Thèse soutenue

Conversion du méthane et du dioxyde de carbone sur des membranes poreuses catalytiques

FR  |  
EN
Auteur / Autrice : Alexey Fedotov
Direction : Mark TsodikovDenis Roizard
Type : Thèse de doctorat
Discipline(s) : Génie des procédés et des produits
Date : Soutenance le 10/12/2009
Etablissement(s) : Vandoeuvre-les-Nancy, INPL en cotutelle avec Institut Topchiev - Moscou - Russie
Ecole(s) doctorale(s) : RP2E - Ecole Doctorale Sciences et Ingénierie des Ressources, Procédés, Produits, Environnement
Partenaire(s) de recherche : Laboratoire : Laboratoire des sciences du génie chimique (Nancy)
Jury : Président / Présidente : Alexander Alentiev
Examinateurs / Examinatrices : Mark Tsodikov, Denis Roizard, Alexander Alentiev, David Farrusseng, Vladimir Teplyakov, Alain Kiennemann
Rapporteurs / Rapporteuses : David Farruseng, Alexander Alentiev

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

L’étude concerne un nouveau procédé de reformage du gaz naturel en gaz de synthèse par le dioxyde de carbone (RSM), en vue de l'utilisation rationnelle des déchets carbonés industriels pour la production d'hydrocarbures et d'hydrogène. Cette méthode utilise des systèmes à membranes catalytiques inorganiques (SMC) qui favorisent des réactions catalytiques hétérogènes en phase gazeuse dans des micro-canaux céramiques. La surface active des catalyseurs formés à l'intérieur des canaux est faible en termes de superficie, mais elle est caractérisée par une valeur élevée du facteur Surface/Volume du catalyseur, qui induit une efficacité importante de la catalyse hétérogène. Les SMC, formés à partir de dérivés alcoxy et des précurseurs métalliques complexes, contiennent de 0,008 à 0,055% en masse de nano-composants mono- et bimétalliques actifs répartis uniformément dans les canaux. Pour les systèmes [La-Ce]-MgO-Ti02/Ni-Al et Pd-Mn-Ti02/Ni-Al, les productivités de 10500 et 7500 1/h·dm3membr. ont été respectivement obtenues lors du RSM dès 450°C avec une composition de gaz de synthèse H2/?? allant de 0,63 à 1,25 et un taux de conversion de 50% de la charge CH4/CO2 (1/1). Ainsi les SMC sont d’un ordre de grandeur plus efficace qu’un réacteur à lit fixe du même catalyseur. Le RSM est initié par l'oxydation de CH4 par l'oxygène de structure des oxydes métalliques présents en surface, et le CO2 réagit avec le carbone finement divisé provenant de la dissociation de CH4. Une synergie catalytique a été mise en évidence pour le système Pd-Mn. Ces SMC de 108 pores par cm² de surface constituent un ensemble de nano réacteurs de fort potentiel industriel (synthèse d’oléfines, biomasse)