Noncommutative geometry : Gauge theory and renormalization
Auteur / Autrice : | Axel Marcillaud de Goursac |
Direction : | Jean Christophe Wallet, Raimar Wulkenhaar |
Type : | Thèse de doctorat |
Discipline(s) : | Physique théorique |
Date : | Soutenance en 2009 |
Etablissement(s) : | Paris 11 en cotutelle avec Université de Münster |
Partenaire(s) de recherche : | Autre partenaire : Université de Paris-Sud. Faculté des sciences d'Orsay (Essonne) |
Mots clés
Résumé
De nos jours, la géométrie non-commutative est un domaine grandissant des mathématiques, qui peut apparaître comme un cadre prometteur pour la physique moderne. Les théories quantiques des champs sur des « espaces non-commutatifs » ont en effet été très étudiées, et sont sujettes à un nouveau type de divergence, le mélange ultraviolet-infrarouge. Cependant, une solution a récemment été apportée à ce problème par H. Grosse et R. Wulkenhaar en ajoutant à l’action d’un modèle scalaire sur l’espace non-commutatif de Moyal, un terme harmonique qui le rend renormalisable. Le but de cette thèse est l’extension de cette procédure aux théories de jauge sur l’espace de Moyal. En effet, nous avons introduit une nouvelle théorie de jauge non-commutative, fortement reliée au modèle de Grosse-Wulkenhaar, et candidate à la renormalisabilité. Nous avons ensuite étudié ses propriétés les plus importantes, notamment ses configurations du vide. Finalement, nous donnons une interprétation mathématique de cette nouvelle action en terme de calcul différentiel basé sur les dérivations, associé à une superalgèbre.