Thèse soutenue

Vers une modélisation biophysique de la décompression

FR  |  
EN
Auteur / Autrice : Julien Hugon
Direction : Jean-Claude RostainBernard Gardette
Type : Thèse de doctorat
Discipline(s) : Sciences de l'environnement terrestre
Date : Soutenance le 22/11/2010
Etablissement(s) : Aix-Marseille 2
Ecole(s) doctorale(s) : Ecole doctorale Sciences de l'Environnement (Aix-en-Provence ; 1996-....)
Partenaire(s) de recherche : Laboratoire : Physiologie et Physiopathologie en conditions d'oxygénation extrêmes (Marseille)
Jury : Président / Présidente : Yves Jammes
Examinateurs / Examinatrices : Jean-Claude Rostain, Bernard Gardette, Yves Jammes, Gérard Liger-Belair, Jacques Abraini, Jean-Eric Blatteau, L Barthélémy
Rapporteurs / Rapporteuses : Gérard Liger-Belair, Jacques Abraini

Résumé

FR  |  
EN

En plongée, lors d’une décompression, une partie des gaz dissous dans l’organisme est éliminée sous formede bulles qui peuvent être à l’origine d’accidents parfois sévères. Des modèles mathématiques permettentde déterminer des procédures de décompression par paliers fiables mais ne s’appliquent que pour certainesconfigurations de plongée (profondeur, durée, gaz respirés). Une extrapolation de ces modèles à denouveaux types d’exposition comme la plongée profonde aux mélanges est actuellement hasardeuse. Onsuppose ici qu’une modélisation biophysique des mécanismes de la décompression doit apporter dessolutions préventives plus sures, même pour des expositions moins explorées combinant azote et hélium.Deux modèles ont été élaborés pour la prévention des accidents articulaires et neurologiques, formesd’accident les plus fréquentes. Ils ont été corrélés à partir de bases de données et d’analyses de risqueexistantes. Tous deux permettent de représenter l’apparition de symptômes tardifs. Pour l’accidentarticulaire, on montre 1/ l’impact de la diffusion intra-tissulaire (entre un tendon et son voisinage) de gazinerte sur la dynamique d’amplification de la phase gazeuse générée 2/ une augmentation quantifiable durisque d’accident avec le volume de gaz généré 3/ une faible efficacité des paliers 4/ une efficacité modéréede la respiration d’oxygène pur aux paliers proches de la surface. Pour les accidents neurologiques, lemodèle global proposé permet d’estimer le volume instantané des microbulles formées dans les tissus(muscles et graisses) et transférées (via le système lymphatique par ex) dans le sang veineux de retour. Lasurcharge du filtre pulmonaire par les bulles est supposée être un événement précurseur dans la genèse del’accident. La méthode de corrélation du modèle, originale, utilise notamment des campagnes d’écoutes debulles circulantes par système Doppler après plongées, dont une dédiée à cette thèse. Il ressort de cesinvestigations que I/ le risque d’accident peut être relié au volume des bulles transféré dans le sang sur unepériode donnée II/ l’introduction de paliers profonds ne diminue pas le risque III/ la respiration d’oxygènepur aux paliers est très efficace pour réduire ce risque. Un deuxième modèle neurologique dédié à laprévention des accidents médullaires se produisant rapidement après la décompression et à la déterminationdes premiers paliers requis est aussi proposé. L’ensemble de ces trois modélisations offre des perspectivesde prévention intéressantes.