Suivi et catégorisation multi-objets par vision artificielle
Auteur / Autrice : | François Bardet |
Direction : | Michel Naranjo |
Type : | Thèse de doctorat |
Discipline(s) : | Vision pour la robotique |
Date : | Soutenance en 2009 |
Etablissement(s) : | Clermont-Ferrand 2 |
Résumé
Cette thèse présente une méthode de suivi et de classification conjoints en temps réel d'un nombre variable d'objets tels que des piétons et/ou des véhicules, sous conditions d'illumination variables au cours du temps. La méthode retenue entre dans le champ du suivi Multi-Objets par Filtre Particulaire, dont la clé de voûte est l'échantillonnage des particules. Nous examinons deux familles de filtres particulaires : les Filtres Particulaires Partitionnés, et les Filtres Particulaires par Chaîne de Markov (FP MCMC). Nous comparons ensuite leurs performances sur des données de synthèse. Les résultats obtenus montrent la supériorité du Filtre Particulaire MCMC. Un système de suivi et classification conjoints en temps réel d'un nombre variable d'ojets tels que des piétons et/ ou des véhicules, sous illumination variable, est ensuite présenté. La mesure est délivrée par une ou plusieurs caméras statiques. Nous avons délibérément choisi d'alimenter le filtre avec une observation pauvre, reposant uniquement sur une segmentation binaire avant-plan / arrière-plan basée sur un modèle de l'arrière-plan mis à jour en ligne à chaque image. Pour résister aux variations d'illumination, les ombres sont modélisées et le filtre est étendu afin de suivre conjointement le soleil et les objets. Les résultats de suivi et classification en temps réel sont présentés et discutés sur des séquences réelles et sur des séquences de synthèse, impliquant plusieurs catégories d'utilisateurs tels que des piétons, des voitures, des camionettes et des poids lourds