Thèse soutenue

Structure de bandes et transport électronique dans les nanotubes de carbone sous champ magnétique intense

FR  |  
EN
Auteur / Autrice : Sébastien Nanot
Direction : Bertrand RaquetJean-Marc Broto
Type : Thèse de doctorat
Discipline(s) : Nanophysique
Date : Soutenance en 2009
Etablissement(s) : Toulouse 3

Résumé

FR  |  
EN

Des mesures de transport électronique dans des nanotubes de carbone multiparois individuels sous champ magnétique pulsé (60T) sont présentées dans cette thèse. L'objectif est d'observer les modifications de la dispersion électronique par le champ magnétique. Des nanotubes de très bonne qualité cristalline sont connectés sur des distances courtes entre contacts, permettant d'atteindre des régimes de transport quasi-balistiques ou faiblement diffusifs, la paroi externe contribuant principalement. La configuration transistor permet de moduler l'énergie des porteurs (niveau de Fermi) sur plusieurs sous-bandes via un potentiel électrostatique (dit de grille). Afin de préciser la contribution des parois plus internes, une étude en spectroscopie Raman est présentée dans un premier temps. Nous constatons que l'intensité du transfert de charges entre parois successives varie fortement d'un feuillet à l'autre. L'étude sous champ magnétiques de nanotubes de parois externes semiconductrices et métalliques est ensuite présentée. Lorsque le champ magnétique est appliqué perpendiculairement à l'axe du nanotube, la formation de niveaux de Landau propagatifs est mise en évidence. Celle-ci se traduit par des modulations des conditions de résonance dans un régime de type Fabry-Pérot électronique, par la fermeture du gap électronique d'une paroi semiconductrice ainsi que la réintroduction de la rétrodiffusion dans une paroi métallique. Ce dernier effet s'accompagne d'un ancrage du niveau de Fermi vers celui de Landau se formant à énergie nulle à très fort champ. L'ensemble de ces résultats est en accord avec des modèles théoriques prenant en compte un désordre homogène. Enfin, l'effet Aharonov-Bohm sur plusieurs périodes et plusieurs sous-bandes est observé sous un champ parallèle à l'axe du nanotube. La métallicité de la paroi externe et la correspondance entre la tension de grille et l'énergie des porteurs sont obtenues en comparant les oscillations de conductance expérimentales à un modèle obtenu pour un cas parfait. Afin de décrire en détail la signature magnétique, les diminutions des transmissions aux contacts et la contribution de défauts sont qualitativement étudiées.