Étude expérimentale et numérique de l'infiltration de la dentine déminéralisée en surface par des résines composites
Auteur / Autrice : | Elsa Vennat |
Direction : | Denis Aubry, Michel Degrange |
Type : | Thèse de doctorat |
Discipline(s) : | Mécanique |
Date : | Soutenance le 19/10/2009 |
Etablissement(s) : | Châtenay-Malabry, Ecole centrale de Paris |
Ecole(s) doctorale(s) : | École doctorale Sciences pour l'Ingénieur (Châtenay-Malabry, Hauts de Seine) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de mécanique des sols, structures et matériaux (Gif-sur-Yvette, Essonne ; 1998-2021) |
Equipe de recherche : Unité de Recherche Biomatériaux Innovants et Interfaces / URB2i | |
Jury : | Président / Présidente : Henri Van Damme |
Examinateurs / Examinatrices : Denis Aubry, Michel Degrange, Jacques M. Huyghe, Jacques Dejou |
Mots clés
Résumé
Dans cette thèse, le problème de l'infiltration de bio-adhésifs résineux dans la dentine a été abordé par le biais de deux études, expérimentale et numérique. L'originalité de ces travaux réside dans le fait que l'échelle à laquelle nous nous sommes placés est nanoscopique. En effet, c'est l'infiltration d'un réseau de fibres de collagène de diamètre de l'ordre de 80nm qui pilote l'adhésion des composites résineux à la dentine. Une étude MEB a été menée pour confirmer et compléter la connaissance actuelle du milieu poreux. Cependant un paramètre manque dans la perspective d'une modélisation géométrique du réseau : la porosité n'est pas connue. Une étude complémentaire du substrat par porosimétrie à intrusion de mercure a donc été menée. La porosité volumique de la dentine déminéralisée est estimée à 55%. Deux tailles de pores sont révélées : la première correspond aux tubules et canalicules (autour de 1micron) et la seconde aux espaces interfibrillaires (autour de 50nm) jamais encore caractérisés de manière volumique. Cette étude permet aussi une investigation méthodologique. La lyophilisation, technique de séchage peu utilisée en odontologie, est évaluée et comparée à la technique de séchage utilisant l'HMDS. La lyophilisation semble être une technique de séchage fiable et convient parfaitement aux essais de porosimétrie. La modélisation géométrique du réseau fibreux est ensuite réalisée : les fibres sont considérées comme des zones à viscosité élevée. Cette modélisation est validée par comparaison des écoulements entre une fibre modélisée implicitement et une autre modélisée plus classiquement. L'orientation des fibres n'étant pas connue quantitativement, il a été choisi de construire trois types de réseau, le plus proche de la réalité (à la vue des images MEB) étant le réseau où les fibres sont disposées aléatoirement. Sa perméabilité a été estimée et validée par comparaison avec différentes études de réseaux fibreux ou non. Enfin, l'avancée du front est abordée de manière dynamique. Les équations d'avancée du front sont mises en place. Les équations de Navier Stokes sont couplées avec une méthode level set : l'interface correspondant au front d'infiltration n'est pas maillé (tout comme les fibres) mais correspond à une isovaleur d'une certaine fonction. Un attention particulière est portée aux conditions aux limites au niveau de la ligne triple et par le biais d'un terme ajouté à la formulation variationnelle, l'angle de contact est fixé. Ici, la principale difficulté est la prise ne compte des fibres qui ont été définies de manière implicite. Cette fois, les fibres sont uniquement le lieu de l'application de la condition aux limites fixant l'angle de contact et ne sont plus des zones de viscosité élevée car cela bloquerait le front. Le problème est résolu pour différentes géométries de réseaux fibreux. Tout d'abord, l'influence de certains paramètres sur des réseaux simples est sondée puis l'infiltration du modèle géométrique complet (réseau fibreux et tubules) est réalisée. Une conclusion cruciale pour les praticiens est mis en avant : augmenter le temps d'infiltration de la résine n'améliore pas l'infiltration. La simulation d'un essai de porosimétrie permet de distinguer deux tailles de pores distinctes et nécessite un ajustement car un décalage en pression par rapport à la courbe expérimentale est observée. L'outil construit permet une approche pédagogique de l'essai de porosimétrie et, après ajustement, pourra permettre la validation de diverses géométries.