Pompage infra-rouge de raies moléculaires dans les régions de photodissociation
Auteur / Autrice : | Manuel González García |
Direction : | François Boulanger, Jacques Le Bourlot |
Type : | Thèse de doctorat |
Discipline(s) : | Terre, océan, espace. Astrophysique |
Date : | Soutenance en 2009 |
Etablissement(s) : | Paris 11 |
Partenaire(s) de recherche : | Autre partenaire : Université de Paris-Sud. Faculté des sciences d'Orsay (Essonne) |
Mots clés
Mots clés contrôlés
Résumé
L'astrochimie est une branche de l'astrophysique dédiée à l'étude des réactions chimiques dans l'Univers. Les basses densités et températures existant dans ces milieux rendent possibles des réactions qui ne se déroulent que dans l'espace. Les raies submillimétriques nous permettent de faire un diagnostic du milieu où elles se produisent et en déduire ses conditions physiques. Actuellement il y a deux missions en préparation qui vont être dédiées à la détection de ce type de raies: Herschel (lancé le 14 Mai 2009) et ALMA (complètement opérationnel en 2014). Mais pour en tirer des conclusions physiques on a besoin de modèles pour préparer et interpréter les observations. Le code PDR de Meudon est un code en constante évolution depuis une vingtaine d'années. Il décrit un nuage interstellaire à 1D à l'état stationnaire, en calculant le bilan thermique, le bilan des populations, le transfert radiatif et la chimie. L'objectif de cette thèse est de rendre le code PDR de Meudon capable d'interpréter les données de Herschel et ALMA. Pour cela nous sommes partis de la version 2006 du code, où le transfert de rayonnement dans les raies était calculé d'une façon approchée, et le modèle des grains était un peu grossier. Nous avons utilisé le code DUSTEM, dévéloppé par Désert et al. (1990), qui nous donne une certaine souplesse en nous permettant de choisir la distribution de taille et de composition des grains, et nous l'avons couplé avec le code PDR de Meudon. Ainsi, nous avons recalculé la distribution de température des grains et l'émissivité des poussières à toutes ! les longueurs d'onde. Puis, on a intégré ces émissivités dans le transfert continu dans les PDR, ce qui permet de calculer l'intensité infrarouge en tout point. Enfin on a amélioré le transfert dans les raies grâce au calcul exact du terme de pompage infrarouge. Toutes ces modifications nous permettent de calculer de façon plus performante l'excitation de toutes les espèces incluses dans le code PDR de Meudon, ce qui se répercute directement sur la modélisation des intensités des raies submillimétriques. Nous avons appliqué ces modifications en étudiant deux objets astrophysiques réels: Le nuage S140 et la galaxie starburst M~82. Dans le cas de S140, nos modifications nous ont aidé à déterminer les intensités spécifiques des transitions les plus importantes de la molécule H_{2}O. On a aussi été capable de prédire que le rayonnement continu des poussières est absorbé en partie par la molécule d'eau. La conséquence est que l'on doit tenir compte de cet effet pour déterminer l'intensité spécifique d'une transition donnée, car sinon on négligerait une partie importante du signal. Cet effet n'est important que pour les raies avec de grandes profondeurs optiques, or ce sont les raies les plus facilement détectables avec les instruments futurs tels que Herschel. Les modèles de M~82 nous ont permis de voir que si l'on veut bien ajuster les densités de colonne observées de HCO^{+} et HOC^{+} on a besoin d'une combinaison de petits et grands nuages. Les observations fournies par ALMA seront caractérisées par une haute résolution permettant de valider cette hypothèse. Dans les deux cas nos modifications nous aident à décrire ces objets avec précision en tirant des conclusions physiques importantes. Nous proposons donc un outil libre d'accès permettant d'interpréter les futures observations faites avec Herschel et ALMA.