Relocalisation nucléaire du gène mitochondrial ATP9 chez la levure Saccharomyces cerevisiae
Auteur / Autrice : | Maïlis Bietenhader |
Direction : | Jean-Paul Di Rago |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences, technologie, santé. Génétique |
Date : | Soutenance le 22/12/2009 |
Etablissement(s) : | Bordeaux 2 |
Ecole(s) doctorale(s) : | École doctorale Sciences de la vie et de la santé (Talence, Gironde ; 1993-....) |
Jury : | Président / Présidente : Jean Velours |
Examinateurs / Examinatrices : Corinne Clavé, Bernard Guiard | |
Rapporteur / Rapporteuse : Francis-André Wollman, Alexander Tzagoloff |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
L'ancêtre a-protéobactérie endosymbiotique à l'origine des mitochondries avait son propre génome, codant pour de nombreuses fonctions redondantes, voire totalement inutiles dans la cellule hôte. Ces informations ont disparu avec le temps, alors que les autres gènes indispensables ont en grande partie été transférés au noyau de la cellule eucaryote. Aujourd'hui, plus de quatre vingt quinze pourcents des protéines mitochondriales sont codées par le génome nucléaire. La question se pose de savoir pourquoi ces gènes sont maintenus dans les organites. Une manière de répondre expérimentalement à cette question consiste à relocaliser artificiellement au noyau les gènes des organites. Nous avons testé cette relocalisation nucléaire chez la levure Saccharomyces cerevisiae. Une première étape de l'étude a consisté à déléter le gène mitochondrial ATP9 natif. La délétion du gène ATP9 mitochondrial chez S. cerevisiae conduit à de multiples effets délétères sur la stabilité du génome mitochondrial, son expression, le contenu en complexes de la chaîne respiratoire, mais aussi sur la morphologie des mitochondries. Des expériences antérieures, décrites dans la littérature, avaient échouées dans la relocalisation nucléaire du gène ATP9 de S. cerevisiae. J'ai réussi la relocalisation nucléaire de ce gène chez la levure par une approche différente, avec cette fois un gène ATP9 déjà nucléaire, celui de Podospora anserina. Malgré une différence de 30% dans la séquence primaire des protéines, la protéine Atp9p de P. anserina exprimée depuis le noyau chez S. cerevisiae peut complémenter la délétion mitochondriale du gène ATP9. La levure modifiée peut former des ATP synthases hybrides ayant une bonne activité in vitro. En parallèle de cela, le travail sur P. anserina a donné lieu à une collaboration qui nous a permis d'en savoir un peu plus sur l'expression des deux gènes ATP9 de ce champignon filamenteux. Notons que P. anserina a deux gènes ATP9, nativement nucléaires, chacun étant exprimés à des moments précis du cycle de vie de ce champignon filamenteux. Dans l'évolution, le transfert fonctionnel du gène ATP9 chez P. anserina, comme chez les mammifères, a permis l'acquisition d'un mécanisme de régulation de la quantité d'ATP synthase en fonction des conditions physiologiques de la cellule.