Le K1 des courbes sur les corps globaux : conjecture de Bloch et noyaux sauvages
Auteur / Autrice : | Michael Laske |
Direction : | Karim Belabas |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques pures |
Date : | Soutenance le 19/11/2009 |
Etablissement(s) : | Bordeaux 1 |
Ecole(s) doctorale(s) : | École doctorale Mathématiques et informatique (Talence, Gironde ; 1991-....) |
Jury : | Examinateurs / Examinatrices : Rob de Jeu, Philippe Elbaz-Vincent, Jean-François Jaulent |
Mots clés
Résumé
Pour X une courbe sur un corps global k, lisse, projective et géométriquement connexe, nous déterminons la Q-structure du groupe de Quillen K1(X) : nous démontrons que dimQ K1(X) ? Q =2r, où r désigne le nombre de places archimédiennes de k (y compris le cas r = 0 pour un corps de fonctions). Cela con?rme une conjecture de Bloch annoncée dans les années 1980. Dans le langage de la K-théorie de Milnor, que nous dé?nissons pour les variétés algébriques via les groupes de Somekawa, le premier K-groupe spécial de Milnor SKM1 (X) est de torsion. Pour la preuve, nous développons une théorie des hauteurs applicable aux K-groupes de Milnor, et nous généralisons l’approche de base de facteurs de Bass-Tate. Une structure plus ?ne de SKM 1 (X) émerge en localisant le corps de base k, et une description explicite de la décomposition correspondante est donnée. En particulier, nous identi?ons un sous-groupe WKl(X):= ker (SKM 1 (X) ? Zl ? Lv SKM 1 (Xv) ? Zl) pour chaque entier rationnel l, nommé noyau sauvage, dont nous croyons qu’il est ?ni.