Thèse soutenue

Méthodes hiérarchiques pour l'optimisation géométrique de structures rayonnantes

FR  |  
EN
Auteur / Autrice : Benoït Chaigne
Direction : Jean-Antoine DésidériClaude Dedeban
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance en 2009
Etablissement(s) : Nice
Ecole(s) doctorale(s) : École doctorale Sciences fondamentales et appliquées (Nice ; 2000-....)

Résumé

FR  |  
EN

Une antenne à réflecteur est un dispositif encore largement utilisé pour la communication satellite. La durée de vie d’un tel dispositif est étroitement liée à la fatigue due à la consommation d’énergie pour émettre le signal. Un des enjeux de la conception optimale d’une antenne revient donc à produire des systèmes dont le rendement est le meilleur possible par rapport à une tâche donnée. La particularité d’une antenne à réflecteur se traduit par la présence de surfaces rayonnantes dont la géométrie constitue le paramètre principal pour assumer cette tâche. Sur la base de la simulation de la propagation d’une onde électromagnétique en espace libre et en régime harmonique, on est capable de développer des méthodes d’optimisation numérique de la forme de surfaces rayonnantes. On cherche à minimiser un critère qui traduit en terme mathématique la tâche à effectuer d’un point de vue énergétique. Cependant, les méthodes utilisées sont souvent soumises à des difficultés liées au fait que ces problèmes sont mal posés et numériquement raides. Le contrôle étant géométrique, on a examiné dans cette thèse les contributions potentielles de représentations hiérarchiques afin d’étendre les performances d’algorithmes classiques d’optimisation. Ces extensions empruntent leurs fondements aux méthodes multigrilles pour la résolution d’EDP. Un exemple théorique d’optimisation de forme permet d’asseoir les stratégies appliquées à l’optimisation d’antennes. Puis des expériences numériques d’optimisation montrent que les algorithmes de bases sont améliorés en terme de robustesse comme en terme de vitesse de convergence.