Thèse soutenue

Espaces duaux de certains produits semi-directs et noyaux associés aux orbites plates

FR  |  
EN
Auteur / Autrice : Mounir Elloumi
Direction : Jean Ludwig
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 25/06/2009
Etablissement(s) : Metz
Ecole(s) doctorale(s) : École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....)
Partenaire(s) de recherche : Laboratoire : LMAM - Laboratoire de Mathémathiques et Applications de Metz - UMR 7122 (....-2012)
Jury : Président / Présidente : Ali Baklouti
Examinateurs / Examinatrices : Angela Pasquale, Carine Molitor-Braun, Wolfgang Bertram, Jacques Faraut, Detlef Müller

Résumé

FR  |  
EN

Le premier problème abordé dans cette thèse est la description de la topologie du dual unitaire des groupes de Lie à radical nilpotent co-compact, en particulier les produits semi-directs G = K x N des groupes compacts K avec les groupes de Lie nilpotents N. L’espace dual G de G a été déterminé par la théorie de Mackey et la paramétrisation géométrique donnée par R. L. Lipsmann qui ont prouvé l’existence d’une bijection entre G et l’espace des orbites coadjointes admissibles de G. Notre objectif est de comparer la topologie de Fell du dual unitaire avec la topologie quotient de l’espace des orbites coadjointes admissibles. Le premier exemple traité dans ce travail est le cas des groupes de déplacement Mn = SO(n) x Rn. Nous avons prouvé que l’espace dual de Mn est homéomorphe à son espace des orbites coadjointes admissibles. Ce résultat peut être vrai aussi pour les groupes Gn = U(n) x Hn, où Hn est le groupe de Heisenberg de dimension 2n + 1 (il est uniquement prouvé pour le groupe G1). Le deuxième problème considéré dans cette thèse est la déterminaton des représentations unitaires irréductibles p d’un groupe G, dont le noyau de p dans L1(G) est donné par les fonctions dont la transformée de Fourrier s’annule sur l’orbite Op de p. Ce problème a été résolu dans le cas de groupes de Lie nilpotents par J. Ludwig, qui a montré que ker(p) = {ƒ ? L1(G); ƒ[accent circonflexe](Op) = {O}} si et seulement si l’orbite coadjointe Op est plate. Le travail consiste à prouver qu’on a un résultat équivalent pour les groupes de Lie complètement résolubles