La méthode LS-STAG : une nouvelle approche de type frontière immergée/level-set pour la simulation d'écoulements visqueux incompressibles en géométries complexes : Application aux fluides newtoniens et viscoélastiques
Auteur / Autrice : | Yoann Cheny |
Direction : | Michel Lebouché, Olivier Botella |
Type : | Thèse de doctorat |
Discipline(s) : | Mécanique et énergétique |
Date : | Soutenance le 02/07/2009 |
Etablissement(s) : | Nancy 1 |
Ecole(s) doctorale(s) : | EMMA |
Partenaire(s) de recherche : | Laboratoire : LEMTA |
Jury : | Président / Présidente : Jean-Robert Clermont |
Examinateurs / Examinatrices : Michel Lebouché, Olivier Botella, Robert Eymard, Patrice Laure, Christophe Baravian, Jean-Robert Clermont, Eric Lamballais | |
Rapporteurs / Rapporteuses : Robert Eymard, Patrice Laure |
Mots clés
Résumé
Nous présentons une nouvelle méthode de type frontière immergée (immersed boundary method, ou méthode IB) pour le calcul d'écoulements visqueux incompressibles en géométries irrégulières. Dans les méthodes IB , la frontière irrégulière de la géométrie n'est pas alignée avec la grille de calcul, et le point crucial de leur développement demeure le traitement numérique des cellules fluides qui sont coupées par la frontière irrégulière, appelées cut-cells. La partie dédiée à la résolution des équations de Navier-Stokes de notre méthode IB, appelée méthode LS-STAG , repose sur la méthode MAC pour grilles cartésiennes décalées, et sur l'utilisation d'une fonction de distance signée (la fonction level-set ) pour représenter précisément les frontières irrégulières du domaine. L'examen discret des lois globales de conservation de l'écoulement (masse, quantité de mouvement et énergie cinétique) a permis de bâtir une discrétisation unifiée des équations de Navier-Stokes dans les cellules cartésiennes et les cut-cells . Cette discrétisation a notamment la propriété de préserver la structure à 5 points du stencil original et conduit à une méthode extrêmement efficace sur le plan du temps de calcul en comparaison à un solveur non-structuré. La précision de la méthode est évaluée pour l'écoulement de Taylor-Couette et sa robustesse éprouvée par l'étude de divers écoulements instationnaires, notamment autour d'objets profilés. Le champ d'application de notre solveur Newtonien s'étend au cas d'écoulements en présence de géométries mobiles, et la méthode LS-STAG s'avère être un outil prometteur puisqu'affranchie des étapes systématiques (et coûteuses) de remaillage du domaine. Finalement, la première application d'une méthode IB au calcul d'écoulements de fluides viscoélastiques est présentée. La discrétisation de la loi constitutive est basée sur la méthode LS-STAG et sur l'utilisation d'un arrangement totalement décalé des variables dans tout le domaine assurant le couplage fort requis entre les variables hydrodynamiques et les composantes du tenseur des contraintes élastiques. La méthode est appliquée au fluide d'Oldroyd-B en écoulement dans une contraction plane 4:1 à coins arrondis.