Spectroscopie optique multi-modalités in vivo : instrumentation, extraction et classification diagnostique de tissus sains et hyperplasiques cutanés
Auteur / Autrice : | Gilberto Diaz-Ayil |
Direction : | Yves Granjon, Walter Blondel |
Type : | Thèse de doctorat |
Discipline(s) : | Automatique et traitement du signal |
Date : | Soutenance le 16/11/2009 |
Etablissement(s) : | Vandoeuvre-les-Nancy, INPL |
Ecole(s) doctorale(s) : | École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....) |
Partenaire(s) de recherche : | Laboratoire : Centre de recherche en automatique (Nancy) |
Jury : | Président / Présidente : Anne Humeau |
Examinateurs / Examinatrices : Yves Granjon, Walter Blondel, Anne Humeau, Pierre Gouton, Geneviève Bourg-Heckly | |
Rapporteurs / Rapporteuses : Anne Humeau, Pierre Gouton |
Mots clés
Mots clés contrôlés
Résumé
L’incidence des cancers cutanés est en constante progression. Leur diagnostic précoce et leur caractérisation in vivo constituent donc un enjeu important. Une approche multimodale et non invasive en spectroscopie fibrée résolue spatialement a été implémentée. L’instrumentation développée permet des mesures co-localisées en multiple excitation d’AutoFluorescence (AF, 7 pics entre 360 et 430 nm) et en Réflectance Diffuse (RD, 390 à 720 nm) résolues spatialement à 5 distances inter-fibres (entre 271 et 1341 µm). Le protocole expérimental a porté sur les stades précoces de cancers cutanés UV-induits sur un modèle pré-clinique. L’analyse histopathologique a permis de définir 4 classes de référence de tissus cutanés : Sain (S), Hyperplasie Compensatoire (HC), Hyperplasie Atypique (HA) et Dysplasie (D), menant à 6 combinaisons de paires histologiques à discriminer. Suite au prétraitement des spectres bruts acquis, puis à l’extraction, la sélection et la réduction de jeux de caractéristiques spectroscopiques, les performances de trois algorithmes de classification supervisée ont été comparées : k-Plus Proches Voisins, Analyse Discriminante Linéaire et Machine à Vecteur de Support. Différentes modalités ont également été évaluées : mono-excitation d’AF seule, Matrices d’Excitation-Emission en AF seules (EEMs), RD seule, couplage EEMs – RD et couplage EEMs – RD résolue spatialement. L’efficacité finale de notre méthode diagnostique a été évaluée en termes de sensibilité (Se) et de spécificité (Sp). Les meilleures résultats obtenus sont : Se et Sp ≈ 100% pour discriminer HC vs autres ; Sp ≈ 100% et Se > 95% pour discriminer S vs HA ou D ; Sp ≈ 74% et Se ≈ 63% pour HA vs D