Thèse soutenue

Traitement en temps réel des signaux électrophysiologiques acquis dans un environnement d'imagerie par résonance magnétique

FR  |  
EN
Auteur / Autrice : Julien Oster
Direction : Jacques Felblinger
Type : Thèse de doctorat
Discipline(s) : Automatique
Date : Soutenance le 05/11/2009
Etablissement(s) : Nancy 1
Ecole(s) doctorale(s) : IAEM - Ecole Doctorale Informatique, Automatique, Électronique - Électrotechnique, Mathématiques
Partenaire(s) de recherche : Laboratoire : IADI
Jury : Président / Présidente : Pierre-Yves Marie
Examinateurs / Examinatrices : Jacques Felblinger, Pierre-Yves Marie, Guy Carrault, Christian Jutten, Alain Dufaux, Michel Kraemer, Olivier Pietquin
Rapporteur / Rapporteuse : Guy Carrault, Christian Jutten

Résumé

FR  |  
EN

L'acquisition de l'électrocardiogramme (ECG) est recommandée lors d'examens d'Imagerie par Résonance Magnétique (IRM) pour le monitorage des patients et la synchronisation de l'acquisition IRM avec l'activité cardiaque. L'environnement IRM, de par ses trois composantes physiques caractéristiques, perturbe les signaux ECG. Les gradients de champ magnétique compliquent notamment grandement l'analyse de l'ECG de manière non conventionnelle. Le développement de traitements spécifiques est donc nécessaire, les méthodes existantes de détection QRS et de débruitage ne répondant pas de manière satisfaisante à ce problème. Une base de données ECG en IRM a été réalisée, afin de permettre le développement de nouvelles méthodes et leur évaluation selon deux critères : la qualité de détection des battements cardiaques et une estimation du rapport signal sur bruit spécifique à ces enregistrements. Un détecteur QRS capable de traiter ces signaux fortement bruités a été proposé. Cette technique est basée sur la détection et la caractérisation des singularités à partir des lignes de maxima d'ondelettes. Ce détecteur apporte une information sur le rythme cardiaque, primordiale pour la mise en place de nouvelles approches statistiques. Une méthode de débruitage basée sur l'analyse en composantes indépendantes a été présentée. Celle-ci utilise uniquement les signaux ECG. Une approche bayésienne de débruitage, reposant sur une unification de deux modèles (d'ECG et des artefacts de gradient), a été proposée. Enfin, l'approche bayésienne a également été suggérée pour prédire le rythme cardiaque, afin d'améliorer la stratégie de synchronisation.