Etude de schémas de discrétisation d'ordre élevé pour les équations de Maxwell en régime harmonique
Auteur / Autrice : | Edouard Demaldent |
Direction : | Gary Chalom Cohen |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences. Mathématiques appliquées |
Date : | Soutenance en 2009 |
Etablissement(s) : | Paris 9 |
Mots clés
Résumé
Cette thèse s'inscrit dans le domaine de la simulation numérique, et concerne l'étude des phénomènes de diffraction électromagnétique en régime harmonique. Nous nous intéressons plus particulièrement aux méthodes de représentation intégrale et aux simulations qui nécessitent l'usage d'un solveur direct. Leur domaine d'application est rapidement restreint avec les schémas d'approximation classiques, car ceux-ci requièrent un grand nombre d'inconnues pour obtenir un résultat précis. Pour remédier à ce problème, nous nous proposons d'adapter la méthode des éléments finis spectraux aux équations intégrales de l' électromagnétisme, puis au couplage intégro-différentiel. Notre approche préserve la conformité de l'espace d'approximation dans Hdiv(dans Hdiv-Hrotpour le couplage), et découple le temps d'assemblage de l'ordre d'approximation. Elle autorise ainsi une montée en ordre significative qui résulte en une réduction spectaculaire du nombre d'inconnues et des coûts de calcul, tout en assurant la précision du résultat. Une autre originalité de notre étude réside dans le développement d'éléments finis hexaédriques d'ordre anisotrope, pour traiter des obstacles métalliques recouverts d'une fine couche de matériau.