τ(v → fi) = 1
2
for each i = 1, 2, 3, 4.

(R3.1.2) If l(v) = 1, say f1, then τ(v → f1) = 2
3
, τ(v → f3) = 1

3
and

τ(v → fi) = 1
2
for each i = 2, 4.

(R3.1.3) If l(v) = 2, then v sends 2
3
to each incident light 4-face and 1

3
to each

other incident face.
(R3.2) Assume m3(v) = 1 and f1 is a 3-face. Then v sends 1 to f1. Moreover,

(R3.2.1) If l(v) = 0, then τ(v → fi) = 1
3
for each i = 2, 3, 4.

(R3.2.2) Assume f2 is a light 4-face. Then
(a1) If f3 is a 4-face, then τ(v → fi) = 1

3
for each i = 2, 3, 4.

(a2) If f3 is a 6+-face, then τ(v → f2) = 2
3
and τ(v → f4) = 1

3
.

(a3) Assume f3 is a 5-face. Then
(a3.1) If either f is a good 5-face or m5+(f2) = 1, then τ(v → f2) = 2

3
and

τ(v → f4) = 1
3
.

(a3.2) Assume f3 is a bad 5-face and f2 is adjacent to an another 5+-face f ∗

different from f3.
(a3.2.1) If f ∗ is a bad 5-face, then τ(v → f2) = 1

2
, τ(v → f3) = 1

6
and

τ(v → f4) = 1
3
.

(a3.2.2) Otherwise, τ(v → fi) = 1
3
for each i ∈ {2, 3, 4}.

(R3.2.3) Assume f3 is a light 4-face. Then
(b1) If one of f2 and f4 is of degree at least 6, say f2, then τ(v → f3) = 2

3
and

τ(v → f4) = 1
3
.

(b2) If m5(v) = 0, then τ(v → fi) = 1
3
for each i = 2, 3, 4.

(b3) Assume m5(v) = 2 such that f2 and f4 are both 5-faces.
(b3.1) If one of f2, f4 is a good 5-face, say f2, then τ(v → f3) = 2

3
and

τ(v → f4) = 1
3
.

(b3.2) Otherwise, τ(v → f2) = τ(v → f4) = 1
6
and τ(v → f3) = 2

3
.

(b4) Assume m5(v) = 1 such that f2 is a 4-face and f4 is a 5-face.
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Figure 5.11: Discharging rule (R3).
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(b4.1) If f4 is a good 5-face, then τ(v → f2) = 1
3
and τ(v → f3) = 2

3
.

(b4.2) Assume f4 is a bad 5-face.
(b4.2.1) If m5+(f3) = 1, then τ(v → f2) = 1

3
and τ(v → f3) = 2

3
.

(b4.2.2) Assume f3 is adjacent to an another 5+-face f ∗ different from f4.
(b4.2.2.1) If f ∗ is a bad 5-face, then τ(v → f2) = 1

3
, τ(v → f3) = 1

2

and τ(v → f4) = 1
6
.

(b4.2.2.2) Otherwise, τ(v → fi) = 1
3
for each i ∈ {2, 3, 4}.

For simplicity, in Figure 5.11, we use the notation "= L" to denote a light 4-face.
By a careful observation, (R3) includes all possible incident cases for any vertex of
degree 4. Thus, combining (R1) and (R2), the following statement holds.

Observation 5.2.3 Every 4+-vertex sends at least 1
3
to each incident 4-face.

We only need to show ω∗(x) > 0 for all x ∈ V (G) ∪ F (G).
Let v ∈ V (G). Since δ(G) > 4, d(v) > 4. In what follows, let v1, v2, · · · , vd(v)

denote the neighbors of v in a cyclic order, and let fi denote the incident face of v
with vvi and vvi+1 as two boundary edges for i = 1, 2, · · · , d(v), where indices are
taken modulo d(v). We have to handle the following cases, depending on the size of
d(v).

Case 1 If d(v) > 6, then it is trivial that ω∗(v) = 2d(v)− 6− d(v) = d(v)− 6 > 0
by (R1).

Case 2 If d(v) = 5, then ω(v) = 4. Let m∗
4(v) be the number of incident (5, 4, 4, 4)-

faces. By Claim 5.2.7, m∗
4(v) 6 2. Moreover, m3(v) 6 1 by the absence of intersect-

ing triangles. If m3(v) = 0, then ω∗(v) > 4−m∗
4(v)− 2

3
(5−m∗

4(v)) = 2
3
− 1

3
m∗

4(v) > 0
by (R2).

Now, without loss of generality, assume that f1 = [vv1v2] is a 3-face. By (R2.1),
τ(v → f1) = 1. If m∗

4(v) 6 1, then ω∗(v) > 4 − 1 − m∗
4(v) − 2

3
(4 − m∗

4(v)) =
1
3
− 1

3
m∗

4(v) > 0 by (R2). So, in the following, we assume that m∗
4(v) = 2. By

Claim 5.2.7 and Claim 5.2.5, there is only one possible case that f2 and f4 are both
(5, 4, 4, 4)-faces. Note that d(v1) > 5 by Claim 5.2.8. This fact implies that f5

cannot be a (5, 4, 4, 4, 4)-face.

• If d(f3) > 6, then v sends nothing to f3 by (R2) and hence ω∗(v) > 4 − 1 −
1× 2− 2

3
= 1

3
.

• If d(f3) = 5, then f3 cannot be adjacent to any light 4-face by Claim 5.2.9.
It follows immediately from the definition that f3 is not a bad 5-face. So, by
(R2.3), τ(v → f3) = 1

3
. Therefore, we derive that ω∗(v) > 4−1−1×2− 2

3
− 1

3
=

0.

• Now, suppose that f3 = [vv3wv4] is a 4-face. Moreover, f2 is a (5, 4, 5+, 4)-face
and thus it gets at most 2

3
from v by (R2.2). If we can show that f5 gets at

most 1
3
from v and thus we obtain that ω∗(v) > 4− 1− 1× 2− 2

3
− 1

3
= 0. To

see that, we have two cases. If f5 is not a 4-face, then v sends at most 1
3
to f5

since f5 cannot be a (5, 4, 4, 4, 4)-face. Now we assume that f5 is a 4-face. It
implies that f5 is a special face with respect to v and therefore v sends 1

3
to

f5 by (R2.3).
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Case 3 If d(v) = 4, then ω(v) = 2. Clearly, m3(v) 6 1. First assume that
m3(v) = 0. By Claim 5.2.2, v is incident to at most two light 4-faces. It is easy to
derive that ω∗(v) > 2− 1

2
× 4 = 0 by (R3.1.1), or ω∗(v) > 2− 2

3
− 1

3
− 1

2
× 2 = 0 by

(R3.1.2), or ω∗(v) > 2− 2
3
× 2− 1

3
× 2 = 0 by (R3.1.3).

Now assume that m3(v) = 1 and f1 is a 3-face. By (R3.2), τ(v → f1) = 1.
By (R2), we notice that v only sends charge to incident face. So, in the following
each case, it remains to show that

∑i=4
i=2 τ(v → fi) 6 1 and therefore we have that

ω∗(v) > 2−1−1 = 0. For simplicity, we write τ for
∑i=4

i=2 τ(v → fi). By Claim 5.2.2
and Claim 5.2.3, we obtain that l(v) 6 1. In other words, v is incident to at most
one light 4-face. If l(v) = 0, then τ(v → fi) = 1

3
for each i = 2, 3, 4 by (R3.2.1) and

thus τ = 1
3
× 3 = 1. Now assume that l(v) = 1. By symmetry, the following proof

is divided into two cases, depending on the situation of the incident light 4-face.

• Assume that f2 is a light 4-face. If f3 is a 4-face, by (a1), we have τ = 1
3
×3 = 1.

If f3 is a 6+-face, by (a2), we have τ = 2
3

+ 1
3

= 1. Now assume d(f3) = 5.
If either m5+(f2) = 1 or f3 is a good 5-face, then τ = 2

3
+ 1

3
= 1 by (a3.1).

Otherwise, assume that f3 is a bad 5-face and f2 is adjacent to an another
5+-face f ∗ different from f3. We also obtain that τ = 1

3
× 3 = 1 by (a3.2.2) or

τ = 1
2

+ 1
6

+ 1
3

= 1 by (a3.2.1).

• Assume that f3 is a light 4-face. If at least one of f2 and f4 is a 6+-face, say f2,
then by (b1), we have that τ = 2

3
+ 1

3
= 1. So, in the following, suppose that

fi is either a 4-face or a 5-face for each i ∈ {2, 4}. If d(f2) = d(f4) = 4, then
τ = 1

3
×3 = 1 by (b2). Assume that d(f2) = d(f4) = 5. If at least one of f2, f4

is a good 5-face, then τ = 2
3

+ 1
3

= 1 by (b3.2). Otherwise, τ = 1
6
× 2 + 2

3
= 1

by (b3.1). Now, by symmetry, assume that d(f2) = 4 and d(f4) = 5. If f4 is
a good 5-face, then τ = 1

3
+ 2

3
= 1 by (b4.1). Now assume f2 is a bad 5-face.

If m5+(f3) = 1, then τ = 1
3

+ 2
3

= 1 by (b4.2.1). Otherwise, assume that
f3 is adjacent to an another 5+-face f ∗ different from f4. If f ∗ is bad, then
τ = 1

3
+ 1

2
+ 1

6
= 1 by (b4.2.2). Otherwise, we deduce that τ = 1

3
× 3 = 1 by

(b4.2.2).

It remains to show that ω∗(f) > 0 for f ∈ F (G). The proof is divided into four
cases below according to the value of d(f).

Case 4 If d(f) > 6, then ω∗(f) = d(f)− 6 > 0 by (R1) to (R3).

Case 5 If d(f) = 3, then ω(f) = −3. By Claim 5.2.1, f is incident to three
4+-vertices and thus ω∗(f) = −3 + 1× 3 = 0 by (R1)-(R3).

Case 6 If d(f) = 4, then ω(f) = −2. By Claim 5.2.1, we see that d(vi) > 4 for all
i = 1, 2, 3, 4. Moreover, for i ∈ {1, 2, 3, 4}, vi sends at least 1

3
to f by Observation

5.2.3. This observation will be used frequently without further notice. If f is
incident to at least one 6+-vertex, say v1, then τ(v1 → f) = 1 by (R1) and thus
ω∗(f) > −2 + 1 + 1

3
× 3 = 0. Now, in the following, we assume that 4 6 d(vi) 6 5

for all i = 1, 2, 3, 4. By symmetry, we only need to consider six subcases below.
First assume that d(vi) = 4 for all i = 1, 2, 3, 4. Namely, f is a light 4-face. By

(2) of Lemma 5.2.1, f is adjacent to at least one 5+-face. Without loss of generality,
assume that f1 is a 5+-face. If d(f1) > 6, then τ(v1 → f) = τ(v2 → f) = 2

3
by
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(R3.1), (a2) and (b1). Therefore, ω∗(f) > −2 + 2
3
× 2 + 1

3
× 2 = 0. So assume

that f1 = [v1u1u2u3v2] is a 5-face. If f1 is a good 5-face, by (R3.1), (a3.1), (b3.2)
and (b4.1), we see that each of v1 and v2 sends 2

3
to f , respectively. Thus ω∗(f) >

−2 + 2
3
× 2 + 1

3
× 2 = 0. Now assume f1 is a bad 5-face. If f2, f3, f4 are all 4−-faces,

then similarly we obtain that ω∗(f) > −2 + 2
3
× 2 + 1

3
× 2 = 0 by (R3.1), (a3.1),

(b3.1) and (b4.2.1). So, in the following, we may suppose that fi is a 5+-face for
some fixed i ∈ {2, 3, 4}. Moreover, we may suppose that fi is a bad 5-face. If not,
we can reduce the argument to the previous cases. By symmetry, we have two cases
below.

• Assume f3 is a bad 5-face. It follows from (R3.1), (a3.2.1), (b1), (b3.1), (b3.2)
and (b4.2.2) that τ(vi → f) > 1

2
for each i = 1, 2, 3, 4. Thus, ω∗(f) >

−2 + 1
2
× 4 = 0.

• Assume f4 is a bad 5-face. It implies that v1 is a 4-vertex which is incident
to two opposite bad 5-faces. By (b3.1), τ(v1 → f) = 2

3
. Similarly, by (R3.1),

(a3.2.1), (b1), (b3.1), (b3.2) and (b4.2.2) again, τ(v2 → f) = τ(v4) = 1
2
.

Therefore ω∗(f) > −2 + 2
3

+ 1
2
× 2 + 1

3
= 0.

Next assume that d(v1) > 5 and d(vi) = 4 for all i = 2, 3, 4. By (R1) and (R2),
v1 sends 1 to f . Hence, ω∗(f) > −2 + 1 + 1

3
× 3 = 0.

Next assume that d(v1) = d(v2) = 5 and d(v3) = d(v4) = 4. Since each special
4-face is either a (5, 4, 4, 6+)-face or a (5, 4, 5+, 5+)-face, neither v1 nor v2 can be a
special 5-vertex of f . Thus ω∗(f) > −2 + 2

3
× 2 + 1

3
× 2 = 0 by (R2.2).

Next assume that d(v1) = d(v3) = 5 and d(v2) = d(v4) = 4. The discussion is
similar to the above case.

Now assume that d(v1) = d(v2) = d(v3) = 5 and d(v4) = 4. We first notice that
v2 cannot be a special vertex since neither f1 nor f2 is a (5, 4, 4, 4)-face. If at most one
of v1, v3 is a special vertex, then it is easy to derive that ω∗(f) > −2+ 2

3
×2+ 1

3
+ 1

3
= 0

by (R2.2) and (R2.3). Otherwise, suppose that v1 and v3 are both special 5-vertices.
By the definition, we obtain immediately that f1 and f2 are both 3-faces while f3, f4

are both (5, 4, 4, 4)-faces. This contradicts the assumption on G.
Finally assume that d(vi) = 5 for all i = 1, 2, 3, 4. Notice again that none of

v1, v2, v3, v4 is a special 5-vertex. Consequently, ω∗(f) > −2 + 2
3
× 4 = 2

3
by (R2.2).

Claim 5.2.11 Suppose that v is a 4-vertex. Let f1, f2, f3, f4 denote the faces of G
incident to v in a cyclic order such that f1 is a 5-face. If neither f2 nor f4 is a light
4-face, then τ(v → f1) > 1

3
.

Proof. First assume that l(v) = 0. It follows immediately from (R3.1.1) and
(R3.2.1) that τ(v → f1) > 1

3
and thus we are done. Otherwise, assume that f3 is a

light 4-face. By (a1), (a2) and (a3), it is easy to deduce that τ(v → f1) > 1
3
. Thus,

we complete the proof of Claim 5.2.11.

Case 7 If d(f) = 5, then ω(f) = −1. Notice that d(vi) > 4 by Claim 5.2.1. If f
is incident to at least one 6+-vertex, then ω∗(f) > −1 + 1 = 0 by (R1). So, in the
following, assume that 4 6 d(vi) 6 5 for all i = 1, · · · , 5. In what follows, let n5(f)
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denote the number of 5-vertices incident to f . First assume that n5(f) > 3. It is
trivial that ω∗(f) > −1 + 1

3
× 3 = 0 by (R2).

Next assume that n5(f) = 2. By (R2), each 5-vertex sends at least 1
3
to f . It

suffices to show that f gets at least 1
3
from the remaining 4-vertices in total. By

symmetry, we have two possibilities:

• Assume d(v1) = d(v2) = 5. It implies that d(v3) = d(v4) = d(v5) = 4. So
there are at most two light 4-faces adjacent to f . If l(f) = 2, i.e., f3, f4, then
τ(v4 → f) = 1

3
by (R3.1.3). Suppose l(f) = 1. By symmetry, suppose that

f3 is a light 4-face and f4 is not. By Claim 5.2.11, it is easy to deduce that
τ(v5 → f) > 1

3
since f5 is not a light 4-face. Finally suppose that l(f) = 0.

We obtain immediately that v4 sends at least 1
3
to f by Claim 5.2.11.

• Assume d(v1) = d(v3) = 5. Then d(v2) = d(v4) = d(v5) = 4. Obviously,
neither f1 nor f2 is a light 4-face. Thus, v2 sends at least 1

3
to f by Claim

5.2.11.

Now assume n5(f) = 1, say v1. Then d(vi) = 4 for all i = 2, 3, 4, 5 and l(f) 6 3.
If l(f) = 3, then τ(v3 → f) = τ(v4 → f) = 1

3
by (R3.1.3) and τ(v1 → f) > 1

3
by

(R2.2) and (R2.3). Thus, ω∗(f) > −1 + 1
3

+ 1
3
× 2 = 0. If l(f) 6 1, then there

exist vi and vj whose incident light 4-face must be opposite to f . By Claim 5.2.11,
each of them sends 1

3
to f and hence ω∗(f) > −1 + 1

3
× 3 = 0. Now, assume that

l(f) = 2. If f2, f3 are light 4-faces and f4 is not, then τ(v3 → f) = 1
3
by (R3.1.3)

and τ(v5 → f) > 1
3
by Claim 5.2.11. So we have that ω∗(f) > −1 + 1

3
× 3 = 0. If

f2, f4 are light 4-faces and f3 is not, then f is a light 5-face. By Lemma 5.2.2, at
least one of f2 and f4 is adjacent to a 5+-face different from f , say f2. By (R3.1),
(a.3.2.1), (a3.2.2), (b1), (b3.1), (b3.2), (b4.2.2), we assert that each of v2, v3 sends
at least 1

6
to f . Therefore, ω∗(f) > −1 + 2

3
+ 1

6
× 2 = 0 by (R2.2).

Finally assume that n5(f) = 0. Namely, d(vi) = 4 for all i = 1, · · · , 5. In other
words, f is a light 5-face. By Claim 5.2.4, none of f1, · · · , f5 is a light 4-face. It
follows directly from Claim 5.2.11 that each vi sends at least 1

3
to f . Therefore, we

conclude that ω∗(f) > −1 + 1
3
× 5 = 2

3
.

5.3 Further research

By Appel and Haken’s Four Color Theorem [AH76], every planar graph G has a
partition (V1, V2, V3, V4) such that each Vi induces an independent set. However,
Wegner [Weg73] showed that there exists a planar graph which cannot be parti-
tioned into (V1, V2, V3) such that V1, V2 are independent sets and V3 is a forest; and
even earlier, Chartrand and Kronk [CK69] showed that there exists a planar graph
which cannot be partitioned into two forests. On the other hand, Voigt [Voi93]
and independently, by Mirzakhani [Mir96] proved that not all planar graphs are
4-choosable. All of these facts imply that it is impossible to strengthen the Four
Color Theorem.
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A natural problem arises of finding sufficient conditions for planar graphs to be
4-choosable, as well as for planar graphs to have vertex-arboricity 2, list vertex-
arboricity 2, and so on.

A graph G is k-degenerate if every subgraph H of G has a vertex of degree at
most k in H. It is well known that every k-degenerate graph is (k + 1)-choosable.
It is easy to prove that every planar triangle-free graph is 3-degenerate by us-
ing Euler’s formula. Wang and Lih [WL02] proved that planar graphs without
5-cycles are 3-degenerate, while Fijavž et al. [FJMv02] showed that planar graphs
without 6-cycles are also 3-degenerate. The lack of 4-cycles does not imply the 3-
degeneracy of a planar graph, i.e., the line graph of a dodecahedron. However, Lam,
Xu and Liu [LXL99] proved that planar graphs without 4-cycles are 4-choosable.
Recently, Farzad [Far09] proved the conjecture proposed by Fijavz et al. [FJMv02]
and independently, Wang and Lih [WL01] that planar graphs without 7-cycles are
4-choosable.

Combining these facts, we have the following:

Theorem 5.3.1 If G is a planar graph without i-cycles for some fixed i ∈
{3, 4, 5, 6, 7}, then G is 4-choosable.

Borodin and Ivanova [BI08b] improved the above-mentioned result in [LXL99] by
showing that every planar graph without 4-cycles adjacent to 3-cycles is 4-choosable.
Moreover, in [BI09b], they extend this result in terms of covering the vertices of a
graph by induced subgraphs of variable degeneracy. In particular, they proved that
every planar graph without 4-cycles adjacent to 3-cycles can be partitioned into two
induced forests.

It is natural to ask the following question: is a planar graph G 4-choosable if G
can be partitioned into two induced forests? We give a negative answer basing on
the example constructed by Mirzakhani in [Mir96]. In other words, there exists a
non-4-choosable planar graph which has vertex-arboricity 2.

To conclude this chapter, we would like to propose the following problem.

Problem 5.3.2 Does every planar graph without chordal k-cycles have vertex-
arboricity at most 2, where 4 6 k 6 7?

The case k = 6 was handled by Huang and Wang in [HW10]. So, we leave the
case of k ∈ {4, 5, 7} as an open problem.
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Fractional coloring
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In this chapter, we study the fractional coloring of graphs by considering (n, k)-
colorings which are generalizations of the conventional vertex coloring problem. As
a special case, a graph is (5, 2)-colorable if and only if it has a homomorphism to
the Petersen graph. In Section 6.2, we will consider the relationship between the
Petersen graph and the sparse graphs, i.e., graphs with maximum average degree less
than c. More precisely, we prove that every triangle-free graph with Mad(G) < 5/2
is homomorphic to the Petersen graph. In other words, such a graph is (5, 2)-
colorable. Moreover, we show that the bound on the maximum average degree in
our result is sharp.

6.1 Introduction

For positive integers k and n > 2k, an (n, k)-coloring of a graph G is a mapping

c: V (G) →
( {1, 2, · · · , n}

k

)
such that for any two adjacent vertices x and y,

c(x) and c(y) are disjoint. The concept of (n, k)-coloring is a generalization of
the conventional vertex coloring problem. In fact, an (n, 1)-coloring is exactly an
ordinary proper n-coloring.

The fractional chromatic number, denoted χf (G), of a graph G is the infimum of
the fractions n/k for which there exists an (n, k)-coloring of G. The Kneser graph,
denoted by Kn:k, is defined to be the graph in which vertices represent subsets of
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cardinality k taken from {1, 2, · · · , n} and two vertices are adjacent if and only if
the corresponding subsets are disjoint. Note that K5:2 is the famous Petersen graph.
We recall that a homomorphism from G to H is a mapping h : V (G) → V (H) such
that if xy ∈ E(G) then h(x)h(y) ∈ E(H). It is easy to observe that a graph G has
an (n, k)-coloring if and only if there exists a homomorphism from G to Kn:k. As a
special case, a graph is (5, 2)-colorable if and only if it has a homomorphism to the
Petersen graph. Some background and more details about fractional coloring can
be found in the monograph of Scheinerman and Ullman [SU97].

Fractional coloring has been investigated by Klostermeyer and Zhang [KZ02].
Some results related to planar graphs are collected as follows:

Theorem 6.1.1 [KZ02] Let G be a planar graph.

(1) If the odd girth of G is at least 10k − 7 with k > 2, then χf (G) 6 2 + 1
k
.

(2) If g(G) > 10k − 9 with k > 2 and ∆(G) 6 3, then χf (G) 6 2 + 1
k
.

(3) There exists a planar graph G with odd girth 2k + 1 such that χf (G) > 2 + 1
k
.

We have to notice that the conclusion (1) in Theorem 6.1.1 was improved by
Pirnazar and Ullman [PU02] as follows:

Theorem 6.1.2 [PU02] Every planar graph with g > 8k− 4 (k > 1) has fractional
chromatic number at most 2 + 1

k
.

Theorem 6.1.2 for k = 2 implies that planar graphs with girth at least 12 have the
fractional chromatic number at most 5

2
. Dvořák et al.[DvV08] improved this result

by showing that every planar graph with odd girth at least 9 is (5, 2)-colorable.
Moreover, they left the case of odd girth 7 as an open problem.

Recall that the maximum average degree of G, denoted Mad(G), is defined as:

Mad(G) = max{2|E(H)|
|V (H)| : H ⊆ G}.

This is a conventional measure of sparseness of an arbitrarary graph (not nec-
essarily planar). For more details on this invariant see [JT95a] where properties of
the maximum average degree are exhibited, and where it is proved that maximum
average degree may be computed by a polynomial algorithm. In this chapter, we are
interested in homomorphisms of sparse graphs with given maximum average degree
to the Petersen graph. More precisely, we will prove the following result:

Theorem 6.1.3 Every triangle-free graph G with Mad(G) < 5
2
is homomorphic to

the Petersen graph.

Consider the following graph H2, depicted in Figure 6.1, which was constructed
by Klostermeyer and Zhang in [KZ02]. Obviously, H2 has eight vertices and ten
edges, yielding average degree 5

2
. Moreover, all its proper subgraphs have smaller

average degree. Hence, we have that Mad(H2) = 5
2
. Suppose H2 admits a homo-

morphism h to the Petersen graph, depicted in Figure 6.2. Obviously, a 5-cycle
uu1u2wvu in H2 is mapped to a 5-cycle in the Petersen graph. By symmetry of the
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6.2. Proof of Theorem 6.1.3

Petersen graph, we may assume that h(u) = x1, h(u1) = x2, h(u2) = x3, h(w) = y3

and h(v) = y1. Clearly, h(z) must be y1. So, h(v) = h(z). This implies that vv1v2z
cannot be mapped to the Petersen graph properly, which is a contradiction.

The above argument implies that the bound on maximum average degree in
Theorem 6.1.3 is sharp. On the other hand, since the girth of the Petersen graph
is 5, any triangle cannot be mapped to the Petersen graph. It means that the
assumption in Theorem 6.1.3 that G is triangle-free is necessary.

u

1
u

2
u

w

v
1

v
2

v

z

Figure 6.1: An example H2.

1
x

2
x

3
x4

x

5
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1
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2
y

3
y4

y

5
y

Figure 6.2: The Petersen graph.

In light of the fact that the Petersen graph is the Kneser graph K5:2, our main
result is equivalent to the following:

Theorem 6.1.4 If G is a triangle-free graph with Mad(G) < 5
2
, then G is (5, 2)-

colorable.

A distinctive feature of the proof of Theorem 6.1.3 is that a charge of vertices can
be transferred along “feeding paths” to an unlimited distance. This kind of “global”
discharging was introduced by Borodin, Ivanova, and Kostochka in [BIK06]. We
remark that our result has been published in Discrete Mathematics [CR10a].

6.2 Proof of Theorem 6.1.3

In what follows, if there is no confusion about the context, we write K5:2 for the Pe-
tersen graph. The proof of Theorem 6.1.3 is proceeded by a contradiction. Suppose
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to the contrary that G is a counterexample with the least number of vertices, i.e.,
a triangle-free graph with Mad(G) < 5

2
, without any homomorphism of G to K5:2,

but there exists a homomorphism of its any subgraph H with |H| < |G| to K5:2. It
is easy to see that G is connected. Moreover, G is 2-connected, since K5:2 is vertex
transitive. We first show some reducible configurations of G in Section 6.2.1, then
use Euler’s formula and the technique to derive a contradiction in Section 6.2.2.

6.2.1 Reducible configurations

For x ∈ V (K5:2), we define Li(x) = {y| there is a walk of length i in K5:2 joining x
and y} and Fi(x) = V (K5:2)\Li(x). It is easy to obtain the following Claim 6.2.1.

Claim 6.2.1 For x ∈ V (K5:2), we have that |F1(x)| = 7, |F2(x)| = 3, |F3(x)| = 1,
and |F4(x)| = 0.

Claim 6.2.2 There is no 3-thread in G.

Proof. Suppose the claim is false. Let v1v2v3v4v5 be a 3-thread in G such that
d(v2) = d(v3) = d(v4) = 2. Since G contains no triangles, v1 6= v4 and v2 6= v5.
By the minimality of G, there is a homomorphism h from G − {v2, v3, v4} to K5:2.
By Claim 6.2.1, we see that |F4(x)| = 0 for any x ∈ V (K5:2). It means that there
always exists a walk of length 4 connecting h(v1) and h(v5) in K5:2. Therefore, we
can map v2, v3, v4 successfully to K5:2 and thus extend the homomorphism h to the
whole graph G. This contradicts the choice of G.

Suppose that h is a homomorphism of G to K5:2 and x, y are any two unmapped
vertices in G. We will say that y allows k vertices for x if for any given mapping
choice of y we have at least k vertices in K5:2 for mapping x. Similarly, we will say
that y forbids k vertices for x if for any given mapping choice of y we have 10 − k
vertices in K5:2 for mapping x.

Remark 1: For any two distinct vertices u, v in K5:2, one can easily observe that
there always exists a walk of length 3 connecting u and v. Basing on this fact, we
can map any 3-path v1v2v3v4 with d(v2) = d(v3) = 2 to K5:2 if v1 and v4 have been
mapped to K5:2 and the images of v1, v4 are different. Then we have the following
claim, which plays an important role in Claim 6.2.7.

Claim 6.2.3 Let P = v1v2v3v4 be a path of G with d(v2) = d(v3) = 2. If h is a
homomorphism of G to K5:2 with v2, v3 both unmapped and h(v1) 6= h(v4), then
there exist two internally disjoint walks in K5:2 connecting h(v1) and h(v4).

Proof. First suppose that h(v1) is adjacent to h(v4). W.l.o.g., suppose that
h(v1) = x1 and h(v2) = x2, see Figure 6.2. Then x1x5x1x2 and x1x2x3x2 are two
internally disjoint walks. Otherwise, by symmetry, suppose that h(v1) = x1 and
h(v2) = x3. Then x1x5x4x3 and x1y1y3x3 are the desired walks.

In the proofs of Claims 6.2.4-6.2.12, we use B to denote the set of all solid
vertices, depicted in Figure 6.3 to Figure 6.10. Moreover, we call B unmapped if
none of the vertices in B is mapped to K5:2.
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6.2. Proof of Theorem 6.1.3

Claim 6.2.4 There is no (1+, 1+, 1+)-vertex in G.

Proof. Suppose to the contrary that G contains a (1+, 1+, 1+)-vertex v, depicted
in Figure 6.3. Since G is triangle-free, we have that {x, y, z} ∩ {v, x1, y1, z1} = ∅.
By the choice of G, there exists a homomorphism h from G− B to K5:2. It follows
that x, y, z have been all mapped to K5:2. By Claim 6.2.1, each of x, y, z forbids,
respectively, at most three vertices for v. Thus, there is one possible vertex for
v to be mapped in K5:2. Hence, h can be extended to the whole graph G. This
contradiction completes the proof of Claim 6.2.4.

vx y

z

1
y

1
x

1
z

Figure 6.3: v is a (1+, 1+, 1+)-vertex.

Claim 6.2.5 There is no (2, 2, 0+)-vertex in G.

Proof. Assume to the contrary that G contains a (2, 2, 0+)-vertex v shown by Fig-
ure 6.4. By Claim 6.2.2, we see that d(x) > 3 and d(y) > 3. It follows immediately
that {x, y, z} ∩ {v, x1, x2, y1, y2} = ∅ by the absence of 3-cycles in G. Obviously,
there is a homomorphism h from G− B to K5:2 by the minimality of G. By Claim
6.2.1, each of x, y forbids, respectively, one vertex for v and z forbids seven ver-
tices for v. It implies that there is one possible vertex for v to be mapped in K5:2.
Therefore, we extend h to the whole graph G, which is a contradiction.

vx y

z

1
y

1
x

2
x 2

y

Figure 6.4: v is a (2, 2, 0+)-vertex.

Claim 6.2.6 There is no (1+, 1+, 2, 2)-vertex in G.

Proof. Suppose to the contrary that there exists a (1+, 1+, 2, 2)-vertex v in G, de-
picted in Figure 6.5. It is easy to inspect that {x, y, z, w}∩{v, x1, x2, z1, z2, y1, w1} =
∅, since there is no 3-cycles in G and d(x), d(z) > 3 by Claim 6.2.2. By the mini-
mality of G, G − B admits a homomorphism h to K5:2. By Claim 6.2.1, each of y
and w forbids at most three vertices for v while each of x and z forbids at most one
vertex for v. It follows that there are at least two mapping choices for v. Therefore,
h can be extended to the whole graph G, which contradicts the choice of G.
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v
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Figure 6.5: v is a (1+, 1+, 2, 2)-vertex.

Let v be a (k1, k2, · · · , km)-vertex and Pki
be the maximal ki-thread incident

to v with i ∈ {1, 2, · · · ,m}. Denote Pk1 = vx1 · · ·xk1x and Pkm = vy1 · · · ykmy.
If x 6= y, then we say that Pk1 and Pkm have a united thread structure with a
knot v, denoted by P = Pk1(k1, k2, · · · , km)Pkm , see Figure 6.6. Otherwise, we say
that Pk1 and Pkm have a united thread-cycle structure with a head-knot x, denoted
by Qx = Pk1(k1, k2, · · · , km)Pkm . Furthermore, if x is an (i, j, k)-vertex then we
simply denote by Q(i,j,k) = Pk1(k1, k2, · · · , km)Pkm . Noting that such united thread
(thread-cycle) structure can also be obtained by concatenating several threads.

1
k

P
mk

Pv

2
k

P
1mk

P

1
x

1
k

xx
1

y
mk

y y

Figure 6.6: Pk1(k1, · · · , km)Pkm with a knot v which is a (k1, · · · , km)-vertex.

For simplicity, we write P i
1 instead of writing P1(1, 0, 1)P1(1, 0, 1) · · · (1, 0, 1)P1

which contains exactly i− 1 knots that are all (1, 0, 1)-vertices (if exist), where i is
a positive integer.
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i
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1
x 2

x

Figure 6.7: P2(2, 0, 1)P i
1.

Claim 6.2.7 Suppose G contains a united thread structure P2(2, 0, 1)P i
1. If h is a

homomorphism of G− B to K5:2 such that h(y) 6= h(qi), then h can be extended to
G, see Figure 6.7.

Proof. We may suppose that B is unmapped to K5:2. Notice that qiyiwiy
is a path of length 3 with h(y) 6= h(qi). It follows directly from Claim 6.2.3
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6.2. Proof of Theorem 6.1.3

that there are two possible choices for the path qiyiwiy to be mapped to K5:2.
So, we may first map qiyiwiy to K5:2 such that the image of yi is different from
h(qi−1) according to Claim 6.2.3. Then, similarly, we can map, successively, that
qi−1yi−1wi−1yi, · · · , q2y2w2y3, q1y1w1y2 to K5:2. It is obvious that we can choose
h(y1) such that h(y1) 6= h(x). So by Remark 1, we may further map x1, x2 to K5:2

successfully. This completes the proof of Claim 6.2.7.

In the following, we will show some other reducible configurations of G.

Claim 6.2.8 P2(2, 0, 1)P i
1(1, 0, 2)P2 is reducible, where i is a positive integer.

Proof. Suppose to the contrary that G contains a united thread structure
P2(2, 0, 1)P i

1(1, 0, 2)P2 depicted in Figure 6.8. Let u0, ui be two (2, 0, 1)-vertices
and u1, · · · , ui−1 be i− 1 (1, 0, 1)-vertices. Let B denote the set of solid vertices in
Figure 6.8. By the minimality of G, there is a homomorphism h from G−B to K5:2.
So, we may first map wi to a vertex belonging to N(h(w)) \ {h(ti)}, since wi 6= ti
by the absence of 3-cycles in G. Then extend the resulting homomorphism to G by
Claim 6.2.7, which is a contradiction.

x w0
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1
u

1i
u

i
u
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1
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1i
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i
t

Figure 6.8: P2(2, 0, 1)P i
1(1, 0, 2)P2.

Claim 6.2.9 P2(2, 0, 1)P i
1(1, 1

+, 1, 1)P j
1 (1, 0, 2)P2 is reducible, where i and j are

both positive integers.

Proof. Assume to the contrary that G contains a united thread structure
P2(2, 0, 1)P i

1(1, 1
+, 1, 1) P j

1 (1, 0, 2)P2, depicted in Figure 6.9. Let H = G − B. By
the minimality of G, H has a homomorphism h to K5:2. Clearly, z /∈ {s, t} by the
absence of 3-cycles in G. So by Claim 6.2.1, each of s, t forbids one vertex for z
and each of p, q forbids three vertices for z. It means that there are at most eight
forbidden vertices for z in total. So, we first map pp1z and qq1z to K5:2 by choos-
ing one mapping choice for z. Obviously, h(z) 6= h(s) and h(z) 6= h(t). Then, by
Claim 6.2.7, we can extend the resulting homomorphism to the whole graph G. This
contradicts the choice of G.

Obviously, in the proofs of Claim 6.2.8 and Claim 6.2.9, we do not require that
the vertices x and w are different. In other words, they may coincide. So the proofs
of Claim 6.2.8 and Claim 6.2.9 are also valid when x coincides w in G. We obtain
the following Claim 6.2.10 and Claim 6.2.11.

Claim 6.2.10 Qvx,w = P2(2, 0, 1)P i
1(1, 0, 2)P2 is reducible, where i is a positive in-

teger and vx,w = x = w in Figure 6.8.
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Figure 6.9: P2(2, 0, 1)P i
1(1, 1+, 1, 1)P j

1 (1, 0, 2)P2.

Claim 6.2.11 Qvx,w = P2(2, 0, 1)P i
1(1, 1

+, 1, 1)P j
1 (1, 0, 2)P2 is reducible, where i

and j are both positive integers and vx,w = x = w in Figure 6.9.
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Figure 6.10: Q(2,0,1) = P2(2, 0, 1)P i
1.

Claim 6.2.12 Q(2,0,1) = P2(2, 0, 1)P i
1 is reducible, where i is a positive integer.

Proof. Assume to the contrary that G contains a united thread-cycle structure
Q(2,0,1) = P2(2, 0, 1)P i

1 as shown in Figure 6.10. Let B denote the set of solid vertices
in Figure 6.10 and let y be its head-knot, i.e., y is a (2, 0, 1)-vertex. Let H = G−B.
By the minimality of G, H admits a homomorphism h to K5:2. So, all t, w and
s1, · · · , si−1 are already mapped to K5:2. Now, we can first map y to a vertex in
N(h(t)) \ {h(si−1)}, since y 6= si−1 by the absence of 3-cycles in G, then extend the
resulting homomorphism to the remaining vertices by Claim 6.2.7 and thus obtain
a homomorphism of G to K5:2, which contradicts the choice of G.

6.2.2 Discharging argument

We begin with Definition 6.2.1 which was introduced by Borodin et al. [BHI+08].

Definition 6.2.1 A compensatory path for a (2, 0, 1)-vertex v is chosen as any short-
est path F formed by concatenating threads in the following way. First, F starts
along the unique 1-thread at v. Then F traversed some number of 1-threads by
(1, 0, 1)-vertices. Let v∗ be the first vertex reached which is not a (1, 0, 1)-vertex.
We further say that v∗ is a slave of v and v is a master of v∗.

Let v ∈ V (G). Since G is 2-connected, d(v) > 2 for any v ∈ V (G). Since
there is no (1, 1, 1)-vertex in G, we deduce that the slave of a (2, 0, 1)-vertex always
exists. We start from the following Lemma 6.2.2, which is crucial in the following
discharging argument.
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6.2. Proof of Theorem 6.1.3

Lemma 6.2.2 Suppose v is a (2, 0, 1)-vertex. Let v∗ be the slave of v. Then the
following hold:

(1) v∗ is neither a 2-vertex nor a (1, 0, 1)-vertex;

(2) If d(v∗) = 3 then v∗ is a (1, 0, 0)-vertex.

Proof. It suffices to show (2) since (1) holds by Definition 6.2.1. Suppose v is such a
(2, 0, 1)-vertex that it is incident to one 2-thread vx1x2x, one 1-thread vy1y, and one
0-thread vz. This means that d(x1) = d(x2) = d(y1) = 2 and d(x), d(y), d(z) > 3.
Let v∗ be the slave of v. By the definition of the compensatory path, we see that
there exists one compensatory path F starting along the unique 1-thread vy1y at v.

Suppose d(v∗) = 3. By Definition 6.2.1, v∗ is incident to at least one 1-
thread. So, in the following, we further suppose that v∗ is a (1, i, j)-vertex. Clearly,
i, j ∈ {0, 1, 2} because of the absence of 3-threads in G by Claim 6.2.2. By sym-
metry, we assume that {i, j} ∈ {{0, 0}, {0, 1}, {0, 2}, {1, 1}, {1, 2}, {2, 2}}. Note
that {1, 1}, {1, 2} and {2, 2} are impossible by Claim 6.2.4. Moreover, v∗ cannot
be a (1, 0, 1)-vertex by (1). So {i, j} ∈ {{0, 0}, {0, 2}}. Next, we will show that
{i, j} 6= {0, 2}.

Suppose to the contrary that {i, j} = {0, 2}, then v∗ is a (2, 0, 1)-vertex. We
have to handle the following two cases:

(i) v∗ = x.
For simplicity, denote w = v∗ = x. Then a united thread-cycle structure

Q(2,0,1) = P2(2, 0, 1)P i
1 with a head-knot w is formed by P2 = wx2x1v and F which is

a compensatory path connecting v and w, which is a contradiction to Claim 6.2.12.
(ii) v∗ 6= x.
Let P2 = v∗t1t2t denote the unique 2-thread incident to v∗. If t 6= x, then a united

thread structure P2(2, 0, 1)P i
1(1, 0, 2)P2 is constructed by P2 = xx2x1v, F = P i

1 and
P2 = v∗t1t2t, which is impossible by Claim 6.2.8. Otherwise, a united thread-cycle
structure Qvt,x = P2(2, 0, 1)P i

1(1, 0, 2)P2 is formed by a similar discussion as previous
case for t 6= x, where vt,x = t = x, which contradicts Claim 6.2.10.

Therefore, we complete the proof of Lemma 6.2.2.

Now we use a discharging argument with initial charge ω(v) = d(v) at each
vertex v and with the following three discharging rules (R1)-(R3). We write ω∗ to
denote the charge at each vertex v after we apply the discharging rules. To complete
the proof, we show that ω∗(v) > 5

2
for all v ∈ V (G). This leads to the following

obvious contradiction:

5
2

6
∑

v∈V (G) ω∗(v)

|V (G)| =
∑

v∈V (G) ω(v)

|V (G)| = 2|E(G)|
|V (G)| 6 Mad(G) < 5

2
.

Hence no counterexample can exist.
Our discharging rules are defined as follows:

(R1) Each 2-vertex in a 2-thread gets a charge equal to 1
2
from its 3+-vertex neigh-

bor.

(R2) Each 2-vertex in a 1-thread gets a charge equal to 1
4
from each of its neighbors.
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(R3) Each (2, 0, 1)-vertex gets a charge equal to 1
4
from its slave.

Let us check that ω∗(v) > 5
2
for each v ∈ V (G). In the sequel, we use Pi to

denote a maximal i-thread. The proof is divided into four cases below:

Case 1 d(v) = 2.

Then ω(v) = 2. Clearly, v does not have any master by Lemma 6.2.2 (1). Let
v1, v2 be the neighbors of v. By Claim 6.2.2, we see that there is no 3-thread in G.
It implies that v is in an i-thread with i ∈ {1, 2}. By (R1) and (R2), we have that
ω∗(v) > 2 + 1

2
= 5

2
.

For v ∈ V (G), in what follows, let |P0(v)|, |P1(v)|, |P2(v)| denote the number
of incident 0-threads, 1-threads, 2-threads of v, respectively. Clearly, |P0(v)| +
|P1(v)| + |P2(v)| = d(v). We use m(v) to denote the number of masters of v. By
Definition 6.2.1, we see that each slave must be incident to a 1-thread. Furthermore,
compensatory paths do not intersect internally, since there is no (1, 1, 1)-vertex in
G by Claim 6.2.4. Basing on these two facts, we have:

Observation 6.2.3 For v ∈ V (G), m(v) 6 |P1(v)|.

Case 2 d(v) = 3.

Then ω(v) = 3. Let v1, v2 and v3 be the neighbors of v. Suppose v is an (i, j, k)-
vertex with i, j, k ∈ {0, 1, 2} in light of Claim 6.2.2. We need to deal with the
following four subcases, depending on the situation of v.

(2.1) v is a (0, 0, 0)-vertex.
It is obvious that ω∗(v) > 3− 0× 3 = 3 > 5

2
by (R1) to (R3).

(2.2) v is a (1+, 0, 0)-vertex.
Assume, without loss of generality that d(v1) = 2 and d(vi) > 3 for each i ∈

{2, 3}. By Observation 6.2.3, m(v) 6 |P1(v)| 6 1. If m(v) = 1, that is to say v is a
(1, 0, 0)-vertex, then τ(v → v1) = 1

4
and thus ω∗(v) > 3− 1

4
− 1

4
= 5

2
by (R2) and (R3).

Otherwise, v is a (2, 0, 0)-vertex. According to (R1), we have ω∗(v) > 3− 1
2

= 5
2
.

(2.3) v is a (1+, 1+, 0)-vertex.
By Claim 6.2.4, v cannot be any (2, 2, 0)-vertex. Thus, we have to consider the

following two possibilities:
(2.3.1) Suppose v is a (1, 1, 0)-vertex. Let v1 and v2 be 2-vertices and v3

be a 3+-vertex. Let wi be the other neighbor of vi different from v for i = 1, 2.
Noting that w1 and w2 are both 3+-vertices. It follows from Lemma 6.2.2 (1) that
m(v) = 0. Hence, ω∗(v) > 3− 1

4
− 1

4
= 5

2
by (R2).

(2.3.2) Suppose v is a (2, 1, 0)-vertex. Let P2 = vv1w1u1, P1 = vv2w2,
and P0 = vv3 be the 2-thread, 1-thread, and 0-thread incident to v, respectively.
Obviously, u1, w2, v3 are all 3+-vertices. By Lemma 6.2.2 (2), we see that v cannot
be a slave of other (2, 1, 0)-vertex. In other words, m(v) = 0. Thus, τ(v → v1) = 1

2
,

τ(v → v2) = 1
4
, and τ(v∗ → v) = 1

4
by (R1)-(R3), where v∗ is the slave of v.

Therefore, ω∗(v) > 3− 1
2
− 1

4
+ 1

4
= 5

2
.

(2.4) v is a (1+, 1+, 1+)-vertex. This contradicts Claim 6.2.4.

Case 3 d(v) = 4.
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6.2. Proof of Theorem 6.1.3

Clearly, ω(v) = 4. If |P1(v)| + |P2(v)| 6 3, then according to (R1)-(R3), we
obtain that

ω∗(v) > 4− 1

2
|P2(v)| − 1

4
|P1(v)| − 1

4
m(v)

> 4− 1

2
|P2(v)| − 1

4
|P1(v)| − 1

4
|P1(v)|

= 4− 1

2
(|P1(v)|+ |P2(v)|)

> 4− 3

2

=
5

2
.

Now we may suppose that v is a (1+, 1+, 1+, 1+)-vertex. By Claim 6.2.2 and
Claim 6.2.6, it is easy to infer that v is either a (1, 1, 1, 1)-vertex or a (2, 1, 1, 1)-
vertex. For each i ∈ {1, 2, 3, 4}, let vi be the neighbor of v and wi be the other
neighbor of vi distinct from v. We further suppose that all of w2, w3, w4 are 3+-
vertices. We have to consider two cases as follows:

(3.1) If m(v) 6 1, then ω∗(v) > 4− 1
2
− 1

4
× 3− 1

4
= 5

2
by (R1)-(R3).

(3.2) Now we may suppose that v has at least two masters. Let v∗ and v∗∗

be two such masters. One can observe that v∗ 6= v∗∗ since each master must
be incident to only one 1-thread. Thus, there exist two different compensatory
paths F1, F2, each of which starts along the unique 1-thread at v∗, v∗∗, respec-
tively. Obviously, V (F1) ∩ V (F2) = v. Denote v∗t1t2t, v∗∗s1s2s be the unique
2-thread incident to v∗, v∗∗, respectively. If s 6= t, then a united thread structure
P2(2, 0, 1)P i

1(1, 1
+, 1, 1)P j

1 (1, 0, 2)P2 is established by tt2t1v
∗, F1, F2 and v∗∗s1s2s,

which is a contradiction to Claim 6.2.9. Now we set s = t. Using a similar argu-
ment as the case for s 6= t, it is easy to see that a united thread-cycle structure
Qvs,t = P2(2, 0, 1)P i

1(1, 1
+, 1, 1)P j

1 (1, 0, 2)P2 established, where vs,t = s = t. This
contradicts Claim 6.2.11.

Case 4 d(v) > 5.

Applying (R1) to (R3), we have

ω∗(v) > d(v)− 1

2
|P2(v)| − 1

4
|P1(v)| − 1

4
m(v)

> d(v)− 1

2
|P2(v)| − 1

4
|P1(v)| − 1

4
|P1(v)|

= d(v)− 1

2
(|P1(v)|+ |P2(v)|)

> d(v)− 1

2
d(v)

=
1

2
d(v)

> 5

2
.
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6.3 Concluding remarks

We would like to propose the following conjecture:

Conjecture 6.3.1 Every graph G with odd girth 2k + 1 and Mad(G) < 2 + 1
k
has

a fractional (2k + 1, k)-coloring, where k is a positive integer.

In fact, if this conjecture is proved then the bound on maximum average degree
is tight. We recall the example depicted in Figure 6.11 which was constructed by
Klostermeyer and Zhang in [KZ02]. It is easy to see that the odd girth of Hk is
2k+1. Moreover, Hk has 4k+2 edges and 4k vertices, yielding average degree 2+ 1

k
,

where k is a positive integer. Furthermore, all its proper subgraphs have smaller
average degree. So we have that Mad(Hk) = 2 + 1

k
. However, it is proved in [KZ02]

that Hk cannot be (2k + 1, k)-colored by the fact that K2k+1:k has odd girth 2k + 1.

x

1
x

2 2k
x

w

y
1

y
2 2k

y
z

Figure 6.11: An example Hk.

A graph G is called k-degenerate if every subgraph H of G has δ(G) 6 k. It is well
known that a k-degenerate graph has chromatic number at most k+1. Moreover, for
any graph G, the fractional chromatic number of G is always bounded by chromatic
number of G. So, for Conjecture 6.3.1, the case k = 1 is obviously obtained since
every graph G with Mad(G) < 3 is 2-degenerate. And we have handled the case
k = 2 in this chapter. Therefore, we leave the case of k > 3 as an open problem.

On the other hand, there is a close relationship between fractional coloring and
circular coloring. A circular (k, d)-coloring of a graph G, introduced by Vince
[Vin88], is a map c : V (G) → {0, · · · , k − 1} such that d 6 |c(u) − c(v)| 6 k − d
for every edge uv ∈ E(G). The circular chromatic number of G, denoted by χc(G),
is defined as χc(G) =min{k

d
: G has a circular (k, d)-coloring}. More details about

circular coloring can be found in [Zhu01a].
For planar graphs, the flow problem (see [Tut54a], [Tut54b]) can be dualized to

the circular coloring problem. More precisely, a circular (k, d)-coloring of a planar
graph G corresponds to a (k, d)-flow of the dual graph of G. Therefore, the restric-
tion of a Jaeger’s conjecture for flow [Jae84] to planar graphs is equivalent to the
following.

Conjecture 6.3.2 Every planar graph G with girth at least 4k has a circular (2k +
1, k)-coloring, where k is a positive integer.
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6.3. Concluding remarks

As far as we know, this conjecture is still open for any integer k > 2. Many results
approaching the bound are mainly obtained in [BHI+08, BKKW04, Zhu01b]. Since
for any graph G we have that χf (G) 6 χc(G), we would like to propose a weaker
version:

Conjecture 6.3.3 Every planar graph G with girth at least 4k has a fractional
(2k + 1, k)-coloring, where k is a positive integer.

The case k = 1 reduces to Grötzsch’s Theorem. The case k = 2 was handled by
Dvořák et al. [DvV08]. So, we also leave the case of k > 3 as an open problem.
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Conclusion

In this thesis, we mainly investigated various vertex coloring of planar graphs and
sparse graphs. More specifically, we studied proper list coloring, acyclic list coloring,
star coloring, star list coloring, forest coloring and fractional coloring.

******

In Chapter 2, we obtained some sufficient conditions for planar graphs to be
3-choosable. As mentioned in Chapter 2, the best known upper bound k∗ for
planar graphs without j-cycles for 4 6 j 6 k∗ to be 3-choosable is 9, given by
Borodin [Bor96] in 1996. As far as we know, it is still unknown whether such upper
bound 9 can be improved or not. On the other hand, Borodin, Glebov, Raspaud,
and Salavatipour [BGRS05] proved that every planar graph without 4 to 7-cycles is
3-colorable. The following question naturally arises:

Question 1: Is it true that every planar graph without 4 to 8-cycles is 3-choosable?

******

In Chapter 3, our focus was on acyclic list coloring. The notion of acyclic list
coloring of planar graphs was introduced by Borodin, Fon-Der Flaass, Kostochka,
Raspaud, and Sopena [BFDFK+02]. Moreover, they proposed the following chal-
lenging conjecture:

Conjecture 2: Every planar graph is acyclically 5-choosable.

This conjecture attracted much attention recently. Obviously, if this conjecture
were true, then it would strengthen the Borodin’s acyclic 5-color theorem [Bor79]
and the Thomassen’s 5-choosable theorem [Tho94] about planar graphs. However,
this challenging conjecture seems to be very difficult. In Chapter 3, we established
some new sufficient conditions for planar graphs to be acyclically k-choosable for
each k ∈ {3, 4, 5}.

As Borodin et al. proposed Conjecture 2 in [BFDFK+02], they also proved that
every planar graph is acyclically 7-choosable. Recently, Wang and Chen [WC09]
proved that every planar graph without 4-cycles is acyclically 6-choosable. Together
with other known sufficient conditions for planar graphs to be acyclically 3-choosable

179



CONCLUSION

or acyclically 4-choosable, one can easily observe that the cycles of length 4 are
always forbidden. It means that the existence of 4-cycles is the main obstacle in
acyclic list coloring problem. So first we would like to propose the following weaker
conjecture of Conjecture 2.

Conjecture 3: Every planar graph without 4-cycles is acyclically 5-choosable.

We remark that Conjecture 3 was already mentioned in [CW08a]. Moreover, one
of our results in Chapter 3, which states that every planar graph without 4-cycles
and intersecting triangles is acyclically 5-choosable, partially confirms Conjecture 3.
We also propose the following conjecture.

Conjecture 4: Every planar graph is acyclically 6-choosable.

******

The notion of star coloring of graphs was introduced by Grünbaum [Grü73] in
1973. In Chapter 4, we proved that every subcubic graph is 6-star-colorable and
this result is best possible by the fact that the Wagner graph is not 5-star-colorable.

In addition, we obtained several upper bounds for planar subcubic graphs with
given girth. More precisely, we proved that if G is a planar subcubic graph, then
(1) χl

s(G) 6 6; (2) χl
s(G) 6 5 if g(G) > 8; and (3) χl

s(G) 6 4 if g(G) > 12. In
proving these results, we introduced a useful concept L-in-coloring and formalized
the connection of L-in-coloring and star list coloring. The idea of using L-in-coloring
to control the number of colors is due to [ACK+04]. The following question is our
main concern.

Question 5: Does there exist planar subcubic graphs that cannot be 5-star-
choosable?

If the answer to Question 5 is positive, then our result, which states that planar
subcubic graphs are 6-star-choosable, is best possible. Actually, in proving this
result, we feel that it is indeed difficult to decrease the upper bound 6. Moreover,
constructing an example that satisfies Question 5 seems to be not easy.

On the other hand, Albertson, Chappell, Kierstead, Kündgen, and Ramamurthi
[ACK+04] proved that the star chromatic number of planar graphs is between 10
and 20; but this gap remains open. So it is natural to ask:

Question 6: What is the smaller integer k such that every planar graph is k-star-
colorable?

******
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A k-forest-coloring of a graph G is a mapping π from V (G) to the set {1, · · · , k}
such that each color class induces a forest. The vertex-arboricity of G is the small-
est integer k such that G has a k-forest-coloring. It is well-known that the vertex-
arboricity of planar graphs is at most 3 and this upper bound is optimal. In Chap-
ter 5, we studied the vertex-arboricity of planar graphs and our main purpose
was to give a positive answer to the conjecture of Raspaud and Wang in [RW08].
More precisely, we proved that every planar graph without intersecting triangles has
vertex-arboricity at most 2. We are more interested in the following question:

Question 7: Does every planar graph without adjacent triangles have vertex-
arboricity at most 2?

******

Finally, inChapter 6, we investigated homomorphism problems of sparse graphs
to the Petersen graph. We proved that every triangle-free graph with maximum
average degree less than 5/2 admits a homomorphism to the Petersen graph. The
bound on maximum average degree is sharp, based on the example constructed
by Klostermeyer and Zhang in [KZ02]. On the other hand, since the girth of the
Petersen graph is 5, any triangle cannot be mapped to the Petersen graph. So the
assumption in our result that G is triangle-free cannot be dropped.

A distinctive feature of the proof of this result is that a charge of vertices can
be transferred along “feeding paths” to an unlimited distance. This kind of “global”
discharging was introduced by Borodin, Ivanova, and Kostochka in [BIK06].

To conclude the thesis, we would like to propose the following conjecture:

Conjecture 8: Every graph G with odd girth 2k + 1 and Mad(G) < 2 + 1
k
has a

fractional (2k + 1, k)-coloring, where k is a positive integer.

In fact, if this conjecture is proved then the bound on maximum average degree
is best possible, based on the example constructed by Klostermeyer and Zhang
[KZ02], see Figure 6.11. On the other hand, the case k = 1 obviously holds, since
every graph G with Mad(G) < 3 is 2-degenerate. The case k = 2 was handled in
Chapter 6. Therefore, we leave the case of k > 3 as an open problem.
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