N° d’ordre : 3808

THESE

présentée a

L’UNIVERSITE BORDEAUX 1

'ECOLE DOCTORALE DE
MATHEMATIQUES ET INFORMATIQUE

par
Thé Quang TRAN

pour obtenir

LE GRADE DE DOCTEUR
Spécialité: INFORMATIQUE

Unfolding Based Verification
of Concurrent Infinite-State Systems

Soutenue le 19 juin, 2009
Aprés avis des rapporteurs :

MM. Serge HADDAD PR. ENS de Cachan
Claude JARD PR. ENS de Cachan/Bretagne

Devant le jury composé de :

MM. Bernard BErRTHOMIEU ~ CR. CNRS/LAAS

Bruno COURCELLE PR. Univ. Bordeaux 1
Jean-Michel COUVREUR PR. Univ. d’Orléans

Serge HADDAD PR. ENS de Cachan

Frederic HERBRETEAU MC. ENSEIRB

Claude JARD PR. ENS de Cachan/Bretagne
Grégoire SUTRE CR. CNRS/LaBRI

Igor WALUKIEWICZ DR. CNRS/LaBRI

Directeur de théese Igor WALUKIEWICZ
Co-encadrants Frédéric HERBRETEAU et Grégoire SUTRE
Laboratoire LABRI

Vérification des systémes concurrents infinis par technique de dépliages

Résumé: Nous proposons une technique de dépliage pour vérifier les systémes con-
currents infinis bien structurés. Certaines propriétés d’intérét comme la bornitude, la
couverture et la terminaison sont décidables grace & la bonne structure de ces sys-
témes. D’autre part, le dépliage réduit efficacement ’explosion combinatoire en ex-
ploitant ’ordre partiel entre les événements des systémes concurrents. Nous proposons
une modélisation par structure d’événements pour des systémes bien structurés élémen-
taires, tels les compteurs et les files de communication. Le dépliage d'un réseau de
structures d’événements, étant une structure d’événements, nous proposons ensuite une
approche hiérarchique & la modélisation et & la vérification des systémes, qui préserve la
bonne structure. Enfin, nous proposons une technique d’élimination des événements re-
dondants. La mise en ceuvre de notre approche dans I’outil ESU nous permet de conclure
a son efficacité.

Mots clés: algorithme de dépliage, ordre partiel, préordre, systéme infini, produit syn-
chronizé, structure d’événements, prefixe fini, bornitude, terminaison, quasi-vivacité.

Acknowledgments

My foremost gratitude goes to my director Igor Walukiewicz for his guidance. Despite
his crowded schedule, he always found some time to help me to overcome problems.
His help was really significant to write this thesis. I wish to also thank my two first
directors André Arnold and Jean-Michel Couvreur although we had not much time to
work together.

I am very grateful to my co-directors Frédéric Herbreteau and Grégoire Sutre who
initiated me to the research, and then have conducted me throughout this thesis. As
their first PhD student, we have shared an excellent experience. They taught me a lot
about not only how computers aid verification but also how competent and cheerful
supervisors aid a student like me. It is not an overstatement to say that without their
patience and guidance this thesis would not exist.

Many thanks to Bernard Berthomieu, Bruno Courcelle, Jean-Michel Couvreur, Serge
Haddad, and Claude Jard for having kindly accepted to be members of the jury and
review the thesis. This important task is always time consuming and deserve all my
gratitude. I particularly thank Bruno Courcelle for having been my supervisor for six
months.

Thanks to Anne Dicky, Alain Griffaut, and Olivier Ly for their friendship. T also
would like to thank all the members of the Formal Methods group of LaBRI.

A special thanks has to be addressed to Michel Mouyssinat. He has looked after me
and always been there when I needed help. I wish to thank Antoine Blascos, another
french friend of mine that I appreciate very much his friendship.

Finally, I would like to switch to my mother tongue in the following page to thank
my family and my vietnamese friends.

Biét on

To6i mudn danh doi dong ngan ngti viét bang tiéng me dé cho nhitng ngusi ma chinh ho
da tao nén toi véi nhitng két qua dat duge trong nghién citu nay.

Truée hét 1a véi bdé me, nhitng ngudi dén gio mdéi yen long vi da lo xong cho con &n
hoc t6i noi t6i chon. Con trai ctia b me chi biét 1lam nhe bét lo toan d6 bang nhitng
két qua dep - cai ma bd me ludn ty hdo sudt qua trinh hoc dai ding ding ciia con. Cai
dat dude ngay hom nay, mot lan nita, chinh 1 qua chin dén dap cong on nudi nang con
an hoc.

Tiép dén 1 véi nhitng ngudi than trong gia dinh: anh K3, chi Lé, anh Ha, chi Théo,
Quan, Minh, va cd Thé con nita. Moi ngusi da ganh gitip em, gitap céu, nhitng viéc ma
mot ngudi con trai 16n khi xa nha khong thé lam duge. Hon nita, niém tin ctia anh chi
va cac chau véi em da khong cho phép em budng xudi, va luon 1a dong luc dé em c6 di
c6 dén.

Manh dat Bordeaux cho rugu va con ngudi lang Nho cho tinh. Dém nam thang cit
ngd 1a dai nhung nhim mat nhé lai thi thay qua ngan. T anh Khué gia cho nha dén
ngay dau, dén Dai fou cho nha tit ngay cudi, biét bao ngudi ¢ lang nay, néu khong mudn
noi la tat ca, da gitp toi an-6-vui-choi, néi chung la séng, dé ma hoc tét. No ching tra
dit danh cudi xod néi 16i cam on. Toi cling xin phép khong ké hét tén chii ng vi qua dai.

Néu coi ban bé nhu chan tay thi miy nam xa nha ciing du lam t6i khac nguoi (hy
vong khong giong ngom). Hon nita, tinh ré hai nam c6 them mot dau da 1a qua hoi: anh
Hoang cong, Diic chich, Dai fou. Nhitng cai dau sin sang chung vai ma khong bao gio
lam dau dau toi, qua 14 dang quy. Dang quy hon nita khi biét ring lam nghién citu 1a
da phai dau dau.

C6 nhitng ngusi da gii trai tim cho t6i lic dang con 1a nghién cttu sinh, va toi da
duing phi ho tra dé hoan thanh nghién citu nay. Toi chi xin néu tén ngusi duy nhat mudn
dugce néu tén, va cling 14 ngudi duy nhat, dén lic viét nhitng 10i nay, toi van gitt: Thuy.

La giai chua vg, 18i cudi cung lai 1a vu vo nhat, d6 14 danh cho v¢ [tuong lai ctia] toi
- stic ép vo hinh giuc t6i hoan thanh sém nghién ctu nay.

iii

Contents

List of Figures ix
List of Tables xi
List of Algorithms xii
Glossary xiii
1 Introduction 1
1.1 Model checking 2
1.2 Approaches to the state-space explosion: the unfolding technique 4
1.3 Verification of infinite state systems o oL 5)
1.4 Contributions 6
1.5 Organization of the thesis, 8

2 Preliminaries 11
2.1 Relations and functions o Lo 11
2.2 Alphabet and words 12
2.3 Orders 13
2.4 Labeled transition systems e 14
2.4.1 Behaviors and properties L 16

2.4.2 Synchronized products of labeled transition systems 16

2.4.3 Simulation. 18

2.5 Petrinets L 19

3 Modeling concurrent systems by labeled event structures 21
3.1 Prime event structureso 22
3.1.1 Example and graphical representation 23

3.1.2 Configurations and extensions 23

3.1.3 Sub-structures 24

3.1.4 Prime vs general event structures 27

3.2 Labeled event structures Lo 27
3.2.1 Semantics of labeled event structures 28

3.2.2 Properties of labeled event structures 30

3.3 Modeling concurrent systemso oL oL 32
3.3.1 Labeled event trees 32

3.3.2 Counters. 34
Parameter k in causality processes 37

Bounded counterso oo 38

Counters initialized by positive values 40

Contents

3.3.3 FIFO channels 43
FIFO channels initialized with non-empty word 48
Bounded FIFO channels, 50
3.3.4 Synchronized Products of Labeled Event Structures. 54
Graphical representation of a product of event structures. 56
4 Truncation for well-preordered labeled event structures 61
4.1 Well-preordered systemso 62
4.1.1 Adapting preordered compatibility to labeled transitions 62
An example: Lossy FIFO channels 62
Internal actions X7o 63
4.1.2 Well-preordered labeled transition systems 63
A class of infinite systems with decidability results 64
Synchronized products of well-preordered labeled transition systems 65
4.1.3 From forward analysis to backward analysis in well-preordered
transition systemso Lo 66
4.2 Truncation of well-preordered labeled event structures 68
4.2.1 Well-preordered labeled event structures 69
Preordered labeled transition systems vs preordered labeled event
structureo 69
Products of preordered labeled event structures 72
4.2.2 Truncation techniques 73
Cutting contexto 73
Truncation’s properties 75
4.2.3 Well-preorders on configurations 7
4.3 Partial-order verification for well-preordered labeled event structures . . . 78
4.3.1 Local cutting contextso, 78
4.3.2 Coverability and quasi-liveness 81
4.3.3 Termination and boundedness 83
5 Compositional unfolding techniques 87
5.1 Unfolding algorithm 88
5.2 Causality processes’ unfolding 92
5.2.1 k-causality processeso 93
5.2.2 M-causality processes 96
5.2.3 Generalizationo L 103
(M, v)-causality processes 103
(M, v,b)-causality processes 106
Estimation of time complexity 108
5.3 Synchronized products’ unfolding 109
5.3.1 Function ConfigVectorSet i 111
5.3.2 Function ConfigVectorSet 114
5.3.3 Functions Initgp and Extendgp 117
5.4 Truncating 122
5.4.1 Algorithmic cutoff events 123
5.4.2 Complete prefixes. oL Lo 125

vi

Contents

6 Experimental results

6.1 Modeling and verification of heterogeneous systems
6.1.1 Alternating Bit Protocol

6.1.2 Modeling the ABP as a synchronized product

6.1.3 Verification of counter’s boundedness
6.1.4 Verification of lossy FIFOs’ coverability
6.2 Thetool ESU
6.2.1 Modeling Petrinets
6.2.2 Redundancy reduction
6.3 Experiment results on Petrinets
6.3.1 1-safe Petrinets
6.3.2 General bounded Petrinets
6.3.3 Unbounded Petrinets

7 Conclusions

7.1 Future work

Bibliography

Index

Vil

List of Figures

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

3.13

3.14
3.15

4.1
4.2
4.3
4.4
4.5

4.6

5.1
5.2

6.1
6.2
6.3
6.4
6.5

Acountero 15
A FIFO channel 15
A synchronized product of three counters. 17
Simulation relation. L Lo 18
APetrinet 20
Graphical representation of prime event structures 23
The {f1, fs}suffixof € L 26
Examples of labeled event structures 28
Graphical representation of the induced labeled transition system 29
Coherence of labeled event structures 31
Tree with labeled events 33
Examples of k-causality processes 36
Graphical representation of k-bounded processes 38
The 4-countdown processo e 40
Example of (k,v)-causality processes 41
M-causality processes where M = {a,b} 46
A (M, v)-causality process together with the corresponding (M, v)-flushing

PLOCESS . . v v v i e i e e e e e e 49
An adaptation of (M, v)-causality process for bounded constraint on FIFO

channels 51
A (M,v,b)-causality process u i 54
Two graphical representations of a product of event structures 56
Compatibility 62
Forward and backward analysis for reachability 67
Counter examples of implication between compatibilities 71
Coherence vs compatibility 72
Truncation example of a labeled event structure for 2-bounded counter

initialized by 1. 75
Local vs global cutting contexts 79
Labeled occurrence net of an one-safe Petrinet 124
Algorithmic cutoff events and the truncation 125
A model for the Alternating Bit Protocol 130
Components modeling the ABP 131
The ({0,1},¢,2)-causality process 132
Obtained prefix for boundedness problem of the ABP 133
Labeled event structures modeling the pb-reverse of lossy FIFO channels . 136

ix

List of Figures

6.6 Truncation for sub-coverability problem of Erg,, L 138
6.7 An example of ESU’s input file L. 140
6.8 Redundancy illustration L0 142
6.9 Sub-linearisation relation over configurations is not preserved by the ex-
tension relation Lo Lo 148
6.10 A concurrent Producer/Consumer Petrinet 154

List of Tables

6.1

6.2
6.3
6.4
6.5

6.6

Synchronization constraint for the ABP with counter of successfully trans-

mitted messages. Lo 131
Synchronization constraint of the synchronized product Rgp. 137
Experimental results on one-safe Petrinets. 149
Experimental results on some parameterized Petri nets. 152
Experimental results on the Swimming Pool with different choices of com-

ponents’ labeled event structures 153
Experimental results on the Producer/Consumer. 155

x1

List of Algorithms

Xi1

5.1 Unfolding algorithm 89
5.2 Function Create L 93
5.3 Function Init; for the k-causality process k-CP 93
5.4 Function Extendy for the k-causality process k-CP 94
5.5 Function Inity¢ for the M-causality process M-CP 96
5.6 Function Extendy¢ for the M-causality process M-CP 97
5.7 Function Extendyg, for (M,v)-CP oL 105
5.8 Function ConfigVectorSet i 112
5.9 Function ConfigVectorSet 115
5.10 Function Initgp for synchronized products 118
5.11 Function Extendgyp for synchronized products 119
5.12 Truncating algorithm oo oo 123
6.1 Unfolding algorithm with redundancy reduction 145
6.2 Function isRedundant determines whether e is <-redundant 146

(Glossary

Below are the notations used in this thesis for important entities and constructions,
together with the number of page in which each notation is defined or first appears.

empty set, p. 20

Cartesian product, p. 11
cardinality of a set X, p. 11
length of a word w, p. 12

‘:EEXS

component restriction, Notation 2.4.11, p. 16
set of x such that ®, p. 11

—_
8

~
KA

-

< causality relation, Definition 3.1.1, p. 21

>(X) downward closure of X w.r.t. <, p. 13

<(X) upward closure of X w.r.t. <, p. 13

< minimal relation of which the transitive and reflexive closure is <, No-
tation 2.3.6, p. 14

<(e) direct successors of e, p. 22

>(e) direct predecessors of e, p. 22

conflict relation, Definition 3.1.1, p. 21

I concurrent relation, Notation 3.1.2, p. 22

F extension relation, Definition 3.1.6, p. 23

Clte event e is an extension of configuration C, p. 23

ClFX X is an extension set of configuration C, p. 23

~ isomorphic relation, Definition 3.2.7, p. 29

— transition relation, Definition 2.4.1, p. 14

s 5 s’ is reachable from s by action a, p. 14

< well-preorder, Definition 2.3.1, p. 12

<® product (well-)preorder, Definition 4.1.7, p. 64

<¢ (well-)preorder on the configuration set, p. 68

<M marking preorder, Definition 4.2.2, p. 69

< adequate order, p. 77

< adequate order based on lexicography, Definition 4.2.17, p. 78

A* finite words over an alphabet A, p. 12

A¥ infinite words over an alphabet A, p. 12

B bijection between two event sets, Definition 3.1.13, p. 25

b-BCY v-initialized bounded counter, Definition 3.3.12, p. 37

b-BP b-bounded process, Definition 3.3.13, p. 38

xiii

Glossary

Ce

e,
Codom(F)
CT, v-CT
cP

k-CP
(k,v)-CP
M-CP
(M,v)-CP

Dom(F)

MaxS (X)

Min< (X)
NRg<
post*,;:rS
P(X)

PE

s, Tops
Ror R
R’X

R

R+

XIv

configurations of €, Notation 3.1.5, p. 23

local configurations of &, p. 23

codomain of a function F, p. 11

counter, v-initialized counter, Definition 3.3.6, p. 34
causality process, p. 34

k-causality process, Definition 3.3.9, p. 35
(k,v)-causality process, Definition 3.3.19, p. 40
M-causality process, Definition 3.3.27, p. 46
(M, v)-causality process, Definition 3.3.31, p. 49
the depth function, Definition 3.3.34, p. 51
domain of a function F, p. 11

events, Definition 3.1.1, p. 21

empty word, p. 12

labeled event structure, Definition 3.2.1, p. 27

restriction of (labeled) event structure £ onto event set F', Defini-
tion 3.1.10, p. 24

prefix under construction, p. 88

FIFO channel, p. 42

v-initialized FIFO channel over M, Definition 3.3.22, p. 42
lossy FIFO channel, p. 62

identity relation over X, p. 12

label function, Definition 3.2.1, p. 27

labeled event tree, Definition 3.3.3, p. 32

labeled transition system, Definition 2.4.1, p. 14

labeled transition system induced by &, Definition 3.2.4, p. 28
function on words that is based on a label function £, p. 12
FIFO channel’s messages, p. 42

sending actions, Notation 3.3.23, p. 42

receiving actions, Notation 3.3.23, p. 42

maximal elements of X w.r.t. <, p. 13

marking function, Definition 3.2.1, p. 27

minimal elements of X w.rt. <, p. 13

the prefix without <-redundant event of &, p. 143
reachability set of LTS, p. 16

power set of a set X, p. 11

finite pred-basis, Definition 4.1.13, p. 67

possible extensions, p. 88

M-letter morphisms, Definition 3.3.24, p. 43

complement of a relation R, p. 11

restriction of a relation R to X, Notation 2.1.1, p. 11
reflexive and transitive closure of a relation R, p. 12
transitive closure of a relation R, p. 12

converse relation of a relation R, p. 11

Glossary

E’T
T(€,<¢,C)

A%

(X, <)
®(X1,. .. ,Xn)

AN NN N~

set of states, Definition 2.4.1, p. 14
initial state, Definition 2.4.1, p. 14

a synchronized product of labeled transition systems, Definition 2.4.12,
p. 17

set of actions, Definition 2.4.1, p. 14
internal actions, p. 63

the truncation of € w.r.t. the cutting context (<€, @), Definition 4.2.12,
p. 74

function representing synchronization in synchronized products of (la-
beled) event structures, Definition 3.3.39, p. 54

partially ordered set, Definition 2.3.2, p. 13
n-dimension space, Notation 2.4.10, p. 16

(B, <,#,L, M) structure variables, p. 88

XV

Chapter 1

Introduction

Contents
1.1 Modelchecking i e, 2
1.2 Approaches to the state-space explosion: the unfolding tech-
MIQUE & v v v v v v v ot o s e e s o ettt e e e e e 4
1.3 Verification of infinite state systems 5
1.4 Contributions i e 6
1.5 Organization of the thesis 8

Because of the success of embedded systems in automobiles, airplanes and other
safety critical systems in our everyday life, we are likely to become more dependent on
the proper functioning of computing devices. Bugs and errors may lead to dramatic
consequences. Even when failure is not life-threatening, the consequences of having to
replace critical code or circuitry can be a substantial economic loss. This fact emphasizes
the necessity of confidence in such systems.

At the same time, the advances in computer science and especially in hardware led
to an increase of systems’ complexity, and consequently, makes it hard to design these
systems without defects. This situation is more alarming since concurrent systems are
customarily used. In fact, a concurrent system is composed of several components that
run in parallel, possibly on different locations, and communicate with each other. Each
component can be viewed as a reactive system that continuously interacts with its en-
vironment which may be another component. Hence, the effect of even very minor
programming mistakes in a certain component can cause major system failures. Testing
is also of limited help in concurrent system’s design since it usually involves providing
certain inputs and observing the corresponding outputs. Therefore, checking all of the
potential behaviors resulting from all interactions between the different concurrent com-
ponents of the system using testing techniques is rarely possible. Many errors can easily
go through the testing phase undetected and show up only after a long period of oper-
ation. Moreover, even if some bug is found during a particular testing run, it may not
occur during the next runs, and locating concurrency related bugs is a difficult task.

Formal verification has been proposed as a way to obtain guarantees on the correct-
ness of safety critical systems. Verification means that a system description conforms
to its expected properties. Therefore, all possible behaviors of the system have to be
checked to determine if all of them are compatible with the given property. In order to
be able to perform such a verification, one needs a formal modeling language in which

Chapter 1. Introduction

the system can be described, a formal specification language for the formulation of prop-
erties, and a deductive calculus or algorithm for the verification process. Hence, there
are roughly two approaches to formal verification: logical inference and model checking.
The first one consists of using a formal version of mathematical reasoning about the
system, usually using theorem provers. Methods in this approach are more general but
harder to use because they are usually only partially automated. Although there has
been considerable research on the use of theorem provers, these methods are time con-
suming and often require a great deal of manual intervention. Only an experienced user
with certain understanding of the system can perform a nontrivial proof, for instance, in
which he has to find loop invariants or inductive hypotheses.

On the contrary, much of the success of model checking, firstly developed in the
early 80’s [CE81, QS82, EC82]|, is due to the fact that it performs a fully automatic
verification. With model checking, all the user has to provide is a model of the system and
a formulation of the property to be checked. The verification tool will either terminate
with an answer indicating that the model satisfies the formula or show why the formula
fails to hold in the model. These counter-examples are particularly helpful in locating
errors in the model. If the model does not satisfy a given correctness specification, this is
often connected to a mistake in the real system. Nevertheless, as an over-approximation
of the real system, the model is sometimes too coarse and does not satisfy some correct
properties, although the real system does. In such a case, the model of the system must
be refined to get closer to the real system. Aiming at automatic verification methods,
let us focus on model checking.

1.1 Model checking

Model checking is a verification technique that applies to a large class of systems and
consists of three steps.

Modeling systems by mathematical models. A mathematical model of the seman-
tics of a system or of a program is a mathematical structure, in general, an algebra,
consisting of sets, functions, graphs, and possibly logical predicates. Such a model
is an idealized abstraction that needs syntax to represent it directly. Examples of
models often used are: (timed, hybrid) automata, Kripke structures, finite state
machines, (labeled) transition systems, Petri nets, process algebra, (labeled) event
structures.

Many powerful models have been introduced in order to incorporate some specific
aspects, i.e. data view (in heterogeneous systems), state view (in reactive systems),
or supporting the concept of hierarchical decomposition (in complex concurrent
systems). Much effort of the theory of concurrency has been devoted to the study of
suitable models for concurrent reactive systems, and to the formal understanding of
their semantics. As each system has an implementation in terms of a state machine,
it always has a state space, and so does the corresponding model. Such models
have a common idea that they are based on atomic units of change - transition,
actions, events - which are indivisible and allow the system to change its state.

The difference between the models for concurrent systems may be expressed w.r.t.
three relevant parameters: behavior or system model, interleaving or noninterleav-
ing model, and linear or branching time model [SNW96]. In other words, models for
concurrency can be classified into the eight classes of models obtained by varying
these three parameters in all the possible ways.

1.1. Model checking

Representing the property in a specification language. Among specification lan-
guages, the first and probably the most successful one is first-order logic. Almost
all interesting properties of programs can be formulated in this language. How-
ever, this classical logic is not well-suited for specifying properties of concurrent
computations. Temporal logic, which can assert how the behavior of the system
evolves over time, has proved to be suitable for this purpose. Because temporal
logics, such as LTL, CTL, CTL* [Pnu77, CE81] can describe the ordering of events
without introducing time explicitly.

In general, properties of interest go under the category of ordered executions. It
relates to verification of event and state ordering. Properties such as safety and
liveness belong to this category. When a system has to be verified, it often turns out
that the property we are interested in is simply expressible in terms of reachability.
This thesis is dedicated to reachability based problems.

Model checking algorithm. Once the model is built, one formally states the property
to be checked by a logical formula, and uses an appropriate algorithm to verify
if the formula holds in the model. State space ezploration is one of the most
successful approaches particularly when reachability-based properties have to be
checked. It consists in exploring a global state graph representing all behaviors of
the model /system. This is done by recursively computing all successor states of all
states encountered during the exploration, starting from a given initial state, by
executing all possible actions/transitions in each state. If the state space is finite,
it can be explored entirely.

The first model checkers worked by constructing the whole state space prior to
property checking, but modern tools are able to perform verification on-the-fly as
the states are computed.

Verification by state space exploration has been studied by many researchers. The
simplicity of the strategy lends itself to easy, and thus efficient, implementations. More-
over, the range of properties that state space exploration techniques can verify has been
substantially broadened thanks to the development of model checking methods for vari-
ous temporal logics [CES86, QS82, VW86|. As many verification tools have been devel-
oped, for example CAESAR, SPIN (see [FGM192, Hol97, BBF101]), the effectiveness of
model checking, and particularly the state space exploration techniques, for debugging
and proving correct systems is increasingly becoming established. The number of success
stories about applying these techniques to industrial-size systems keeps growing.

However, model-checking suffers from two main drawbacks. Firstly, even a relatively
small system model can (and often does) yield a very large state space. More precisely,
owing to simple combinatorics, the size of the state space can be exponential in the size
of the model being analyzed. This exponential growth is known as the state explosion
problem. Secondly, when the system under study has an infinite state space, such as
heterogeneous systems whose states consist of unbounded values (integers, channels in
communication protocols), classical model checking no longer applies. Moreover, it does
not allow to check for some essential properties such as the boundedness of the commu-
nication channels of a protocol (this is an important property when implementation is
an objective).

Chapter 1. Introduction

1.2 Approaches to the state-space explosion: the unfolding
technique

One category of techniques tackling state-space explosion are symbolic methods [BCM192]
that attempt to represent and manipulate sets of states implicitly with a help of specific
data structures, rather than explicitly as enumerations of their components. The success
of these methods is primarily due to the use of binary decision diagrams (BDD) [Bry86|,
for representing sets and relations over Boolean variables symbolically, making it pos-
sible to verify systems with a very large number of states (more than 10'%° reachable
states). Because of this and other technical advances in symbolic model checkers, it is
now possible to verify some reactive systems of realistic industrial complexity.

Although symbolic representations have greatly increased the size of the systems
that can be verified, many realistic systems are still too large to be handled. Thus,
it is important to find techniques that can be used in conjunction with the symbolic
methods to extend the size of the systems that can be verified. Such techniques are,
for instance, compositional reasoning [CLM89, SG90|, abstraction [CGL94, GS97|, and
symmetry reduction [CJEF96, ES96].

A collection of verification techniques attacking directly the sources of state-space
explosion phenomenon on concurrent reactive systems have demonstrated that exploring
all interleavings of concurrent events is not a priori necessary for verification. Indeed, in-
terleavings corresponding to the same concurrent execution contain related information,
e.g. the same reachable state. The intuition behind these technique is exploiting the
independence between concurrent executed events, or in other words, the partial order
over events. Hence, these techniques are called partial-order methods.

Many partial-order methods are based on partial-order reductions first appeared inde-
pendently in [Val89] and [God90, GW91|, and were developed further in [Val90, GHP92,
WGO93, Pel94]. The stubborn sets [Val89], the persistent sets [God90], and the ample
sets |Pel94] differ in the actual details, but contain many similar ideas. Intuitively,
rather than choosing to work with direct representations of partial orders, the model
checking algorithms in these methods keep an interleaving representation of partial or-
ders, but attempt to limit the expansion of each partial-order computation to just one
of its interleavings, instead of all of them. A property to be checked needs to be veri-
fied only on a reduced part of the global state space. Partial-order methods yield results
identical to those of verification methods based on classical interleaving. Thus they make
it possible to perform the verification more efficiently.

Partial-order reductions described above are quite different from the partial-order
method in our work, called unfolding technique [McM95a]. Unfolding technique is based
on the results of the theory of true concurrency to replace the classical state/transi-
tion models by partially ordered graphs. More precisely, using the unfolding theory
in [NPW80]|, the dynamics of a safe Petri net is captured by the dynamics of an acyclic
net that lies in the category of occurrence nets. Occurrence nets as well as event structures
- a more abstract representation - belong to so called partial-order models of concurrency
that were discussed by many researchers in the 80’s [Lam78, Maz86, Win86, Pra86]. Un-
folding algorithms intuitively consist of computing some behavioral models of the system
that preserve Mazurkiewicz’s trace semantics [Maz86|, and the properties are checked
directly on these partial-order models. The verification process is generally done together
with the construction of the behavior models.

Since its introduction in [McM95a], the unfolding technique has attracted consider-
able attention and inspired a fairly large number of works.

4

1.3. Verification of infinite state systems

e The algorithm for constructing finite prefizres of the behavior model has been
further analyzed and improved [ERV96, KK01, CGP01, ERV02, KKV03|, par-
allelized [HKK02, SK04], and distributed [BHKO06].

o The initial verification technique, that only allowed to check the reachability of
a state or the existence of a deadlock [McM95a, MR97|, has been extended to
algorithms for (almost) arbitrary properties expressible in Linear Temporal Logic
[CGP00, EH00, EHO1].

o The unfolding technique, initially developed for systems modeled as safe Petri nets,
has been extended to high-level Petri nets [KKO03|, symmetrical Petri nets [CGP01],
unbounded Petri nets [AIN00], nets with read arcs [VSY98], time Petri nets [FS02,
CJ06], products of transition systems [ER99|, automata communicating through
queues [LI05]|, networks of timed automata [BHRO06, CCJ06], process algebras
[LB99], and graph grammars [BCKO04].

o The unfolding technique has been implemented in several model checkers [SSE03,
HKKO02, KK05, GB96, MRE96] that allow, among others: conformance check-
ing [McM95b], analysis and synthesis of asynchronous circuits [KKY04], moni-
toring and diagnosis of discrete event systems [BHFJ03, CJ04], and analysis of
asynchronous communication protocols [LI05].

1.3 Verification of infinite state systems

The verification of infinite-state systems is one of the most challenging research areas
in formal and computer-aided verification. Being able to verify infinite-state systems is
interesting not only due to the existence of complex systems that comprise unbounded
variables, but also for several other reasons:

« Even though realizable, computer systems are finite in some sense, their size is
often much larger than what can be handled by finite-state methods. Infinite-state
models are good abstractions of large finite-state systems. Indeed, approximating
a large finite domain by an unbounded one is usually more precise than imposing
unrealistically small bounds on data values.

o Infinite-state systems are natural models of parameterized systems, when the range
of parameter values is unbounded. It is often more comfortable to reason indepen-
dently from any limit than to impose an arbitrary upper bound on the size of a
system.

¢ The solutions developed for analyzing infinite-state systems are usually also appli-
cable to systems whose state space is finite but very large.

In order to represent reactive systems as well as to extend the properties that could
be checked, models for infinite-state systems were introduced. Most of them are based
on a finite-state automata extended with unbounded data [AJ93, EFM99]: for instance,
communicating finite-state machines [Boc78, BZ83] allow to model communication pro-
tocols, and Petri nets [Pet62] can represent systems with countably many resources.
Most of the time, model checking is undecidable for infinite-state models since they can
simulate Minsky machines.

Chapter 1. Introduction

However, for some classes of infinite-state systems, some problems remain decidable,
such as the reachability problem for Petri nets [Kos82, May84]|. This lead to many works
on the identification of decidable subclasses of infinite-state models along with dedi-
cated model-checking algorithms [Fin94, AJ96, CF97, HCF*02, Iba78, ISD*02, DJS99,
EFM99, BM99, FS00b, FS00a, AD94, CJ99, LS02]. Another challenge is that most
systems are heterogeneous: for instance checking the boundedness of communication
channels may require to consider the channels themselves as well as the number of com-
municating processes, hence procedures specific to homogeneous systems do not apply.
Fortunately, some of these techniques [KM69, AJ96] were found not to rely on the class
of model, but rather on their structural properties, leading to the class of well-structured
transition systems [Fin87, Fin90, ACJ00, FS01]. They form a subclass of infinite-state
models including Petri nets and some of their extensions, lossy communicating machines,
some process algebras, etc. The well-preorder compatibility over states/transitions in
well-structured transition systems gives rise to a nice feature: only a finite prefix of the
system’s behaviors needs to be considered for concluding on the (in)satisfaction of several
properties, particularly boundedness or termination.

1.4 Contributions

Our aim is the verification of concurrent systems that manipulate variables on unbounded
domains, hence infinite-state systems. In this thesis, we explore the benefits of combining
the efficient verification based on unfolding technique and decidability results on well-
structured transition systems.

We provide a general framework for partial-order modeling of heterogeneous systems.
We first show how labeled event structures [NPW80, Win82] can be used for efficient
modeling of counters and FIFO channels. Moreover, the ideas that we used for the
modeling of these two data types can be applied in other cases: they show how a collection
of elements can be efficiently modeled, and how the order between these elements can
be taken into account if needed. The modelization is thus no more on the system level,
but on the behavioral level.

The labeled event structures as behavioral /branching/partially-ordered models are
strictly related to system/linear/interleaving models generally used in model-checking
such as labeled transition systems. We also give a strict correspondence between these
two kinds of models by means of coherence property. However, the advantage of the first
model, hence our choice, in comparison with the second one is that it can be directly used
for verification. Moreover, because of the partial-order inside, labeled event structures
are generally compact, and this fact makes such verifications more efficient. It is worth
noticing that our labeled event structures without restraint on their labeling functions
may be nondeterministic, i.e. a marking may correspond to a potentially infinite set
of system’s states. As a consequence, they are general enough to be combined with
symbolic techniques.

The unfolding technique, initially developed for systems modeled as Petri nets
[McM95a], requires a formalism having a notion of concurrent components; in particular,
the formalism should allow us to determine for each action of the system which compo-
nents participate in the action and which ones remain idle. The most straightforward
approach in order to apply the unfolding technique for concurrent systems is Arnold
and Nivat’s synchronized products of labeled transition systems [AN82, Arn92|. Loosely
speaking, in this formalism, components are modeled as labeled transition systems and
may execute joint actions by means of a very general synchronization mechanism. The

6

1.4. Contributions

result in [ER99| makes it clear that the unfolding technique is not tied to a particular
formalism, although its details may depend on the formalism to which it is applied.
However, this turns out not to be satisfactory: imagine that one models a counter by
an interleaving model such as a labeled transition system, then if, say, three different
processes want to increase the counter, their actions will get interleaved. As in principle
those actions are independent, we lose a good deal of concurrency present in the original
system. Our solution is to model a concurrent system by synchronized product of (het-
erogeneous) components where the semantics of components is given in terms of labeled
event structures. Hence, when applying the unfolding technique, one takes advantage of
the intrinsic concurrency in each component.

Our synchronized products of labeled event structures provide more information than
Petri nets about the structure of the system. In particular, we show that a Petri net may
be considered as the parallel composition of its places viewed as counters. Moreover, we
show that synchronized products of (labeled) event structures conform to event structure
semantics [Win82|, and are thus (labeled) event structures themselves. Hence, one easily
obtain a hierarchical modelization for complex systems.

Although labeled event structures are compact representations of systems, they are
in general infinite due to the existence of infinite computations. However, research on
verification of finite systems shows that properties can be checked using certain finite
prefixes, called complete prefixes, of their state-space. Of course, there is no hope to
have a notion of complete prefix for infinite systems. There is hope though when such
systems have a weak simulation relation that is a well-preorder over states. We show
how to adapt the results in [Fin87, FS01] to labeled event structures. We focus on
the following four verification problems: termination, boundedness, quasi-liveness and
sub-covering, that can be fully decided with algorithms. In other words, verification
algorithms have theoretical termination guarantee.

We show a way to deduce a (well-)preorder over configurations of labeled event struc-
tures from the one over system states. Notice that, since a configuration may correspond
to several states, these two preorders are quite different. They coincide only for deter-
ministic labeled event structures. We give a notion of compatibility of transitions/events
w.r.t. these preorders. Therefore, once the relation between preorders are determined,
one may switch corresponding compatibilities back and forth between system /behavior
models. We also show preservation of (well-)preorders as well as compatibilities under
parallel composition using synchronized products.

Based on the truncation criteria in the unfolding technique, we propose a general
definition of a cutting-context for well-preordered labeled event structures and show that
they admit a finite prefix preserving one or more properties depending on the system’s
structure. Particularly, we give appropriate cutting-contexts for the verification problems
that we focus on: termination, boundedness, quasi-liveness and sub-covering. Remark
that these results cannot be directly obtained from previous techniques on well-structured
systems since one needs to take into account the partial-order between events. We clarify
the difference between global and local cutting-contexts. The former one is similar to
techniques used in interleaving models [Fin91, FS01] while the other one respects the key
idea of the unfolding technique, and is thus more suitable to partial-order verifications.
Although our technique is based on forward partial-order analysis, we show that standard
backward analysis techniques (see e.g. [AJ96]) could be embedded. The intuitive idea
comes from the duality in the category of (labeled) transition systems.

As we use behavior models for systems, the model checking algorithms consist in
constructing such models. In general, reachability-based properties may be checked

7

Chapter 1. Introduction

on-the-fly. We present a generalization of the unfolding algorithm in [McM95a, ER99]
to parallel composition of labeled event structures. The idea is that, one iteratively
tries to enlarge some prefix by adding new possible events without looking at global
configurations/states. We detail our unfolding algorithm into two particular cases: for
component labeled event structures and for synchronized products of them. In the
first case, once a component is given by some labeled event structure, its events form
somehow concrete patterns. By analyzing such patterns, one may obtain simple unfolding
algorithms appropriate for the component. We propose algorithms for counters and
FIFO channels and some of their variants. Other labeled event structures for standard
components may have dedicated algorithms in the same manner. In the second case, the
unfolding algorithm takes the notion of concurrent component given by synchronization
constraints into account. The process of finding events to be added must consider the
associated component prefixes.

It is worth noticing that, in unfolding algorithms for Petri nets or synchronized
products of interleaving models, adding events depends on component states. But, in
our algorithm for synchronized products of labeled event structures, we synchronize
components’ events. This task must be accompanied with an additional checking in order
to see if such a synchronization satisfies the componentially downward-closed property in
the synchronization product. The advantage of our technique is that it allows the intrinsic
concurrency in components to be preserved. Moreover, we show that the labeled event
structure for a complex system may be algorithmically constructed in a hierarchical way.
It is not necessary to compute component labeled event structures prior to unfolding
synchronized products. Indeed, the synchronized product’s prefix and its component
prefixes are constructed together on-the-fly, and component ones are extended when
needed.

Finally, as a practical contribution, we have implemented a model checker, ESu, that
runs our algorithms. It has been written in OCaml. To our knowledge, ESU is the
first tool that combines the unfolding technique and decidable results on well-preordered
systems. We also analyse the results obtained using ESU and some other well-established
tools such as PEP and TINA to compare the benefits of different methods. In addition, a
heuristic technique is integrated in ESU to generate more compact truncations. Although
such truncations do not preserve behaviors of the system in terms of Mazurkiewicz’s
trace semantics, they are enough to check reachability-based properties that we are
interested in. Experimental results show that this technique is promising since, for
certain benchmark examples, we obtain truncations of which the size does not exceed
the number of the system’s reachable states.

1.5 Organization of the thesis

This thesis is organized as follows.

Chapter 2 provides basic notions that will be used along the thesis. We also introduce
two well-known models: labeled transition systems and Petri nets, as well as their
semantics.

Chapter 3 presents labeled event structures, based on prime event structures, together
with their properties. We motivate the choice of this model and briefly compare
it to other types of event structures. We define a strict correspondence between
labeled event structures and labeled transition systems modeling the same system.

1.5. Organization of the thesis

The major part of this chapter is dedicated to modeling concurrent systems. La-
beled event structures for standard systems such as counters and FIFO channels
are given. Their variants adapting to boundedness or different initial values intu-
itively demonstrate the ease of this modelization approach. We define synchronized
products of labeled event structures and show how to use it for modeling concur-
rent systems as a hierarchical structure. In fact, a Petri net may be considered as
some synchronized product of its places, and each place, in its turn, is similar to a
counter.

Chapter 4 addresses the truncation technique to obtain complete prefixes of labeled
event structures w.r.t. a given verification problem. We first define (well-)preorder
and compatibility on labeled event structures that may be deduced from the one
on labeled transition systems. We show that well-preorder and compatibility are
preserved in parallel composition.

Cutting-contexts for interesting verification problems such as boundedness, ter-
mination, quasi-liveness and sub-covering, are given. The decidability of these
problems on well-preordered labeled event structures are proved. We also study a
technique for adapting our forward analysis in order to obtain the same results as
some backward analysis.

Chapter 5 describes our general unfolding algorithm. We then detail it into two cases:
for synchronized products of labeled event structures, and for their components
that, of course, may be synchronized products. Appropriate algorithms for coun-
ters, FIFO channels, and even arbitrary systems (that have no local concurrency)
are given. The correctness and termination of all these algorithms are proved.

In addition, we show that truncation technique can be integrated into the unfolding
algorithm. Hence, the verification may be done together with the construction of
labeled event structures.

Chapter 6 illustrates a methodology for modeling of heterogeneous systems on the
example of the Alternating Bit Protocol, and explains how to verify interesting
properties. Then, we briefly describe our model-checker ESU. Experimental results
on standard benchmark examples are given. We also compare its results to the ones
obtained by using well-established tools: PEP and TINA.

Moreover, the well-known problem, called auto-concurrency problem, of unfolding
techniques for Petri nets is discussed. We show that its negative effect may be well
reduced by using our heuristic technique and as a consequence, the obtained prefix
is more compact but still preserves enough information for some reachability-based
properties.

Chapter 7 concludes the thesis and presents some perspectives of our work.

Chapter 2

Preliminaries

Contents
2.1 Relations and functions 11
2.2 Alphabetand words ¢ i it e e e e e e e 12
2.3 Orders v i i i e e e e e e e e e e e e e e e 13
2.4 Labeled transition systems 14
2.4.1 Behaviors and propertieso 16
2.4.2 Synchronized products of labeled transition systems 16
2.4.3 Simulation 18
2.5 Petrimets @ i it e e e e e e e e e e e e 19

2.1 Relations and functions

We use standard notations on sets. The power set of a set X, written P(X), is the set of
all subsets of X, and X is called the base set of P(X). Any subset F' of P(X) is called
a family of sets over X. We denote P¢(X) the family which contains all finite subsets
of X. A set of cardinal one, X = {x} for some element z, is called a singleton. We
notationally identify a singleton X by its only element x if there is no risk of confusion.

A relation R between two sets X and Y is a subset of the Cartesian product X x Y.
Let X’ be a subset of X, the (left-)restriction of R to X' is another relation R’ between
X' and Y defined by R' = {(z,y) e R /z € X'}.

Notation 2.1.1. The restriction of R to X’ is denoted by R|x.

We denote = Ry the fact that (z,y) € R. The converse relation of R, denoted by
either X or R™1, is a relation between Y and X defined by {(y,z) € Y x X /2 Ry}.
The complement of R is denoted either by R or R, i.e. R = R = (X xY)\ R. For
a given x € X, the set of all elements y € Y satisfying £ Ry is denoted by R(z), and

moreover it induces naturally the same notation on subsets of X.
Notation 2.1.2. For any subset X' C X, R(X') = U,cx/ (R(x)).

A relation R between X and Y is single-valued if R pairs x € X with at most one
yeY, ie forallz € X, |R(z)| < 1; and R is total for all x € X, there exists y € Y such
that z Ry. A function F from X to Y is any total and single-valued relation between

11

Chapter 2. Preliminaries

X and Y. We write F: X — Y and call X,Y respectively the domain of F, denoted by
Dom(F), and the codomain of F, denoted by Codom(F).

A function F : X — Y is bijective if it is

o injective: Va2’ € X, F(x) = F(2') = = = 2’; and

o surjective: Yy € Y, Iz € X : F(z) = y.

A bijective function is also called a bijection or one-to-one function.

A binary relation R on a set X is a relation between X and X, ie. R C X x X.
Binary relation R is

o reflexive (irreflexive) if x Rx (not R x, resp.) for all x € X,

o transitive if for all z,y,2 € X, x Ry and y R z imply = R z,

o symmetric (asymmetric) if for all x,y € X, x Ry implies y Rx (y R x, resp.),

o antisymmetric if for all z,y € X, xRy and y Rx imply z = y.

The identity relation over X is the set Ty = {(z,x)/x € X}. It is thus a reflexive,
transitive, symmetric and antisymmetric binary relation. Given a subset X’ C X, the
restriction of R to X', denoted by R|x-, is the set of all pairs (x,y) € R for which both
x and y are in X'. Formally, R|x» = RN (X' x X').

The transitive closure of a binary relation R on X, denoted by R™, is the smallest
transitive relation on X which contains R. Relation R exists and is unique (as stated)
for any binary relation R. The transitive closure R™ may be defined as follows: Va,y €
X, x RTy iff there exists a non-empty and finite sequence of element z1,...,x, € X such
that x = z1,21 Rx9,...,Zn—1 Ry, and z, Ry (this condition can be simply written as
x=x1Rxo ... Rxp,Ry). The reflexive and transitive closure of a binary relation R
on X, denoted by R*, is the binary relation Zy U R". Notice that the (reflexive and)
transitive closure of a (reflexive and) transitive relation R is R itself.

2.2 Alphabet and words

Let A be an alphabet, i.e. a finite set of symbols, a finite (infinite) word w over A is any
finite (infinite, resp.) sequence of symbols in A. We denote by A* (A“) the set of all
finite (infinite, resp.) words over A. The length of a word w is denoted by |wl|, and we
also use w to denote an infinite length. And ¢ is the empty-word, whose length is equal
to zero. Moreover, given any I C (N U w), we use notation A’ to denote a subset of
words based on words’ length. Formally, A is the set of all words in (A* U A“) whose
length is in I, i.e. Al = {w € (A*U A¥) / |w| € I}.

For two words w € A*, w' € (A* U A¥), we let w.w’ denote the concatenation of w
and w'. A finite word w € A* is a prefiz of a word w' € (A* U A¥) if there exists another
word w” € (A*U A¥) satisfying v’ = w.w”. Similarly, the word w” is then called a suffiz
of w', and we write w” = (w™)w'.

Let A, B be two alphabets, and £ be a function £ : A — B. We define the function
LW on words over A which is based on £, LW : (A* U A¥) — (B* U BY), as follows:

o LW(e) =¢, and

o LW (wa') = LYw).LY (W) for all w € A*,w' € (A* U A¥).

Definition 2.2.1 (Subword order). Let M be an alphabet. The subword order < over
M* is defined by: for all w = myms...m, € M*, for all w' € M* w' < w iff w' =
M My, ... My, for some k <nand 1 <14y <ip < ... <i < n.

For every word w € M*, its prefixes as well as its suffixes are particular subwords of
w itself.

12

2.3. Orders

2.3 Orders

A preorder < on a set X is any reflexive and transitive binary relation on X.

Definition 2.3.1 (Well-preorder). A preorder < on a set X is a well-preorder (converse
well-preorder) if every infinite sequence z1, 3, ..., Tk, ... of elements in X must contain
an increasing (decreasing, resp.) pair z; < «; (z; = x;, resp.) where i < j.

A partial order < is an antisymmetric preorder. For example, one can deduce that
the subword order over some finite alphabet M defined in the previous sub-section is a
partial-order on M*.

Definition 2.3.2 (poset). A partially ordered set (poset) is a pair (X, <) where X is a
set and < is a partial order on X.

Lemma 2.3.3. Let (X, <) be a poset. For every subset Y of X, (Y,<|y) is a poset.

Proof. By definition, <|y is also a partial order on X as well as on Y C X because the
reflexivity, transitivity and antisymmetry of < are all preserved on <|y. U

A total order < on X is a partial order such that for all x,y € X, we have either
x<yory<xz. A strict partial order on X is any irreflexive and transitive (and therefore
antisymmetric) binary relation on X. Every partial order < on X corresponds to one
and only one strict partial order on X, denoted by <, which is defined as < = (<\ Zx).

Given two binary relations R and R’ on a set X, we say that R refines R’ if whenever
xRy it also holds that z Ry. In other words, R contains R’, i.e. R’ C R. A linear
extension of a partial order < on X is any total order < on X which refines the partial
order <.

Definition 2.3.4 (Linearisation). Let (X, <) be a poset and Y be a subset of X. A

linearisation of Y w.r.t. < is any sequence containing all elements yi,y2,¥ys,..., of ¥
such that y; < y2,y2 <ys,..., for some linear extension < of <|y.
Remark: We sometimes represent a linearisation 1, y2,¥s, ... of Y by the corresponding

word w = y1.y2.y3 ... € (Y*UYY).

Let (X, <) be a poset and Y be a subset of X, then y € Y is a minimal (mazimal)
element of Y wrt. <ifforally € Y,y <y (y <y, respectively) implies 3/ = y.
And < is well-founded (converse well-founded) if every non-empty subset ¥ C X has a
minimal element w.r.t. <.

Minimal (maximal) elements of a subset ¥ need not exist (for example, when < is
not well-founded) and there may be many minimal (maximal) elements. We denote the
set of minimal (maximal) elements of a subset ¥ (w.r.t. <) by Min<(Y) (Max<(Y),
respectively). If z,y € Min<(Y'), x # y implies that neither z <y nor y < x.

Since < is a binary relation between X and itself, given a subset ¥ C X, <(Y)
contains all x € X satisfying: there exists y € Y where y < x. The set <(Y') is called
the upward closure of Y C X w.r.t. the poset (X, <). Similarly, we have the downward
closure of Y, denoted by >(Y"). A set Y is upward closed (downward closed) w.r.t. (X, <)
if it is equal to its upward closure (downward closure, resp.), i.e. Y = <(Y) (Y = >(Y),

resp.).
Definition 2.3.5 (DAG). A directed acyclic graph (DAG) is a pair (V, E) in which:

o V is called the set of wvertices,

13

Chapter 2. Preliminaries

o relation £ C V x V is called the set of directed edges, and
o ET is irreflexive.

We say that there exists a (directed) path from a vertex v to another vertex v’ if
v ETv'. The last property in Definition 2.3.5 intuitively means that there is no (non-
empty) directed path that starts and ends on a same vertex. Each DAG gives rise to a
partial order < on its vertices. Formally, if (V, E) is a DAG then (V,(Et UZy)) is a
poset, where Zy is the identity relation on V.

Reversely, a poset (X, <) is usually represented by and computed from one of DAGs
(X, E) (there are many) which corresponds to the poset, i.e. ET = < = (< \ Zx). For
the sake of simplicity, the relation E' would be as small as possible. If <(x) is finite for
all x € X, < gives rise to a unique minimal relation < so that <¥ = <. Therefore, in
this thesis, we always choose the minimal relation < for representing (X, <) as well as
graphically illustrating it afterward.

Notation 2.3.6. For a given poset (<, X), we denote < the relation

N R

RC(XxX): R*=<

Lemma 2.3.7. If >(x) is finite for all x € X, then <* = <.

Proof. Let § denote the set of all binary relation R on X satisfying R* = <. Due to the
transitive property of <, we have <* =<, and consequently, < € §. Therefore, < C <
and <* C <. We only need to prove that <* O <, that means, for all z,y € X, ifx <y
then z <* y (1) by induction on the size of >(y) because it is finite. In the base case,
when |>(y)| = 1, we must have = = y and obviously = <* y. In general, if z = y then
(1) is also true, otherwise, i.e. & <y, there are two sub-cases.

First, if there does not exists any element z € X such that z < z and z < y (2),
let R be any relation in 8. Since R* = < > (z,y), there exists a finite sequence
r =xgRx1R... Rz, = y where n € N and xg,x1,...,x, are pairwise different.
Moreover, n is not equal to 0 because x # y. If n = 1 then z Ry. Otherwise, there
exists an index i such that i € {1,2,...,n — 1} and * = 2o R " 2z; R 2, = y. As a
consequence, r = rg < ; < &, = y. It follows from xg # x; # x, that z < x; < y. It
contradicts to (2). Therefore, we have x Ry for all R € 8, and consequently, = < y.

Second, if there exists z € X such that * < z < y. Assume that z is chosen so
that there is no other element 2’ € X satisfying 2 < 2/ < y. Such an element z must
exist because otherwise, one thus obtains an infinite sequence 2’ < 2" < ... < y. And
it contradicts to the finiteness of the set >(y). As in the previous sub-case, we have
z < y. Moreover, since |>(z)| is less than |>(y)|, by the induction hypothesis (1), we
have x <* z, and consequently, x <* y.

Therefore, in both sub-cases, we have x <* y. This lemma is proved. O

2.4 Labeled transition systems

Definition 2.4.1. A labeled transition system is a quadruple LTS = (S, %, —, s%) where:

o S is a (potentially infinite) set of states,
e Y is a finite set of actions,
o the labeled transition relation — is any subset of S x ¥ x S, and

14

2.4. Labeled transition systems

e sY € S is the initial state.

Intuitively, one can evolve from a state s € S to another state s’ € S due to a
transition which is accomplished by an action a € X, ie. (s,a,s’) € —. It is thus
reasonable to write such a transition as s — s’. Formally, for any action a € &, = is
a binary relation on S, defined as % = {(s,s') € S x S/ (s,a,s') € —}. We say that
action @ is enabled from the state s and simply write s — .

Remark: The classical model called transition system can always be considered as labeled
transition system without labeling transitions by actions. A labeled transition system
(S, %, =78, 5°) gives rise to a transition system (S, —gs, s°) where —q5C S x S such
that for all 5,5 € S, s —qg &' iff there exists a € ¥ satisfying s — g3 5.

Example 2.4.2. The counter initialized by 1 is the labeled transition system CT =
(N, {+, =}, —,1) where its labeled transition relation — is defined by {(n,+,n+1)|n €
N}u{(n+1,—,n)|n € N}.

Figure 2.1: Graphical representation of the counter in Example 2.4.2

Figure 2.1 illustrates the counter initialized by 1 in Example 2.4.2 (see Section 3.3.2
for formal definition of counter’s family and detailed explications) by a directed graph.
States are represented by circles and every transition (s,a,s’) € — is represented by an
arrow leading from s to s’ labeled by a. The double frame of the circle corresponding to
state 1 indicates that it is the initial state of the system.

Ezxample 2.4.3. A FIFO (First-In-First-Out) channel in which we can send messages
ranging over M = {a,b} and receive messages in its sending order, can be modeled by
FF = (S,%, —, ") where:

e S = M~*: each state is a finite word over M,

e X={la/ae M}U{?a/a € M}: action !a (?a) means sending (receiving, resp.)

message a into (from, resp.) the channel,

o —={(w,la,w.a)/we M aec M}U{{aw,?a,w)/w e M* ac M}

o s¥ = a: there are initially a message a and a message b in the channel.

7a la
\ /
pain o

Figure 2.2: The FIFO channel in Example 2.4.3

Remark: By sending actions, the environment inserts messages into the channel, and
conversely, it removes messages from the channel by receiving actions. Sending and
receiving intuitively mean actions of the environment and not the ones of the channel.
This naming is naturally convenient while using channels in modeling complex systems
by synchronized product (see Section 3.3.4).

15

Chapter 2. Preliminaries

2.4.1 Behaviors and properties

Definition 2.4.4. Let LJ8 = (5, %, 5%, —) be a labeled transition system. A finite path
(resp. infinite path) in LTS is any finite (resp. infinite) sequence ™ = 51 —5 s}, 59 —

a o). . . .
shy...,8p —> 8h,... of transitions such that s,_; = s; for every index i > 1 in the
sequence.

. a .
We shortly write 7 = 51 <5 sy —> ...8; —> Sp41..., and we say that 7 starts in

s1. The transition relation (—) is extended to its transitive closure (—).

Notation 2.4.5. Given a word ¢ = aj.as...a; € X¥, 51—U>')5k+1 means that there is such
a path 7 from s1 to sgi1.

Let m = 81 -5 59 -2 ... Sk Gk, Sg+1- .- be a path of a labeled transition system
LTS = (S,%,s%,—). 7 is called an ezecution if it starts in the initial state of LTS, i.e.
s1 = s¥. The word ay.as .. .ay is called a firing sequence, and sy is called reachable by
execution 7.

The reachability set of a labeled transition system LTS, denoted by post} g, is the
set of all reachable states of LTS.

Definition 2.4.6. Let LTS = (5,%,5%, —) be a labeled transition system, and S’ C S
be some subset containing the initial state s°. The restriction of LTS to S', denoted by
LT8|s:, is the labeled transition system LTS8 = (5,3, —',s%) where —' = — N (S’ x
¥ xS

Given two labeled transition systems £J8 and £T8’, when their restrictions on their
reachable states postf qg and post} ¢ are the same, i.e. L‘J’S|post278 = L781|P05t275n they
are intuitively interchangeable.

Definition 2.4.7. Let LTS = (5,3, 5%, —) be a labeled transition system. LTS is:
e finite (infinite) if its set of states S is finite (infinite, respectively);
o deterministic if for all action a € ¥, = is single-valued function, i.e. s = s’ and
s % §" imply s’ = s”; and
o finitely-branching if for all state s € S, the set {s' € §/3a € ©,5 % &'} is finite.

Because the set of actions X in Definition 2.4.1 is finite, we have:
Corollary 2.4.8. Deterministic labeled transition systems are finitely-branching.
Proof. Obvious due to the finiteness of the action set ¥ in Definition 2.4.1. O

Example 2.4.9. The counter in Example 2.4.2 and FIFO channel in Example 2.4.3 are
both finite, deterministic and finitely-branching labeled transition systems.

2.4.2 Synchronized products of labeled transition systems

We now present a composition primitive that we use to build complex systems from
basic components: the synchronized product of labeled transition systems [ABC94]|. In
a synchronized product, components must behave according to so-called synchronization
vectors.

Notation 2.4.10. Given a number n € N and n sets X7, Xo,...,X,,, we denote the n-
dimension space X7 X Xo X ... x X, by ®(X1, Xs,...,X,). When € € X; for all 7 in
{1,2,...,n}, we denote the n-dimension space (X; U{e}) x (XoU{e}) x...x (X,,U{e})
by ®€(X1,X2, e ,Xn)

16

2.4. Labeled transition systems

Notation 2.4.11 (Component restriction). Given n sets Xi, Xo,...,X,. For all tuple
x = (x1,%2,...,%,) € (X1, Xo,...,X,) and for all i € {1,2,...,n}, we call z; the
component restriction onto i of x, and denote it by z |;. Therefore, the component
restriction onto i of a subset Y C X is the set {z|; /= € Y}, and is denoted by Y |;.

Given n labeled transition systems L£J81,LT8, ..., LTS, where LTS; = (S;, X, —;
80, i€ {1,2,...,n}. A synchronization vector is any n-tuple v in ®.(31,X2,...,3,),
and a synchronization constraint is any subset Ygp C ®:(X1,%9,...,%,) of synchro-
nization vectors. Intuitively, a label a in a synchronization vector means that the corre-
sponding component must take a transition labeled by a, whereas an € means that the
component must not move. The synchronized product is formally a labeled transition
system in which the set of actions, called global actions, are determined by synchroniza-
tion constraints.

Definition 2.4.12. Given n labeled transition systems LT8; = (S;, ¥, —, s?) where
i ranges over {1,...,n} and a synchronization constraint Xgp C ®.(21,%2,...,3,).
The synchronized product of LTSy, LTS, ..., LTS, with respect to Xgp is the labeled
transition system 8P = (Ssgp, Xsp, —s7, ng) defined by:

o Ssp=®(S51,52,...,5),

o for all 5,5 € Sgp,a € Ngp: s —=gp s iff, for every i € {1,...,n}, s|; i, s’
(notice that s|; — s'|; simply means that s|; = s'|;), and
o s3p=(s,...,80).

Ezample 2.4.13. Let CT; = (N,{+,-},—,0), €T, = (N,{+,—-},—,1), and CT3 =
(N, {+,—-},—,1) be three counters defined as in Example 2.4.2 with only difference
in its initial states. Let Xgp be the synchronization constraint defined as: Xgp =
{(=,+,+), (+,—,+), (e,6,—)}. The semantics of the synchronized product of €Ty, CTs,
and CT3 with respect to Ygyp is illustrated in Figure 2.3 where +gop, +IS:P7 —gp are respec-
tively abbreviations for global actions (—, +,+), (+, —, +), (¢,&, —) .

Figure 2.3: A synchronized product of three counters.

Remark: Synchronized product of labeled transition systems is a labeled transition sys-
tem. This synchronized product can be a component labeled transition system of another
synchronized product. In other words, synchronized products give us a way to hierar-
chically model complex systems.

Lemma 2.4.14. Synchronized product of labeled transition systems is finite, determin-

istic, finitely-branching if its components are all finite, deterministic, finitely-branching,
respectively.

17

Chapter 2. Preliminaries

2.4.3 Simulation

A labeled transition system is an abstract model of some real system in which one is only
interested in certain actions or behaviors. Hence, a real system gives rise to many labeled
transition systems which may be pairwise different on the abstract level. Among them, a
labeled transition system can simulates another one, it means that every behavior of the
second one is also a behavior of the first one, called an abstraction. And both of them
simulate the real system. The term "simulation" is used as in "this program simulates
the process of people making decisions".

The definition of labeled transition systems immediately suggests a notion of simula-
tion: initial states must be mapped to initial states, and for every action the first labeled
transition system can perform in a given state, it must be possible for the second labeled
transition system to perform the corresponding action, if any, from the corresponding
state.

Definition 2.4.15 (Simulation). Let £T8; = (51,1, —1,5)) and LT8y = (Sg, Ta, —2
,sg) be two labeled transition systems. A simulation relation from LTS8, to LTSy is a
pair R = (Rg,Rx) where Rg C S1 x Se and Ry, C ¥ X Xy are two relations, such that:

o s)Rg Y, and
o for all (s1,a1,s)) € —1,80 € S, s1Rg sy implies that there exists a transition
(82, a2, 85) € —9 satisfying s] Rg sh and a3 Ry as.

L LTS |a1-t-- Ry --+-as

Figure 2.4: Simulation relation.

Figure 2.4 illustrates the intuitive idea of Definition 2.4.15. It is worth noticing that
our definition of simulation concerns not only the states but also the actions of two
labeled transition systems. The standard definition of simulation/bisimulation [Mil71,
JP93, San04, San07] is thus a particular case in which two action sets ¥; and ¥ are the
same and Ry is the identity relation on 3. Our definition slightly differs from that of a
morphism between labeled transition systems given by Sassone et al. [SNW96] in which
Ry is a partial function, i.e. Dom(Ry) C X1, hence some actions of a labeled transition
system could be simulated by the e-action of another labeled transition system, i.e. the
other system does not move.

Ezample 2.4.16. Consider the FIFO channel in Example 2.4.3 FF = (M*,{!a, b, ?a, 7b},
—gg,a), where M = {a,b} and the synchronized product of three counters in Exam-
ple 2.4.13 8P = (N3, {+,+, =}, —s», (0,1,1)). Let us define:

18

2.5. Petri nets

e Rs = {(v,w) € N3 x M* such that |w| = v3}, and
o Ry = {{+,la), (+',1b), (—, ?a), (—, 7b) }.

It is easy to see that (Rg, Ry) is a simulation relation from 8P to FF, and we say that FF
simulates 8P. More precisely, a state (i, 7, k) in 8P is simulated by a word w = abab. ..
where |w| = k.

Now let us restrict the state set of FJF to the set of words in which the first message,
if exists, is @ and two consecutive messages are always different, and called it Sf.y. It
means that S, = {e,a,ab, aba,abab, ...}. Let Ry be the restriction of Rg to the new
domain Sf;. Then (R, Ry) is still a simulation relation from 8P to the new labeled

transition system FF’ and conversely, (R’ gl, R;) is also a simulation relation from FF’
to 8P.

Remark: When a labeled transition £T8; is simulated by another one LT85 w.r.t. to some
simulation relation (Rg,Ryx), by Definition 2.4.15, we also have that £J8; is simulated
by LTS8y w.r.t. every relation (Rg,R%) satisfying R§, O Ry. And particularly, one can
choose such a relation R, so that it is the maximal one w.r.t. the inclusion order, i.e.
R,E = 21 X 22.

Such a simulation relation (Rg, X1 x 32) intuitively induces to simulations between
transition systems without labeling actions in which one is interested in only systems’
states. However, the smaller the relation Ry is, the more information about corre-
spondence between systems’ action that one can figure out. This fact is also true for
bisimulations defined as follow:

Definition 2.4.17 (Bisimulation). Two labeled transition systems £J8; and LT8, are
bisimilar, or in bisimulation, if there exists a simulation relation (Rg, Ry) from £LT8; to
LTS, such that (Rgl, R;) is also a simulation relation from LT85 to LT8;.

Notation 2.4.18. We denote the fact that LTS, and LTS8, are bisimilar by LTS8 ~ LT8s.

Ezxample 2.4.19. Given the counter in Example 2.4.2 CT = (N, {+, -}, —e7,1) and the
synchronized product of the three counters in Example 2.4.13 8P = (N3, {+gp, +5ps =87}
—gp,(0,1,1)). These two labeled transition systems are in bisimulation w.r.t. the bisim-
ulation relation (Rg, Ryx), where

e Rs = {(v,k) € N3 x N such that k = v3}, and
b RZ = {<+ST7 +>7 <+/8{]37 +>7 <_Sfp7 _>}

Intuitively, by grouping vertices corresponding to states (0, 1, k) and (1,0, k) for every
k € N in the Figure 2.3, we directly obtains the graph representing the counter in
Figure 2.1. The actions +sp, +%, are identical and both correspond to the same action
"+’ in the counter.

2.5 Petri nets

A net [NPWS80, Rei85| is a triple (P,T,F) where P is a set of places, T is a set of
transitions, and F C (P x T) U (T x P) is its flow relation such that P and T are
pairwise disjoint. The preset (postset) of a node n € PUT, denoted by *n (resp. n®) is
the set of nodes {n’ € PUT /(n/,n) € F} (resp. {n’ € PUT /(n,n') € F}).

A multiset over a set X is a function p : X — N. Notice that any subset of X may
be viewed as a multiset over X. We denote x € p if pu(z) > 1, and for two multisets
w, i over X we write p < g/ if p(x) < p/(z),Vae € X. The sum of two multisets p and

19

Chapter 2. Preliminaries

w' over X denoted by p+ 1/, is given by (u + p')(z) = p(x) + p/(z); and when o/ < p,
the difference, denoted by u — ¢/, is given by (u — p') () = p(z) — 1/ (x).
A marking of a net N = (P, T, F) is simply a multiset over P.

Definition 2.5.1 (Petri net). A Petri net is a quadruple (P,T,F,mg) where N =
(P, T,F) is a net and mg is a marking of N. myg is called the initial marking.

Figure 2.5 illustrates a Petri net in which we use the standard rules about drawing
nets: places are represented as circles, transitions as solid bars, flow relation F by arcs,
and markings are shown by placing tokens within circles.

P P2
P = {p1,p2,p3}
T ={t1,t2}
F = {(p1,t1),{t1,p2), {t1,p3)} 1, . to
U {(p2,t2), (t2, p1), (t1,p3)}
U {(ps3,t3)}
mo = {(p1,0), (p2, 1), (p3, 1) } _t3

Figure 2.5: A Petri net

The semantic of a Petri net (P, T, F,mg), is given by the one of its corresponding
labeled transition system LTS8 = (S, 3, s°, —) where S is the set of all possible marking
of (P,T,F), %X =T, s’ = mg and for all marking m, m’ and transition ¢, we have m Lom!
iff ®¢ < m and m’ = m — *t + t*. Intuitively, firing a transition ¢ from a marking m is
removing a token in every place in ®¢ and then adding a token to every place in ¢°.

More interestingly, a place p initialized with k tokens may be seen as a particu-
lar Petri net ({p}, {t+,t—}, {(p,t-), {(t+,p)},{(p,k)}). This Petri net corresponds to a
counter CT = (N, {4+, —}, — e, k). An arbitrary Petri net, on its turn, corresponds to a
synchronized product of counters. For instance, let us consider the synchronized product
8P of three counters in Example 2.4.13 and the Petri net (P,T,F,mq) in Figure 2.5,
places in P are mapped to the component counters of 8P, and transitions in T are
mapped to the synchronization constraint {(—, +,+), (+, —, +), (¢,&,—)} of 8P.

Definition 2.5.2. A k-bounded Petri net is a Petri net (P,T,F,mg) in which every
reachable marking m must satisfy that m(p) < k for all p € P.

A particular case of parameter k£ in Definition 2.5.2 is when &k = 1. In this case,
such a Petri net is called 1-safe or a safe Petri net. A Petri net is used to describe a
wide range of systems. In [McM95a], McMillan has proposed a verification technique
on Petri nets which is based on the concept of net unfolding [NPW80]. The unfolding
of a Petri net is a net with simpler structure, called (labeled) occurrence net. However,
for technical reasons, algorithms for constructing labeled occurrence nets of a Petri net
(P, T,F,mgp) requires two following restrictions:

o there is no transition with empty preset, i.e. for all t € T', ®t # (), and
« the synchronization is finite, i.e. for every transition ¢t € T, ®¢ and ¢*® are finite sets.

It is recommended to have a look at [Sta89, McM95a, ERV96] for more details.

20

Chapter 3

Modeling concurrent systems by
labeled event structures

Contents
3.1 Prime event structures 000 22
3.1.1 Example and graphical representation 23
3.1.2 Configurations and extensions 23
3.1.3 Sub-structures 24
3.1.4 Prime vs general event structures 27
3.2 Labeled event structures 27
3.2.1 Semantics of labeled event structures 28
3.2.2 Properties of labeled event structures 30
3.3 Modeling concurrent systems v v v o ot 00 0o 32
3.3.1 Labeledeventtrees., 32
3.3.2 Counters 34
3.3.3 FIFO channels 43
3.3.4 Synchronized Products of Labeled Event Structures 54

Event structures [NPW80, Win82|, abstract away from the cyclic structure of the
process and consider only events, assumed to be the atomic computational steps, and
the cause/effect relationships between them. Thus, we can classify event structures
as behavioral, branching and noninterleaving models. In Section 3.1, we introduce prime
event structures as well as associated classical notations. A brief comparison with general
event structures is also given in this section.

In order to model a system’s behavior, we are rather interested in labeled event
structures. It allows us to represent states and different operations of a system by
means of labeling functions. As a consequence, one will find in Section 3.2 some strict
correspondence between such labeled event structures and labeled transition systems
which model a same system. The advantage of the first model, in comparison with the
second one, is that it can be directly used for verification (see Chapter 4). And moreover,
because of the partial-order inside, labeled event structures are generally compact, and
this fact makes verifications more efficient.

Concurrent labeled event structures for well-known systems, such as counters and
FIFO channels, will be given in Section 3.3. They provide a set of examples of how

21

Chapter 3. Modeling concurrent systems by labeled event structures

to exploit independence between a system’s actions. This independence brings forth
the concurrency of labeled event structures afterward. Then, we also define a class of
synchronized products of labeled event structures that conforms to the synchronization
idea on products of labeled transition systems given in Chapter 2. Such a synchronized
product of labeled event structures inherits well the concurrency of its components.

3.1 Prime event structures

Definition 3.1.1 (Prime Event Structure). A prime event structure is a triple € = (E, <
,#) where F is a set of events, < C F x E is a partial order on E, the causality relation,
and # C E x FE is a symmetric, irreflexive relation, the conflict relation, satisfying:

e finitary: Ve € E, >(e) is finite, and
o conflict-inheritance: Ve,e',¢” € E, e#te’ and ¢ < ¢” implies that efte”.

Intuitively, events (strictly speaking event occurrences) in a prime event structure
are ordered w.r.t. the causality relation. This partial order means that an event must
be preceded by, or occur after, some other one; and moreover, by only a finite number of
events. It is worth noticing that this property of finitary in Definition 3.1.1 is fundamental
from a computational point of view. The reason for this is that we assume that only
finitely many events can occur in a finite amount of time. And therefore, only events
with finitely many causes can occur.

Hence, a prime event structure is simply a poset (E, <) equipped with a conflict
relation # which means that two events, for example e and €/, can not both occur. And
naturally, events afterward are thus in conflict as the conflict-inheritance property states.

Notice that an event can not be in conflict with itself due to the irreflexivity of
conflict relation. This condition is sometimes called consistent |[Win82| or non-self-
conflict property in similar concurrent structures, e.g. occurrence nets [McM95a]. Two
events are concurrent if they are neither causal nor in conflict. This concurrent relation
is thus a symmetric and irreflexive binary relation on F.

Notation 3.1.2. We denote || the concurrent relation ((E x E)\ (S U >))\ #.

We extend the relations of conflict and of concurrency to subsets of E, and respec-
tively denote by #°, || , as follows:

« X#Y iff #0 (X xY) #£0, and
cXPYiff (X xY)C|.

In words, two subsets X,Y are conflict if there exists a pair of event x € X and
y € Y which are in conflict; and these subsets are concurrent if all such pairs of events
are concurrent. Given an event e, recall that e can stand for the singleton {e}, hence
e ||* X means that e is concurrent with every event in X. An event set X C E is called
concurrent if e [|* (X \ e) for all events e € X.

Thanks to Lemma 2.3.7, it follows from the finitary property that the binary relation
< corresponding to the poset (E, <) (see Notation 2.3.6 on page 14) satisfies that <* = <.
Moreover, since < is the intersection of all binary relations whose transitive closures are
equal to <, < is the minimal one w.r.t. the inclusion order.

As in graph theory, for two different events e, f € F, if e < f then we say that e is
a predecessor of f, and reversely, that f is a successor of e. More precisely, e is a direct
predecessor of f and f is a direct successor of e if there does not exists another event
g such that e < g and g < f. As shown in the proof of Lemma 2.3.7, the relation <

22

3.1. Prime event structures

formally represents this direct predecessor/successor relation, i.e. e < f. Hence, the set
of direct predecessors (successors) of an event e is the set >(e) (<(e) respectively). In
this work, we briefly call < the predecessor relation.

3.1.1 Example and graphical representation

Ezample 3.1.3. The prime event structure & = (F, <, #) where:

o« I = {61,62,63564,65’66}7
o <=7 U({ea} x {e3,eq,e5,€6}) U ({ea} x {e5,€6}), and
. # - @,

has no conflict. Its events are pairwise in causal or concurrent.
(a) (b)
[] [] [1S

R "L KN

N Tt N s N B
€3 €4 f4 fs O
“ €6 fs fo

Figure 3.1: Graphical representation of prime event structures

Figure 3.1.a illustrates the prime event structure in Example 3.1.3. We adopt the
standard rules about drawing occurrence nets. Events are drawn with boxes, and causal
relation is the the transitive reflexive closure of the relation depicted by the oriented
arcs. In other words, boxes and arcs in this figure correspond to vertices and edges of a
DAG (FE, <) which give rise to the poset (E, <).

For the purpose of adapting other works on the unfolding technique, causal events
are in top-down direction w.r.t. causal relation.

The conflict relation is represented by arc drawn like: fo © 7 7 = f3, as we can see
in another example of prime event structure & = (E', <',#') which is shown in Fig-
ure 3.1.b. It is worth noticing that our graphical representation depicts only a sub-
set #” of the conflict relation #. For clarity, this relation #” should be as small as
possible, however, in addition of the conflict-inheritance, #” is enough for computing
#. Formally, #" = {{e,f) € # />(e)#'*>(f)}. In this example, it follows from
#" = {(fa, f3), (f3, f2), {[5, f7), {f7, f5) } that the conflict relation #’ is given by:

= (<'(f2) x <'(f3)) U (£ (f3) x <'(f2))
U (<'(fs) x <'(f7)) U (<'(f7) x < (f5))

= ({f2, fa} x {3, f5, fo, f7, fs, fo}) U ({ f3, f5 fo, f7, fss fo} X {fa, fa})
U ({fs, fs, fo} x {fr}) U ({f7} x {fs, fs, fo})

3.1.2 Configurations and extensions

A subset of E is called conflict free if it does not contain events that are in conflict.

23

Chapter 3. Modeling concurrent systems by labeled event structures

Definition 3.1.4 (Configuration). Let &€ = (E, <,#) be an prime event structure. A
configuration of € is any finite subset C' of F such that C is downward closed w.r.t.
(E, <) and conflict free.

For all event e € E, the downward-closed set >(e) is a conflict free set due to the
conflict-inheritance and irreflexivity of the conflict relation in Definition 3.1.1. Hence,
>(e), finite by definition, is also a configuration and is called the local configuration of
e.

Notation 3.1.5. Let & = (FE, <,#) be an prime event structure. We denote by C¢ and
(?lg respectively the set of configurations and the set of local configurations of &.

Definition 3.1.6 (Extension). Let C' be a configuration of a prime event structure
& =(E,<,#). An event e € E is an extension of C, denoted by, C' F e if e ¢ C and
C U {e} is a configuration of €.

The extension of a configuration by events directly gives rise to a notion of extension
by a set of events. We call a subset X C E an extension set of configuration C, and
write C'IF X, if X and C are disjoint and C'U X is also a configuration.

Remark that our set extension I- on prime event structures slightly differs from the
extension notion I on local event structures [HKT96] in which an extension set X must
be a concurrent set, and it deduces that X = Ming <)(X). The triple (E, C¢,IF') is thus
a local event structure.

Lemma 3.1.7. Given a configuration C' of a prime event structure € = (E,<,#). For
all non-empty extension set X C E of C we have:

1. Je € X such that CFe and (CUe) Ik (X \ e), and
2. if X is finite, then 3f € X such that C'IF (X \ f) and (CUX)\ f)F f.

Proof. First item: Let g be any event in X. Due to the finitary property of & in
Definition 3.1.1, >(g) is finite, and so does >(g) \ C. There exists a minimal event e of
(>(g)\ C) w.rt. (E,<). Hence C'Ue is downward closed w.r.t. (E,<). Since CU X is
conflict free, and (C'Ue) C (C U X), C' Ue is thus a configuration. We have C I e and
(CUe) Ik (X \ e) by definition.

The second item can be proved by the same manner as the first one while choosing
f as a maximal event w.r.t. (E, <) of the finite set X. O

Corollary 3.1.8. For every extension set X of a configuration C, i.e. C IF X, for
every linearisation ey, ez, es, ... of X w.r.t. (E,<) we have C't ey, (CU{e1}) F eq, (CU

{61,62}) [€3,...

The decidability of some verification problems on prime event structures (see later
in Section 4.2) requires that prime event structures satisfy the following property.

Definition 3.1.9. A prime event structure & = (E, <,#) is finitely-branching if every
configuration C' € C¢ has a finite number of extension events, i.e. {¢ € F/C F e} is
finite.

3.1.3 Sub-structures

Definition 3.1.10. Let & = (E, <,#) be a prime event structure, ' C E be a set of
events. The restriction of € onto F', denoted by &|p, is the triple (F,<|p,#|r) where
<|r, #|F are respectively the restrictions of <, # onto (F' x F).

24

3.1. Prime event structures

Lemma 3.1.11. &|p is a prime event structure for every subset F C E.

Proof. (F,<|p) is a poset by Lemma 2.3.3 on page 13, let us denote <|p by <’. The
symmetry and irreflexivity are preserved in binary relation #|r. Moreover, >'(f) C >(f)
is finite for all event f € F, and conflict-inheritance is also guaranteed with <|p and
#|p. €| is thus a prime event structure. O

Definition 3.1.12 (Prefixes). Let € = (E,<,#) be a prime event structure. Given a
downward-closed set F' C E w.r.t. the causality <, the restriction of € onto F', i.e. &|p,
is called the F'-prefiz of &.

In practice, one only works on some finite prefix &|p of &€, i.e. F is finite (see
Chapter 5). The prefiz €|r gives not only a downward-closed set of events but also the
causality and the conflict relation between these events. The notion of sub-structures,
as a consequence, the notion of prefix, could be generalized to event structures of which
event sets may be disjoint. It bases on so called isomorphism which is defined as follows:

Definition 3.1.13 (Isomorphism). We say that two event structures (E,<,#) and
(E', <!, #') are isomorphic if there exists a bijection B between E and E’ such that, for
all events e, f € F,

e e < fiff B(e) < B(f), and
o e] iff Ble)#B(f).

Then, an event structure &’ is also called a prefix of another one &€ = (E, <, #), w.r.t.
isomorphism, if &’ is isomorphic with some prefix €|p of €. In this case, we say that &
is smaller than or equal to € w.r.t. isomorphism. It intuitively defines a partial-order on
the set of all event structures, called the prefiz-order. In this poset, the event structure
without event, i.e. (0,0,0), is the minimal one.

Another particular kind of sub-structures concerning € is its suffiz. A suffix is based
on some configuration C € Cg¢. Recall that C' is intuitively a set of events, certainly
downward-closed and conflict-free, which can occur together. One is interested in events
that can occur afterward, or together with events in C'. The set of such events is the
set ((E\ C)\ #(C)) which may be determined in another way by the union set of all
extension sets of C' in €.

Definition 3.1.14 (Suffixes). Given a configuration C of a prime event structure & =
(E, <,#), the restriction of € onto ((E'\ C) \ #(C)) is called the C-suffiz of €.

As detailed in Section 3.3, when aiming at modeling a system by certain event struc-
ture &€, each configuration C'in € corresponds somehow to a system’s state. The C-suffix
of € intuitively models another system that is different from the first one only on its
initial state. Therefore, in a theoretical view, suffixes of an event structures allow us to
model a family of systems. As a direct consequence of Lemma 3.1.11, suffixes as well as
prefixes of a prime event structure are prime event structures.

Ezxample 3.1.15. Figure 3.2 depicts the {f1, f3}-suffix of the prime event structure & =
(E, <,#) shown in Figure 3.1.b. The event set of this suffix is computed as follows:

E' = ((E\{f1, f3}) \ #{ f1, f3}))
= ((E\{f1, 3}) \ {f2; fa})
= {/fs, fe, 7, I3, fo}

25

Chapter 3. Modeling concurrent systems by labeled event structures

Is fo

Figure 3.2: The {fi, f3}-suffix of € given in Figure 3.1.b.

Lemma 3.1.16. Let & = (E, <,#) be a prime event structure, and C be a configuration
in €. X is an extension set of C, i.e. C'IF X, iff X is a configuration in the C-suffiz of
E.

Proof. Let S denote the event set of the C-suffix of €, ie. S = (E\C)\ #(C). By
definition of event set, X N #(C) = 0, and consequently, X is thus a subset of S.

(=) Since (C U X) is downward closed w.r.t. (E,<), X is downward closed w.r.t.
(E\C,<|(m\c))- Moreover, it follows from the conflict-freeness of (C'U X) that X
is also conflict-free w.r.t. both # and #|g. Therefore, X is a configuration in &|g.

(<) Tt follows from X N #(C) = () that (CUX) is thus a conflict-free set w.r.t. #. Let e
be any event in >(CUX), thanks to the conflict-freeness of (CUX), eis not in #(C),
and consequently, e is either in C or in S. Notice that >(CUX) = >(C)U>(X), if
e € S then e must be in >(X)N.S. Since X is downward-closed w.r.t. <|g, we have
e€ (>(X)NnS)=>|s(X) = X. Hence, we always obtain either e € >(C) = C or
e € X. As a consequence, >(C'UX) = (CUX) that means (C'U X) is downward-
closed w.r.t. the causality <. Therefore, X is an extension set of C.

O

Corollary 3.1.17. Let C be a configuration of a prime event structure € = (E, <, #).

o if € is finitely-branching then the C-suffix of € is finitely-branching; and
o if every event in E is not in conflict with C, i.e. #(C) =0, and the C-suffiz of €
1s finitely-branching then € is finitely-branching.

Proof. Let S denote the event set of the C-suffix of €, i.e. S = (E\ C)\ #(C). Thanks
to Lemma 3.1.16, every configuration X in the C-prefix gives rise to a configuration
(CUX)in &. The left-to-right implication is obvious.

For the right-to-left implication, let C’ be any configuration in £ and let X = C"\ C..
Since #(C) = (), S and C are disjoint sets and £ = C U S. The event set X, maybe
empty, is thus an extension set of C' and is a configuration in the C-suffix €|g due to
Lemma 3.1.16. An extension of C’ in & must be either an event in C or, otherwise, an
extension of C'U X. Once again, thanks to Lemma 3.1.16, in the second case, such an
extension corresponds to another extension of X in €|g. Since C is finite and X has
finitely many extensions in €|g, C’ has a finite number of extensions in & too. Therefore,
€ is finitely-branching. O

26

3.2. Labeled event structures

3.1.4 Prime vs general event structures

Prime event structure is a subclass of event structure [NPW80, Win82] which is generally
defined by a couple (E, C) where F is a set of events, C is a family of sets over event sets
E, or set of configurations. There is an equivalence between this definition of prime event
structures and Definition 3.1.1. However, we are interested in the second one because,
for many standard systems, the conflict and causality relations may be naturally defined.
Then these relations serve to compute configurations, and not conversely.

Moreover, aiming at constructing event structure for systems, we have no concern in
event structures not belonging to this subclass. That means event structures which do
not satisfying the following properties of prime event structures:

o full: every event is associated to at least one configuration, and
o causality relation is global: order between two events, if exists, is not varied in
accordance with some configuration which contains these events.

From now on, we will say event structures for short, always meaning prime event
structures.

3.2 Labeled event structures

Definition 3.2.1 (Labeled event structures). A labeled event structure is a tuple € =
(B, <,#,L, M) where (E,<,#) is an event structure, and

o L, called label function, is a function from event set £/ to some alphabet 3, and
o M, called marking function, is a function from configuration set C¢ to the power
set of some (maybe infinite) set S.

Recall that the co-domain is part of the definition of a function. Although the sets
Y and S are not explicitly given in the tuple (F,<,#, L, M) representing a labeled
event structure, we always denote ¥ the co-domain of £, i.e. ¥ = Codom(L), and S the
base set of the co-domain of M, i.e. P(S) = Codom(M). These sets X, S are called
respectively the set of actions and the set of states.

A labeled event structure € = (E, <, #, £, M) is simply an event structure (E, <, #)
equipped with two additional labeling functions in order to model the behavior of a
system. Hence, all notations and definitions on its event structure (F, <,#) previously
defined in Section 3.1, such as configuration, extension, prefix and suffix, are generalized
for the labeled event structure itself. Labeling functions for a sub-structure &’ based on
subset event E’ are thus its left-restrictions to F’, i.e. £|p and M|e where €' = C¢/ is
the configuration set of &’.

Definition 3.2.2. A labeled event structure & = (E, <, #, £, M) is deterministic if the
co-domain of the marking function M contains only singletons of the set of states S, i.e.

Codom(M) = {{s} /s € S}.

Remark: For deterministic labeled event structures, marking functions M may be simply
defined as a function from configuration set C¢ to the set of states .S, and its co-domain
is then extended to the power set P(S).

27

Chapter 3. Modeling concurrent systems by labeled event structures

3.2.1 Semantics of labeled event structures

Labeled event structure is used for modeling behaviors of a system. Intuitively, the label
function L tells which events are occurrences of which system’s action, while the marking
function M associate a configuration to some states of the system.

Meg 9\8 Mgy

1 — ' 0 A - <0, 7
0« {el} — (0,1,
2 «— {62} — (1,0,
1« {e1,ea} — (1,0,
I« {ea, e3} — (1,0,
3 {e2, €4} — (0,1,

1
(0,1
(1,0
(1,0
(1,0
(0,1
0« {61,62,63} —><1 0
2 «— {61,62,64} — <0 1
2 «— {ea,e3,¢e4} — (0,1
2 «— {62,64,65} — <0 1
4 — {62,64,66} — <1,0,
1+ {61,62,63,64} — <0 1
1« {ei,ez,eq,e5r — (0,1
3— {ey,e9,e4,e6} — (1,0
1+ {62,63,64,65} — <0 1
3— {eg,e3,e4,e6} — (1,0
0« {61,62,63,64,65} — <0 1
2 — {e1,e9,e3,eq4,e6t — (1,0
2 «— {62,63,64,65,66} — <1 0
1 <_\{¥613627637€47€57665—> <1,0

F NN O W WHF R B&AEDNDDNDDNDO W FDNDO -
S T S T T T T S T T T T S T S S S S S

Figure 3.3: Examples of labeled event structures

Ezample 3.2.3. Let’s consider the event structure (E,<,#) depicted in Figure 3.1.b.
We can have two different labeled event structures which are deterministic and are re-
spectively defined by two pairs of labeling functions (Leg, Meg) and (Lgp, CTgp) where:

o Log: F — {—l—,—}, Meg: Ce — N, and
o Lsp: E— {+sp,+5p, —}, Msp: Ce — N3

These labeled event structures are illustrated in Figure 3.3.

Labeled event structures are graphically represented like event structures (see Sec-
tion 3.1.1). In addition, the label of an event is shown inside the box corresponding to
the event. In Figure 3.3, the marking function Meg, as well as Mgy, is individually
defined for each element (configuration) in its domain Ce.

Definition 3.2.4. Let &€ = (E,<,#,L, M) be a labeled event structure. A labeled
transition system induced by €, denoted by L‘J‘SS, is defined as follows:
« the set of states is the base set S of co-domain of the marking function M,
o the set of actions is the co-domain ¥ of the label function L,
o the transition relation — satisfying that for all s,s' € S,a € &, s = s’ iff there
exists a configuration C' € C¢ and an event e € E such that C'+e,s € M(C),a =
L(e) and s € M(C U {e}).

28

3.2. Labeled event structures

o the initial state s© € M(0)).

Remark: Due to the last item in Definition 3.2.4, a labeled event structure does not
induce an unique labeled transition system.

Moreover, since a configuration corresponds to a set of states, induced labeled tran-
sition systems are generally not deterministic. Although of the determinism of a labeled
event structure (Definition 3.2.2), its induced labeled transition systems are determinis-
tic only if, from every configuration C, all extensions whose labels are the same, give a
same marking. The following lemma is straightforward.

Lemma 3.2.5. Let £ = (E,<,#,L, M) be a deterministic labeled event structure. If
for every configuration C € Cg and for all extensions e, f of C, L(e) = L(f) implies
M(C Ue) = M(CU f); then € has one and only one deterministic induced labeled

transition system.

Ezxample 3.2.6. The labeled transition system induced by the labeled event structure
(B, <,#, Leg, Mer) in Example 3.2.3 is (N, {+, -}, —e7, 1) where

—er ={(0,+,1),(1,+,2),(2,+,3),(3,+,4) }
U {<1’ _’0>’ <2’ _’ 1>’ <3’ _’ 2>’ <4’ _’3>}

+ + + +
ol oEiBouiBogBO

Figure 3.4: Graphical representation of the induced labeled transition system in Exam-
ple 3.2.6. Notice that it is similar to the one in Figure 2.1 on page 15. But here, there
are only 5 reachable states.

We have now an intuitive relation between labeled event structures and labeled tran-
sition systems - a classic model: configurations correspond to states, events correspond
to actions, extension F and set extension IF respectively correspond to transition relation
— and execution relation —>. In Example 3.2.6, both firing sequences +— and —+
are represented by configuration {e1, ez} in which there is no interleaving due to the the
concurrence between these (occurrence) events. Therefore, due to the independence be-
tween actions or concurrence between events, labeled event structures give us somehow
a way of compactly representing possible firing sequences of a system.

Definition 3.2.7. Two labeled event structures & = (E,<,#,L, M) and & = (E', <,
#' L' M) are isomorphic and we write € ~ &, if (E,<,#), (E',<',#') are isomorphic
w.r.t. some bijection B and

1. L(e) = L'(B(e)) for every event e € F, and

2. M(C) = M'(B(C)) for every configuration C' € Ceg.

Remark: When the underlying event structures of & and &’ are isomorphic w.r.t. to B
(see Definition 3.1.13), the bijection B gives rise to a bijection between configuration sets
C¢ and Cgs in which a configuration C' € Cg¢ is associated to the configuration B(C') € Cegr.

29

Chapter 3. Modeling concurrent systems by labeled event structures

Corollary 3.2.8. Let LTSE and LTSE be respectively induced labeled transition systems
of two labeled event structures & and &'. If & and &' are isomorphic, then LITSE and
LTSE are bisimilar.

Proof. Obvious by Definition 2.4.17 and Definition 3.2.4. O

Example 3.2.9. Induced labeled transition systems of the labeled event structures in
Example 3.2.3 are bisimilar w.r.t. the bisimulation relation (Rg, Ry) defined in Exam-
ple 2.4.19.

Moreover, one can find out that the labeled transition system induced by €& = (E, <,
#, Loy, Meg) in Example 3.2.3 is simulated by the counter in Example 2.4.2 by simply
observing its semantics depicted in Figure 2.1 and Figure 3.4. The formal reason is
that &€ is just a prefix of the labeled event structure for this counter latterly defined
in Section 3.3.2.

Lemma 3.2.10. Let C be a configuration of a labeled event structure € = (E, <, #,L, M).
Let (8,8, —,), (87,5, —,s%), and (S”,%", =", s°") be induced labeled transitions of
&, its C-prefiv E|> (¢, and its C-suffiz E|(p\o\#(c)), respectively. We have:

e S=5US",

e N =3uY,

« —» =—'U="

, and

o e M(D), s¥ = M(D), s* € M(C).
Proof. Obvious due to Lemma 3.1.16 and Definition 3.2.4. U

3.2.2 Properties of labeled event structures

As previously mentioned, we will construct labeled event structures representing sys-
tems’ behavior. More precisely, suppose that a system is implicitly defined by a labeled
transition system where reachable states are represented by configurations’ markings and
firable actions are represented by extensions. Therefore, if two configurations concerns
a same state s, i.e. its markings contain s, such configurations should have extensions
in accordance with all firable actions from s.

Definition 3.2.11 (Coherence). A labeled event structure is coherent if for all configu-
rations C,C’ € Cg,

o if M(C)N M(C") # 0 then for every a € ¥ = Codom(L) we have

U M(CU{e}) = U M(C" U {e})

e€E,L(e)=a,Cle e€E,L(e)=a,C'te

o if M(C) = M(C") then for every extension e € E of C, there exists an extension
e’ € E of C' such that L(e) = L(¢/) and M(C U {e}) = M(C"U{e'}).

Figure 3.5 illustrates the first property of the coherence. A simple consequence of
coherence is that if the markings of two configuration C' and C’ are not disjoint sets,
they are extended by the same set of labels/actions a in Codom(L). One can say that the
second property which is a particular case of the first one when configurations have a same
marking, sounds more reasonable. However, we are in favor of the first one when working
on non-deterministic labeled event structures as well as on non-deterministic systems. It
offers further some possibility of marking abstraction for labeled event structures.

30

3.2. Labeled event structures

C — M)A M) £ 0 — ¢

7\ /(
/ \
7/ \

/ // \\ /
e, i
/ \

/ \
/ \
/ \

(CU{e}) - (CU{Sf}) ====== (C’U{e’}) - (CTUdS)

Figure 3.5: Coherence of labeled event structures

Once again, look at the labeled event structure in Example 3.2.6. It represents
only some finite executions of its induced labeled transition system. The coherence
property is not satisfied in this example because, for instance, configurations () and
{e1,e9,e3,¢€4, 5,65} have a same marking, however, the first one can be extended while
the second one can not. This example explains well that coherent labeled event structures
are generally not finite. In fact, a configuration in a labeled event structure represents not
only reachable states by means of its marking, but also firing sequences of some induced
labeled transition system. Hence, if the induced system has an infinite execution, then
the corresponding labeled event structure should be infinite too.

Lemma 3.2.12. Let & = (E,<,#,L, M) be a coherent labeled event structure and
LT8¢ = (S,%,5%,—) be an induced labeled transition system of €. For all s € S and

o € XF, we have s"5ss iff there exists a non-empty configuration C € Cg and a
linearisation | of C w.r.t. (E,<) such that o = LY(I) and s € M(C).

Proof. This lemma is a direct consequence of the following property: s° A8y, 81
S9,... is a path of LTS iff there exists a sequence of events eq,es,... such that a; =

L(e1),0 - e; and s; € M({e1}); a2 = L(e2),{e1} F e2 and so € M({e1,e2});
This property could be easily proved by induction on the length of the path and using
Lemma 3.1.16, Definition 3.2.4 and Lemma 3.2.10.]

Lemma 3.2.12 only states about non-empty firing sequences. However, the empty
word € is of course a firing sequence of LT8¢ where its reachable state is equal to the
initial state s’. Other states s concerning the empty configuration (), i.e. s € (M(0)\s%)
does not mean that s is reachable. The following corollary is straightforward from
Lemma 3.2.12.

Corollary 3.2.13. Given a labeled event structure & = (E,<,#,L, M), if M(0) is a
singleton s° then the reachable state set of its unique labeled transition system L‘J'Sg, i.€.

is equal to U M(C
CeCe

postLTSS 5

As a consequence of the Lemma 3.2.12, one configuration of the labeled event struc-
ture may represent several executions of its induced labeled transition system. These
executions are simply different interleavings of events of the configuration, or in other
words, interleavings of actions’ occurrences. The more concurrency between events of
the configuration, the more corresponding executions it has. Therefore, in the view of
modeling systems by labeled event structures, it is worth noticing that for two labeled
event structures whose induced labeled transition systems are the same, the one in which
there are more concurrency, seems to be the more compact.

31

Chapter 3. Modeling concurrent systems by labeled event structures

Definition 3.2.14 (Redundancy). A labeled event structure &€ = (E,<,#,L, M) is
redundant if there exists a configuration C' € C¢ which has two different extensions

e, € E such that e#e/, L(e) = L(€/) and (M(C U {e}) NM(C U{e'})) # 0.

Definition 3.2.14 is similar to the one used in labeled occurrence nets [McM95a].
However, non-redundancy in labeled event structures does not give rise to the notion
of unique labeled event structure for some system. In other words, we can have many
non-redundant labeled event structures which model a same system, i.e. correspond to
the labeled transition system modeling it. More details on redundancy will be given in
Section 6.2.2.

3.3 Modeling concurrent systems

3.3.1 Labeled event trees

Definition 3.3.1. An event tree is an event structure &

= (F, <,#) satisfying that all
events are pairwise in causality or in conflict, i.e. (S U > U #)

S?
=(E X E).

Corollary 3.3.2. Let € = (E,<,#) be a tree,

1. for every configuration C € Cg, the restriction of < onto C, i.e. <|¢ is a total
order, and C' has thus one and only one linearisation w.r.t. the causality, and

2. every non-empty configuration C is the local configuration of some event e € E
where e is the mazimal event in C' w.r.t. the causality, i.e. {e} = Max<(C) and

C=>(e).

Proof. Since every configuration C' is conflict-free, i.e. #|c = 0, all its events are pairwise
in causality. The partial-order <|c is thus a total order on C. It defines the unique
linearisation of C' w.r.t. < by Definition 2.3.4. The first item is proved.

As a consequence, the finite set C' with its total order <|- admits a unique maximal
event w.r.t. <. Let us denote this maximal event by e, {e} = Max<(C) if C is not empty.
It follows from the downward-closure of C' that >(e) C C. Because of the uniqueness of
e, one has ¢’ < e for all ¢/ € C, and consequently, C C >(e). Therefore, >(e) = C, and
the second item is also proved.]

One can find different ways of defining a tree in other works [Fin87, Fin91, SNW96|.
For an intuitive comparison, in our definition, non-empty configurations C' (or events
whose local configuration is C') correspond to nodes, the empty configuration () corre-
sponds to a particular node, called root; and the acyclic property says that there exists
one and only one path from the root to any node of the tree. The notion of path is
represented by the linearisation of events or equally by the extension of configurations
(see Corollary 3.1.8) over event structures. Such an acyclic property corresponds to the
first item in Corollary 3.3.2.

Figure 3.6 illustrates an event tree in which events are labeled by either '—’ or 4,
and there is, in addition, an added root () representing the empty configuration (). By
giving a simple marking function M : C¢ — N defined as follow:

M(C)=1+[{ecC/L(e) = +} —[{e € C/L(e) = —}|

one can obtain a deterministic labeled event structure LET whose induced labeled tran-
sition system is the same as the one induced from the labeled event structure € in
Example 3.2.3 on page 28. However, LET is much bigger than & because LET has no
concurrency between its events while € does.

32

3.3. Modeling concurrent systems

Figure 3.6: Tree with labeled events

Definition 3.3.3 (Labeled event tree). A labeled event tree is a coherent and non-
redundant labeled event structure LET = (F, <, #, L, M) where (E,<,#) is an event
tree.

Proposition 3.3.4. Let LET = (E,<,#,L, M), LET = (B, <", # L', M) be two
labeled event trees whose induced labeled transition systems are the same. If LET,LET
are deterministic then LET and LET' are isomorphic.

Proof. Let LTS = (S,%, 5% —) denote the induced labeled transition system of both
LET and LET'. Since LET and LET” are deterministic, we have s® = M(0) = M'(0).

First, let us define a relation R between Min<(E) and Min</(E’) as follow: eR ¢’ if
L(e) = L'(¢') and M({e}) = M'({€'}). Notice that Min<(E) are the set of extensions of
the empty configuration () in LET. Let e be any event in Min<(E), and denote a = L(e),
s = M({e}). By definition of induced labeled transition system (Definition 3.2.4), it
follows from () - e and M({e}) = s that s % s. Thanks to Lemma 3.2.12, in LET’,
there exist a configuration that is a singleton {e’} such that £'(¢/) = a and M(€’) is
the reachable state s. Therefore, e R e’ because >'(€¢/) = {¢’} and thus ¢’ € Min</(E").
R is thus total. Suppose that R is not single-valued, there exists two events ¢, f' €
Min</(E") such that {¢/, f'} C R(e) for some event e € Min<(E). We have then,
L) =°L/(f) = L(e), M({}) = M'{f'}) = M({e}), and in addition, €'#'f" due
to Corollary 3.3.2. The labeled event tree LETJ” is thus redundant by Definition 3.2.14.
It contradicts to Definition 3.3.3. Therefore, R is single-valued, and is a function from
Min<(E) to Min</(E’), i.e. R : Min<(E) — Min</(E’). By the same reasoning, we also
obtain that R™! : Min</(E") — Min<(E). Hence, we can conclude that R is a bijection
between Min<(E) and Min/ (E').

Second, let e be any event in Min<(E) and ¢ = R(e). Since LET,LET are de-
terministic labeled event trees, their corresponding suffixes, denoted by LET] E\{e}\#(e)
and LET'| EN\{e')\#/(e"), are also deterministic labeled event trees. Moreover, because
M({e}) = M'({€'}), it follows from Lemma 3.2.10 on page 30 that these suffixes induce
the same induced labeled transition system. Therefore, as previously proved, there exists
a bijection R’ between the sets of minimal events in these suffixes LET| g fey\4(e) and

LE‘T’|E,\{6,}\#/(6/), such that £(f) = L(f') and M({e, f}) = M{€, f'} it R'(f) = f'.

33

Chapter 3. Modeling concurrent systems by labeled event structures

It is straightforward that the domain and the co-domain of the bijection R’ are the sets
of direct successors of e and €’ respectively, i.e. <(e) and <'(e’).

We can thus defined a relation B between E and E’ which is the union of all bijec-
tions R,R/,... in a constructive way. Since LET, LET’ are event trees, these bijections’
domains as well as its co-domains are pairwise disjoint. Moreover, notice that every con-
figurations of an event tree is the local configuration of some event, i.e. Creq = (?lLET.
B is thus a bijection that satisfies properties in Definition 3.2.7 on page 29. Therefore,
LET and LET' are isomorphic. O

Proposition 3.3.4 gives rise to the notion of unique labeled event tree, up to isomor-
phism, for labeled transition system.

Definition 3.3.5. Given a labeled transition system LTS, the deterministic labeled event
tree of LTS is a deterministic labeled event tree LET whose induced labeled transition
system is LTS.

Although deterministic labeled event tree, a classical structure for system’s behavior,
is not compact and in general is not the minimal labeled event tree for some labeled
transition system, it is simple to construct in practice (see Chapter 5). The reason is
that every configuration represents only an execution of the underlying system. And the
size of such a labeled event tree becomes huge easily due to interleaving of firable actions.
Therefore, we only use labeled event trees for modeling component systems in which it
is difficult to find or there exists no concurrency between actions/events (see Chapter 6),
for instance, modeling systems’ state without queues’ content in communicating finite
state machines [Boc78, BZ83, LI05].

3.3.2 Counters

A counter is a well-known datatype with values ranging over the set of natural numbers
N, equipped with two operations: '+’ and ’—’ that respectively increases and decreases
its value. A counter takes a natural number as its initial value, and may be viewed as a
labeled transition system.

Definition 3.3.6 (Counter). A v-initialized counter, where v € N, is a labeled tran-
sition system v-CT = (N, {+, —}, —e,v) where the transition relation —eg is the set
{n,+,n+1)/neNtU{(n+1,—,n) /n € N}).

By definition, counters are thus deterministic. Example 2.4.2 on page 15 shows the
semantics of the 1l-initialized counters. In the following, we aim at defining concurrent
labeled event structures dedicated to behaviors of such counters. We first restrict to the
ones modeling the 0-initialized counter.

Definition 3.3.7 (k-causality event structures). Let k be a natural number, a k-causality
event structure is an event structure & = (E, <, #) where # = () and < satisfies:

1. for all e € Min<(E), <(e) # 0;

2. for all e € E, if <(e) # () then |<(e)] =k + 1 and [{e/ € <(e)/<(¢/) =0} =1;

3. for all e € (E'\ Min<(FE)), >(e) is a singleton; and

4. IMin<(E)| =k if £ > 0 and |Min<(E)| = o0 if k = 0.

Recall that < is the predecessor relation and is the minimal relation w.r.t. the
inclusion order such that <* = <. For an event e, <(e) = () means that e has no (direct)
successors, and is called a leaf (as in graph theory). A minimal event (w.r.t. causality)

34

3.3. Modeling concurrent systems

is not a leaf due to the first item. While the second item intuitively means that if an
event e is not a leaf, then it has exactly k + 1 direct successors, formally defined by the
set <(e), and only one of them is a leaf. The first item says that every event e has at
most one direct predecessor, this predecessor is >(e) if exists. As a consequence, one
can find out that the restriction of < onto the local configuration of e, i.e. <[>, is a
total order. Hence, a k-causality event structure € is intuitively a set of disjoint event
trees without conflict relation. The roots of such trees correspond 1-to-1 to the minimal
events in Min<(E). The last item distinguishes the particular causality event structure
where k is zero, and will be explained lately in Section 3.3.2.

Moreover, given any event e which is not a leaf, let .S denote the set of direct successors
of e which are not leaves. Then the restriction of the k-causality event structure over
the upward-closure set of S, w.r.t. the causality <, is isomorphic with & itself.

Lemma 3.3.8. Given a k-causality event structure € = (E,<,#) and an event e € E
such that <(e) # 0. Let €' be the unique direct successor of e which has no successor,
i.e. e<e and <(¢') = 0. If k >0 then & and E|5 o)\ (1} are isomorphic.

Proof. Obvious by definition. O

As a consequence, the k-causality event structure are unique, w.r.t. isomorphism, for
any given number k. Aiming at modeling the O-initialized counter, a k-causality event
structure is nothing but an underlying structure for a k-causality process defined below.
One intuitively labels its leaf events by the decrement action —’ and its other events by
the increment action '+’.

Definition 3.3.9 (k-causality process). Let k be a natural number, the k-causality
process is a labeled event structure k-CP = (E, <, #, L, M) where & = (E, <, #) is the
k-causality event structure, and

o labeling function £ : E — {4+, —} defined as £(e) = —, if e has no successor, i.e.
<(e) =0, and L(e) = +, otherwise;

o marking function M : €¢ — N defined as M(C) = [{e € C/L(e) = +}| — [{e €
C/L(e) = —}I.

Figure 3.7 illustrates k-causality processes for different values of k. In causality
processes, all events, which correspond to either increment action '+’ or decrement action
'—’, are pairwise concurrent or in causality. There are two types of causality: causality
between a decrement event and an increment event, or causality between two increment
events. The first one naturally comes from the fact that a counter can not take a negative
value, so that a decrement event must occur after some increment event. However the
second type of causality is our own constraint to causality processes in order to guarantee
the finite-branching property of k-causality processes.

Lemma 3.3.10. The k-causality process k-CP = (E,<,#,L, M), for a given finite
number k > 0, is a non-redundant and finitely-branching labeled event structure.

Proof. Since there is no conflict in k-causality process, k-CP is thus non-redundant by
Definition 3.2.14.

Let C' be any configuration of k-CP, and X = {e € E/C F e} be the set of its
extension events. Due to the downward-closure property of configurations, we have
e € X only if either e is a minimal event w.r.t. causality, i.e. e € Min<(E), or e is a
direct successor of some increment event ey in C, i.e. dey € C': ey < e. Therefore, the

35

Chapter 3. Modeling concurrent systems by labeled event structures

Figure 3.7: Examples of k-causality processes

cardinal of X can not exceed |Min<(E)|+ (k + 1)|C| = k + (k + 1)|C|, because each
increment event has exactly (k + 1) direct successors. It follows from the finiteness of
k and of configuration C' that the set X is finite. As a consequence, k-CP is finitely-
branching by Definition 3.1.9. O

Lemma 3.3.11. For any given number k, the k-causality process is coherent and its
induced labeled transition system is the zero-initialized counter CTV.

Proof. Let k-CP = (E,<,#,L, M) be the k-causality process, and denote F; = {e €
E/L(e)=4}and E_ ={e€ E/L(e) = —}. Let C be any configuration of k-CP.

We will first prove that there exists an extension event ey of C' such that e, € E
(*). fCNE; =0, since Min<(E) # () and Min<(E) C E by definition, we can choose
any event e; in Min(E) that satisfies (*). If C N Ey # 0, let f4 be any maximal, w.r.t.
<, increment event of C, i.e. fi € Max<(C N E4), we have then two cases. In the
first case, K = 0, by Definition 3.3.7, there are infinitely many minimal events. The
set (Min<(E) \ C) is not empty and contains only increment events. Any event in this
set satisfies (*). In the second case, k > 0, let e; be any event in k increment direct
successors of fi. fi is not in C' and is thus an extension event of C' which satisfies.

Secondly, suppose that M(C') > 0. We can deduce that Max<(C') N E4 #) because
otherwise, for every increment event of C', its direct successor which is a decrement event
is also in C. Hence |C N E4| can not exceed |C' N E_|, so that M(C) = 0, contradict
to the hypothesis. Let e, be any increment event in Max<(C) N Ey. By definition, e
has a direct successor e € E_. It is obvious that C' - e_. The reverse, i.e. if C' has an
extension event e_ € E_ then M(C) > 0, can be proved in the same manner.

Now, by definition of the marking function M, if C' I e, we have M(C U {e}) =
M(C)+1life € E; and M(CU{e}) = M(C)—1 otherwise. Because for any configuration

36

3.3. Modeling concurrent systems

C, it always has an extension event in F, and in addition, an extension event in F_ if
M(C) > 0, the k-causality process is thus coherent.

Therefore, in the induced labeled transition system, we have (M(C), +, M(C)+1) €
— s qgi-ep for all configuration C' of k-CP, and (M(C'), +, M(C) + 1) € — qgi-ep for all
C whose marking is positive due to Definition 3.3.9 and Definition 3.2.4. Moreover,
M@) = 0N EL| —|0NE_| =0, the set of states in LTS ? is thus N. Therefore,
LTS C7 is the zero-initialized counter defined in Definition 3.3.6. O

Parameter k in causality processes

The idea of our k-causality process is inspired by the unfolding technique on Petri
nets [McM95a]. A counter could be intuitively considered as a place with tokens of
a Petri net. The value of a counter corresponds thus to the number of tokens in this
place. One can add a token to a place or remove some existing one from this place.
These two actions are really independent.

The O-causality process is a deterministic labeled event structure in which added
tokens are distinguishably represented by a minimal increment event and its only direct
successor. Each pair of such events with its causality can be seen as a labeled event
structure for a token. Moreover, a place of a Petri net can be seen as a synchronized
product of tokens without synchronization vector. As a consequence, the O-causality
process can be computed by a synchronized product of labeled event structures modeling
tokens (see Section 3.3.4).

Since there is only causality between an increment event and a decrement event as
naturally needed, O-causality process is the most concurrent process. In another words,
this causality process admits certain w-concurrency. And by using it in synchronized
products of labeled event structures, we can obtain the same structure as with labeled
occurrence nets [McM95a, Haa99] or branching processes [ERV96, DJN04| on Petri nets.

However, there are three problems. First, O-causality process may not be adapted
to defining bounded counters or safe Petri nets’ places (see Section 3.3.2). Second, 0-
causality process’ infinitely-branching property prevents itself from concurrent verifica-
tion technique (see Section 4.2). Notice here that in other works, verification techniques
for Petri nets is guaranteed by either the boundedness/safeness of places, which is sup-
posed or is proved by other techniques. And third, like other k-branching processes
where k is a great number, 0-branching process may give rise to enormous redundancy
in a global synchronized product in which 0-branching process is used as a component.
This redundancy is not easy to reduce (see Section 6.2.2 for more details).

By using a positive and finite number k in causality processes, the decidability of veri-
fication problems based on labeled event structures is guaranteed. The greater parameter
k is, the less causality between increment events there is, and as a consequence, the more
concurrent causality process we have. Changing k for component causality process is a
heuristic way to equilibrate the concurrency of the global labeled event structure and
its redundancy; so that one can obtain a more or less compact labeled event structure
(see comparison results in Section 6.3.2). Intuitively, if counter’s value never exceeds b,
parameter k greater than b is not necessary.

The 1-causality process is a particular one in which there is a total causality (order)
over increment events. Our process for bounded counters is based on it.

37

Chapter 3. Modeling concurrent systems by labeled event structures

Bounded counters

A bounded counter differs from general counters (Definition 3.3.6) only on its set of
reachable states. Its value never goes beyond some given number. Formally,

Definition 3.3.12 (b-bounded counter). Let b € N;b > 0 and v € {0,1,...b}. A v-
initialized bounded counter is the labeled transition system b-BC" = ({0,1,...,b},{+, -},
—pe,v) where the labeled transition relation —ge is the union set {(n,+,n+ 1) /n €

{0,1,....,6—=1}}U{(n,—,n—1) /ne{1,2,...,b}}.

Consider the 1-bounded counter 1-BCY whose initial value is zero. This labeled
transition system has only two states 0 and 1 and two labeled actions '+’ and '’
for switching its state. An event corresponding to the increment action gives rise to
only one other event which corresponds to a decrement action, and inversely. There is
no concurrency at all in the behaviors of this bounded counter. The minimal, w.r.t.
isomorphism, finitely-branching and coherent labeled event structure for 1-BC° is thus
its deterministic labeled event tree which is graphically represented in Figure 3.8.a.

O
S0t ol
=

Figure 3.8: Graphical representation of k-bounded processes

As previously mentioned, a counter can be seen as a synchronized product of tokens
on a Petri net’s place in which every synchronization vector concerns only one component.
In the case of a bounded counter, the boundedness may be certified by limiting the
number of synchronized tokens to some number b. The b-bounded process defined below
is somehow a synchronized product of labeled event structures which all aim at modeling
behaviors of 1-B€°. But with a slight modification on synchronized product’s marking
function M so that Codom(M) is N, not N® (see Section 3.3.4).

Definition 3.3.13 (b-bounded process). Given a positive natural number b, the b-
bounded process is the labeled event structure b-BP = (E, <, #, L, M) where:

1. #=0;

2. [Min<(E)| =b and for all e € (E'\ Min<(E), |>(e)| =1,

3. L: E—{+,—}and M : Cpzp — {0,1,...,b} such that M(C) =[{e € C/L(e) =
T} - leeC/L(e) = -}l

4. for every minimal event e € Min<(E), b-BP|((.)) is the deterministic labeled event
tree of 1-BCY; and

38

3.3. Modeling concurrent systems

The first item obviously says that there is no conflict in the b-bounded process.
Due to the second item, every event has one direct predecessor except b minimal events
w.r.t. the causality <. As a consequence, events can be distributed in b disjoint sets,
each set contains a minimal event e,, € Min<(E), and all events which are in causality
with e,,. Two events from different sets are thus concurrent. The third item states
that labeling functions of the b-bounded process are more or less similar to the ones for
causality processes in Definition 3.3.9. The last one is the most interesting, it tells that
each disjoint set of events above, determines a labeled event tree for 1-bounded counter
1-B€° by means of restriction. And the number of component structures is exactly b due
to the second item. As a consequence of Proposition 3.3.4, for any given b, b-bounded
process is unique up to isomorphism.

Figure 3.8 illustrates two bounded processes. Since the causality in the labeled event
tree of 1-BCY is a total order, every event has a different label with its only direct
successor. It is obvious that the marking of a configuration is determined by the label
of its unique maximal event w.r.t. causality. Of the same manner,

Remark: We have M(C) = |[Max<(C) N{e € E/L(e) = +}| for any b-bounded process.

Lemma 3.3.14. Given a finite number b, the b-bounded process b-BP is deterministic
and finitely-branching.

Proof. Due to the definition of the marking function in Definition 3.3.13, b-BP is de-
terministic by Definition 3.2.2. Let C' € Cp.3p be any configuration, C' has exactly b
extension events which are separately located in b different sub-structures of b-BP. b-BP
is thus finitely-branching due to Definition 3.1.9. O

Lemma 3.3.15. Given a positive natural number b, the b-bounded process b-BP = (E, <,
#,L, M) is coherent and its induced labeled transition system LTS B is the b-bounded
counter b-BCY whose initial state is 0.

Proof. As mentioned, since b-BP is intuitively composed of b labeled event trees whose
causality is total, for any configuration C' € Cp gp, Max<(C) is not greater than b. And
moreover, any of its extension event is either a direct successor of some maximal event
of C' w.r.t. <, or a minimal event of E.

Let us denote Ey = {e€ E/L(e) = +} and E_ = {e € E/L(e) = —}. Due to the
remark above, if M(C) = k then Max<(C) N E_ = (), thus C' can not have extension
event labeled by +’. If M(C) < k, we have two cases. First, if Min<(E) Z C, every
event in the non-empty set Min<(E) \ C' is an extension event of C' and is an increment
event. Second, if Min<(E) C C, we have |Max<(C)| = k. Since M(C) < k, C has at
least one maximal event which is a decrement event, and its unique direct successor,
which is an increment event, is thus an extension event of C.

Therefore, C has extension event which is an increment event if and only if M(C) < k.
In the same manner, we can prove that C' has extension event labeled ’—’ if and only if
M(C) >0 (1).

By definition of the marking function M, when C' + e we have M(C U {e}) =
M(C)+1ifee By, and M(CU{e}) = M(C)—1if e € E_ (2). The b-bounded process
is coherent by Definition 3.2.11.

In addition, M(0) = |[0NE;|—|@NE_| = 0. From (1) and (2), we can conclude that
the induced labeled transition system LT8*P? is the b-BY defined in Definition 3.3.12.

O

39

Chapter 3. Modeling concurrent systems by labeled event structures

Now let us discuss the possibility of adapting a k-causality process k-CP to model
behaviors of b-bounded counters for some given number b. Our idea is to add some
causality between events so that the obtained labeled event structure, denoted by &,
disallows all configurations of marking b to have an extension event which is an increment
event. Let C' € Cp-ep be a configuration with M(C) = b, X, and X_ are the sets of
extension events of C' which are labeled by '+’ and '—’ respectively. Since causality
processes’ induced labeled transition system LT8*CP is zero-initialized counter, we have
| X | =band X, #0.

Naturally, any event in X_ is still an extension event of C' in £ while an event in
X4 is not. Moreover, let e, be any event in X, ey could be an extension event of the
configuration (C'U {e_}) € C¢ for some (or all) event e_ € X_. Due to the absolute
concurrency between decrement events in k-CP, this idea is difficult to be implemented.
We need somehow a total causality over X_ and to impose the causality between e, and
the minimal event of X_| w.r.t. <, afterward.

Due to the intuitive idea above, we can only conform 1-causality process to mod-
eling bounded counters’ behaviors. The goal labeled event structures are isomorphic
with bounded M-causality processes for FIFO channels where M is a singleton (see Sec-
tion 3.3.3).

Counters initialized by positive values

The v-initialized counter can be seen as a Petri net’s place in which there are initially v
tokens. Behaviors of such a place are the same as behaviors of an empty place, modeled
by means of O-initialized counter, combined with concurrent events which remove initial
tokens. These v tokens with only removing operations can be modeled by a simple
labeled transition system, called v-countdown counter.

Definition 3.3.16 (v-countdown counter). Given a number v, the v-countdown counter
is the labeled transition system C€D" = ({0,1,...,v},{—},—,v) where the transition
relation — is the set {(n,—,n—1)/n € {1,...,v}}.

Since all events corresponding to the decrement action, labeled by ’—’, are pairwise
concurrent and there are at most v events. We define a labeled event structure for
countdown counters in which there is no strict causality and conflict. However, by
omitting this total concurrency, one can also gives other labeled event structures for
representing countdown counters,, for instance, labeled event trees.

Definition 3.3.17 (v-countdown process). Given a number v, the v-countdown process
is a labeled event structure v-CD = (E,Zg, 0, £, M) where:

o there are exactly v events, i.e. |E| =,

« labeling function £: E x {—}, and

o marking function M : Cpep — {0,1,...,v} is defined as M(C) =v — |C].

=1 =] =] [=]

Figure 3.9: The 4-countdown process

The following is straightforward.

Lemma 3.3.18. Let v € N be any number, the v-countdown process v-CD is a deter-
manistic, finitely-branching and coherent labeled event structure for v-countdown counter
CD" defined in Definition 3.3.16.

40

3.3. Modeling concurrent systems

Our labeled event structure for wv-initialized counters intuitively consists of a v-
countdown process and a k-causality process, for a given number k.

Definition 3.3.19 ((k, v)-causality process). Let k, v be two natural numbers, the (k, v)-
causality process is a labeled event structure (k,v)-CP = (E, <, #, L, M) where E is the
union set of two disjoint sets F, and Ej such that:

1. (k,v)-CP|g, is v-CD w.r.t. isomorphism,

(k,v)-CP|g, is k-CP w.r.t. isomorphism,

<= (<lp,) U (Zlp,) and # =0,

Dom(L) = E and Codom(L) = {+, -}, and

marking function M : € ,y-ep — N is defined as M(C) = v+ [{e € E/L(e) =
+H = Hee E/L(e) = -}

AN

Although the labeling function £ is not explicitly defined in Definition 3.3.19, thanks
to the first and second items, one can see that £ is the union of two disjoint functions £L|g,
and L|g, which are well defined. So that, for instance, events in E, are all labeled by the
decrement action =’ by Definition 3.3.17. Figure 3.10 shows causality processes with
different parameters k and v. For instance, in the (3, 2)-causality process (Figure 3.10.c),
we have E, = {el,e2,e3} and E, = F\ E,. Notice that when v = 0, i.e. E, = (), the
(k,0)-causality process is the k-causality process in Definition 3.3.9.

(a) k=0and v =2 (b)k=1landv=1

(=] =] =] [=] (=1]

1 2 €y
v

=] [+

R A e

Figure 3.10: Example of (k,v)-causality processes

Figure 3.10.a and Figure 3.10.b show the (k, v)-causality processes together with its
corresponding k-causality processes for two particular values of k: kK = 0 and k = 1.
In these two figures, events in k-causality process which are not in the (k,v)-causality
process are colored in gray. One can find out that, (k, v)-causality process is intuitively a
suffix of k-causality process for every value of v. However, it is true only when £ is either

41

Chapter 3. Modeling concurrent systems by labeled event structures

0 or 1. As a consequence, it follows from Lemma 3.2.10 that induced labeled transition
systems of (0,v)-causality processes and (1,v)-causality processes are all v-initialized
counters.

Lemma 3.3.20. Let k,v be two numbers. (k,v)-CP = (E,<,#,L,M) is a finitely-
branching if k > 0, deterministic, non-redundant and coherent labeled event structure
whose induced labeled transition system LTS*V-CY ys the v-initialized counter v-CT in
Definition 3.3.6.

Proof. By definition of the marking function M, (k,v)-CP is deterministic by Defini-
tion 3.2.2. Tt is also non-redundant by Definition 3.2.14 because there is no conflict, i.e.
#=0.

Let C be any configuration of (k,v)-CP. By definition, (k,v)-CP is intuitively a
combination of v-CD, k-CP of which event sets are respectively E,, Fj, and these sets
are concurrent, i.e. E, ||* E;. Hence, every extension event of C' in (k,v)-CP is either
an extension event of C' N E, in v-CD (number of such events can not exceed v) or
an extension event of C'N Ej in k-CP (number of such events is finite if & > 0 due to
Lemma 3.3.10). Therefore, (k,v)-CP is finitely-branching.

Now, we are going to prove the coherence of (k,v)-CP. Let X be the set of all
extension events of C' in (k,v)-CP, and denote by X, = X NE;, X_ = X N E_ its two
disjoint subsets of increment events, decrement events respectively. X is not empty
since C has at least one extension event ey € E, in k-CP due to Lemma 3.3.11.

By definition of marking function M, M(C) = 0 (*) if and only if |[C N E_| =
v+ |CNEL|. Since E, C E_, we can write |Cy| + |Cy N E_| = v + |Cy N E4| where
C,=CnNE, and C, = CN E}. Because Cy, is a configuration of k-CP, so the number of
its decrement events can not be greater than the one of its increment events; and |C,| is
less than or equal to the number of events in v-CD, hence (*) if and only if C,, = E,, and
Mp-ep(Ck) = 0. In this case, X_ C Ej, and X_ is thus empty due to Lemma 3.3.11.
Otherwise, i.e. either C, C E, or My.-ep(C)) # 0, X_ contains at least one event which
isin E, \ C, or is an event extension e_ € Ej of C} in k-CP.

Therefore, for all configurations C of (k,v)-CP, C always has an extension which
is an increment event, and C' has an extension which is an decrement event if and
only if M(C) > 0. Moreover, by definition, M(C Ue) = M(C)+ 1 if e € E;, and
M(CUe) = M(C) — 1 otherwise. (k,v)-CP is thus coherent.

In addition, since M(@)) = v, the induced labeled transition LI$ECT i5 the v-
initialized counter v-C7T in Definition 3.3.6. U

Remark: Combination of labeled event structures like in (k,v)-causality processes could
be applied to put together, for instance, causality processes with different parameters
k, and then with any coherent and deterministic labeled event structure for v-bounded
counters. But notice that the number of these component processes should be finite in
order to guarantee the finitely-branching property of the global one. In this way, we can
obtain coherent labeled event structures for counters. The proof’s idea is the same as
the one of Lemma 3.3.20.

Labeled event structures for bounded counters which are initialized by a given num-
ber, are just suffixes of bounded processes. As a consequence, they inherit the coherence,
finitely-branching, and non-redundancy of bounded processes. Moreover, there is only
one labeled event structure, w.r.t. isomorphism, for each pair of parameters bound k
and initial value v. The following is thus a direct sequence of Lemma 3.2.10.

42

3.3. Modeling concurrent systems

Lemma 3.3.21. Given natural numbers k > 0, and a natural number v which is not
greater than k. Let C' be any configuration in the k-bounded process b-BP = (E,<
7, L, M) satisfying M(C) = v. The C-suffiz of b-BP, i.e. b-BP|p\c\#(c), 5 a labeled

event structure for the k-bounded counter which is initialized by v.

3.3.3 FIFO channels

Nowadays, many works on verification aim at verifying communication protocols. The
popular model Communicating Finite State Machine |BZ83| for specifying and verifying
these protocols, can be considered as a synchronized product of some FIFO (First-
In-First-Out) channels and some other finite-state labeled transition systems. FIFO
channel is thus a standard model which allows to represent the exchange of messages in
a communication protocol.

Intuitively, a FIFO channel is a variable holding a finite word over some alphabet
M. This word determines its current state. At each time, the environment, e.g. the
client of a server, can either remove the first letter of this word, by a so called receiving
operation, or insert a new letter in M after the last letter of this word, by a so called
sending operation.

Definition 3.3.22 (v-initialized FIFO channel over M). Let M be a non-empty alphabet
and v be any finite word over M. The v-initialized FIFO channel over M is the labeled
transition system (M,v)-FF = (M*, %X, —,v) where

e action set ¥ ={lm/m e M}U{?m /m € M}, and

o transition relation — = {{w,!m,w.m) /m € M,w € M*} U
{{m.w,?m,w) /m € M,w € M*}.

Notation 3.3.23. We denote by !M the set {!Im /m € M} and call it the sending action
set; and respectively 7M = {?m /m € M} the receiving action set.

Figure 2.2 on page 15 illustrates an example of (M,v)-FF where M = {a,b} and
v = a (Example 2.4.3). Although a state of a FIFO channel is a finite word, there is
no limit on its size. As a consequence, any sending action !m where m € M is always
enabled. However, a receiving action ?m is only enabled from a state w € M™* if m is
a prefix of the word w. Reachable states of (M,v)-FF can be computed by means of
M -letter-morphisms defined as follow:

Definition 3.3.24 (M-letter-morphisms). The M -letter-morphisms Il and T, are
two functions from (IM U?M) to (M U{e}), where ¢ is the empty word, such that

o Iips(Im) = T7ps(?m) = m for all m € M, and
o Iips(?Pm) = Iops(Im) = € for all m € M.

Recall that the function IIY, (II3Y,) is based on IIjps (Il7y, resp.) (see Section 2.2
on page 12). By definition, for a given word w € (!M U ?M), in order to obtain IT}}, (w)
(TIW, (w), resp.), one intuitively ’erases’ all letters in ?M (1M, resp.) of w, then ’erases’
all 'notes of exclamation’ ("question marks’; resp.).

Let o € (IMU?M)* be any firing sequence of (M, v)-FF, and w be its only reachable
state (because (M,v)-FF is deterministic), i.e. v % w. We have that

w = (I (0)) " (011} (0))

43

Chapter 3. Modeling concurrent systems by labeled event structures

Intuitively, one can first insert all messages according to sending actions in the firing
sequence o, to obtain the word w' = (v.IT}};(c)). Then, by removing all messages
according to receiving actions in ¢ from w’, one finally gets the reachable state w. This
inserting order as well as this removing order should respect to the order of actions in
o. Therefore, such removing messages form the prefix T3}, (¢) of w’ while w is a suffix
of w'.

The key idea of modeling a FIFO channel by some labeled event structure € is that
every event labeled by a sending action !m € !M, shortly called a sending event, gives
rise to another event labeled by ?m € ?M, called a receiving event, that should be a
successor of the sending one. This relation between sending events and receiving ones is
a bijection. Moreover, it follows from the total order of messages in FIFO channels that
sending events should not be concurrent. In order to avoid redundancy, it is natural that
a sending event e; has | M| direct sending successors which correspond to different sending
actions in !M. The receiving event e; associated to e is hopefully a direct successor of
e; and concurrent with other direct sending successors of e;.

Aiming at labeled event structures for FIFO channels, and at first for the empty-
initialized FIFO channel, one may think about using k-causality event structures defined
in Definition 3.3.7. Recall that, given a k-causality event structure & = (E, <, #), let
E_={ecE/<(e) =0} and Ey = E\ E_, hence E; and E_ correspond respectively
to the increment event set and the decrement event set in the k-causality process. Each
increment event ey € E has exactly k 4 1 direct successors, and among them, there is
only one decrement event. Moreover, B = {(ey,e?) € (E4+ x E_) /e <e_} is a bijection
from E4 to E_. The bijection B could be obtain in another way that B = (E; x E_)N<.
In the following definition of M-causality event structure, for an alphabet M, we simply
use the k-causality event structure where k is the cardinal of M, i.e. k = |M]|.

Definition 3.3.25 (M-causality event structure). The M -causality event structure, for
a given non-empty alphabet M, is an event structure & = (F, <,#), where F is union
of two disjoint sets Ei and E-, such that:

1. let <' = (<\ (E7 x E7))UZg,, then (E, <',0) is the |[M|-causality event structures,
and By ={e€ E/<'(e) = 0};

2. let By be the bijection defined by By = (E) x E?) N < and let By = Bfl, then for
all e7, fr € By, er < fr iff Br(er) <’ Be(f7); and

3. {{e. fy e #/>(e) #°>(f)} = {{er, i) € (By x EY) [er # fi and
>(er) =>(fi)}-!

An M-causality event structure is simply a k-event structure, where k = |M|, with
additional causality and conflict as stated in the first item. Events are separated into
two sets Ey and FE-» which respectively represent sending events and receiving events.
Because F7 = {e € E / </(e) = 0}, receiving events intuitively correspond to decrement
events in |M|-causality process.

Suppose that the FIFO channel is initially empty, a message in the FIFO channel
must be inserted by a sending event and could be removed by another receiving event.
These two events are related by bijections By and B» defined in the second item. It is
obvious that the receiving event must occur after the sending one, thanks to the causality
<" in the k-causality event structure, so that e; <’ Bi(e;) and equally, e < Bj(e)) for all
e+ € Ey. Moreover, the environment can only receive messages in the order that they
were sent into the channel due to its First-In-First-Out property, this fact gives rise to

145 is the complement of #° (see Section 2.1 on page 11)

44

3.3. Modeling concurrent systems

a causality on the set of receiving events which respects the causality on the set of its
corresponding sending events. More precisely, two receiving events e7, fo € E are causal,
for example e; < fo, if and only if in the channel, the corresponding message of e; is
inserted before the one of f>. The second condition is guaranteed when corresponding
sending events are causal, i.e. Bo(e?) < Bo(f?) which is equivalent to Br(ez) <’ Bo(f7)
by definition.

In the third item, the set {(e, f) € # />(e)#*>(f)} represents the relation of
minimal conflict on events, denoted by #,,. In words, e #,, f if events in the downward
closure >({e, f}) are pairwise either causal or concurrent, except the pair e and f. And
when e# f and e #,, f, we say that e and f are in conflict due to conflict inheritance
w.r.t. causality, that means there exists two predecessors of e and f which are in conflict.
Hence, the third item states that minimal conflict #™ in M-causality event structures
comes from the conflict between sending events which are extension events of a same
configuration, which correspond to sending actions from a same state. Intuitively, given
any word w € M™ which is some current state of a FIFO channel FF, one can firstly
send a message a € M and then another message b € M, or conversely. However, since
messages in FF are totally ordered, if a differs from b, one thus obtains different states

lalb
by permutlng this successive sending actions !a and 1b. Formally, because w-=%w.a.b
and w2 w.b. a, s0 a # b implies w.a.b # w.b.a. Sending actions are not independent.

For the goal of having a non-redundant labeled event structure, each sending event
in M-causality event structure has exactly |M| sending direct successors. These direct
successors are pairwise in conflict, and moreover, it is the origin of the minimal conflict
#™ from which the whole conflict relation # can be computed due to conflict inheritance.
Therefore, all sending events are either in causality or in conflict. The concurrency in
FIFO channel is formally represented by concurrency in the M-causality event structure.

Proposition 3.3.26. Let & = (E,<,#) be any M-causality event structure defined in
Definition 3.3.25, for a given non-empty alphabet M.

| = {{e2, fi), (fi,e2) [€2 € Ex, fi € Ey and Bs(e2) < fi}

Proof. As previously mentioned, all sending events are pairwise either causal due to
causality in its k-causality event structure, or in conflict by the third item of Defini-
tion 3.3.25. Hence there exists no concurrency between sending events (*). And so do
for receiving events. Because, suppose the opposite, let e7, f» be any receiving events
which are concurrent. As a consequence of the second item in Definition 3.3.25, the send-
ing events correspond to ez and fr w.r.t. By are also concurrent, i.e. Be(e7) || B2(f7).
This contradicts (*). We can conclude that

[N (B x E)) =N (B x By) =0

Now, let e; € E7 be any receiving event, and f; € F) be any sending one. If B (e7)
and f are conflict, then since e; is a direct successor of Br(e7), it is also conflict with
fi due to conflict inheritance. Otherwise, i.e. Br(e?)# fi, as explained above, B (e)
and f; must be in causality. There are thus two cases. First, fi < Be(e;), we have
fi < e? because Bs(e?) < e7. Second, Bz(e?) < fi, in the k-causality event structure,
er and f; are concurrent, hence (e7, fi) & (<" U >'). We have thus (es, fi) € (< U >)
because <N (F7 x Fy) = <'U (F? x E)) = (. Moreover, we have >(B2(e7)) C >(e7) and
>(fi) = >(B2(e?)) U Fy where Fy C Ej is the set of all events in the path from B2 (e?) to
fiin the k-causality structure. Therefore, suppose that B (e7)# f1, this conflict must be
inherited from some minimal conflict B2 (e?) #, f{ where f/ € Fi. This contradicts the

45

Chapter 3. Modeling concurrent systems by labeled event structures

fact that #,, C (E) x Ey) stated in the third item of Definition 3.3.25. Hence, in this
case, e7 || fi if and only if Bs(e7) < fi. Finally,

=N ((E x Er) U(E? x Ey))
= {<e7,f!>, (f!,6?> /6? € Eq, fi € E) and 37(6?) < fl}

O

Proposition 3.3.26 intuitively says that a receiving event e is concurrent with all
sending events which occur after the one corresponding to e7, i.e. Be(e?). And all
concurrency in M-causality event structures is of this type.

SN AV SN AV R AV AR AV
/‘\ S e\ T , \ < e\ T | < ps\ &2 ,\\ ,I\ < e\ & \

I I
\ \
P T S : I/ A B P N /2 S N B A W : \

L e N | L e L L T L A T e e B O A O 2

Figure 3.11: M-causality processes where M = {a, b}

Figure 3.11 gives an example of M-causality process, defined in the following, as well
as its M-causality event structure. Since M = {a, b}, one can find out that it is similar
to the 2-causality event structure in Figure 3.7.c. In addition to the 2-causality event
structure, there are the minimal conflict #,,, between sending events F and the causality
between receiving events E9. This new causality is represented by double-line arrows.
and are shown in red color. Intuitively, each receiving event has two direct successors
that are also receiving events.

Remark: Thanks to Proposition 3.3.26, given a configuration C' of a M-causality event
structure, its sending events (C'N E)) are totally ordered. And so do the receiving events
(C'N E7). As a consequence, for all configuration C, there is a unique linearisation of
(C'N E)), and a unique one of (C'N E7), w.r.t. the causality.

Definition 3.3.27 (M-causality process). Let M be a non-empty alphabet. The M-
causality process is a labeled event structure M-CP = (E, <, #, L, M) where ((E\UE»), <
,#) is the M-causality event structure defined in Definition 3.3.25, and

o labeling function £ : (Ey U E?) — (M U ?M) such that
1. Codom(L|g,) =!M and Codom(L|g,) = ?M,
2. for all e; € By, iy (L(er)) = Hopr (L(Bi(er))),
3. for all ey € Ey, let Fy = (<(e1) N Ey), then L|p is a bijection between Fy and
IM;
4. L|min (g is a bijection between Min<(E) and !M,
o marking function M : Cpsep — M™ defined by
M(C) = (I} (LY (07))) "I, (LY (0))) where oy and o7 are respectively the
linearisations, w.r.t. the causality <, of (C'N E)) and (C N E?).

46

3.3. Modeling concurrent systems

In words, the labeling function £ says that: first, sending events E) are labeled by
sending actions !M while receiving events F- are labeled by receiving actions ?M; second,
by means of M-letter morphisms Iljy; and Il-j;, sending events and receiving events
which are related by the bijection B, as well as by B», must concern a same message;
and third, events in the sending direct successor set of any sending event e; € E), denoted
by Fj, must be pairwise distinguishably labeled. Since Fy = |M| by Definition 3.3.7, we
have thus L(F)) = {L(e) /e € Fi} = !M. The fourth property of labeling function L is
like the third one but the set of sending events here is the set of minimal events w.r.t.
causality.

Notice that oy and o7 in the definition of a marking function are linearisations which
are considered as words over alphabets (C'N Ey) and (C N E7) respectively. Therefore,
LW (o) as well as LY(01.07) may be firing sequences of some (M, v)-FF. The definition
of marking function M in Definition 3.3.27 respects to the way of computing reachable
states in the empty-initialized FIFO channel (M, €)-FF (see Definition 3.3.22 on page 43).

Lemma 3.3.28. Let M-CP = (E,<,#,L, M) be the M-causality process for a non-
empty alphabet M. M-CP is a coherent labeled event structure for (M,e)-FF.

Proof. Let C € Cps-ep be any configuration of the M-causality process, let us denote
Cy=CnNEyand Cy = CN E,. We first shows how the marking of C is computed from
Cy and C». Since By(e7) < e7 for all receiving events e, we have thus B2(Cv) C (>(C?)).
It follows from the downward-closure of C' w.r.t. the causality < that B2(C?) must be
a subset of sending event set C). Moreover, let C| = Cy \ B7(C»), we must have that,
for all (e, e}) € (B2(C2) x C)), er < € (1). Because, as mentioned above, (C, <|¢,) is a
totally-ordered set, if e] < e then Bi(e]) < Bi(er) by the second item of Definition 3.3.25.
Hence the receiving event By(e) must be in C7, and as a consequence, its corresponding
sending event e} is in B7(C?). This contradicts to the fact that C{NB-(C?) = . Therefore,
from (1), the unique linearisation oy of Cy, w.r.t. causality <, must be op.0{ where op
is the linearisation of B7(C») w.r.t. <. By definition of the labeling function £, we
have TI)Y, (LW (o)) = IV, (L (05)), where o7 is the linearisation of Cy w.r.t. <. The
marking M(C) in Definition 3.3.27 can be computed as follows:
M(C) = (I3 (LY (02))) " (I (LY (05.07)))
= (I3 (LY(02)) " (I (£ (08))- (LY (LY (07)))
= (I (LY (a))) (2)

Now, let ef, f{ be respectively the minimal and maximal events, if they exist, of C/
w.r.t. <. Let z7 = Bi(ey) be the direct receiving successor of ej and X1 = {fi € E\ / f{<fi}
be the set of direct sending successors of f/. By definition, ({z2} U X)) ||°* C. Since for
all 7 € Xy, > (1) = 2(f)) U{z} = CrU{m}, and >(a7) = 2(e]) U Bi(=(e}) \ {e1}) =
(B2(C>) U {ef}) U Cy, then x U C are thus downward closed, and moreover conflict-free
(by Definition 3.3.25). Hence X = X ;U {z7} is the set of extension events of C, because
all other events e € (E'\ (C'U X)) which is not conflict with events in C, must be either
a successor of some some event) € X, if e € E), or a successor of z-» if e € F».

Notice that | Xi| is the number of f’s direct successors, |X;| must be |M]|. It follows
from the bijection L|x, between X and !M by Definition 3.3.27 that, for every m € M,
there exists a sending event x; € X, satisfying £(z)) = !M. In other words, C' has an
extension event that corresponds to any sending action in !M (3). And if M(C) # &,
let m be the first letter (or message) in the word M(C) = ILY, (LW (a7)). Since €] is the
minimal event, w.r.t. <, and C} is totally ordered by <, the first letter of £ (o’) must
be L(e;). We have thus IIip(e]) = m, as a consequence, L(e]) = !m and L(z?) = ?m.

47

Chapter 3. Modeling concurrent systems by labeled event structures

Therefore, C' has one and only one extension event labeled by ?m if and only if m is a
prefix of M(C) (4).

Let x; be any sending extension event of a given label !m, i.e. L(x) = !m. Because,
for all e € Cf,e < x1, from (2) we have

M(CUx) = Iy (LY (0f.a1)))
= (I (£Y(01))) Mipg (L (1))
= M(C).m

And if C has a receiving extension event z» € F» with label ?7m, i.e. C' F x7 and
L(z7) = ?m, once again, due to (2),

M(C U wz) = (I (LY (07.22))) " (I (L (05.01)))
= (M (L))~ (I (£ (01)))
=m L. M(C)

In coordination with (3) and (4), we can conclude that M-CP is coherent, and that the
marking of C' U x corresponding to a state which is reachable from the marking of C' by
firing the action £(z). Moreover, M()) = ¢ by definition, M-CP is a thus labeled event
structure for (M,e)-FF. O

Lemma 3.3.29. Let M-CP = (E,<,#,L, M) be the M-causality process for a non-
empty alphabet M. M-CP is finitely-branching and non-redundant.

Proof. Thanks to the proof of Lemma 3.3.28, any configuration C' € Cps-ep has | M|
sending extension events and at most one receiving extension event. M-CP is thus
finitely-branching by Definition 3.1.9.

Although sending extension events of C', denoted by the set X are pairwise in conflict,
its labels and the receiving extension event’s label, if exists, are pairwise different because
L|x, is a bijection between X and !M by Definition 3.3.27. As a consequence, M-CP is
non-redundant by Definition 3.2.14. O

FIFO channels initialized with non-empty word

Consider now a FIFO channel (M, v)-FF where v # ¢. Intuitively, each letter m of v gives
rise to only one event which corresponds to the receiving action ?m. Due to the first-
in-first-out property, such events, depending on letter m, are totally ordered. Without
looking at other events, these |v| events and their causality form a simple labeled event
structure called a (M, v)-flushing process.

Definition 3.3.30 (v-flushing process). Let v € M* be a finite word for some given
alphabet M. The (M, v)-flushing process, denoted by (M,v)-CP’, is the deterministic
labeled event tree for the labeled transition system (M*,?M,—, v) where — is the
restriction of the transition relation — g5 in (M, v)-FF onto (M* x 7M x M*).

Figure 3.12.a shows an example of (M,v)-flushing processes. It follows from the
Definition 3.3.3 that there is no concurrency in (M, v)-CP’. However, one can find out
that there is no conflict, so that all events are pairwise in causal.

Now, by the same manner as in causality processes for counters (see Section 3.3.2),
we introduce a labeled event structure for a given (M, v)-FF that intuitively consists of
a v-flushing process, a M-causality process, and some causality in addition.

48

3.3. Modeling concurrent systems

Figure 3.12: (a) (M,v)-flushing process where M = {a,b,c} and v = baac; (b) (M,v)-
causality process where M = {a,b} and v = ba.

Definition 3.3.31. Let M be a non-empty alphabet and v be any finite word over M.
The (M, v)-causality process is a labeled event structure (M,v)-CP = (E, <,#,L, M)
where E is the union set of two disjoint sets Ef and E™ such that

1. (M,v)-CP|gs is the (M, v)-flushing process w.r.t. isomorphism,

2. (M,v)-CP|gm is the M-causality process w.r.t. isomorphism,

3. # = #|Em7

4. < = (<|gr) U (K|pm) U (B x E') where EF is the set of receiving events in
(M,’U)-G:P‘Em.

5. the labeling function £: E'— (IM U ?M) is defined as L(e) = L<| . (e) if e € Ef,
and L(e) = L<|,.. (e) otherwise, and

6. the marking function M : Cps-ep — M™ is defined as
M(C) = (TN, (LY (7)) (w11}, (LW (a1))) where oy and a7 are respectively the
linearisations, w.r.t. the causality <, of C) = {e € C'/L(e) € IM} and Cy = {e €
C/L(e) € TM}.

Figure 3.12.b illustrates ({a, b}, ba)-causality process. Its ({a, b}, ba)-flushing process
contains only two events fo;, and fo, that are in the middle of the figure. In this example,
Ef = {fw, fra} and E™ = E\ Ef. As stated in the third item of Definition 3.3.31,
conflict in (M, v)-CP is the conflict in its M-causality process. The additional causality
between events in these two disjoint sets, i.e. < N(E/ x E™), comes from the fact
minimal receiving events of M-causality processes, w.r.t. <, must be direct successors
of the maximal event of (M, v)-flushing process in order to respect the first-in-first-out
property. Hence, this predecessor relation < N (E/ x E™) = Max<(E') x Min<(EM)
is represented by double arrows in the figure. It respects well to the third item. The
marking function is similar to the one of M-causality process in Definition 3.3.27 with
attention at initial word v.

Lemma 3.3.32. Let M be a non-empty alphabet and v be any finite word over M. The
(M, v)-CP is a coherent, non-redundant and finitely-branching labeled event structure for

the (M,v)-FF.

49

Chapter 3. Modeling concurrent systems by labeled event structures

Proof. Let C be any configuration of (M,v)-CP = (E,<,#,L, M). C has exactly M
extension events which are sending extension events of C' N E™ in M-CP, and they are
formally represented by the direct successor set of the only sending event e where
{e]"} = Max<(C N E1). These extension events are distinguishably labeled by sending
actions in !M (1) because Lys-ep|«(e,,), as a consequence L],), is a bijection by
Definition 3.3.27.

First, if E/ C C, the E/-suffix of (M, v)-CP is the M-FF w.r.t. isomorphism because
for all configurations X C E™ in this suffix, denoted by €% = (M, v)-CP|p\ pr\p(ar) =
(M, v)-CP|gm, one has that

Mex(X) = M(Ef UX)
= (I, (£(02)) (I (£¥(0)))
= (I3, (LY (0].0%))) ™ (0.1 (LY (0)))
= ((I13 (ﬁw(%))) (I13 (ﬁw(av)@Y (LY (6T)))
= (01135 (£ (%))~ (w1 (£ (01)))
= (I} (W(o#)) T A (LY (o))
is the same formula as in definition of M-causality process, where o7, 01 = o ,J?,C , and oF
are respectively linearisations of (C'N Ey), (CNE) = (X NE)), B/, and X N E;. Thanks
to Lemma 3.3.28, C has receiving extension labeled by ?m € |M 1f and only if m is the
first letter of M(C) = Mg«(C\ EY), that means X = (C'\ EY) has a receiving extension
event labeled by ?m in the Ef-suffix 7.

Second, if Ef ¢ C’, let ei],c be the maximal event w.r.t. < of E/, and wf is the unique
direct successor of e . Since all receiving events are either causal or in conflict, we have
CNE,; = >(e£), x Ef \C, and x? € F». Receiving event x? is thus the unique receiving
extension event of C; and marking M(C) = (Hm(ﬁw(m))) Lo I, (LY (1)) defined
in Definition 3.3.31 has a prefix (I1)Y,(£W(07)))~!(v) where o7 is the linearisation of
Z(e{f) w.r.t. <. By Definition 3.3.30, the first letter of this prefix, and of M(C) as a
consequence, is H7M(m{f) (2).

Now let e be any extension event of C, i.e. C' F e. Since there is no concurrency
between sending events, as well as receiving events, if 01,07,0] and o} are respectively
linearisations of (C'N Ey), (C' N E»), ((CU {e}) N Ey) and ((CU{e}) N Ey), then we have
that a, = or.e and ar, =09 if e € Ey, or a, = o0y and ar, = ov.e otherwise, i.e. e € F».
Therefore, we can deduce from the deﬁmtlon of the marking function that

M(C)HlM(ﬁ(e)) if e € E)
M(CULe}) = { (M (L£(e)IM(C) ifee B &)

Hence (M,v)-CP is coherent due to (1), (2), and (3). Moreover, M(0)) = v by
definition, the induced labeled transition system LTSM¥)-CP i the (M,v)-FF defined
in Definition 3.3.22.

Finally, since the M-causality process is the Ef-prefix of the (M, v)-causality process.
It follows from the non-redundancy and finitely-branching properties of M-causality pro-

cess which are proved in Lemma 3.3.29, that (M, v)-causality process is non-redundant
and finitely-branching too thanks to Corollary 3.1.17. O

Bounded FIFO channels

In practice, FIFO channels are usually finite-state systems due to the fact that channels
cannot contain more than b messages for some given number b. Intuitively, when the

50

3.3. Modeling concurrent systems

channel is full, i.e. contains b messages, all sending action is enabled only after some
receiving one. Bounded FIFO channels are formally defined as follows:

Definition 3.3.33. Let b be any positive number, M be a non-empty alphabet, and v
be a word over M whose size is not greater than b. The FIFO channel over M which
is initialized by v and is bounded by b, denoted by (M, v,b)-BF, is the restriction of the
(M,v)-F7F to the state set MY,

The action set of (M,v,b)-BF is still (IM U ?M) like the one of (M, v)-FF, however,
its semantics are slightly different. Since (M, v,b)-BTF is a restriction of (M, v)-FF on its
states, every firing sequence o of (M,v,b)-BF is also a firing sequence of (M, v)-FF. So
that, if one can model the (M, v,b)-BF by a called (M, v, b)-causality process (M, v,b)-CP
which is based on (M, v)-causality process (M, v)-CP, then a configuration in (M, v)-CP
must correspond to a configuration in (M, v,b)-CP. In fact, the key idea is intuitively that
one needs to add some causality to (M,v)-CP in order to avoid all configurations whose
marking is not in the range M. Let us consider an example where M = {a,b,c},v =
ba and the bound-parameter b = 3. Figure 3.13 illustrates a prefix of the corresponding
(M, v)-C? in which there is no conflict. Recall that, since there is no conflict, this prefix
is similar to causality processes for FIFO channels where the message set contains only
one message.

1 €
:
|
i
. %E e
\T\ 67?1+1
(; e;:,+2
¢ \y\ ?
’ €n+3
| |
| |
| |
| |

Figure 3.13: An example illustrates a (M,v) FIFO channel’s content together with
corresponding events in the (M, v)-CP where M = {a,b,c} and v = 3. The double arrow
is an additional causality that comes from a bounded constraint: b = 3.

One can find in this example many configurations C, and as a consequence, many
firing sequences o of both (M, v)-FF and (M, v,b)-BF. As usual, such a firing sequence
o comes from a linearisation of some configuration C'. The graphical representation of
the channel’s whole content, i.e. without removing message due to receiving events,
i.e. receiving actions in o, is drawn in the middle of Figure 3.13 (with gray color). All
messages inserted due to the execution o are represented in top-down order to respect

51

Chapter 3. Modeling concurrent systems by labeled event structures

the causality of sending messages. Two messages b and a are found at the top because
of the initial value v = ab, any other message m is the origin of a sending event e, and a
receiving one e, satisfying m = Iljps(e) = Il7ps(e7). For instance, €] and e} concern the
first message ¢ in the channel. Such events e and e are related the one to the other by
the bijections By and By, defined in Definition 3.3.25, of (M, v)-CP. Moreover, consider
the channel’ content as a word in which messages has distinguishable indices in N. Event
e and e; are then associated to the index of the message m in this word. This index
could be defined in another way as below.

Definition 3.3.34. Given a (M,v)-CP = (E, <,#, L, M), the depth function D : E —
N is defined by:
| [+ |=(e)NEy| ifee€ E
D(e)—{ >(e) N Er| ife € By

As shown in Figure 3.13, for all k& > 0, D(e},) = D(e;) = k. The D function is
computed from the causality as stated in Definition 3.3.34. Moreover, one may use
D together with the conflict relation to determine the bijections By and B on (M,v)-
causality processes.

Lemma 3.3.35. Given a (M,v)-CP = (E,<,#,L, M), two events ey € Ey and e; €
(E> \ ET) are related by the bijection B, as well as By, if and only if ey # 7 and D(e;) =
D(er).

Proof. By the same manner as in the proof of Lemma 3.3.32, for the left-to-right implica-
tion, if e; = B!(eg) then 2(6?) = 2(6!) UB!(Z(B!)) UEY. Hence, 2(6?) NE> = 31(2(61)) @]
B, and consequently, D(e;) = |Bi(>(e))UET| = |>(e)|+|Ef| = |>(e))NEi|+v = D(ey).

For the right-to-left implication, thanks to Proposition 3.3.26, e # e; implies that
the sending direct predecessor Bz (e7) of e7 is in causal with e;. Moreover, for all sending
successors fi € F) of ey, i.e. e < fi, it follows from (>(f1)) 2 (>(e)) U{f/i}) D (=(&1))
that D(fi) > D(er) by definition of the function D. In a same manner for predecessors
fi € E) of e, one obtains D(f|) < D(ey). Therefore, D(e?) = D(e) implies that B (e?) is
er, i.e. Bo(ez) = ey, and of course, By(er) = e. O

Once again, look at Figure 3.13, the marking of a configuration C intuitively corre-
sponds to a window on the channel’s content. Such a window is limited by the indices
of maximal events, w.r.t. the causality, in C. For example, if C' = {e},... ,e!n+2} U
{el,...e’_,}, its maximal events are e, ,, € Ey and ¢/, ; € Ey, the marking of C thus
consists of messages with indexes from n to n + 2, that is graphically grouped by the
double-frame in Figure 3.13, i.e. M(C) = IL)},(e}.e}. ;.€, o) = aac.

Aiming at defining labeled event structures for bounded FIFO channels based on
(M,v)-CP, for instance b = 3, we need somehow a constraint in order to disable the
extension event e}, 5 of configuration C because |[M(C)| = b. However, e, , 5 is hopefully
an extension event of the configuration (CU{e’ }) for respecting the fact that the bounded
channel can accept a new sending action just after some receiving one. In order to do
so, we add a new causality from e; to e!n 13, and by generally applying this to all pairs of
a sending event €' € E) and a receiving e’ € Ey where D(e') = D(e”) + b, one can obtain
labeled event structures for (M, v, b)-bounded FIFO channels, based on (M, v)-causality
processes.

Definition 3.3.36 ((M,v,b)-causality process). Let b be any positive number, M be
a non-empty alphabet, and v be a word over M whose size is not greater than b. Let

52

3.3. Modeling concurrent systems

(M,v)-CP = (E,<,#,L, M) be the (M,v)-causality process. The (M,v,b)-causality
process is the tuple (M, v,0)-CP = (E, (< U <p), #, L, M) where

<o =A{(e, /) € (Ex E)\ #)/D(f) = D(e) + b}

Lemma 3.3.37. (M,v,0)-CP is a coherent labeled event structure for
(M,v,b)-BF.

Proof. Let us denote <’ = <U <, we first prove that <’ is a partial-order. By definition
of function D, and as a consequence of Proposition 3.3.26, we have e < f implies that
D(f) is greater than or equal to D(e). Let e, f be any two events in E. If e < f then,
for all f/ € E, f < f’ implies e < f’ because (F, <) is a poset; and f < f’ implies
e <p f" because D(f') > D(f)+b>D(e) +b (1). If e < f,i.e. D(f) > D(e) + b, we
also have that, for all f/ € E, f < f/ implies ¢ <;, f’; and f <, f’ implies e <; [’ (2)
because D(f') > D(f). From (1) and (2), e <" f and f <’ f’ implies e <’ f’. Hence, <’
is transitive. Moreover, since for all e, f € E, D(e) < D(f) implies e # f,soif e <' f
and f <’ e then it is due to e < f and f < e. As a consequence, ¢ = f because < is a
partial order. Therefore, <’ is antisymmetric, and consequently, is a partial order on E.

By the third item of Definition 3.3.25, for all e; € Fj, since e < Bi(e!), two sets #(er)
and #(Bl!(er)) coincide (3). When two events e, f € E are in conflict, we have either
e#Bi(f) if f € E\, or e#B:(f) if f € Ey. Therefore, for every event f’ € E such
that f <, f’, f' must be in causality with either f or Bi(f) or Be(f) if exists. Due
to the conflict-inheritance of (M,v)-CP, we have e f’. The conflict inheritance thus is
preserved in (M, v,b)-CP (4).

From (3), (4), and notice that the conflict relation is the same in (M,v)-CP and
(M, v,b)-CP, (M,v,b)-CP is a labeled event structure. And moreover, C(psp)-cp =
Ciaw)-ep\ € where € is the set of configurations C' € C(py,,)-ep Which are not downward-
closed w.r.t. <’. Since sending events are pairwise concurrent or in conflict, and so do
receiving events, we have (<'\ <) = {{er,e?) € ((E x E)\ #)/L(e)) € IM,L(e7) €
?M and D(e;) > D(e7) + b}, as intuitively mentioned above.

Therefore, for any C' € C(py)-cp, C is not downward-closed w.r.t. <’ if and only
if, denoted by ey the maximal event w.r.t. < of C N Ey, {e; € (CNE;)/D(ez) +b =
D(er)} = 0; this is equivalent to D(ey) > D(f7) + b, where f7 is the maximal event w.r.t.
< of C'N E». Thanks to Lemma 3.3.35, we have |[M(C')| > b by definition of a marking
function. Hence, in words, €y, p)-ep contains all configuration C' in €y ,)-ep whose
size is less than or equal to b, i.e. b > |M(C)| or simply M(C) € MOH,

(M, v,b)-CP is thus coherent and is a labeled event structure of the bounded FIFO
channel (M, v,b)-BF. O

Lemma 3.3.38. (M,v,b)-CP is a deterministic, finitely-branching and non-redundant
labeled event structure.

Proof. By Definition 3.3.36, (M, v, b)-CP differs from (M, v)-CP only on additional causal-
ity <. Hence, (M, v,b)-CP inherits all deterministic, finitely-branching and non-redund-
ant properties of (M, v)-CP which are proved by Lemma 3.3.32. O

Figure 3.14 illustrates a causality process for bounded FIFO channel where M is a
singleton. In this case, there is no difference between messages which implies the conflict
relation over events. (M, v, b)-bounded FIFO channel is bisimilar with b-bounded counter
which is initialized by |v|. The simulation relation (Rg,Rx) could be formally defined
as follows:

53

Chapter 3. Modeling concurrent systems by labeled event structures

Figure 3.14: The (M, v, b)-causality process where M = {m}, v =m, and b = 2.

e Rs: M* — N such that Yw € M*, Rg(w) = |w|, and
® RZ = {<'m7+>7 <?m7 _>}

Therefore, the ({m},wv,b)-causality process, for some given word v € {m}* such
that |v| < b, is a deterministic, non-redundant, finitely-branching, and coherent for b-
bounded counter initialized by |v| (see Definition 3.3.12). Notice that in this labeled
event structure, there is no conflict but all increment events are pairwise in causality,
and so do decrement events.

3.3.4 Synchronized Products of Labeled Event Structures

Most of systems can be considered as concurrent systems which are composed of different
components. These component systems can act in parallel and interact with each other.
Interaction between components as well as simple component’s actions are thus repre-
sented by a synchronization of the global system which, for example, could be modeled
by synchronization vectors as explained in Section 2.4.2.

The unfolding technique [McM95a| was firstly applied to one-safe Petri nets, and
then to synchronized products of transition systems [ER99], communicating finite-state
machines [LI05|, or high-level Petri nets [KK03]. The goal is to find compact struc-
tures modeling concurrent behaviors of such systems (systems’ model). However, these
complex models may be seen as synchronized product of standard systems, for example,
places of Petri nets, FIFO channels, counters. Therefore, we hopefully aim at giving
a general unfolding technique which computes concurrent structures for synchronized
products from the ones of their components based on labeled event structures.

Definition 3.3.39 (Product of event structures). Let & = (E1,<1,#1),..., & =
(Eny <n,#n), be n event structures, for some given number n € N. A product of
&1,...,&y is any quadruple (E, <,#,V), where:
1. <is a partial order on FE,
2. Vis a function from E to ®.(E1, Es, ..., E,) \ {(e,&,...,&)},
3. for all e,e’ € E, e < ¢ implies that there exists i € {1,2,...,n} such that V(e)];
<V(e) i,
4. for all e, e’ € E, e#e’ iff there exists f < e, f’ < €’ such that f # f’ and for some
i€{1,2,...,n}, we have either V(f)|; #:V(f")|: or V()i =V(f")|i # e,

o4

3.3. Modeling concurrent systems

5. not self-conflict: for all e € E,e# e, and
6. componentially downward-closed: for all e € E and for alli € {1,...,n}, V(>(e))l;
\{e} is a downward-closed set w.r.t. (E;,<;).

Intuitively, the function V tells us how component events are synchronized together
to obtain a global event. Although the causal relation < and this function V are in-
dependently defined, the constraint stated in the third item of Definition 3.3.39 simply
means that causality < must be a consequence of some causalities in its component event
structures. However, there is no way to define < from V and component causalities <;,
i€{1,2,...,n}. Because, for instance, there may exist two events that are related to a
same vector v as seen in the example in the next sub-section.

But, conflict relation in a component, for instance #;, gives rise to the conflict relation
in the product. Moreover, since all configurations in an event structure are set of
events, two different events which correspond to a same event in a certain component
event structure must be in conflict, or in other words, they cannot both occur. As a
consequence, a global event cannot be in conflict with itself due to the not-self conflict
property.

The componentially downward-closed property in Definition 3.3.39 may be the most
interesting one, and is the key idea for constructing synchronized product of labeled
event structures (see Section 5.3). Intuitively, every global event e corresponds to n
component event sets V(>(e)) i, i € {1,2,...,n}. Although of the downward-closure
of e w.r.t. <, its event sets V(>(e))|; must be downward-closed too, w.r.t. <;. As a
consequence, for every configuration C in the product, its restriction on any component
i, 1.e. V(C)l;, is a configuration in &;.

Lemma 3.3.40. Let (E,<,#,V) be a product of n event structures £1,E9, ...,Ep.
& = (E,<,#) is an event structure.

Proof. # is irreflexive due to the non-self conflict property of Definition 3.3.39, and
moreover, the conflict-inheritance is guaranteed by definition of conflict relation #.

Moreover, for all events e, ¢’ € FE satisfying e < ¢, if ¢ ¢ {V(e)];, V(') |} for some
i€{1,2,...,n}, then V(e)|; 2; V(¢/)]; (1). Now, recall that it follows from the finitary
property of component event structures &; (see Definition 3.1.1) that every component
event in F; has finitely many predecessors. As a consequence, a global event e € FE has
also a finite number of direct predecessors. Because otherwise, i.e. >(e) is infinite, since
the number of components n is finite, there exists two direct predecessors f, f' € >(e)
and an index i € {1,2,...,n} such that V(f)|; = V(f')];. Hence f#f’ due to the forth
item in Definition 3.3.39, and it contradicts the fifth item that means e is not in conflict
with itself. Therefore, >(e) is finite for all e € E (2).

Now, suppose that there exists a global event e € E of which local configuration
>(e) is infinite. It follows from (2) that there is an infinite sequence e = e > eg > ...
where e, € >(e) for all & € N. Since n is finite, thanks to (1) and the third item of
Definition 3.3.39, this infinite sequence contains another infinite sequence ey, ,e€g,,. ..,
where V(ex,)i >; V(ek,)li >i ..., for some index i. This contradicts the finitary property
of the event structure &; that requires the finiteness of >;(ex,).

Therefore, (E,<,#) satisfies the finitary property, i.e. >(e) is finite for all e € E,
and is thus an event structure. O

55

Chapter 3. Modeling concurrent systems by labeled event structures

Graphical representation of a product of event structures

Ezample 3.3.41. Let &, = (Fe,<¢,#e) and &5 = (Ey,<j,#¢) be two event struc-
tures obtained from k-bounded processes for 2-B€Y and 1-B€ (see Definition 3.3.13 and
Lemma 3.3.21). Let e; be any event in Min< (E) and f1 be any event in Min<,(Ey);
and eq, fo are respectively its direct successors. Let us define:

o P ={p1,p2,p3,04,D5};
o <= {{p1,p2),(P3,p5), (Pa,p5)} UZLp;
o V:P — (®:(Fe, Ef) \ {(e,€)}) where

- V(pl) (e1, f1),

(PQ) (62,f2>
V(p3) = (e1,¢),
V(ps) = (&, f1),

- V(p5) (€2, f2); and

L4 # - ({plap?} X {p37p47p5}) U ({p37p47p5} X {plap2})‘
The quadruple (P, <,#,V) is thus a product of £, and €; by Definition 3.3.39.

(a)
JEa RN ;jj
. ==
€ €2 fo
C] []
€6 €3 I3
(b) ;
jEal (T NENINES)

Figure 3.15: Two graphical representations of a product of event structures

Figure 3.15 illustrates the product (P,<,#,V) in Example 3.3.41, as well as its
component event structures €., € by two manners. With the first one, Figure 3.15.a, the
event structure (P, <,#) is represented in the middle while the function V is illustrated
by dashed arcs which tell us the relation between a global event and its related component

56

3.3. Modeling concurrent systems

events. However, in this work, we prefer the second one particularly for product of more
than two components, Figure 3.15.b, where global events are represented by boxes which
group its corresponding component events.

It is worth noticing that the function V is not injective, for instance V(p2) = V(ps),
so that the causality < can not be defined solely based on V. And there is a partial-
order on products of the same component event structures, like the prefix-order on event
structures (see Definition 3.1.12 on page 25). Such a product (E, <,#,7V) is a prefix of
another one (E', </, #', V') if (E,<,#) is a prefix of (F’, <, #') w.r.t. some bijection B
and for all e € E, V(e) = V'(B).

Lemma 3.3.42. Let £ = (E,<,#) be the event structure of a product (E,<,#,V)
of n given event structures €1,Ea,...,Ey. For all configurations C of & and for all

ie{1,2,...,n}, we have V(C)|; \{e} is a configuration of &;, i.e. (V(C)|; \{e}) € C¢,.

Proof. Recall that V(C)]; = | (V(=(e))11).
ecC
Since, for all e € E, (V(>(e)) |:) \ {e} is downward-closed w.r.t. (E;,<;) by Def-

inition 3.3.39, (V(C) |i) \ {¢} is thus downward-closed w.r.t. (E;, <;). Suppose that
V(C)]; is not conflict-free w.r.t. #; for some index i. Hence, there exists two component
events e;, f; € V(C)|; such that e; #; f;, and consequently, there are two corresponding
event e, f € C satisfying V(e) |;= e; and V(f) |;= fi. It follows from the irreflexiv-
ity of #; that e; # f;. Hence e should not be equal to f. The fact that e#f and
e, f € C, contradicts the conflict-freeness of the configuration C. Therefore, we can
conclude that V(C)|; is conflict-free w.r.t. #;, and is thus a configuration in &; for every
index ¢ € {1,2,...,n}. O

Remark: For all different events e, f in a configuration C, for all index ¢ € {1,2,...,n},
one has either ¢ € {V(e)[;,V(f)li} or V(e)li# V(f)li. Although this is not stated in
Lemma 3.3.42, its proof is similar to the one of Lemma 3.3.42.

Notation 3.3.43. Given n sets Fy, Ey, ..., E,. Let £;, M;, i € {1,2,...,n} be 2n func-
tions satisfying Dom(L;) = E; and Dom(M;) = P(E;), for all i € {1,2,...,n}. Let V
be any function whose co-domain is ®.(E1, Fa, ..., E,). We denote:

o Ly the function from Dom(V) to ®.(Codom(L;), Codom(Ls),...,Codom(L,,)) such
that, for all e € Dom(V) and i € {1,2,...,n}, Ly(e) |;= ¢ if V(e) |;= &, and
Ly(e)li= Li(V(e)l;) otherwise,

e My the function from P(Dom(V)) to @(Codom(M;), Codom(My), ...,
Codom(M,,)) such that, for all C' € P(Dom(V)), My(C) = M;(V(C)|; \{e}) x
Ma(V(C)l2 \{e}) x ... x Mn(V(C)In \{e}).

Definition 3.3.44 (Synchronized product of labeled event structures). Given n la-
beled event structures &, = (Eq, <1,#1,L1, M1), €2 = (Fa, <o, #2, Lo, M3),..., &, =
(En, <ny #n, Lny My). Let X be any subset of ®.(Codom(L;), Codom(Ls),...,
Codom(L,,)). Let (E,<,#,V) be the maximal product, w.r.t. isomorphism, of n event
structures (E1, <1,#1), (B2, <o,#2),..., (Epn, <n,#n) such that

o synchronization: for all e € E, Ly(e) € 3, and
o no-duplication: for all e, f € E, if (>(e)) = (>(f)) and V(e) = V(f) then e = f.

The synchronized product of labeled event structures €1,E9,...,E, w.r.t. X is the tuple
8P = (Ea <, #’ ‘CV, MV)

o7

Chapter 3. Modeling concurrent systems by labeled event structures

The event structure of 8P contains only events satisfying the synchronization con-
straint. Suppose that the maximal product without duplication of (Ey, <i,#1), (E2, <s
yH)s ooy (Bny <p, #n) is (B, <!, #', V'), the event structure Egp = (F, <, #) is thus the
maximal prefix of (E', <’ #') satisfying this constraint. Formally, Egp = (E', <", #')|p
where E = E'\ <({e € E' / Ly(e) € X}).

However, the no-duplication property does not imply the no-redundancy in the syn-
chronized product 8P. For instance, in the Example 3.3.41 above, due to the maxi-
mality of 8P, E must contain not only p; but also another event p} where (>(p})) =
(>(p1)) = 0 and V(p|) = (e, f1) while V(p1) = (e1, f1). It is obvious that p1#p| by
Definition 3.3.39, but in the 2-bounded process for 2-BC%, L.(e;) = Le(es) = + and
Mc({e1}) = Mc({e2}) = 1 so that Ly(p1) = Ly(p)) and My({p1}) = My({p|}). This
satisfies the redundancy property stated in Definition 3.2.14. Section 6.2.2 will give more
details on ways to reduce this redundancy, called auto-redundancy [KK03], which comes
from synchronized products of concurrent labeled event structures.

Lemma 3.3.45. The synchronized product of labeled event structures is a labeled event
structure and it is finitely-branching if its component labeled event structures are all
finitely-branching.

Proof. Let 8P = (E,<,#, Ly, My) be the synchronized product of n labeled event
structures & = (E1, <1,#1,L1,M1),E0 = (Ea,<o,#9,Lo,Ms),..., &, = (En, <,
s #ny Ly My,). Since Egp = (F,<,#) is an event structure, 8P is obviously a labeled
event structure by definition.

Let C be any configuration in Egp and X be its set of extension events, i.e. X =
{e € E/C F e}. Forall x € X, because C'U {z} is downward-closed w.r.t. (E,<),
x must be a direct successor of some event e € C or # € Min<(E). In the first case,
due to the third property of Definition 3.3.39, e has at most H |<;(V(e)l;)| direct

iV(e)li #e

successors which is finite because component event structures are finitely-branching and
there is no duplication in 8P. In the second case, we have that for all i € {1,2,...,n},
V(z)]; € Min<,(E;), once again, the number of extension events z is finite. Therefore X
is finite, and consequently, 8P is finitely-branching. U

Theorem 3.3.46. Given a number n € N and n coherent labeled event structures £ =
(Ela <1, #15 [’1’ Ml)’ 82 = (EQ’ <o, #2, ‘625 M?)a SRR En = (En, <n, #na [’na MTL) Let &
be any subset of ®-(Codom(Ly), Codom(Ly), ...,Codom(Ly)), and 8P = (E, <,#,L, M)
be the synchronized product of €1, &4, ..., E, w.r.t. the synchronization . We have that:

o 8P is coherent, and

o if €1,E9,..., &y, are respectively labeled event structures for some n labeled transi-
tion systems LTS, LTSs, ..., LTS, then 8P is the labeled event structure for the
synchronized product of these labeled transition systems w.r.t. 3.

Proof. We will prove the two items of this theorem the order that they are stated.

o For the coherence of 8P, let C, C’ be any two configurations in 8P. Let C; and C!
respectively denote the sets V(C') [; \{e} and V(C)|; \{e}, for i € {1,2,...,n}.
Thanks to Lemma 3.3.42, C; and C/ are both configurations in &;.

First, if M(C) = M(C’) then M;(C;) = M;(C]) by Notation 3.3.43 and by
Definition 3.3.44 which means that M = My. Let e be any extension event
of C, i.e. CF e, and consequently, for every index i, C; F; V(e)];. It is also a

58

3.3. Modeling concurrent systems

consequence of Lemma 3.3.42. Notice that V(e)|; may be equal to e. It follows from
the coherence of component &;, more precisely the second item in Definition 3.2.11,
that if e; # £ then there exists an extension event € of C! satisfying M(C/U{e}}) =
M(C UV(e) ;) and L;(€]) = L;(V(e) li). Therefore, due to the maximality of
the synchronized product 8P, there must exists an extension event ¢ € E of C’,
ie. C'" b ¢ such that V(e/) = (€],é€h,...,e),). We have that M(C'U¢€) |;=
M;(C"U{e}) = M;(CU{e}) = M(CUe)l; if V(e)|; # e, and M(C'"U€)|; =
M;(C") = M;(C) = M(CUe)|; otherwise. Hence, M(C'U{e'}) = M(CU{e}) in
both case. Moreover, £(e) is obviously equal to L£(¢’). The coherence of 8P, more
precisely the second item in Definition 3.2.11, is thus proved when M(C') = M(C").

Second, if M(C) N M(C") # (. By the same reasoning as above, for each label
a € ¥, the set of extension events e of C satisfying £(e) = a gives rise to the set of
extension events e’ of C’ satisfying £(e’) = a. Due to the coherence of component
labeled event structures and the maximality of synchronized product 8P, by taking
the union of all marking sets, one obtains that

lJ MCuecC U M(C'UE)
e:Cre,L(e)=a e':C'ke’ ,L(e/)=a

and reversely,

U MCue U M(C'U€)
e:Cke,L(e)=a e/:C'+e' ,L(e')=a

These two marking set are thus equal, so that 8P is coherent by the first item in
Definition 3.2.11.

Let us denote s1, s9, .. ., s, respectively the initial states of LT8¢, LTSs, ..., LTS,
and LTS8y, the synchronized product of these labeled event structures w.r.t. 3. By
Definition 3.3.44, we have that for all e € E, L(e) € ¥. Moreover, it follows from
the definition of function marking M that (s1, s2,...,$,) € M(0). In other words,
M(0) contains the initial state of LT8y. Hence, in order to prove the second
property of this theorem, one only needs to show that the extension relation in
& corresponds to the transition relation — of £J8sx. That means s — ¢ is a
transition in LT8y iff there exist a configuration C' € C¢ and an extension e of
C such that s € M(C),s" € M(C U{e}) and L(e) = a (1). It follows from the
coherency of € as well as of its components that C F e for some event e where
L(e) = a, then for all 4, let C; = V(C)|; \{e}, we have that:

U Mecue)=) U Mmcue) |l

e/:Cke/,L(e/)=a i e/:Cke/,L(e)=a

= @ U M;i(Ci U {ei} \ {e})

e}:Cikel, Li(el)=al;

-® U ([U «

) 51:8,€M(Cy) \s}:(s4,ali,85) €—4

- Uy

seEM(C) \s':(s,a,s') €—

59

Chapter 3. Modeling concurrent systems by labeled event structures

60

Therefore, the right-to-left implication of (1) is obvious. By definition, transi-
tion relation in a synchronized product of labeled transition systems is based on
the synchronisation ¥ and the transition relations of its components (see Defi-
nition 2.4.12). It follows from the maximality of € (Definition 3.3.44) that the
left-to-right implication of (1) is also true. Hence, € is a labeled event structure
for LTS8y, or in other words, LTSy, is an induced labeled transition systems of &.

O

Chapter 4

Truncation for well-preordered
labeled event structures

Contents

4.1 Well-preordered systems 62
4.1.1 Adapting preordered compatibility to labeled transitions 62
4.1.2 Well-preordered labeled transition systems 63

4.1.3 From forward analysis to backward analysis in well-preordered
transition systemso o L 66
4.2 Truncation of well-preordered labeled event structures. .. 68
4.2.1 Well-preordered labeled event structures 69
4.2.2 Truncation techniques 73
4.2.3 Well-preorders on configurations 77

4.3 Partial-order verification for well-preordered labeled event

structures L L e e e e e e e e e e 78
4.3.1 Local cutting contexts 78
4.3.2 Coverability and quasi-liveness 81
4.3.3 Termination and boundedness 83

A labeled event structure is infinite as soon as the underlying system has an infinite
execution. Thus, we need property-preserving truncation techniques in order to decide
verification problems using only a finite prefix of an event structure. Well-structured
transition systems were introduced in [Fin91, AJ93, AJ94, ACJOO] as an abstract gener-
alization of Petri nets satisfying the same monotocity property, and hence enjoying nice
decidability properties. It turns out that many classes of infinite-state systems are well-
structured [FS01]. The application to labeled event structures of this result is detailed
in Section 4.1.

In Section 4.2, we will show that the well-known truncation techniques [McM95a,
ERV96, CGP01, DJN04] for safe Petri nets are also successful for well-preordered labeled
event structures. Hence, one can verify different problems on infinite systems as explained
in Section 4.3.

61

Chapter 4. Truncation for well-preordered labeled event structures

4.1 Well-preordered systems

A preordered system intuitively consists of a (infinite) system as well as a preorder < on
the system’s state space and a compatibility property on the system’s transition relation.
Its formal definition could be found in [FS01]. In fact, this definition is the same as our
Definition 4.1.5 when one does not deal with actions/labels as remarked in Section 2.4.
Figure 4.1 illustrates a compatibility which tells that if v is a reachable from a state s,
i.e. s—»v, then from any state s’ satisfying s < s, one can obtain a state v’ (may be
possibly §'), i.e. '—>v’, such that v < v'. We can say that the preorder < is preserved
by the transition relation.

Figure 4.1: Compatibility

Remark: One can see in other works the word quasi-order that is also common for pre-
orders. In this work, we use the same terminology as in [HST07] so that we prefer the
word preorder instead of quasi-order, and as a consequence, prefer well-preordered tran-
sition systems, and further well-preordered labeled event structures (cf. Definitions Def-
inition 4.1.5 and Definition 4.2.1) to well-structured ones which are more standard and
firstly given in [Fin87]. The reason is that we would like to avoid the confusion be-
tween the "well-structured" property over states by means of compatibility and the
structure over events determined by causality and conflict relations in labeled event
structures (see Section 4.2.1).

Example 4.1.1. Since "less than or equal to" < is a preorder over natural numbers N,
counters (see Section 3.3.2) are preordered systems in which there are only increment
and decrement actions.

4.1.1 Adapting preordered compatibility to labeled transitions

Our presentation of preordered systems differs from the standard (non-labeled) one as
we need to take care of labels. However, our definition is sufficiently general so that
all results from standard preordered systems may be found in a same way with a little
tuning. Before giving this formal definition in Section 4.1.2, let us take an example to
clarify its intuitive idea.

An example: Lossy FIFO channels

Nowadays, lossy FIFO channels [AJ94| are widely used for modeling communicating
systems and verifying communicating protocols. They differs from the FIFO channels
(see Definition 3.3.22 on page 43) on the possibility of loosing messages: channel’s content
which is a finite word may loose some letter at any moment and become a subword (see
Definition 2.2.1 on page 12) of the old one.

62

4.1. Well-preordered systems

Definition 4.1.2 (v-initialized lossy FIFO channel over M). Let M be a non-empty
alphabet and v be any finite word over M. The v-initialized lossy FIFO channel over
M is the labeled transition system (M,v)-LF = (M*,%, —,v) where

o the action set ¥ is {7} U!M U ?M, and

o the transition relation

— ={{w,7,w") /m € M,w,w’ € M* and v’ < w}
U {{(w,!m,w.m) /m € M,w € M*}
U {(m.w, m,w) /m € M,w e M*}

where < is the subword order over M™.

Definition 4.1.2 is the same as Definition 3.3.22 except for action 7, called a lossy
action, as well as its related transitions — N (M* x {7} x M*). Let s,s" € M* be any two
states of (M,v)-LF satisfying s < s’, we have s’ s. Hence, all reachable states from
s are also reachable states from s’. Lossy FIFO channels form obviously a preordered
system.

Internal actions X7

One can say that the lossy action 7 gives lossy FIFO channels its preordered compat-
ibility, and moreover this fact can be found in many other preordered systems. In the
following definition of preordered labeled transition systems till the end, we assume that
each set of actions X is partitioned into a set X7 of internal actions and a set X7 of
normal actions. This introduction of internal actions X7, on the one hand, is to tackle
the problem when generalizing preordered compatibility for transitions with label by
means of actions, and on the other hand, allows to clearly describe the characteristics of
preordered labeled transition systems in the point of view of preordered properties.

Moreover, it is worth noticing that one can somehow eliminate internal actions X7
while modeling preordered systems by labeled transition systems. For example, by con-
sidering each sending action !m (each receiving action ?m) of a lossy FIFO channel as
a composed action in which the channel firstly loses some messages, then executes the
sending action !m (the receiving action ?m respectively), and finally loses some other
messages; one can obtain another model for lossy FIFO channel without loss of generality,
as the following:

Definition 4.1.3 (v-initialized lossy FIFO channel over M without 7). Let M be a
non-empty alphabet and v be any finite word over M. The v-initialized lossy FIFO
channel over M without X7 is a labeled transition system (M,v)-LF = (M*, 3, —,v)
where
o the action set X is {Im /m € M} U{?m /m € M}, and
o the transition relation — is {(w,!m,w’) € M* xIM x M* /v e M*: v g w, v’ <
vom} U {{w,?m,w'y € M* x IM x M*/3v € M* : mv < w,w < v} where < is
the subword order over M*.

4.1.2 Well-preordered labeled transition systems

Recall that ¢ is the "do nothing" action that is particularly used in synchronized products
of labeled transition systems. ¢ is also the empty firing sequence for all labeled transition
systems, and, in which s = s for every state s. In the following definition and afterwards,
we assume that the internal action set X7 does not contain ¢, i.e. € ¢ 37.

63

Chapter 4. Truncation for well-preordered labeled event structures

Definition 4.1.4 (Compatibilities). Let LTS8 = (S5,%,s’, —) be a labeled transition
system and < be a preorder on S. We say that < is compatible (resp. transitively
compatible, reflexively compatible) with the transition relation — if for every transition
s % vand s < s there exists v < v’ such that s'~% ¢ for some o € ¥* satisfying:

o compatibility: o € (X7)* if a € ¥7 and o € (X7)*.a.(X7)* otherwise, or

o transitive compatibility: o € (X7)" if a € ¥7 and 0 € (X7)*.a.(X7)* otherwise, or

o reflexive compatibility: 0 € ({e} UX") if a € ¥™ and ¢ = a otherwise.

One can say that < is also compatible with the transitive closure —> of the transition
relation — as a consequence of Definition 4.1.4. That means if s—% v and s < s’ then
there exists v/ € S and ¢’ € ¥* such that s'-Z» v’ (proof by induction in the length of o).
And ¢’ must not be shorter than o only in the case of transitive compatibility. Moreover,
the reflexive compatibility induces that the longest subwords of o and ¢’ which contain
only normal actions X7 are the same.

A preorder < is strictly compatible with — if both < and < are compatible with —
(recall that s < s’ is defined by s < s £ s). Of course, this strictness notion may be
combined with transitive and reflexive compatibilities.

Remark: Definition 4.1.4 as well as the definition of strict compatibility coincide with
the definitions for systems without labeled actions of Finkel et al. given in [FS01| when
3 = 37 is a singleton. Moreover, their only definition for labeled transition system
corresponds to our reflexive compatibility when there is no internal action, i.e. X7 = ().
In this case, we say that < is strongly compatible with transition relation —. Lossy FIFO
channels in Definition 4.1.3 are examples of this compatibility.

A class of infinite systems with decidability results

Although there is compatibility between preorder < on states and transition relation —,
decidability results for such infinite systems must rely on the existence of a well-preorder
property of < (see Definition 2.3.1 on page 13).

Definition 4.1.5 (Well-preordered labeled transition systems). A well-preordered labeled
transition system (LT8,<) consists of a labeled transition system LTS8 = (5,3, s", —)
and a preorder < on S satisfying:

o well-preorder: < is well-preorder or converse well-preorder on S, and

o compatibility: < is compatible with —.

Example 4.1.6. Since the "less than or equal to" order < is well-founded on N, and is
thus well-preordered, as a consequence of Example 4.1.1, counters are well-preordered
labeled transition systems. One can also say that lossy FIFO channels (Definition 4.1.2)
are well-preordered labeled transition systems. Because, the subword order over M is
well-founded and well-preordered for all finite alphabet M (c¢f. Higman’s lemma).

In [FSO01], Finkel et al. have given a classification of well-known systems into family
of well-structured transition systems as well as its decidable problems which depends on
the type of compatibility. Notice that their downward well-structure transition systems
correspond to our well-preordered labeled transition systems in which the preorder on
states is converse well-preorder (see Definition 2.3.1).

Our definition of well-preorder labeled transition systems is enough general so that all
decidability results in [FS01] are still valid. The goal of the next sections is not to prove
these results again but to essentially show how to efficiently verify decidable problems
on a partial-order structure, more precisely, on labeled event structures.

64

4.1. Well-preordered systems

Synchronized products of well-preordered labeled transition systems

Definition 4.1.7 (Product preorder). Let =<1,<2,...,<n be n preorders on n sets
X1, Xo,..., X, respectively. The product preorder of these n preorders is a binary re-
lation, denoted by =g, on the n-dimension space ® (X1, Xs,...,X,), and is defined by:
for all z,2’ € ®(X1,Xo,...,Xy), ¢ g o' iff z; x; «} for every 1 <i <n.

Recall that x; = x; is the component restriction onto ¢ of x. We also write g =
(%1,<2,...,=<n) and naturally mean that =<; is the component restriction onto i of <.
The product preorder is also a preorder like its name, and moreover, the well-preordered
property of its component, if exists, is preserved.

Lemma 4.1.8. The product preorder g of n preorders <1,<2,...,<n, 48 a preorder
and is well-preordered (converse well-preordered) if <; is well-preordered (converse well-
preordered resp.) for all 1 < i <n.

Proof. By Definition 4.1.7, <& is reflexive and transitive binary relation, and is thus
a preorder. We will prove that <& is well-preordered on X by induction on n where
X = ®(X1,X2,...,X,). When n = 1, it is straightforward. Suppose that it is true
for some given k, i.e. the product preorder <) of k well-preorders <1,<2,...,<x is
a well-preorder on X. Let xg,x1,..., be any infinite sequence. Thanks to Erdos and
Rado’s lemma, it says that this sequence contains an infinite increasing subsequence
Tiy <) Tiy <, - - -, due to the well-preorder <. Further, it follows from the well-preorder
<r+1 and this second infinite sequence that there exist two indices I < m satisfying
Zi, <k+1 Ti,,. Hence, one obtains both z; 4; Z;,, and T;, k41 ¥, , and consequently,

T, 4;“1 x;,, where 4§~c+1 is the product preorder of k+1 well-preorders <1, <2, ..., <ki1-
In other words, the induction hypothesis is also true for £ + 1. One can conclude that
< is a well-preorder for any finite number n. O

The set of internal actions 37 previously introduced, not only gives the compatibility
of preordered systems but also separates internal transitions and synchronized ones of
synchronized products of labeled transition systems. We assume (1) that every synchro-
nization constraint g implicitly contains the set ¥F of synchronization vectors, defined
as follows:

X5 ={(r1,e,...,e) /1 eXT}U...
UA{{e,....,e,T,6,...,6) /T €XTU...
UA{le,...,e,m) /™ € X1}
and (2) that no internal action 7; € 37 may appear in a synchronization vector of Xg\X7,

ie. forallie{1,2,...,n} (Bg \X3)]; NX] = . Naturally, 37 is a subset of local
actions of any synchronized product w.r.t. ¥g.

Definition 4.1.9. The synchronized product of n preordered labeled transitions (LT8q,

<1), (£T89,<2), ..., (LTS, <pn) w.r.t. some synchronization constraint Xg € @< (X1, Yo,
.. X,) is the synchronized product LT8g of LT81, LTS, ..., LTS, w.r.t. g equipped

with the product preorder g = ®(%1,=<2,...,=n); and is denoted by (LT8g,=<g).

The following lemma shows that all compatibility notions defined above for pre-
ordered labeled transition systems are preserved under synchronized product.

Lemma 4.1.10. Let Cond denote any compatibility condition among { (non-strict), strict}
x {(standard), transitive, reflexive}. Any synchronized product of preordered labeled tran-
sition systems with compatibility Cond also has compatibility Cond.

65

Chapter 4. Truncation for well-preordered labeled event structures

Proof. Consider n preordered labeled transition systems (L7781, <1), (L7892, <2),. ..,
(LTS8, <n) where LTS; = (S;, %, 5?, —;); and assume that each £J8; has compatibility
Cond. We show that (LT8g,=<g) has compatibility Cond, where LTS8y is the synchro-
nized product of LTS1,LTSs,..., LTS, w.rt. a given synchronization constraint Y.
Let s 5 s’ be any transition in £LT8g, let ¢t be any state such that s < t. There are
two cases, depending on whether the action v € ¥ g contains an internal action:

1. v € X, that means v; € X7 for some 1 < j <n and v; = ¢ for all 4 = j. Tt follows
1 2
from compatibility of (LTS8, <) that there exists a path 7; = ¢; U—>j u? U—>j
k .
ud ... > uFt! where uFt! = ¢ and for all i € {1,2,...,k},v" € X7 ('). This

1 2
path may be extended to the synchronized product LTSg as m = t ~—g 2 ~—g

k .
3. Dog thtl where o = (e,...,e,0¢,... &), th = uP and th = ¢; for all i # j.
Observe that s’ < t**! because s, = s; < t; for all i # j.

2. v € X}, that means v; € {e} UX] for all 1 < i < n. We may assume without
loss of generality that there exists 1 < m < n such that v; € E:f for all # < m and
v; = ¢ for all m < i. From compatibility of (LT8;, <;) with ¢ < m, we obtain that
there exists m paths m; = tlgnuz N u'ii’;it; with ¢} »=; s and o, 0" € (X7)*.
Remark that v —g u where u; = u’ and uf = for all i <m, and w; = v} = t;
otherwise. As in the previous case, we may extend each sub-path t; L, u; and

u) i@ t; to the synchronized product, and their concatenations yields a path

0', .
=t g udgu —Sg t' where 0g,05 € (BL)*, t; =t"forall 1 <i<m and
t; = t; otherwise. Observe that ¢’ =g s since s, = s; < ¢; for all ¢ > m.

Thus we obtain that there exists ¢’ %= s’ and o € (Xg)* such that t->»g ’. Moreover,
a routine check shows that in both cases, the constructed path t-2»4 t' satisfies Cond’s
requirements (for strict compatibility, the component path(s) should be carefully chosen
so as to ensure strictness). O

A direct consequence of Lemma 4.1.8 and Lemma 4.1.10 is the following:

Lemma 4.1.11. Synchronized product (LT8g,<g) of n well-preordered labeled transi-
tion systems (LT81,<1), (£LT82,<2),..., (LTS, <n) is a well-preordered labeled transi-
tion system if <1, <9, ..., =<n are either all well-preorders or all converse well-preorders.

4.1.3 From forward analysis to backward analysis in well-preordered
transition systems

In this section, we show how to embed, in our forward partial-order analysis approach
lately detailed (see Section 4.3), standard backward analysis techniques (called set satu-
ration methods in [FSO01]) for well-preordered transition systems. This idea is based on
duality in the category of (labeled) transition systems.

Definition 4.1.12. The dual of a given labeled transition system LT8 = (S, %, s, — cq3)
is the labeled transition system DTS = (5,%, s, —prs) such that (s, a,s') € —prs iff
(s, a,s) € =pgs.

!We use superscript indexing in addition to avoid confusing it with the component projection (z; =

66

4.1. Well-preordered systems

The dual of a lossy FIFO channel £78 in Definition 4.1.2 is a labeled transition
system D7 S modeling a well-known insertion-error FIFO channel in which actions are
all renaming such that !m becomes ?7m and conversely. The internal action 7 allows to
insert message into FIFO’s content at any moment. More interestingly, since (LTS, X)
is a well-preordered labeled transition system, (D7S, =) is too. However, < is well-
preordered while = is converse well-preordered, and vice versa.

Notice that initial states of dual systems are not important for the reachability /cov-
ering problem in which one only needs to know if from a state s, some state v is reachable
or not. By duality, s =»cqg v if and only if v -p7s s. Intuitively, with backward anal-
ysis technique, one firstly computes the set of states, denoted by pre*(v) from which we
can reach v, and then test if pre*(v) contains s. With forward analysis, one computes
the set post*(s) of reachable states from s and then verifies if it contains v. Figure 4.2
illustrates these two approaches.

Figure 4.2: Forward and backward analysis for reachability

We now need a few additional notations in this section. Consider any labeled tran-
sition system LT8 = (5,%,5%, —rqg5). The one-step reachability relation is the binary
relation Reqgs on S defined by s Regs s’ iff s =g s’ for some action a € ¥. By Def-
inition 4.1.12, we have thus Rprs = Nrgs where Rprs is the one-step reachability
relation of the dual labeled transition system DTS of LTS.

We will use the following backward/forward (reachability) set transformers: for any
subset X C S, we define postq5(X) = Regs(X), preggs(X) = Kegs(X), postfog(X) =

Lgs(X), and pre}45(X) = R 55(X). Observe that the reachability set post} 45 of LTS
defined in Section 2.4.1 is equal to post}g(s”). For any label a € ¥ and subset X C S,
we define pregqgg(a, X) = {s € §/3s' € X,s S5 8'}. Remark that we have, for every
X C 8, preggs(X) = Ugyes preggs(a; X).

Backward analysis for well-preordered systems is performed by a classical fix-point
computation of pre*(x(X)) in which one applies an upward closure w.r.t. < at each
step. It requires a so called finite pred-basis condition [ACJT00, FS01].

Definition 4.1.13 (Finite pred-basis). Given a preordered labeled transition system
(LTS, <) with LTS = (S, %, 5%, —rqg5). A finite pred-basis for (LTS, <) is any function
pb from ¥ x S to Pf(S) satisfying:

o Uaes Pb(a, s) is finite for all s € S, and

o <(pb(a,s)) = x(preggs(a, <({s})) forall a € ¥ and s € S.

Given any finite pred-basis pb for (LTS8, <), we define the pb-reverse of (LTS, <, pb)
as the labeled transition system R(LTS, <, pb) = (5, %, s°, —x) where transition relation
— is defined by s —x s iff s’ € pb(a, s).

67

Chapter 4. Truncation for well-preordered labeled event structures

Lemma 4.1.14. For any preordered labeled transition system (LTS, <) with and finite
pred-basis pb, R = R(LTS, <, pb) is finitely-branching, (R, =) has reflexive compatibility,
and R satisfies

prezgs(<({s})) = <(postr({s}))

for every state s.

Proof. Let R shortly denote R(LTS, <, pb). Recall that R is finitely-branching since
Uaes: Pb(a, s) is finite for every state s. Consider any transition s —x s’ and let ¢ < s
One obtains that

<(pb(a,s)) = <(preggs(a, <({s})))
€ <(preggs(a, < ({t})))
(pb(a,1))
Since s’ € pb(a, s), we get that s’ = ¢’ for some ' € pb(a,t). Observe that t <% ' and

hence (R, =) has reflexive compatibility.
Consider any state s, let us prove that preUIS(({s})) = <(postf ({s})). We first

N

prove inclusion C and assume that 7 = s —Spqg So... Sk LI Sk+1 is a path in
LTS such that sp41 = s. Let tx11 = s. Observe that sk € pregas(ag, <({tks1})) C
<(pb(ag,tr+1))- Sin pb is a finite pred-basis for (LTS, <), we get that t; < si for some
ty. € pb(ak,tx+1) and hence ¢y a—km ti. By iterating this construction along the path 7
(from sk11 to s1) we get that there exists a path s = 541 2kt Eil—m theq ...ty Hg
t1 in R with t; < s;, and in particular with ¢; < s1. Therefore s; € <(post} ({s})) which
concludes the proof of this inclusion.

Let us now prove inclusion 2 and assume that s = tg1 2kt Ell—mg thoq ...ty —Sp
t1 is a path in R and let s; < t1. For every 1 < i < k, we get that ¢; 6 pb(al, tiv1) C

<(pregqgs(ai, <({ti+1}))) and hence there exist u;,u) such that t; = u; 5 s u} = tir.

We obtain from the compat1b1hty of (L‘J’S, <) that there exists so = to,...,Sk11 = tei1
such that s;—> £gs 59— £98 53 - . . Sg—> £95 Sp1. Therefore s, € preUIS(({s})) since
Sk+1 7 tht1 = S. O

We implicitly assumed that the partition of ¥ into internal actions %" and nor-
mal actions X7 is the same in R(LTS, <, pb) as in LT8. It is clear from the proof of
Lemma 4.1.14 that reflexive compatibility of (R(LTS, <, pb), >=) does not depend on this
partition (e.g. we may as well choose that there is no internal action in R).

4.2 Truncation of well-preordered labeled event
structures

The intuition behind well-structure/well-preorder is that any state may be weakly simu-
lated by any greater state, and thus we may forget about smaller states when performing
reachability analysis. The well-preordering condition between states guarantees termi-
nation of the analysis [FS01|. We show in this section how to extend these ideas to the
verification of well-preordered labeled transition systems.

Notice that Finkel et al. call tree-saturation methods for well-preordered system, the
verification methods representing all possible executions inside a finite tree-like structure
(particularly the finite reachability tree). Since we model well-preordered systems by
labeled event structures, it is hoped that these methods benefit of the partial-order
advantage of event structures.

68

4.2. Truncation of well-preordered labeled event structures

4.2.1 Well-preordered labeled event structures

We lift the well-preorder notions defined in the previous section from labeled transition
systems to labeled event structures. Given a labeled event structure € = (E, <, #, L, M),
& gives rise to a labeled transition system LTS8 = (Cg¢, Codom(L), D,) where for all
C,C" € C¢,a € Codom(L), C L g5 C” iff there exists e € E so that C' F e, O’ = CU{e}
and L(e) = a. The transitive closure |-z = — g of transition relation -, may be also
defined from the extension set relation I of €. It is worth noticing that the marking
function M is not taken into account in LTS.

Let <€ be any preorder on C¢ that is compatible with the labeled event structure &
as defined in Definition 4.1.4. Intuitively, C' - e where C € C¢,e € E implies that every
configuration C’ satisfying C' <€ C” could be extended by an event set X C E, and
the preorder <€ is preserved, i.e. (C U {e}) <¢ (C U X). Moreover, with an additional
condition based on the labeling function £, the definition of well-preordered labeled event
structures coincides with the one for labeled transition systems (Definition 4.1.5).

Definition 4.2.1. Let & = (E,<,#,£, M) be a labeled event structure and <¢ be
any preorder on Cg. We say that (&,<C) is (well-)preordered labeled event structure iff
((Cg, Codom(L), B,k 1), <) is a (well-)preordered labeled transition system.

Notice that the codomain of labeling function £ may contains also some subset of in-
ternal actions ¥.7. So that (€, <€) can have different compatibilities Cond € {(non-strict),
strict} x {(standard), transitive, reflexive, strong} based on this X7 as in Definition 4.1.5.

Preordered labeled transition systems vs preordered labeled event structure

Let us recall the idea of using labeled event structures for modeling concurrent systems.
One just gives a partial-order structure, here is a labeled event structure, that possibly
represents all behaviors of some system. The system could be modeled in another way
by a well-known labeled transition system. These two models are related the one to the
other by the means of induced labeled transitions systems of labeled event structures in
which one associates configurations to systems’ states. Therefore, while working with
preordered labeled event structures, among many binary relations on configuration set,
we focus only on the one which is deduced from a given preorder on the system’s state
space. In the following, for every labeled event structure & = (E, <, #, £, M), we denote
S the base set of the codomain of marking function M, i.e. S = cce, M(C), like in
Definition 3.2.1 on page 27.

Definition 4.2.2 (Marking preorder). Let € = (E, <,#, £, M) be a labeled event struc-
ture and < be a preorder on S. The marking preorder of & w.r.t. <, denoted by <M,
is a binary relation on Cg defined by: for all C,C" € C¢, C <M C" iff for all s € M(C),
there exists s’ € M(C”) such that s 5 s'.

In a particular case where € is deterministic, that means Codom(M) contains only
singletons of P(S), one can simply use < in the place of <™ without risk of confusion.
Notice that, C is strictly less than ¢’ w.r.t. <™ iff C <™ €’ and their markings contain
at least two elements which are strictly ordered by <. Formally, C <M C" iff C ™M C’
and 3s € M(C),s e M(C") : s < .

Lemma 4.2.3. The marking preorder <™ is a preorder on Cg¢ if < is a preorder on S.

Proof. The reflexivity and transitivity of <™ is obvious from Definition 4.2.2. O

69

Chapter 4. Truncation for well-preordered labeled event structures

Lemma 4.2.4. Let € = (E,<,#,L, M) be a labeled event structure and < be a preorder
on S. If
1. for all s,s' € S, s < s implies 3C,C € Cg : C M C' and (s,5') € (M(C) x
M(C)),
2. for all C,C" € Cg, (M(C) x M(C")) N<x # B implies C <M C’', and
3. & is coherent;

then (&,<™M) is a preordered labeled event structure iff (L‘J'Sg, <) is a preordered labeled
transition system, and they have a same type of compatibility.

Proof. Recall that ¥ is the codomain of labeling function £. One can write a induced
labeled transition system of & as LTS = (S, %, s°, — pqs¢) for some s” € M(0), and the
labeled transition system based on the extension relation previously defined as LTS8 =
(Ce, 2, 0,F,). We will prove that the right-to-left implication, that means (L‘J’SS, <) is
preordered if (€, x™) is preordered, is a consequence of the first item. And reversely,
the left-to-right implication is a consequence of the second and third items.

(=): (&,x™M) is a preorder labeled event structure. Let s <, <c v be any transition
in LT8¢ and assume that s < s’ for some given s € S. Due to the definition of induced
labeled transition system (Definition 3.2.4), there must exist configurations C' € Cg¢
and one of its extension event e € F, i.e. C F e such that £(e) = a,s € M(C) and
v € M(CU{e}). The first condition yields the existence of a configuration C’ € C¢
satisfying C' <™ C’. Because <™ is compatible with ., we have C'% pg5 (C' U X)
for some given extension set X C E of ¢/, and 0 = LW(Ix) € ¥* where Ix € E* is a
linearisation of X w.r.t. <. And (C U {e}) <™ (C’' U X) is also a consequence of the
compatibility of <™. By definition of <™ (Definition 4.2.2), since v € M(C U {e}),
there exists v/ € M(C" U X) satisfying v < v/ and s'~>> . j5¢ v/ due to Lemma 3.2.12.

Therefore < is compatible with — . jce.

(<): (LT8¢, <) is a labeled transition system. Suppose that C' ﬂgg’gk (Cude})

and C <™ (' for some given configuration C,C’ € C¢ and extension event e € E of C.
By definition of <™ (Definition 4.2.2), one can choose any two states s, s’ € S which
are respectively included in C' and C’ so that s < s’. Let v be any state in M(C U {e}),
it follows from the definition of an induced labeled transition system (Definition 3.2.4)

L oy eq . .
that s ﬁ case v Moreover, due to the compatibility of < with — e, there exists an

.) O ’ . ’ . o h
execution s'—» . ce v’ for some given v < v, and more precisely a path m = s" — ¢

ba bn ’ ’ .
81 —pggt S2---8Sn—1 —pqgge Sp = U where o = b1.b2...b, € Mg and v < v’. Since &

is coherent, s’ LN cqge s1 and s € M(C') implies that there exists configuration C; =
C’ U ey for a given extension event e; € E of C' such that £L(e;) = by and s1 € Cy. By
iterating this construction along the path = we get that C' = (C"U{e1}) F (C'"U{e1,e2}) I
.. (C"UX) where X = {e1,e9,...,e,}, 0 =LY(e1.65...¢,), and 5, =" € M(CUX).
One thus can write it as C'~% g5, (C' U X) and (s',9) € (M(C") x M(C"UX). Thanks
to the third condition, because (v,v’) € (M(C U {e}) x M(CUX)) and v < v/, we have
(CU{e}) M (CUX). Preorder ™M is thus compatible with .

Notice that conclusions above depend on neither the type of compatibility of (€, M)
nor the one of (L‘J’SS, <), this lemma’s whole state is thus obvious. O

It is worth considering here counter-examples of some implication between compat-
ibilities of a preordered labeled event structure and of its induced labeled transition
system, when we have not the three additional conditions stated in Lemma 4.2.4. Fig-
ure 4.3 illustrates two simple preordered labeled event structures where configurations

70

4.2. Truncation of well-preordered labeled event structures

are structured as a DAG w.r.t. the extension relation. Each configuration C' is repre-
sented by the couple C' : M(C). And there is no concurrency in both labeled event
structures, i.e. || = (). For simplicity, we suppose that there is no internal action, i.e.
% =0, and we look only at standard compatibility.

a. (%, —pgse) 2 (M Fr) b. (M,Fr) # (S, = cose)

0:{=} 0:{s"}

AR n

{er}:{s,t} {ea}:{s', 1"} {f1}:4s", 0} {fa}:{v'}

S AT

{617 63}:{u7 v} {627 64}.{71,/} {627 65}'{0/} {fla f3}:{5}

Figure 4.3: Counter examples of implication between compatibilities

For the first labeled event structure & = (E, <, #, £, M) represented in Figure 4.3-a

where F = {e1,e9,e3,e4,e5} and Ce = {0, {e1}, {e2}, {e1,e3},
{ea,e4},{e2,e5}}, we take the preorder < = Zg U {(s, '), (t,t), (u,u'), (v,v")}. It is
obvious that the unique induced labeled transition system LT8¢ is a preordered one
because the compatibility of < w.rt. — . e is guaranteed mostly by e4,e; and e3.
Consider configurations C' = {e;} and C’ = {es} that could be ordered by <M, we
have M(C) = {s,v} <M {s',u'} = M(C'). However, the marking of configuration
C U {es} extended from C, i.e. {u,v}, is incomparable with markings of configurations
that may be obtained from C’ by the extension relation. More precisely, there are three
configurations C' U {es} = {ea,e4}, C" U{es5} = {e2,e5} and C’ = {ea} itself of which
markings are respectively {u'}, {v'}, and {s’,#'}. This example shows the need of the
second condition in Lemma 4.2.4 that avoids the case when, for instance, u < ' but
there exists incomparable markings {u, v} and {u’}. In other words, the constraint given
by this condition comes from the fact that one can not say anything on reachable states
in posty .. ({u,v}) and post} .. ({u'}).

For the second example illustrated in Figure 4.3-b, where E' = {f1, fo, f3} and C¢ =
{0,{f1},{f2},{f1, f3}}, let us assume that the preorder < satisfies < N ({s,s’,s"} x
{v,v'}) = 0, s < s’ < s” and v < v/. By definition, "= Te, U {({s},{s,v})} U
{{({s},{s"})}. Tt is obvious that (€, <) is preordered labeled event structure since the

unique configuration {f1, f3} of which marking is {s}, has no extension. However, <

is not compatible with — . ce due to the fact that v ﬂmsg s while v € M({f2})

is not enabled by any action in ¥ = Codom(L). The first condition in Lemma 4.2.4
may eliminate all such cases where, for instance here, v < v’ but there is no comparable
configurations w.r.t. <™ that contain respectively v and . With this condition, the
compatibility of <™ in & implies the one of < in LTSE as it is proved previously. By
the way, we also point out that when working only on preorder labeled event structures,
one does not really need the compatibility in its induced labeled transition system.

Remark: In deterministic labeled event structures, since every marking is singleton of .S,
the first and second conditions in Lemma 4.2.4 are both guaranteed.

71

Chapter 4. Truncation for well-preordered labeled event structures

The following lemma is a direct consequence of Lemma 4.2.4.

Lemma 4.2.5. Let € = (E,<,#,L, M) be a deterministic and coherent labeled event
structure and < be a preorder on S. (€&, #M) is a (well-)preordered labeled event structure
iff (LT8¢, %) is a (well-)preordered labeled transition system, and they have a same type of
compatibility Cond € {(non-strict), strict} x {(standard), transitive, reflexive, strong}.

| .

e ela S
i% l %3))\
=ig ¢ S

E {s,...} i

l /N !

| NAD < |

v / \ v
{v,...} s} {¢,...} ¥ {v/,...}
c'ufey —S— ¢ " —=—C"UX

Figure 4.4: Coherence vs compatibility

Coherence is a required condition for the two-way implication stated in Lemma 4.2.5
and it somehow looks like compatibility. However, coherence and compatibility are quite
different, as illustrated in Figure 4.4.

Lemma 4.2.6. Let &€ = (E,<,#,L, M) be a coherent and deterministic labeled event
structures. (€,IM) is a preordered labeled event structure with strong compatibility where
IM = Tg is the identity relation over S.

Proof. The coherence of € by Definition 3.2.11 is exactly the strong compatibility of
identity order Zg with .. O

In Section 4.3, one will see that compatibility of preordered labeled event structures,
which may be nondeterministic, is enough for truncating, and consequently, doing certain
verifications on their finite prefixes obtained. One does not need to see whether there
exists a compatibility in its induced labeled transition systems.

Products of preordered labeled event structures

Definition 4.2.7. Given a number n € N. A synchronized product of n preordered
labeled event structures (€1, <), (€2,<5), ... (En, <&) is any tuple (Eg,<$) where

e Eg is a synchronized product of €1,E&9,...,&, w.r.t. some synchronization con-
straint g, and

o <$ is a binary order on Cg, defined by: C <§ C'iff for all 1 < i < n, (V(C)) |,
<% (V(C")) i where V is the synchronization function of €.

Recall that the synchronization function V could map each configuration C' in the
synchronized product Eg into a tuple (C1, Cs, ..., Cy,), where C; € Cg, (see Lemma 3.3.42
on page 57), and 'V is not injective. The preorder property of 4% is trivial and similar
to the one of the product preorder ®(<¥,<5,...,<%) on ®.(C¢,,Ce,,...,Ce,).

72

4.2. Truncation of well-preordered labeled event structures

Lemma 4.2.8. Let Cond denote any compatibility condition among {(non-strict), strict}
x {(standard), transitive, reflexive}. Any synchronized product of preordered labeled
event structures with compatibility Cond also has compatibility Cond.

Proof. Let (Eg, 4%) denote some synchronized product of n preordered labeled event
structures (€1,<9), (€2,<5), ..., (En, <§). Suppose that LIS
= (€g®,25®,59®,|—®) and LTS, LT8,,..., LTS are respectively their labeled tran-
sition systems based on the extension relation. We define another labeled transition
system LT85 = (Sg, Eg®,8?g®, —g) as the synchronized product of n labeled transition
system LTS, LTSy, ..., LTS , its synchronized constraint is g ,. We have then:
1. by Definition 4.2.7, for all C,C" € C¢, C 5§ C" iff (Rs(C), Rs(C")) € (<5, <§
sy <8) where Rg(C) = (V(C)]1,V(C)la, ..., V(C)],) for all C € Ce,.
2. (LT8g, (59,5, ...,<9)) is a preordered labeled transition system with compat-
ibility Cond due to Lemma 4.1.10.
3. LT, and LTSy are bisimilar w.r.t. (RS,IZ(;:@) (cf. Definition 2.4.17) because
of the maximization in £g by Definition 3.3.44.

Hence, (LT8,, 4%) as well as (g, s%) is preordered with compatibility Cond. [

4.2.2 Truncation techniques

Although labeled event structures preserve all system’s behaviors, they unfortunately
may be infinite in general, as it may be "too deep" and/or "too wide". A well-preordering
condition avoids the first possibility, and a branching finiteness assumption eliminates
the seconds. Hence, it is hoped that one can obtain some finite parts of a labeled event
structure to decide several verification problems.

Our technique is not far from the tree-saturation methods given in [Fin87, Fin91,
FS01] where all system’s possible executions are represented in some way inside a finite
tree-like structure. In this section, we give the general idea of a truncation technique,
and the more convenient one when partial-order is taken into account will be described
in Section 4.3.

Cutting context

Definition 4.2.9. A cutting context of a given labeled event structure € is any tuple
(<€, @) where:

1. (&,<°) is a preordered labeled event structure,

2. for all C,C" € Cg, C C C' implies C £€ ',

3. C C C¢ is a set of configurations.

We call the second property in Definition 4.2.9 the inclusion respect condition. In-
tuitively, by using a preorder <€, for instance <x¢=<M, one may be interested in only
configurations which are maximal w.r.t. <¢ when doing some analysis such as computing
reachable states of possible induced labeled transition systems. However, notice that in
practice, a labeled event structure € is constructed step by step by means of prefixes so
that its configurations as well as its events are added to € w.r.t. the inclusion order C
(see Chapter 5). Every configuration comes from its sub-configurations w.r.t. the in-
clusion order. Suppose the opposite, <¢ does not stick to the truncation idea described
later. For example, some configuration C’ may be used for cutting another one C' be-
cause C' <¢ €’ while C' is a subset of C’. Therefore, the inclusion respect condition is
naturally required.

73

Chapter 4. Truncation for well-preordered labeled event structures

We introduce the set of configurations € in Definition 4.2.9 in order to make this
definition general. In this work, only two cases of € where C is either C¢ or Glg are dis-
cussed (see Section 4.3). In our first approach to truncation technique, let us temporarily
ignore the importance of configuration set C and assume that it is the configuration set
Ce. This assumption leads us to the standard truncation technique on the coverability
tree of an infinite system [Fin91].

Definition 4.2.10 (Cutoff configuration). Let (¢, @) be a cutting context for a labeled
event structure €. A cutoff configuration is any configuration C.,; € € such that there
exists another configuration C' € @ satisfying Ceyy <€ C.

We call a configuration Cy,; € Cge an outer configuration if Cyy is greater than
some cutoff configuration C,; w.r.t. the inclusion order C. Such an outer configuration
Cout may be obtained by the extension relation from a cutoff configuration Cgy, i.e.
Ceut IF Coyt. Hence, Cyyt is intuitively useless, from the point of view of verification, due
to the compatibility of preordered labeled event structures (&, #C). More precisely, it
follows from Definition 4.2.10 that C.,; is cutoff due to the existence of some configuration
C such that C,; <C¢ C, and as a consequence, there exists another configuration C’
obtained from C, i.e. C I C", satisfying Cou <€ C.

Remark: If € = C¢ then every outer configuration is also a cutoff configuration. However,
it does not hold in general when € C Cg. Because, for example, either C,,; or the
corresponding configuration C’ in the above reasoning may not be in C.

It is worth noticing here that in other works on truncation techniques, one can
find only notions of cutoff configuration/event ([McM95a]) or of subsume node ([Fin87])
which all coincide with our cutoff notion. Our notion of outer configuration on the one
hand clarifies the definition of truncation below, and on the other hand, distinguishes
outer ("useless") configurations with cutoff ones of which some are required for verifying
certain problem, for instance, system’s boundedness.

Notation 4.2.11. For a given labeled event structure € and any cutting context (¢, @),
we denote

e C% the family of outer configurations,

o C¢ the family of cutoff configurations, and

o C% the family of configurations which are neither cutoff nor outer ones, i.e. C% =
Ce \ (€2 U C).

Definition 4.2.12 (Truncation). Let (5¢,€) be a cutting context of a labeled event
structure &. The truncation of & w.r.t. (¢, €), denoted by T(&,<C, @), is the union of
all non-outer configurations, i.e. :

TE 0= | C
Ce(Ce\CQ)

Ezample 4.2.13. Let us consider an example when & = (E, <, #, £, M) is the labeled
event structures for the 2-bounded counter initialized by 1, i.e. 2-BCl. Figure 4.5
illustrates € which is obtained from 2-bounded process 2-BP (see Section 3.3.2). Since
€ is deterministic and coherent and post; . = Codom(M) = {0,1,2}, (€ Iy) is a
well-preordered labeled event structure. Moreover, as proved in the next subsection,
(&, <C) is also well-preordered with strict compatibility where <€ is defined by: for all

C,C" € Cg, C <€ C" iff M(C) = M(C’) and |C| > |C'].

74

4.2. Truncation of well-preordered labeled event structures

Figure 4.5: Truncation example of a labeled event structure for 2-bounded counter ini-
tialized by 1.

One can see that C} contains only three configurations 0, {e! }, and {f}} whose
markings are respectively 1,0 and 2. All other configurations could not have a marking
out of the set {0, 1,2} and because its size is greater than 1, they are all cutoff configu-
rations if the cutting context is (¢, C¢). For example, C] = {el_,ei}, Cy = {f}r,fz},
and C5 = {el, f1} are all cutoff ones due to the configuration 0.

It follows then from Definition 4.2.12 that the truncation of & w.r.t. the cutting
context (¢, Ce) is the set T(€,<x,Ce) = {eL,e2, f1, f2}. Events which are outside of
this truncation are illustrated in Figure 4.5 by dashed line. The truncation, and more
precisely the prefix of & based on T(&, <%, C¢) is enough, for instance, for computing all
possible markings. Formally, let us simply denote the truncation T(&, <¢, C¢) by T, and
the T-prefix &|y by the tuple & = (T, <’ #', L', M"), we obtain that

U Mm@ = |J M(©)
CeCe CeCe:CCT
- U M©)
CECye
={0,1,2}

Remark: By definition, C' C T(E, <C,) for every configuration C' € C%. And all cutoff
configurations which are minimal w.r.t. inclusion are also subsets of the truncation.
Although T(€, <€, @) is the union of non-outer configurations, it may contain some outer-
configurations. As shown in the example above, the truncation is an outer one itself.

Truncation’s properties

Because every configuration is a downward closed set w.r.t. causality, a truncation is
also downward closed set w.r.t. causality. When there is no risk of confusion, we also
call the prefix of a labeled event structure & based on its truncation T(&, <€, C) for some
given cutting context (<¢,@), i.e. €| (e,<¢,e), its truncation.

This truncation is determined somehow by the set of all minimal cutoff configurations
w.r.t. the inclusion order C. In other words, the truncation is bounded by events whose
local configurations are of course outer ones, but more precisely, by some of them which
are minimal w.r.t. the causality. Formally, the set Ef = Min<({e € E/>(e) € C%}) is

75

Chapter 4. Truncation for well-preordered labeled event structures

intuitively the outside-frontier of the T(&, <C, @)-prefix of &, and
T(8,<5,€) = B\ <(Ey)

It is due to a consequence of the fact that every configuration C € Cg containing a suc-
cessor of an event ey € Ey must contain ey itself. Therefore, C is an outer configuration
because >(es) C C and >(ey) € C4. In example in Figure 4.5, we have Ey = {e3, f3}.

Theorem 4.2.14 (Completeness). Let (<6, @) be a cutting context of a labeled event
structure & = (E,<,#,L,M). If <C is converse well-founded and (&,<C) has strict

compatibility then for all configurations C € Cg, there exists a configuration C' € C%
such that C <6 C'.

Proof. We will prove this theorem by contradiction. Suppose that there exists a config-
uration C' € C¢ such that for all ¢’ € €%, C £¢ C" (*). Tt follows the reflexivity of <¢
that C' ¢ C%, and as a consequence, there are two cases:

e C is a cutoff configuration, i.e. C € C¢. By definition, it is due to another
configuration C; € € C Cg¢ satisfying C' <€ C}.

o Cis an outer configuration, i.e. C € C%. Once again, there must exist a cutoff
configuration Cyy; and thus another configuration C’ such that: Cey C C, Cryp <€
C’. Thanks to the strict compatibility of (&, 46), there exists a configuration
C € Cg which may be obtained from C’, i.e. C'IF C1, and satisfies that C' <€ C;.

In both cases, one can conclude that there exists C; € C¢ satisfying C < C. It follows
from the hypothesis (*) that C; ¢ C%. By repeating this reasoning, we obtain an infinite
sequence of configurations which is an increasing sequence w.r.t. <C, that means C' <€
C, <€ Cy,... where C; € @C¢ for all i € N. This contradicts to the converse well-
foundedness of <C. Therefore, hypothesis (*) thus results in contradictions. O

The "respect inclusion” of cutting contexts is not only a natural property in practice
but also gives rise to the converse well-foundedness of the order <¢. And it is thus a key in
the proof of Theorem 4.2.14. This theorem is somehow called "truncation completeness"
theorem, for instance, for reachability based verification (see Section 4.3). However, such
a verification is decidable if the corresponding truncation is finite.

Theorem 4.2.15 (Finiteness). Let (¢, C) be a cutting contest of a finitely-branching
labeled event structure & = (E,<,#,L,M). If <€ is converse well-preordered and Glg 18
a subset of C, then the truncation T(&,<C,C) is finite.

Proof. We first prove that for every event e € E, if its local configuration >(e) is an
outer configuration then e ¢ T(€,<¢,€) (*). Suppose that it is not true for some even
e. Since >(e) is an outer configuration, there exists a configuration C¢,; € €% such that
Ceut C (>(e)). As a consequence, for all configuration C' € Cg satisfying e € C, C
must be an outer configuration due to Cpy, more precisely because C.,y C (>(e)) C C.
In other words, every non-outer configuration can not contain e. It follows from the
definition of the truncation (Definition 4.2.12) that e ¢ T(€, <€, C).

Now, suppose that the truncation T(E, <€, C) is infinite. Let us consider the DAG
(V,E') where V = T(€,<,€) and E’ is defined by: for all e,e’ € V, (e, /) € E' iff
e < ¢'. Since & is finitely-branching, (V, E’) is finitely-branching too. As a consequence
of Konig’s lemma, there exists an infinite path e; < ey < ... in T(€,<¢,€). Due to
the converse well-preorder <, there exists indices k > i such that (>(ez)) <€ (>(e:)).
Thanks to the inclusion respect condition of cutting contexts, it follows from (>(e;)) C

76

4.2. Truncation of well-preordered labeled event structures

(>(ex)) that (>(e;)) Z€ (>(ex)). We have thus (>(ex)) <¢ (>(e;)). Therefore, >(e,) is a
cutoff configuration because both configurations >(e;) and >(ey) are elements of C. C €.
Hence, for every index | > k, the local configuration >(e;) is an outer configuration.
The fact that e; belongs to the truncation T(€, <, €) contradicts (*). One can finally
conclude that T(&, <¢, C) is finite. O

The family of configurations € of a cutting context (<€, @) is introduced for a general
cutting context. We have not found the precise condition on € for the finiteness of
the corresponding truncation stated in Theorem 4.2.15. However, our condition that
Ce D Glg is enough for partial-ordered verifications detailed in Section 4.3 in which the
local cutting context is based on the family of local configurations 6’18. We also hope
that a good choice of € can help tuning our verification algorithms detailed in the next
chapters.

4.2.3 Well-preorders on configurations

All different variants of truncating techniques may be generalized by ours. The preorder
on configurations is determined by a pair of orders (™, <) where <™ and < are both
orders on configurations, and

o <M is based on the marking function,
o <is based on the inclusion order or/and the labeling function.

The order <, and more precisely its strict order <, called adequate order, must
be a strict partial-order on Cg¢ refining/extending the inclusion order C, i.e. C C C’
implies C' <1 C’. This property corresponds to the inclusion respect condition on cutting
contexts. Moreover, this pair of orders (#M, <) must be preserved by finite extensions.
This means that for every pair of configurations C' <™ €, and for every extension set X
of C,i.e. CIF X, there exists an extension set X’ of C’ such that (CUX) M (C'UX),
and if C < C' then (CUX) < (C"U X'). Tt intuitively coincides with our definition of
compatibility of <™ with extension relation I-, and will be proved in the rest of this
sub-section. One can find in the literature the following orders:

Marking orders

o« M= Zcodom(Mm) for finite systems [McM95a] which is the most widely used
for unfolding technique on safe Petri nets.

o« M= R Codom(M) Where configurations’ markings may be partitioned into fi-
nite classes and ~cogom(a) 18 the corresponding equivalence relation [KKO03].
For example, this is used for symmetric Petri nets [CGPO01] or Signal Transi-
tion Graphs [SY96].

o <M is a well-preorder on states of well-structured transition systems [Fin87].

Adequate orders

o < = C for finite recovery trees |Fin87, FS01].

o < based on configurations’ sizes, C' < C" iff |C| > |C’|, for unfolding of Petri
nets [McM95a).

o < based on lexicographic order over * or Foata normal form of configura-
tions [ERV96|.

In this work, we focus only on well-preorders <€ that are based on some marking
preorders <™ (see Definition 4.2.2) and some adequate orders <l given above. Intuitively,

7

Chapter 4. Truncation for well-preordered labeled event structures

<M gives rise to the compatibility of cutting context while < guarantees the foundedness
of <¢, and as a consequence the decidability of some verification problems.

Notation 4.2.16. Let & be a labeled event structure and <™, < are respectively a marking
order and an adequate order for & We denote <¢= (™M @) the binary relation on Cg
that is defined as: denoted by (™ @ >) where

o CCCiff (O, C) € (M N D),
e C<CCiff C <6 and C > C'.

The adequate order based on lexicographic order defined below has been first given
by Esparza and is widely used in nowadays unfolding techniques for Petri nets. One can
find its definition as well as the original idea of how to improve unfolding techniques
in [ERV96]. Briefly, the purpose of giving or refining adequate orders is to obtain small
truncations.

Definition 4.2.17. Given a labeled event structure & = (E,<,#, L, M) and a total
order < on Y. The lexicographic labeling order on C¢, denoted by <, is defined by: for
all C,C" € C¢, C <, C" if either:

o |C| < |C], or
e |C] =|C’| and the linearisation w.r.t. < of labels of events in C' is lexicographically
smaller than or equal to the one of C”.

4.3 Partial-order verification for well-preordered labeled
event structures

Based on the general cutting context defined in the previous section, we are going to
show different truncation techniques. Each truncation technique is dedicated to a kind
of information in labeled event structures that one wants to preserve by means of trun-
cations and its corresponding prefixes. Then, by analyzing these prefixes, one can verify
various problems on systems which are modeled by labeled event structures, such as
termination and boundedness. There are two types of cutting contexts (<¢,€) which
are widely used. It depends on the choice of the configuration set € which is either the
whole set of configurations C¢ or the set of local configurations @ls.

The first one, i.e. € = Cg, is called a global cutting context, can result to a compact
truncation but contradicts to the partial-order construction of labeled event structures
(see Chapter 5). Because, in practice, one must compute and examine all configura-
tions and their markings in order to decide the truncation and whether the constructing
algorithm may terminate.

The second one, i.e. € = 6’15, may be integrated in the algorithm that constructs
labeled event structures. It keeps up the partial-order idea and almost does not slow
down the running time of the algorithm in practice (see Chapter 6 for details). In
this section, we only consider this kind of cutting context, called local cutting context,
however, all statements as well as their proofs are also true for the global cutting context.

4.3.1 Local cutting contexts

Let us firstly give some new notions about events that are derived from the ones about
configurations.

78

4.3. Partial-order verification for well-preordered labeled event structures

Definition 4.3.1. Let £ = (F,<,#, L, M) be a labeled event structure and (<, CL)
be a local cutting context of £. An event e € E is

e a cutoff event if >(e) is a cutoff configuration,
e an outer event if >(e) is an outer configuration.

Since cutoff configurations are determined by CL, the second item of Definition 4.3.1
can be stated in another way, event e,,; is an outer event e if it is a successor of some
cutoff event e.y, i.6. ecut < €oyt. By the same manner as in Notation 4.2.11, we also
denote the set of cutoff events, the set of outer events by E¢ E° respectively; and the
set of events which are neither cutoff nor outer by E", i.e. E" = (E\ E¢) \ E°.

Lemma 4.3.2. Given a local cutting context (XC, (?lg) of a labeled event structure €. We
have
T(&, <5, L) = E" U Minc (E°).

Proof. In the same manner as the proof of Theorem 4.2.15, we obtain that for all e € E°,
e T(E, <, @lg) It follows directly from the definition of outer events that for all e € E™,
(>(e) N E°) = (. And moreover, a cutoff event e.,; € E° is an outer event iff it is a
successor of some other cutoff event, or in other words, iff it is not minimal w.r.t. causality
over the set of cutoff ones, i.e. eqyr Min<(E€). Therefore, by definition of the truncation
(Definition 4.2.12), T(€, 46,@%) = UCe(eg\eg) C = (>(E") U (>(Min<(E°))) = E™U
Min< (E°). O

(b) Global: (<€, Ce)

Figure 4.6: Local vs global cutting contexts

Ezample 4.3.3. Let us denote & = (E,<,#, L, M) the labeled event structure for 2-
bounded counter initialized by 1, i.e. 2-BC', which is isomorphic to ({a},a,2)-CP for
bounded FIFO channels (see Definition 3.3.13 on page 38). And let us take the same well-
preorder <€ as in Example 4.2.13, that is C <¢ C" if M(C) = M(C") and |C| > |C"|.
Figure 4.6-a and Figure 4.6-b illustrate € and its truncations with respectively the local
cutting context (<€, CL) and the global one (<C, C¢).

As shown in Figure 4.6-a, events e? and ei are cutoff events due to e! and e; 1. And
more over, these two events form the minimal set w.r.t. causality of cutoff events, i.e.
Min<(E¢) = {e?, €2}, hence give the intuitive frontier/bound of the truncation. How-
ever, in Figure 4.6-b, €2 and ei are both "outer events" because its local configurations
are outer ones due to configuration C,, = {el,ei} which is not local. One can say

79

Chapter 4. Truncation for well-preordered labeled event structures

that the truncation with global cutting context, in this example is {e!, el } is smaller
than the one with local cutting context, {e!, e}r, e, ei}, while they preserve the same
information on reachability /marking set, i.e.

U M(C) ={0,1,2} = U M(C)

CeCe:CCT(E,x6,6L) CEeCe:CCT(E,5C,Ce)

Lemma 4.3.4. Let (€, <) be a preordered labeled event structure where <™ is a mark-
ing preorder. Let < be the adequate preorder based on configuration size, i.e. C <1 C" iff
|IC| < |C']. If (&,<™M) has reflexive compatibility then (€, <™ M) is also a preordered
labeled event structure with strict and reflexive compatibility.

Proof. Let us denote <¢ = (™M @ >). The reflexivity and transitivity of <C are trivial
so that <€ is a preorder on C¢. Let C,C’ be two configurations in Cg¢ and assume that
C <€ C'". Since (&,x™M) is a preordered labeled event structure, by Definition 4.2.1, for
every extension set X of C, there exists an extension set X’ of C’ such that (CUX) ™
(C"U X'). Tt follows from the reflexive compatibility that |X’| = | X|. Because C <¢ C’,
we have |C| > |C’| and thus |[C U X| = |C|+ |X| = |C|+ |X'| > |C'|+ | X'| = |C" U X'|
(recall that a configuration and its extension set are disjoint sets). Therefore (C'UX) <¢
(C"U X') by definition and (&, <C) is preordered with reflexive compatibility because
|X| = |X’|. Moreover the strict compatibility follows directly from the definition of
(™M @ >) which says that C' <€ C’ iff C <M " and C' > C". O

In the proof above, there are no constraint on labels of events and extension events.
However, with a little modification, one can also say that the preorder based on the
lexicographic order preserves strong compatibility, i.e. when there is no event labeled by
an internal action in 7.

Lemma 4.3.5. Given a preordered labeled event structure (€, <) where <™ is a mark-
ing preorder, if (€, <™) has strong compatibility then (M@, €) 2 is also a preordered
labeled event structure with strict and strong compatibility.

Proof. By the same manner as in the proof of Lemma 4.3.4, this lemma is a consequence
that comes from a property of the lexicographic order <; corresponding to <, i.e. C<;C’
if £(C) =y £(C"). In fact, for all multisets A, B,C over ¥ = Codom(L), we have that
A =; B implies (A & C) =; (B @& C) where the operator & represents the union of
multisets. U

The lexicography-based order <; refines the size-based order <, that means for all
configurations C,C" € C¢, C <; C’" implies C' < C’. And they both refine the inclusion
order C. Hence, (™ @ >,€) and (™ @ >;,C) are cutting contexts for any family
C C C¢ if the compatibility is satisfied. Moreover, if the corresponding truncations are
finite, one can easily find out that T(&, x™Mm>;, @) is generally smaller and never greater
than T(&, <M m>, @), as the word "refine" means. Esparza et al. have given an example
in [ERV96] showing that the truncation, obtained by using < is exponential while the
one that uses < is linear w.r.t. the size of the original system.

Lemma 4.3.6. Given a preorder labeled event structure (€,<™M). If € is finitely-
branching then <= (™M @ D) is a converse well-foundeded.

24, is lexicographic labeling order (see Definition 4.2.17 on page 78).

80

4.3. Partial-order verification for well-preordered labeled event structures

Proof. As a consequence of Konig’s lemma, the finitely-branching property implies that
there is no infinite sequence of configuration C7y D Cs D Hence there is no infinite
increasing sequence of configurations w.r.t. the order <C: (4/‘4 m2). O

Remark: If € is finitely-branching and <™ is a converse well-preorder then (™ @ >) as
well as (™ M >)) is a converse well-preorder.

4.3.2 Coverability and quasi-liveness

Definition 4.3.7 (Coverability). Given a labeled transition system £LJ8 = (5,3, s%, —)
and a preorder < on its state space S, the coverability problem is to decide whether a
state s is covered by some reachable state s, i.e. s < s and s—%> s for some o € ¥*.

This problem may be solved by the computation of the downward closure w.r.t. < of
post? ,s. While using labeled event structures (€, <) for modeling systems by means of
induced labeled transition systems (L‘J‘Sg, <), one needs, and this is enough, to compute
the downward closure w.r.t. < of M(C¢) =Ugee, M(C). Because, by Definition 3.2.4,
M(C¢) = post*LTSS.

Notation 4.3.8. Let T be the truncation of a preordered labeled event structure (€, <°)
w.r.t. some cutting context (<, €). We denote Cg the family of configurations in
“T(E’ #Ca e)a ie. Cy= {C € GS/C - “T(E’ #Ca e)}

In this subsection, we will show that the coverability problem is decidable if there is
a reflexive/strong compatibility by using either (™ @ >) or (™ @ >;). As stated by
Lemma 4.3.4 and Lemma 4.3.5, both (M m>, C¢) and (™ @ >, C¢) are local cutting
contexts.

Lemma 4.3.9. For any finitely-branching and preordered labeled event structure (&, <™)
with reflexive (strong) compatibility, let < be the size-based adequate order (the lexicogra-
phy-based adequate order, resp.) and T(E, (xM@D>), 6’18) be the corresponding local trun-
cation. Then we have:

#(M(Cq)) = =(postyyse)

Proof. By definition of induced labeled transition systems (Definition 3.2.4), we have
to simply prove that =(M(Cg)) = =(M(C¢)). Since Cy C Cg, it suffices to show
that M(Cg) C (=(M(Cq))). Tt follows from Lemma 4.3.6 that the order (™ m >)
is converse well-founded. Let C' be any configuration in Cg¢, by Theorem 4.2.14, there
exists a configuration C’ € €% C Cg such that C <€ ¢’ where ¢ = (M@ >), and
so C ™M (C'. Tt follows from the definition of marking preorders (Definition 4.2.2)
that M(C) C (3=(M(C"))). Therefore, by a same manner as for strong compati-
bility with lexicography-based adequate order, one can conclude that (=(M(Cy))) =

(7(M(C¢))) = (=(posty ;¢e))- O

The downward closure set for coverability may be rewritten in another way as
(%= (M(e9) = (%7 (MMaxou(€9))))

s U Mo

CEMaX<M (Cy)

81

Chapter 4. Truncation for well-preordered labeled event structures

In words, one takes the set of maximal configurations, w.r.t. the marking preorder
<M in the truncation; then one computes the union of their markings and finally one
computes its downward closures.

The correctness of this lemma is based on the one of Theorem 4.2.14 so that the strict
compatibility of the cutting context’s order (™ @ >), as well as the strict comparison
in definition of cutoff configurations (see Definition 4.2.10) is very important for the
completeness of the truncation while verifying coverability. One can find a counter-
example in [ERV96]. For example, if we replace the condition Cl; <¢ C by Cey <€ C,
for some preordered labeled even structure, (C'U Cp,;) is an outer configuration and the
truncation may have no configuration C’ which covers (C'U Ceyt), i.e. (C'U Cheyt) ¢ €'
and (C'UCy) #M C'.

Remark: Our covering problem corresponds to the sub-covering one in [FS01, HST07] by
duality. The sub-covering problem is decidable for reflexive and downward well-preorder
labeled event structures (LT8, <) by means of computing upward closure of post} .
The downward compatibility tells that from a smaller state, one can do the same thing as
from a greater one w.r.t. <. In this work, we give no downward notion for compatibility.
However, such systems corresponds to our well-preordered labeled transition systems
(LTS, =) where the converse preorder 3= is converse well-preordered.

Lemma 4.1.14 combined with Lemma 4.3.9 allows us to reduce backward analysis

to forward analysis: to compute pre} . (<({s})) in a well-preordered labeled transition

(L‘J’Sg, <) and finite pred-basis pb, it is sufficient to build the finite truncation of the
corresponding well-preordered labeled event structure (&, <™M).

Lemma 4.3.10. Let (& <™M) be any preordered labeled event structure with reflexive
(strong) compatibility and < be the size-based adequate order (the lexicography-based ad-
equate order, resp.). If € is finitely-branching then T(E, (M M >), CL) is finite.

Proof. Thanks to Lemma 4.3.6, the preorder (™ @>) is a converse well-founded. And
as a sequence of Theorem 4.2.15, the truncation is finite.]

As seen in Chapter 5, one can obtain the prefix based on the local cutting context
(&, (™ m>),CL) by a partial-order construction. Although the covering problem is
decidable on (&, <™) due to the finiteness of the truncation, one need compute more or
less all markings as well as possible configurations (generally not local ones) in the prefix.
This computation after the construction does not suit with partial-order verification.

Definition 4.3.11 (Quasi-liveness). Let LTS8 = (S,%,s”,—) be a labeled transition
system. An action a € X is quasi-live if there is an execution of LTJ8 in which a is fired.

In the context of labeled event structures, the quasi-liveness of a reduces to the
existence of an event labeled by a. Unlike the covering problem, the quasi-liveness would
be verified in concurrent with partial-order truncation’s construction, and fortunately,
without computing configurations that are possibly not local.

Theorem 4.3.12. Let (€, <™) be any finitely-branching and preordered labeled event
structure with reflexive (strong) compatibility and < be the size-based adequate order (the

lezicography-based adequate order, resp.). For any global action a € ¥, a is quasi-live in
LTSE iff a labels an event in T(E, (M M@>), cL).

Proof. Let us denote by & = (E, <, #, L, M) the labeled event structure. By definition of
induced labeled transition systems (Definition 3.2.4 on page 28), it suffices to prove that

82

4.3. Partial-order verification for well-preordered labeled event structures

L(T(E, (xMm>),CL)) =3 (*) (recall that ¥ = Codom(L)). Since T(E, (xMmr>),CL) C
E, the left-side inclusion of (*) is obvious. For the right-side inclusion, suppose that
e be any event e € E. Thanks to Theorem 4.2.14, for the configuration >(e), there
exists another configuration C' € €% such that (>(e),C) € (™ @ >). Since a is not
an internal action, i.e. a ¢ X7, because of the reflexive compatibility of (€, <¢) where
<¢ = (M M@D>), we have C I € for some extension event €’ satisfying L(e/) = L(e).
Moreover, it follows from the downward closed property of the configuration (C U {e’})
that >(e’) C C, and as a consequence >(e’) does not contain cutoff events. Thanks to
Lemma 4.3.2, ¢ € T(&, (M M), CL). The right-side inclusion of (*) is proved. O

4.3.3 Termination and boundedness

Definition 4.3.13 (Termination). Given a labeled transition system LTS8, we say that
LTS terminates if LTS has no infinite execution.

Suppose that we has already a labeled event structure € for £J8. Then LTS ter-
minates if € is finite. Or reversely, LTS does not terminate if & has no bound on its
configurations’ sizes. In order to resolve the termination problem, we use the cutting
context based on <€ = (kM M2). The intuitive idea is that if a configuration Cpy; is cut
due to another configuration C, the compatibility of <¢ implies the existence of infinite
sequence of configurations Ceys, Clyy, C¥ iy .. in Ce. An important thing here is that
this sequence is increasing while comparing elements’ sizes. The reasoning that can be
found in following proofs, bases on both C and C¢y; (1); and the fact that C.,; may be
obtained from C' (2). The first point really differs from the reasoning for coverability and
liveness problems in which Cy.; is somehow useless. And due to the second point, one
has that C' C C” so that the adequate order C is naturally convenient for the termination
problem.

Lemma 4.3.14. Given a preordered labeled event structure (€, <) where M is a
marking preorder, (€, (=™ M D)) is also a preordered labeled event structure.

Proof. Let us denote ¢ = (=MM@D). The reflexivity and transitivity of <C are trivial so
that <€ is a preorder on C¢. The compatibility of preorder <C is directly inherited from
the inclusion order. Let C,C’ be two configurations in Cg and assume that C' <€ C'.
Let X be any extension set of C, i.e. C Ik X. Since C D C’, we have thus ¢’ C
(CUX). Hence, X' = (C'\ C')U X is simply an extension set of C’ which guaranties
the compatibility of <¢ because C'UX' =CUX. O

As seen in the previous proof, (€, (=M @ 2)) may not have the strict compatibility
needed in Theorem 4.2.14 so that the corresponding local truncation is not complete in
view of coverability. However, this truncation preserves enough information for termi-
nating problem. And the verification is decidable due to its finiteness.

Theorem 4.3.15. Let (&,<x™) be any well-preordered labeled event structure. If & is
finitely-branching then T(&, (=M@ D), CL) is finite.

Proof. Suppose that the truncation T(&, (=M@ D), CL) is infinite. Thanks to Kénig’s
lemma, it follows from the finitely-branching property of € that the truncation 7T contains
an infinite sequence of events e; < ey < As a consequence, (>(e)) C (>(e;)) for all
i < j. Moreover, since <™ is well-preordered, by definition, there exist two indices i < j
such that (>(e;)) <™ (>(e;)). We obtain that the local configuration >(e;) is a cutoff
one, and e; is a cutoff event due to e;, or more precisely, due to the local configuration

83

Chapter 4. Truncation for well-preordered labeled event structures

>(e;). Hence, ej41 is an outer event by definition. The fact that T(&, (:=Mm D), CL)
contains ej;y1 contradicts to Lemma 4.3.2. Therefore, the truncation is finite. O

In covering-based verification, cutoff events as well as cutoff configurations are some-
how useless (see Theorem 4.2.14). However, for termination, it is the opposite. The
existence of cutoff events in the truncation is enough for deciding whether the corre-
sponding system terminates if there is transitive compatibility.

Theorem 4.3.16 (Termination). For any well-preordered finitely-branching labeled event
structure (€, <) with transitive compatibility, LTSE terminates iff T(E, =" Q,Glg)
contains no cutoff event.

Proof. Let us denote the labeled event structure by € = (E, <, #, £, M), and the local
truncation simply by T. Thanks to Theorem 4.3.15, T is finite. Recall that T = E" U
Min<(E€), the truncation contains a cutoff event iff there exists a cutoff event in E.

(<) Assume that T contains no cutoff event. This implies that there is no outer event
and by definition, £ = T. The event set F is also finite. We deduce from Lemma 3.2.12
that every execution in LTS8 which corresponds to linearisation w.r.t. causality of some
configuration has length at most |E|. Therefore, LT8¢ terminates.

(=) Assume that T contains a cutoff event e.,;. There exists another event such
that e < ecyr and (>(e)) ™M (>(ecur)). Due to the transitive compatibility of (€, ™M),
let X = ((>(ecut)) \ (=(€))), since X is an extension set of >(e) there exists another
extension set X’ of >(eqy) such that (>(e) U X) = (>(ecut) ™ ((>(ecwr)) U X7)
and |X'| > |X] > 0. By iterating this reasoning, we obtain an infinite sequence of
configurations ¢ M (CU X) ™M (CU X U X’) M ... so that there is no bound for
their size. The induced labeled transition system LT8¢ must have an infinite execution
due to Lemma 3.2.12. O

Definition 4.3.17 (Boundedness). A labeled transition system LTS8 is bounded if it has
a finite reachability set, i.e. post} ¢ is finite.

In order to decide boundedness, we use the same local cutting context as in termina-
tion, i.e. based on (;:=m D), but we need the notion of marking-strict cutoff events.

Definition 4.3.18 (Marking-strict cutoff event). Given a preordered labeled event struc-
ture (€, <™) and its local cutting context (=Mm 2, CL). A marking-strict cutoff event
is any event €., such that M(>(ecut)) =™ M(>(e)) and eqys < e for some event e.

It is worth noticing that, in practice, eq,+ may be a marking-strict cutoff event due
to the empty configuration () € €. We simply say that it is due to the particular event .
Observe that any marking-strict cutoff event is also a cutoff event. The idea of verifying
boundedness is closed to the one of termination. Their corresponding truncations is the
same since we use a local cutting context ((>™ M 2,CL). However, the decidability of
boundedness verification depends on a strict compatibility of marking preorder <™, not
the strict compatibility of the cutting preorder (=™ @ D).

Theorem 4.3.19 (Boundedness). Given (€,<™) be any well-preordered labeled event
structure with transitive and strict compatibility, and <™ is a partial-order. If & is
coherent and finitely-branching then its induced labeled transition system LT8¢ is bounded
iff T(€, =™ M D, CL) contains no marking-strict cutoff event and M(Cq) is finite.

84

4.3. Partial-order verification for well-preordered labeled event structures

Proof. Let us denote the labeled event structure by & = (E,<,#, L, M) and its lo-
cal truncation simply by T. By definition of induced labeled event structures (Defini-
tion 3.2.4), we have post] .. = M(C¢). Hence, the theorem could be rewritten as:
M(C¢) is finite (1) iff T contains no marking-strict cutoff event and M (Cq) is finite (2).
We are going to first show that "not (2) implies not (1)" and second "(2) implies (1)".
Therefore, one can thus conclude the theorem.

e Since T C F and Cg C Cg¢, the marking set M(C¢) which includes M (Cq) must be
infinite if M(Cs) is infinite. Now, suppose that T contains a marking-strict cutoff
event e, due to another event e, that means e < ¢’ and M(e) <M M (ecys). Due
to the strict and transitive compatibility of (€, <), by the same manner as in
the proof of Theorem 4.3.16, there must exists an infinite sequence of configuration
Cp <M Oy <M O3 <M ... in C¢ where C] = >(e) and Cy = >(ecys). And their
markings are all belongs to M(C¢) so that M(C¢) is infinite.

o We will prove that M(Cg) C M(Cq) if there is no marking-strict cutoff event in
J. As a consequence, M(C¢) is finite due to the finiteness of M(Cgy). Let €%
denote the set of configurations of which marking does not belong to M(Cg), i.e.

5 ={CeCe/(M(C)\ M(Cq)) # 0}. Suppose that €% is not empty. Since € is
finitely-branching, the size-based order < on Cg¢ is founded so that one can choose
a minimal configuration C' € €% w.r.t. <. It obviously follows from definition that
C must contain an outer event, and thus as a consequence, a cutoff event e.,; due
to another event e. Without lost of generality, suppose that e.,; is minimal w.r.t.
causality < in C, then e,y is also minimal w.r.t. < over E because C is downward
closed. As a consequence of Lemma 4.3.2, e.,; belongs to the truncation 7.

Because there is no marking-strict cutoff event in J as supposed, for cutoff event
Ccut, We have thus e, > e (causality), >(ecut) =M >(e) and >(ecut) £ >(e)
(marking). Therefore >(ecys) = >(e) since <™ is a partial order. Let X =
C'\ (>(ecut), as a sequence of the second property of coherence (Definition 3.2.11)
of &, it follows from the extension set X of >(e,t) that there exists an extension set
X' of configuration >(e) satisfying | X'| = | X | and M (>(equt)UX) = M(>(e)UuX’).
The configuration C’ = >(e) U X’ has the same marking as C, hence ¢’ € €.
Moreover,

C' = 1=(e)] + IX'] = [Z(e)] + |X] < [=(ecur)| + | X[= |C]

This fact contradict to the minimality of chosen configuration C'. Therefore, €5
must be empty so that M(C¢) is finite.

O

Remark: Abdulla et al. have given an unfolding algorithm for symbolic verification of
unbounded Petri nets in [AIN00|. They adapt an algorithm described in [ACJT96] for
backward reachability analysis. This technique is more or less the dual of the ours.
One can also find another work on boundedness of Petri nets which based on forward
analysis in [DJNO4]. In both cases, their algorithms operate on constraints that each
configuration may represent an (infinite) upward closed set of Petri nets’ markings 3.

3 A marking in Petri nets is a bit different to our marking for nondeterministic labeled event structures
(see Definition 2.5.1 on page 20).

85

Chapter 5

Compositional unfolding techniques

Contents
5.1 Unfolding algorithm 88
5.2 Causality processes’ unfolding 92
5.2.1 k-causality processes 93
5.2.2 M-causality processeso 96
5.2.3 Generalization L L Lo 103
5.3 Synchronized products’ unfolding 109
5.3.1 Function ConfigVectorSet i 111
5.3.2 Function ConfigVectorSet 114
5.3.3 Functions Initgp and Extendgy 117
54 Truncatingttt 122
5.4.1 Algorithmic cutoff events 123
5.4.2 Complete prefixes oo oo 125

Our goal in this chapter is to give algorithms, called unfolding algorithms, for building
labeled event structures using a method similar to Petri net unfolding. The first Petri
net unfolding algorithm was given by McMillan [McM95a]. This algorithm intuitively
enlarges some prefix of a labeled occurrence net (see Section 2.5 on page 19) by iteratively
adding events to it. A new event is computed from existing conditions in the prefix that
possibly enable this event. This idea was later applied to synchronized products of
transition systems [ERV96]. In the result: for adding events, component states could
be analyzed without focusing global states of the synchronized product. In our case, we
adapt this technique to synchronized products of label event structures. One constructs
not only prefixes of a synchronized product but also corresponding component prefixes
together.

We present the general algorithm in Section 5.1. Intuitively, every event is created
and inserted into the being constructed prefix when all its direct predecessors are already
there. Then, we detail our unfolding algorithm into two particular cases: for component
labeled event structures and for synchronized products of labeled event structures.

First, in each standard labeled event structure defined in Section 3.3, an event and its
direct predecessors as well as its direct successors form somehow a motif. For example, in
the k-causality process, every increment event has k increment direct successors and one
decrement one. As a consequence, based on the definition of a labeled event structure,

87

Chapter 5. Compositional unfolding techniques

one can write a corresponding algorithm to construct it, more precisely, to construct its
prefixes. Section 5.2 will give algorithms, for instance, building causality processes for
counters and FIFO channels.

Second, in a synchronized product of labeled event structures, a global event is noth-
ing but a synchronization of component events. The unfolding algorithm, in the one
hand, successively extends a prefix of the synchronized product, and in the other hand,
uses associated unfolding algorithms for components in order to accordingly extend its
component prefixes. This algorithm will be detailed in Section 5.3. Moreover, one can
consider a synchronized product of labeled event structures as a component of another
larger one. As a consequence, one can obtain a global unfolding algorithm for a com-
plex system which is hierarchically modeled by means of labeled event structures. Our
contribution is not only a generalization of the unfolding method in [ER99| to parallel
composition of labeled event structures, but also gives an algorithm which is capable of
exploiting concurrency in components as well as among them.

In Section 5.4, we will explain how to integrate truncating criterion into an unfolding
algorithm in order to only construct finite truncations which are complete for certain
verification problems given in Chapter 4.

5.1 Unfolding algorithm

Aiming at building a labeled event structure (E, <,#, L, M), the unfolding algorithm
always maintains a prefix of &, w.r.t. isomorphism, and tries to extend it until it is
1mposs1ble _This prefix under construction is presented by so called structure variables
€= (E,< #.L M) that are the main variables in our algorithms. Extending the prefix
e intuitively means that the unfolding algorithm creates new_events, adds them to E
and accordingly modifies other structure variables, e.g. < # E ./\/l so that the obtained
Eisstill a prefix of € w.r.t. isomorphism.

Remark: In this chapter, for simplicity of proofs, when two labeled event structures are
isomorphic w.r.t. some bijection B, we assume that they have a same set of events.
On this understanding, one does not need to take care of bijection B without risk of
confusion. Due to this assumption, one can say that € is a prefix of € and simply write
&= €|z. That means E is a downward-closed subset w.r.t. < of E. And in this case,
the causality < and the conflict relation %& are respectively restrictions of < and # onto
the event set E, e <= <|z and %E = #lz-

To be precise, notice that € constructed by our algorithm will not be a prefix of € as
in Definition 3.1.12 but rather an isomorphic copy of it. In this chapter, we will never
talk about this isomorphism though, and always think of € as a sub-event structure of €

Algorithm 5.1 represents the pseudo-code of our general unfolding algorithm. Besides
structure variable € representing the prefix being constructed, this algorithm maintains
a variable PE, called possible extensions. PE contains a set of events in E from which
the prefix e may be extended.

The algorithm starts by initializing the prefix € as well as PE using function Init (line

2). As the output of Init, € will be usually the prefix of € consisting of its minimal events,
ie &= 8\M,n<(E) At the same time, PE will be the whole event set of 8 ie. PE=F.
Then the algorithm proceeds by considering events in PE in turn. For a chosen event e
in PE (line 4), it calls the function Extend that is the core of our unfolding algorithm.
This function takes e as well as values of structure variable & and of possible extension

88

5.1. Unfolding algorithm

Algorithm 5.1: Unfolding algorithm

begin
(€,PE) := Init()
while PE # () do
take an event e in PE
(€,PE) := Extend (€, PE, ¢)
end while
end

N O Ot s W N =

PE as input (line 6), and does the following:

e finds which direct successors ¢’ of e in &, i.e. e < €', should be added to E: Such
successors ¢/ must satisfy that its predecessors are not only in F, i.e. >(e) C E,
but have also been previously extended, >(e’) N PE = {);

« adds such successors ¢’ to E and updates the labeled event structure 3 according
to these new events; e is removed from PE while its successors is inserted into PE;
and

o returns the new prefix € and the possible extension PE.

The two conditions stated in the first item are important. The first one ensures that
adding successor € does not break the downward-closure w.r.t. the causality < of the
obtained prefix. And the second one avoids duplication of ¢’ when, for instance, extending
another direct predecessor f of €/, i.e. f<e' and f # e, by calling Extend(f) afterwards.
The unfolding algorithm repeats extending e by calling function Extend as long as the
set PE is not empty (line 3).

Remark: The Algorithm 5.1 does not terminate if the labeled event structure € being
constructed is infinite. In Section 5.4, we will introduce truncating criteria, and conse-
quently, terminating algorithms that construct only finite prefixes.

Function Extend obviously depends on the labeled event structure £ that we want
to construct (see Section 5.2 and Section 5.3). However, it is possible to state general
correctness criteria for the algorithm. We formulate them as the unfolding invariant
(Definition 5.1.1) and correctness criteria (Definition 5.1.3). The unfolding invariant is
guaranteed at any step in the unfolding algorithm including the inputs of Extend as well
as the outputs of Init and Extend.

Definition 5.1.1 (Unfolding invariant). (/8\, PE) is correct w.r.t. € if
I1. €isa prefix of &, i.e. &= g,

12. PE is a subset of E, and
I3. foralle € E, >(e) C(E\PE)iffec E.

The property I3 determines which events should be in the prefix €. Recall that for
all event e, >(e) is the downward-closure of >(e) w.r.t. the causality <. When & is a
prefix of &, its event set E is a downward-closed set w.r.t. the causality < of E. Hence
>(e) C (E\ PE) means that direct predecessors of e are already extended, and so do all
predecessors of e.

Lemma 5.1.2. If (E, PE) is correct w.r.t. € then

89

Chapter 5. Compositional unfolding techniques

o PE C Max<(E), and
e foralle € E, e ¢ E and >(e) C E implies that there exists ¢ € PE satisfying
e <e.

Proof. We will prove the first property by contradiction. Let e be an event in PE and
suppose that e is not maximal in E w.rt. the causality <. There exists another event
¢’ € E that is direct successor of e, i.e. e<e’. We have that >(e’) contains e ¢ (E\ PE).
This is in contradiction with the unfolding invariant I3 in Definition 5.1.1. Therefore,
PE C Max<(E).

The second property is a direct consequence of the right-to-left unfolding invariant
13 from Definition 5.1.1. O

As stated in Lemma 5.1.2, the set of possible extensions, PE, is always a subset of E
that contains only maximal events w.r.t. the causality. When extending from an event
e, some of its successors are added to E as well as to PE. Instructions of function Extend
must somehow reestablish the invariant I3. For example, e should be removed from PE
because it is no longer maximal w.r.t. the causality. The second item of Lemma 5.1.2
says that an event e can not be added to E while some of its predecessors €' is not
extended yet. It is regardless of the choice of e as input of Extend (line 4) that the order
of extending events respects to the causality.

Definition 5.1.3 (Extend’s correctness). We say that a function Extend is correct w.r.t.
a given labeled event structure & if, for all (€, PE) that are correct w.r.t. & (by Defi-
nition 5.1.1), and for all e € PE, the return value (&', PE’) = Extend(&, PE, e) satisfies:

C1. (&,PE') is correct w.r.t. &,
C2. ECFE', and
C3. PE' = (PE\ {e}) U (E'\ E).

The property C'1 requires that the unfolding invariant (Definition 5.1.1) is preserved.
When Extend is correct, due to the property C2, it adds new events to the prefix without
removing any existing event. The property C3 intuitively means that, while e is removed
from the possible extension set PE, no new event is left out of PE.

For £k = 0,1,..., let &, = (E’k, <k, %\ék,fk,./f/t\k) and PE, denote respectively the
values of the variables € and PE after k steps of the principal loop in Algorithm 5.1. Let
ex be the value of parameter e chosen at the k' step of this loop. Then this unfolding
algorithm satisfies following properties:

Proposition 5.1.4. Given a labeled event structure € = (E, <,#,L, M), if the output
(€0, PEg) = Init() is correct w.r.t. & (Definition 5.1.1) and the function Extend is correct
w.r.t. & (Definition 5.1.3), then
1. /E\O,gl, ... 18 an increasing sequence of prefizes of & w.r.t. the inclusion order on
its event sets, i.e. E’O - El C..;
2. the order of extending events respects to the causality order, that means e; £ e; for
all j > i;
3. for every extended event ey,

Ei\ By = {f € <(e) /> () € (Bt \PE) U{er}) |
Proof. We will prove these properties in the order in which they are stated.

90

5.1. Unfolding algorithm

1. The first property is obtained by induction on k. Because, in the base case, the
output (Ep, PEg) of the function Init() is correct w.r.t. &. Moreover, the correctness
of Extend w.r.t. € is enough for inductive step. The increasing order on event sets
EO, El, ... is a direct consequence of the correctness condition C2.

2. Suppose that e; is extend before e;, i.e. j > 4. It follows from the previous property
that F;_1 C E;_1. Consequently, E;_; contains not only e; but also e¢;. Thanks to
Lemma 5.1.2, e; is maximal w.r.t. the causality in gj,l, and one thus reasons out
that e; £ e;. Moreover, due to condition C'3, Extend inserts only new events into
the possible extension PE. Then, e¢; ¢ PE;, and moreover, e; & PEy for all k > 1.
As a consequence, e; # e;. It follows from the partial order < that e; £ e;.

3. Using C3 we get

B\ PEx = Ei \ ((PEx-1 \ {ex}) U (B \ By 1))
= (Bra U B\ Be) \ ((PEx1 \ ferh) U (B \ Bin))

= Ek—l \ (PEx—1\ {ex})
(B \ PEc_) U {er}

because e € PEi_;. Therefore, except direct successors of ey, an event f € F
satisfies the left-hand side of the unfolding invariant I3 w.r.t. (Ej,PEy) iff f
satisfies it w.r.t. (E’k,l, PEk_1). Hence, the set (Ek \ Ek,l) of added events when
calling Extend(gk_l,PEk_l,ek) contains only direct successors of ey, i.e. Ek\
By, C <(er). By combining once again with the unfolding invariant I3, one
obtains the third item of this Proposition.

O

As seen in the proof of Proposition 5.1.4, for any run of the Algorithm 5.1, events in
its extending sequence eq, es, ... are pairwise different. In other words, the correctness
of Extend, and more precisely, the property C3 stated in Definition 5.1.3 ensures that
no event is extended twice. Moreover, one can see that some implementation of the
unfolding algorithm is exhaustive. The operations on variable PE may be implemented
so that every inserted element is eventually out, for example using a queue. In such a
case, events are taken (line 4) in a same order as they are inserted, and every event will
be eventually extended.

It follows from the third property in Proposition 5.1.4 that an event f € E'is added
to the prefix € when extending some of its direct predecessor eg. If f has many direct
predecessors, then e should be the predecessor which is extended last. Earlier on, Extend
could not create f when extending another direct predecessor of f than ej. Hence, the
correctness of Extend, more precisely, the unfolding invariant I3 in Definition 5.1.1,
prohibits the unfolding algorithm to create a replication of some event.

Remark: If an event f has no successors in €, i.e. <(f) = (), then calling Extend(g, PE, f)
intuitively does nothing but removing f from PE. In this case, the input prefix and the
output prefix of Extend is the same, i.e. £’ = E and & = &. Assume that f is added
when extending some of its direct predecessor e, i.e. e € >(f). One can write a function
Extend so that it does not insert f into PE when extending e. The unfolding invariant
13 is still preserved, and in the algorithmic view, one takes advantage of not extending
f later. However, the condition C'3 does not hold and should be changed a little bit.

91

Chapter 5. Compositional unfolding techniques

We prefer to keep the strict condition C'3 as stated in Definition 5.1.3 because it is more
general and the output PE’ as well as E’ is precisely determined.

5.2 Causality processes’ unfolding

As shown in the previous section, while constructing prefixes of a labeled event structure,
the unfolding algorithm is correct as stated in Proposition 5.1.4 if the function Extend
s (Definition 5.1.3). For example, algorithms for reachability trees and their correctness
proofs are not far from the ones for k-causality processes since, in both cases, events
have only one direct predecessor excepts those which are minimal w.r.t. causality.

In this section, we present function Extend for k-causality processes (Section 3.3.2)
and M-causality processes (Section 3.3.3). In a sense, the function Extend is nothing but
an algorithmic computation of event’s successor set in a given labeled event structure
€. Each event and its direct successors in € form a motif that may be derived from the
definition of € (see Section 3.3). In other words, if an labeled event structure is obtained
by repeating a certain motif, one can follow the schema described below and develop an
algorithm for constructing the labeled event structure.

Remark:

o Recall that the causality < is the reflexive and transitive closure of the predecessor
relation <. The causality relation can be computed from the predecessor one and
vice versa. ThlS is true also for their corresponding restrictions onto a given subset
E of E, ie. <= <|z and <=<|z 5- Hence, our algorithms do not directly work

with < but computes only <.

o In any causality process, the marking function M could be defined based on events’
label, i.e. the labeling function £, and the marking of empty configuration M (()
(see Section 3.3 for details). Therefore, in our algorithms, we do not show explicit
instructions for the marking function M.

In order to shorten the presentation of the algorithms, we use a function Create(g, PE, P,1)
(cf. in Algorithm 5. 2). Function Create takes four arguments that are: the constructed
prefix €, the actual possible extension PE, an event set P C E, and a label | € Codom(L).
It intuitively creates a new event e of which label is [and the set of direct predecessors
is P, i.e. >(e) = P. We require that the events in P are pairwise concurrent. As shown
in Algorithm 5.2, the function adds new event e not only to E (line 4) but also to the
possible extension PE (line 5). The modification of the labeling function £ is done in
line 6. Then it updates the predecessor relation < so that e is a direct successor of all
events in P.

The loop at lines 8-10 is responsible for updating the conflict relation # In fact,
due to the conflict-inheritance in (prime) event structures by Definition 3.1.1, for every
predecessor p € P = >(e), e is conflict with every event f which is conflict with p, i.e.
f € #(p). This is done in line 9.

The following which is similar to the third condition of Extend’s correctness (Defini-
tion 5.1.3 on page 90) is straightforward.

Lemma 5.2.1. Let (g', PE') denote the return value of some calling
Create(&, PE, P,1). Then, we have PE' = PEU (E' \ E).

92

5.2. Causality processes’ unfolding

Algorithm 5.2: Function Create

1 function Create(g, PE, P,1)
2 begin

3 create an event e

4 E:=EU{e}

5 PE := PEU {e}

6 L:=LU/el)

7 <i=<U(Px{e})

8 for each p € P do

9 7= 3 U Ep) x {e) U (e} x Fp))
10 end

11 return (g,PE,e)

12 end function

It is worth noticing that the value of structure variable € returned by the function
Create (line 11) may not be a label event structure. It may lack some conflicts concerning
e that do not come from conflict-inheritance. They will be added in the function Extend
(see Section 5.2.2). However, the function Create is fully in charge of the causality < as
well as the labeling function L. The new event e and updated possible extension PE are
returned, together with &, by the function Create .

5.2.1 k-causality processes

Algorithm 5.3 represents our implementation of function Initg for the k-causality process
k-CP (see Definition 3.3.9 on page 35). Recall briefly that, in k-CP, there are only two
type of events: decrement events, labeled by ’—’, that have no successors; increment
events, labeled by '+’, so each of them has exactly one decrement direct successor and k
increment ones. There are k£ minimal events, w.r.t. the causality, that are all increment
events.

Algorithm 5.3: Function Init; for the k-causality process k-CP

function Inity()

begin
E=0<=0#:=0;L:=0
PE:=(

for i:=1 to k do
(€,PE, e,) := Create(€, PE,), +)
end for
return (g,PE)
end function

© 00 N O O ks W N

One first initializes the prefix 3 being constructed to the one containing no event, i.e.
E,<,# and L are all the empty set (line 3). The possible extension PE is empty too.
Then, the loop at lines 5-7 successively creates k increment events. The third argument’s

93

Chapter 5. Compositional unfolding techniques

value when calling Create(g, PE,D,+) (line 6) is the empty set, i.e. P = (). So, return
event e; is minimal w.r.t. the causality €in L. Moreover, there is no modification
concerning the conflict relation %ﬁ except the assignment in line 3. Because the loop at
lines 8-10 of function Create in Algorithm 5.2 is not taken into account when P is empty.
Therefore, these k new events are pairwise concurrent.

Notice that the function Inity uses the variable e, as well as the variable PE just for
getting return value of calling Create in line 6. The function Create inserts new events
in both E and PE. Hence, it follows from the loop’s invariant E = PE in function Inity,
that the refurned event set E is equal to the returned possible extension PE. In line 8,
returning (€, PE) is the same as returning (E,E’). The following is straightforward by
DefinitionDefinition 3.3.9 on page 35 of k-causality processes.

Lemma 5.2.2. The output (/8\, PE) = Inity() of Algorithm 5.3 is correct w.r.t. k-CP =
(B, <,#,L, M), moreover & = k:—C"P|Min§(E).

Algorithm 5.4 illustrates the function Extendj for the k-causality process k-CP (see
Definition 3.3.9). It only expands the prefix € from increment events, that means from
e where L(e) = + (line 4). In a same way as the function Inity, k increment events are
created due to the loop at lines 5-7. In addition, a decrement event is also created (line
8). By calling Create(E, PE, {e},+), these k + 1 new events are all successors of e, and
moreover, they have only e as a direct predecessor.

Algorithm 5.4: Function Extendy for the k-causality process k-CP

1 function Extend,(&,PE, e)

2 begin

3 PE := PE\ {e}

4 if L(e) =+ then

5 for i:=1 to k do

6 (€,PE,e.) := Create(&, PE, {e}, +)
7 end for

8 (€,PE,e_) := Create(&, PE, {e}, —)
9 end if

10 return (E,PE)

11 end function

Notice that in k-causality process, decrement events have no successor. Therefore,
when e is a decrement event, i.e. E(e) = —, the test in line 4 fails and the function
Extend, only removes e from the possible extension PE (line 3). The updated prefix e
and possible extension PE are finally returned by the function Extendj (line 10).

Lemma 5.2.3. For every k € N and k > 0, the function Extendy in Algorithm 5.4 is
correct w.r.t. to the k-causality process k-CP.

Proof. We will prove that Extendy satisfies all correctness properties C'1,C2 and C3
stated in Definition 5.1.3. Let (&', PE’) = Extendi(€, PE,e) denote the return value for
some input (g, PE,e). We assume that (g, PE) is correct w.r.t. k-CP and e € PE. There
are two cases depending on the label of e.

94

5.2. Causality processes’ unfolding

e ¢ is a decrement event: Only the instructions in line 3 and 10 in Algorithm 5.4
are brought into effect because the test in line 4 fails. Hence, we have thus
PE' = PE\ {e} while the prefix & is unchanged, ie. & = & Conditions C?2
and C3 are satisfied. Consider now the condition C1 that consists of I1,12,13 in
Definition 5.1.1. Because & = &, & remains a prefix of k-CP (I1). By removing
e from PE, PE is a subset of PE and is thus a subset of E' = E (I2). Let S ()
denote the set of events in k-CP whose direct predecessors are all in (E \ PE) (and
(E'\ PE') respectively). It is sufficient to prove the invariant I3 that S’ = E’. It
follows from E' = E and PE' = PE \ {e} that ' differs from S only on events
¢/ whose set of direct predecessors contains e. However, by Definition 3.3.7 and
Definition 3.3.9 for k-CP, as e is labeled —’, it has no successor in k-CP. Hence,
such an event e’ does not exist, and consequently, S'=85. Since (8 PE) is correct
w.r.t. k-CP as assumed, we have S = F and thus $' = S = E = E’. The condition
13 is satisfied and one can conclude that Extendy is correct w.r.t. k-CP when e is
labeled by '—’.

« otherwise, i.e. e is an increment event: the condition in line 4 in Algorithm 5.4
is satisfied. Let X, denote the set of events that are created by count-controlled
loops of size k (lines 5-7) and e_ the event created in line 8. We have thus E =
EUX, U{e_}. Lemma 5.1.2 gives us that PE C Max< (E E), hence, e € PE implies
that e has no successor in &. Therefore, k + 1 new events in (X4 U{e_}) exactly
correspond to k4 1 successors of e in k-CP by Definition 3.3.7 and Definition 3.3.9.
As a consequence, &' is the prefix of k-CP where the event set is E =EuXxu {e_},
ie. & = k-CP|z, (invariant I1 in Definition 5.1.1). Moreover, it follows from the
instruction in line 3 and Lemma 5.2.1 that PE’ = (PE \ {e}) U X4 U {e_}, and
consequently, PE is the union of subsets of £’ so that PE' C E’ (invariant I2).
By the same manner as in the first case, let S and S’ denote respectively the sets
{¢ € E/>(¢") C (E\PE)} and {¢ € E/>(¢/) C (E'\ PE')}. We have S = E
because (/8\, PE) is correct w.r.t. k-CP by Definition 5.1.1. We will prove that
S’ = E’, and as a consequence, (E’ , PE’) also satisfies the invariant I3. Notice that
every event in k-CP has at most one direct predecessor, and X U {e_} contains all
direct successors of e in k-CP. Therefore,

s':{e’eE/>(e’ \PE)}

) C (B
:{e'eE/>(e') ((EUXU{e })\(PE\{e}uXu{e,}))}
- {e' € E/>()C ((E\ PE) U {e})}
:{e'eE/>(e) (\PE}u{eeE/>) = {e}}
—EuXxu{e})
- B

(E’, PE’) satisfies all 1, 12,13 and is thus correct w.r.t. k-CP. The condition C'1 of
Definition 5.1.3 is thus guaranteed. Moreover, both the conditions C2 and C3 are
previously obtained. One can then conclude that Extendj is correct w.r.t. k-CP.

As we have said above, for clarity, marking functions are not taken into account in this
argument. Let us just say that both /\/l and M’ can be defined as M in Definition 3.3. 9,
i.e. for all configurations C, M(C) = M'(C) = {e € C/ L(e) = +}| — {e € C/ L(e) =

+1}. O

95

Chapter 5. Compositional unfolding techniques

Lemma 5.2.4. For every k € N, the function Extendy in Algorithm 5.4 terminates and
has a time complexity of O(k).

Proof. Since Algorithm 5.4 contains only a count-controlled loop of size k (lines 5-7)
and the creating process in Algorithm 5.2 for each event (line 6 or line 8) has a time
complexity of O(1), the function Extendy, in Algorithm 5.4 has a time complexity of O(k).
Because k is finite, this function terminates. O

5.2.2 M-causality processes

First, recall that, for a non-empty alphabet M, the M-causality process M-CP (cf.
Definition 3.3.27 on page 46) has only two type of events: sending events with labels
in !M and receiving events with labels in 7M. Each sending event has one receiving
direct successor and |M| sending ones that have pairwise different labels. There are |M|
minimal events, w.r.t. the causality, in M-CP and they also correspond one-to-one to
messages in M. All sending events (receiving events) are pairwise either in causal or in
conflict.

Algorithm 5.5: Function Inity for the M-causality process M-CP

1 function Inity()

2 begin

3 E\::@;g::(b;%\&::(b;f::@
4 PE:=

5 for each m € M do
6 (€,PE, ey, := Create(€, PE, 0, Im)
7 end for

8 #:=(E x E)\Tp

9 return (E,E)

10 end function

Let us explain how Algorithm 5.5 initializes the construction of M-causality process’s
prefixes. By the same manner as in Algorithm 5.3, it starts with a labeled event structure
without events (line 3), then successively inserts |M| new events in the loop at lines 5-
7. These events are all sending ones (line 6) and correspond to different messages in
M. Moreover, since the argument corresponding to the predecessor set, when calling
Create in line 6, is empty, added events are all minimal w.r.t. the causality <. The
conflict relation %\E is assigned in line 8 so that events in E are pairwise in conflict.
These |M| sending events correspond to minimal events w.r.t. causality in M-CP by

Definition 3.3.27 on page 46. Therefore, we have that & = M-CP|pmin. () and its event

set B = Min<(E) are finally returned by the function Inity (lines 9). Lemma 5.2.5 is
thus obvious by definition.

Lemma 5.2.5. The output (E,E) = Inity of Algorithm 5.5 is correct w.r.t. M-CP =
(B, <,#,L, M), moreover & = k:—C’iP|Min§(E).

Consider now Algorithm 5.6 of our function Extendj, for the M-causality process
M-CP = (E,<,#, L, M). This function is divided into two parts depending on whether
the input event e is a sending event or a receiving one. In both cases, however, one always

96

5.2. Causality processes’ unfolding

removes e from the possible extension PE (line 4) in order to satisfy the correctness
condition C3 in Definition 5.1.3 on page 90.

The first case is when e is a sending event (lines 5-20). The algorithm gets the
message m € M which corresponds to the label of e, i.e. L(e) = !m (line 6). Notice
that successors of e do not exist in the actual prefix yet because e is a maximal event
w.r.t. the causality < when calling Extendy¢(&,PE,e). The loop at lines 8-11 creates
then new sending events corresponding to direct successors of e by calling Create in line
9. There are exactly |M| events created, one for each message in M due to the "for each"
criterion (line 8). The variable X declared in line 2 is initialized (line 7) and updated
inside the loop (line 10) so that X is the set of new sending successors of e. There are
two kinds of conflict concerning these sending successors: the first one comes from e
due to inheritance and is done in side the function Create (line 9) and the second one is
the conflict between these successors themselves. The set X is used just for modifying
conflict in order to respect to the second kind (line 12).

Algorithm 5.6: Function Extendy for the M-causality process M-CP

1 function ExtendM(/E\,PE, e)

2 var X

3 begin

4 PE:=PE\{e}

5 if L(e) €!M then

6 let meM s.t. L(e)='m

7 X:=0

8 for each m’ € M do

9 (€,PE, ey) := Create(€, PE, {e},!m’)

10 X =X U{em}

11 end for

12 #:=#U(X xX)\Ix)

13 if >(e) =0 then

14 (€,PE, ey, := Create(€, PE, {e}, 7m)

15 else

16 take an event ey, € >(e)

17 if exists en € (X(emy) \PE) s.t. L(emy) € ?M then
18 (g, PE, e7,,) := Create(/S\, PE, {e, e }, ?m)
19 end if

20 end if

21 else

22 let ey, € >(e) s.t. L(ey,) €M

23 for each e,y € (Z(em) \ PE) s.t. L(eyy) €M do
24 let m' € M s.t. Lieyy)="'m/

25 (€,PE, e,y) := Create(€, PE, {e, €1y }, 7m’)
26 end for

27 end if

28 return (E,PE)

29 end function

97

Chapter 5. Compositional unfolding techniques

Now, let us look how to determine whether the unique receiving successor of e denoted
by e?,, must be added to the prefix. If e is a minimal event w.r.t. the causality, formally
>(e) = 0, (lines 13-14) es,, is simply created and inserted into the actual prefix because
it has only one predecessor which is e. Otherwise, i.e. when e is not minimal, (lines
15-20) e must be a successor of some sending event ey,,,». The event ey, obtained at line
16 is unique, and moreover it has a unique receiving successor denoted by ez, in M-CP,
ie. {emn} = {€ € <(enw)/L(e') € TM}. However, es,y may not be in the event set
E of the actual prefix e Therefore, e, needs to be created if and only if E contains
such es,, and moreover e;,, is already extended (not in PE). It follows from <= <| B

that one can simply write <(e) in the place of <(e) N E. The test at line 17 formally
represents this condition. If it is true, then es,, is created by calling Create (line 18) so
that e and es,,,s are its only two direct predecessors. Notice that conflict concerning e,
comes only from e, and it is done in side the function Create.

The second case is when e is a receiving event (lines 21-27). We know that e exactly
one direct predecessor which is a sending event. The event e, obtained at line 22 is thus
unique. Moreover, ey, corresponds to the send of the message that e is a receive, i.e.
L(e) = ?m and L(ey,) = !m. By definition of M-CP, the event ey, has | M| direct sending
successors represented by the set {ey,, € <(en,)/ L(emy) € !M}. These successors are
pairwise in conflict. Moreover, they are already added to the actual prefix € because
el has been expanded before e. We formally write {ey,,y € <(en,)/L(en) € M} =
{eym € <(emn) / L(eyms) € IM} and denote it by S).

The event e on its turn has exactly M direct successors which are all receiving ones
and are represented by the set <(e). For a given message m’ € M (which may be m),
the corresponding receiving event es,y € <(e) has two direct predecessors which are e
and ey, € S;. Therefore, e7,,, could be added in the actual prefix by Extendy iff ey,
has been extended, i.e. ey, &€ PE. This condition is represented in the loop condition in
line 23. Each receiving successor es,,, created by the loop at lines 23-26, is at the same
time is a direct successor of e and a direct successor of the corresponding ey, (line 25).
Once again, the conflict relation concerning es,,, is inherited from either e or ey,,. And
this is done inside the function Create.

As usual, in both cases, the new prefix € and the possible extension PE are returned
in the end of the function Extendy, (line 28).

Lemma 5.2.6. For every given alphabet M which is not empty, the function Extendsyg
in Algorithm 5.6 is correct w.r.t. to the M-causality process M-CP = (E, <,#,L,M).

Proof. Let (E’ ,PE") = Extendk(g, PE,e) denote the return value for some given input
(€,PE, e) which satisfies that (€, PE) is correct w.r.t. k-CP and e € PE. Let us define
E ={ e E/L() € M} and E» = {¢ € E/L(¢) € TM}. It follows from the
properties of the M-causality process (Definition 3.3.25 on page 44 and Definition 3.3.27
on page 46) that

(1) let <x = (< \ (E? x E?)), then <, Ey and E» respectively correspond to the
predecessor relation, the set of increment events, and the set of decrement events
in |M|-causality process (see Definition 3.3.7 on page 34 and Definition 3.3.9 on
page 35), and Min<(E) C Ei;

(2) let B, = >N (E7 X E!), then for all e7, f> € En, er < fo iff 37(6?) < B?(f7);

(3) let us denote by #,, = {(f,9) € #/>(f)$>(g)} (and #pu = {(fi,g1) € (B x
Ey)/ fi # gr and >(fi) = >(¢1)}) the relation of conflict between events in F (and

98

5.2. Causality processes’ unfolding

between sending events in Ej respectively) which does not comes from inheritance,
then #n = #mi;

(4) for all e; € B, Topg(L(e7)) = ag (L£(Br(e2))); and
(5) for all e € E), L|g, is a bijection between Sy and !M where Sy = <(e)) N E).

Since € is a prefix of M-CP, by definition, we have E is a subset of E' and moreover,
<, #, L are respectively the restriction of <, #, £ onto E. We are going to show that 8/
is also a prefix of M-CP. There are two cases depending on whether the argument event

e of calling Extendy, is a sending event or is a receiving one.

« When e is a sending event, i.e. £(e) = !m for some message m € M, let us denote

e = ey,. Notice that ey, is maximal in E wr.t. < because (E, PE) is correct w.r.t.
M-CP (Lemma 5.1.2). Event ey, has | M| sending successors in E’,’ due to the loop
at lines 8-11. Let us denote the set of these sending successors by X;,. Moreover,
el has at most one receiving successor in E’é depending on whether the conditions
at line 13 and line 17 are satisfied or not. This receiving successor, if exists in e , 18
the event ez, obtained either in line 14 or in line 18. Moreover, it follows from (1)
that, in &, we have |<(ey,,,) N Ey| = |M| and |<ey,, N E7| = 1. Hence, without lost
of generality, we suppose that X; = <(ey,) N By and {e2, } = <(e,) N E7. Then,
we will prove that 2,, %\U , L are respectively the restrictions of <, #, L onto o
If ey, is minimal w.r.t. (E, 2), then a receiving successor ez, of e is created in line
14. One skips all the rest of the algorithm and directly returns final structure e
and PE’ (line 28). Briefly, due to the function Create in Algorithm 5.2, we obtain
that:

— E, = EUX! U {e7m},

— < =<2u({em} x (XiU{em}),

Let X shortly /glenoAte the set of direct successors of ey, in €, i.e. X = <(ey,) =
X,U{em} = E'\ E. We have,

<|E/:<|EU<<O(E><X)>U<<ﬂ(X><E’)>
:2u(<m(}§xx>)u((<m(X><E))u(<m(X><X))>

It follows from (1) that successors of sending event ey, are pairwise not in causal.
Hence < N (X x X) = . Thanks to Lemma 5.1.2, e, = e is maximal event in
E writ. S = g] . Successors of ey, may not have predecessors in E and as a

consequence, < N (X X E) = (). Therefore,
<|z=<U (<O(E><X))

Once again, due to (1), every sending event in X; C X has one direct predecessor
which is ey,,. And since ey, is minimal event w.r.t. <, it has no direct predecessor.
It follows from (2) that es,, has no receiving predecessor in E-. In addition to (1),
e7m also has only one direct predecessor in E) which is ey,,,. Hence, for all ¢/ € X,
>(e') = {eyn}. Therefore, <N (E x X) = {en,} x X, and consequently, <|p = <.
In words, <’ is the restriction of < onto E'.

99

Chapter 5. Compositional unfolding techniques

100

Notice that when calling Create at lines 9 and 14, instructions for conflict relation
inside the function Create concern only conflict that comes from inheritance. We
have then #' (defined by a same manner as #, in (3)) is the set H#mU (X1 x X))\

. When proving # = #|z, it is sufficient to show that #;, = #|z,. Thanks

to (3), we have #,, = #,» and as a consequence %Em = #mlg = #mlp = %Em!.
We have:

#m|ﬁ/ = #m!|§/
= Htwil U (Fme 0 (B % X)) U (e 0 (X x B
= #m U (#m! N (E x X!)> U (#m N (X x E!’))
= %\Em U (#ml N (EI X Xx)) U (#m' N (X; X El)>
U (#m N (X1 x X))

By definition, for all events f,g € Ei, f #mu g iff >(f) = >(g) and f # g.
Moreover, since ey, = e is maximal in Ewart. <, hence for all f € E!, e € >(f)if
f e X and ey, & >(f)ifz € Ei. We obtain that #,,N(E'x X)) = (B’ x X\)N#m =
(). Therefore,

H#mlp = Hn U (F N (X)X X))
= #m U (X1 x X))\ I,
= #;n
The conflict relation #/ is thus the restriction of # onto .

The event ey, and its direct receiving successor e, are related to a same message
m obtained in line 6. It respects to (4). Due to the "for each" criterion of the loop
at lines 8-11, property (5) is guaranteed for sending event ey,,. One can verify that
r \ L= L|(x,Ufern})> and as a consequence, the labeling function L is also the

restriction of £ onto E'. Therefore, Eisa prefix of M-CP.

Now, if e = ey,,, is not minimal in E wrt. <. Tt follows from (1) that event ey,
(line 16) exists and is the unique event in >(ey,,). First, if the condition in line 17
is true, one creates event es,, due to line 18. Like previous case, we have

— E' = EUX U {eny}, but
— < =2U e} x (X1 U {eon}) U {{ezm, e2m)},

where es,,/ is the receiving successors of er,. And the restriction of < onto s
still equal to <|z U (<N (E x X)). It follows from (2) that ez < es,,. Because
Br(eyn) = e, Br(enn) = e, and ey, is the direct predecessor of ey, i.e.
em < e,,. By the same reasoning as above, one obtain that < = <|g/. The proof
which show that #' = #| 5 as well as L= E| 7 is also the same. Therefore, e is
thus a prefix of M-CP. Second, if the test in line 17 fails, no receiving successor
of ey, is created. The final e is intuitively the prefix of the one in previous case
(where condition in line 17 is true). Hence, &’ is also a prefix of M-CP.

When e is a receiving event, i.e. L(e) = ?m for some message m € M, let us

denote e = eo,. It follows from (1) that es,, ¢ E; is not minimal in E. Moreover,
it has one and only one sending predecessor. The event ey, obtained in line 22 is

5.2. Causality processes’ unfolding

unique and corresponds to the same message m as its subscript means. Once again,
due to (1), beside e, ey, has |M| direct successors which are sending events. Let
us denote X, = <(ey,;,). By the invariant /3 in Definition 5.1.1 on page 89, ez, € E
implies that its predecessor ey, may not be in PE. And every event e € Xy, on its
turn, we have e € E because >(e;) = {eim} € PE. Therefore, X; C E.

We first suppose that X, NPE = (). The loop at lines 23-26 then creates a receiving
event es,, according to each event e,y € X). Each pair es,, and ey, are related
by its common message m’ € M (line 24). Thanks to Lemma 5.1.2, e7;, is maximal
in E w.r.t. <. So that such a receiving event es,,» may not be in E. Tt follows from
the call Create in line 25 that e;,, has two direct predecessors that are e,y € E
and es,, € F7. Asa consequence, er,, is the unique sending direct successor of e, .
By definition of M- causahty process, we have By (€2,) = e and By(eyn) = ey
We will prove that <, #/, £ are then restrictions of <, <, L onto E' respectively.
Let X7 = B7(X)) denote the set of new receiving events. It obviously follows from
the loop at lines 23-26 that:

— E/ = E\ U X,

— < =20 ({erm} x Xo) U{(Bo(er), e2) [€2 € X7}

By the same reasoning as in previous case, we obtain:
<|lz =< U(<N(E x X))

Let e; be any event in X;. Due to (1), e; has a direct predecessor which is a
sending event. By definition of B-, this predecessor is ey = Br(e?) € X;. Moreover,
e has only one predecessor which is the sending event e, because e; € X;. Hence,
>(e;) = {emn}, and as a consequence of (2), we have >(e;) N B, = B?((e1) =
B:(eyn) = {e2m }. Therefore, for all e; € X7, >(e) = (>(e2) NEY)U(>(e7) N Er) =
{B2(e2)} U{esn}. We thus conclude that <\E, = <'. Since #/ is the same as #,,

it is also the restriction of # onto E'. Asa consequence, #’ = #|z- The labeling
function L', on its turns, is L], by simply comparing £\ £ = L'|x, with L|x,.
Therefore, & is a prefix of M-CP.

Now, if X, N PE # 0, denote then X{ = X, \ PE. Events in X/ satisfy the loop
condition in line 23 while events in (X, \ X/) do not. The final & is intuitively
a prefix of the one previously obtained where X! = X, (i.,e. X, NPE = (). More
precisely, these two prefixes differ, the one from the other, only on events in B (X \
X/). Therefore, €' is also a prefix of M-CP in this case.

(/8\’, PE’) satisfies the conditions C2 in Definition 5.1.3 as well as the invariants 1, 2
in Definition 5.1.1 on page 89 because eis always a prefix of M-CP as previously proved.
The condition C3 that says PE' = (PE\ {e}) U (E'\ E), is thus direct from Lemma 5.2.1
and the assignment in line 4. For proving the correctness of the function Extendyy, it is
finally sufficient to show that the invariant I3 is preserved in (/8\’ ,PE).

Notice that only e is taken from PE (line 4), so E’ \ PE' = (E \ PE) U {e}. We
need to reestablish the invariant I3 by adding some successors €’ of e that >(e¢’) C
(E\PE)U{e} (*). We have two cases depending on whether e is a sending or a receiving
event.

o If £(e) = !m for some message m € M (lines 5-20) then e has | M| sending and direct
successors which are represented by the set X, i.e. X = <(e) N E; as previously

101

Chapter 5. Compositional unfolding techniques

discussed. Moreover, for all ¢/ € X, ¢’ has only one direct predecessor which is e,
and as a consequence, ¢’ satisfies (*). Then we should add these successors to E
and PE in order to reestablish the invariant I3. This is done by the loop at lines
8-11. Apart from these send events, e has a successor ez, that is a receive of a
message m, L(e2,,) =?m. And, more prec1sely emn = <(e) N Ey. If e is a minimal
event in € and thus in M-CP, i.e. e € Min= (E) C Min<(E), then it follows from
(1) and (2) that e is the only predecessor of e7,,. Hence e, satisfies (*) and should
be added to E and PE in order to guarantee I3. This is done in lines 14. If e is
not a minimal event then it has a predecessor ey, that is a sending event. Event
ey has a successor eq,, that is a receiving event. In M-CP, ez, is a predecessor
of e, due to (2) because Bo(€7,,) = ey <e = Bo(esy,). The invariant I3 requires
that we add e, to E and PE iff ey 18 already in E \ PE. This is done in line
18. In brief, the invariant I3 is preserved for all successors of e including both in
<(6) N E) and in <() N E-.

o If L(e) = ?m for some message m € M, then e has a direct predecessor ey, € E
where L(ey,;,) =!m. Because ey, is not maximal in Ew.rit. <, PE does not contains
€1m. Due to the invariant I3, every direct successor of ey, wh1ch is a sending event,
and consequently, has only ey, as direct predecessor, must be already in E. Or one
can say X, = <(ey,) N E) is a subset of E. Therefore, in M-CP, direct successors
of e are all sending events and correspond one-to-one to X; w.r.t. the bijection Bs.
Formally, X» = <(e) C E» and X7 = B2(X)). Each event e; in X- has two direct
predecessors which are e and the corresponding event e in Xy, i.e. Be(e)) = es.
So e satisfies (*) if e; is not in PE. In such a case, the invariant I3 requires that
e» must be added to E. The loops at lines 23-26 creates and adds event e in the
set B(X, \ PE). Therefore, the invariant I3 is preserved in (€', PE) for all direct
successors of e.

We can finally conclude that the function Extendy¢ in Algorithm 5.6 is correct w.r.t.
M -causality process M-CP. O

As seen in the proof of Lemma 5.2.6, a difficult point to show is the correctness of
adding receiving events. In general, each receiving event es,, has two predecessors: the
first one is its corresponding event ey,,, and the second one is another receiving event es,,,/.
The predecessor relation between es,,» and es,, intuitively comes from the FIFO ordering
of messages. Here, e, and e, respectively correspond to some two messages m’ and
m. And the message m’ is inserted into the FIFO channel just before the message m.
The event e, is created when calling function Extendy for either ey, or es,,,. However,
since ey, and eq,,s are concurrent, one does not know which event is extended the first.
Thanks to the test in line 17 and the loop criterion in line 23 of Algorithm 5.6, there
is no double copy of ez, in the prefixes of M-CP generated by Algorithm 5.1. This
no-redundancy property is formally stated as the second property of Proposition 5.1.4.
One will see lately in Section 5.3 that the order of expanding e, and ey, is generally
determined by the process of unfolding a whole synchronized product of labeled event
structures in which M-CP is simply one of its components.

Notice that conflict in M-CP comes from sending events. And like the marking
function M, the conflict relation # in M-CP may be computed based on the causality <

102

5.2. Causality processes’ unfolding

and the labeling function £. Formally, as a consequence of Proposition 3.3.26, we have:

#=(ExE)\(SU>)\|
= (Ex E)\(SU2>)\
{{ez, fi), (frser) / L(ez) € TM, L(f1) € !M and Be(ez) < fi}

The bijection B2 is defined in Definition 3.3.25 on page 44, and may be calculated from
the causality < and the labeling function £. Therefore, in Algorithm 5.6, there is no
need to verify conflict for adding new events, for labeling them as well as for updating
causality. Instructions concerning the conflict relation %\é, for instance in line 12, are
just for computing # itself. Therefore, one can write a function Extend for M-causality
processes that computes only the causality and the labeling function in addition to
creating events. The conflict relation may be computed at need.

Lemma 5.2.7. If one removes the instructions computing the conflict relation in Algo-
rithm 5.2 (lines 8-10), then the algorithm of function Extendy, for M-CP in Algorithm 5.6
terminates and has a time complezity of O(|M]).

Proof. In Algorithm 5.6, there are only loops whose bound does not exceed the number
or messages in M. Moreover, when creating a new event by calling Create, one has only
to label it and assign the predecessor relation according to at most two other events.
Therefore, the time complexity of the algorithm is thus O(|M]|). Since the alphabet M
contains finite messages, that means |M| is finite, Algorithm 5.6 terminates. O

5.2.3 Generalization

Recall that, causality processes defined in Section 3.3 are similar, the one to the other.
In this section, we only give intuitive ideas of how to modify previous algorithms of
functions Inity¢ and Extendy in order to have algorithms that are suitable for any given
M -causality process corresponding to a FIFO channel. In a sense, our modifications are
just adaptations of Inity¢ as well as of Extendy¢ to the fact whether the FIFO channel
initially has some messages, or whether it is bounded. Even though we explain algorithms
for FIFO channels, modifications concerning algorithms for counters are also mentioned
at necessary points.

(M, v)-causality processes

By Definition 3.3.31 on page 49, for a given alphabet M and a word v € M, the (M, v)
causality process, denoted by (M, v)-CP, intuitively consists of the (M, v)-flushing pro-
cess (Definition 3.3.30 on page 48) and the M-causality process. Therefore, this fact
conducts to a function Inityg, differs from the function Inityg in Algorithm 5.5 on page 96,
only on whether there exists a receiving es which is a minimal event in (M,v)-CP. In
other words, e7 exists if the FIFO channel contains some messages at the beginning, i.e.
|v| > 0. In this case, es should be labeled according to the first message m in the word v,
i.e. L(e7) = ?m. We can simply modify Algorithm 5.5 by adding instructions concerning
e» just after line 8 as follows:

For the function Extendj,, we are in need of two additional functions: Dep and
NotConflict. First, the function Dep(e) takes an event e as argument and is exactly the
depth function in Definition 3.3.34 on page 52. As explained in Section 3.3.3, (M, v)-CP
represents behaviors of the FIFO channel initialized by the word v € M*. And for any
configuration C of (M, v)-CP, the whole content of the FIFO channel without removing

103

Chapter 5. Compositional unfolding techniques

if |v| >0 then
let m be the first message in v
(€,PE, e;) := Create(€, PE, 0, 7m)
end if

messages is some word w = M(C') over M. Moreover, every event e in C' corresponds
to one message in w, and as a consequence, corresponds to the index of this message in
w. Such an index is the return value of Dep(e).

By Definition 3.3.31 on page 49, (M, v)-CP consists of a (M, v)-flushing process and
a M-causality process. Let us denote by Ef the set of |v| events of (M, v)-CP which
correspond to the flushing process. One can see that Ef contains only receiving events,
i.e. Ef C E», and the depth values of these events are pairwise different and are all in
the range of {1,2,...,|v|}. Moreover, for all event e € (E'\ Ef), we have Dep(e) > |v].

Second, the function NotConflict(e,d) takes an event e and a depth d as input. It
intuitively returns the set of events ¢’ whose depth is d and ¢’ is not in conflict with e.
And there is a constraint that NotConflict(e, d) returns only receiving messages if e is a
sending one, and vice versa. Formally,

{es € E» /Dep(es) = d and es # e} if e € B

NotConflict(e, d) = { {e) € E, / Dep(ey) = d and e # e} otherwise.

As stated in Lemma 3.3.35, the bijection By € (Ey x (F7 \ E¥)) as well as B, = B,
between sending and receiving events in (M, v)-CP can be determined by function Dep,
the labeling function £ and the conflict relation #. However, for a general use of function
NotConflict, NotConflict may not return a singleton due to the variation of argument d.
Let us consider some examples of calling NotConflict. One can find two of these examples
in Algorithm 5.7.

o For all sending event ey € Ey, NotConflict(e, Dep(er)) returns {By(er)}.
« For all sending event e, € E), NotConflict(ej, Dep(ey) — 1) returns

— 0 if |[v] = 0 and Dep(e) = 1, or otherwise
— Max<(E) if Dep(e) = |v| + 1, and {Bi(e)} if Dep(e) > |v| + 1.
« For all receiving event e; € E7, NotConflict(e;, Dep(e?)) returns

— (Qif e; € Ef, i.e. Dep(er) < |v], and
— {B2(e?)} otherwise.

o For all receiving event e» € E» such that Dep(e?) > |v],
NotConflict(e7, Dep(e?) + 1) returns

— Min<(E)) if Dep(e) = |v], i.e. e7 is the maximal event in £/, and
— <(B2(e2)) N Ey, i.e. the set of sending successors of B (e7), otherwise.

AN NN AN~

Notice that when calling NotConflict on a prefix & = (B, <,#,L,M) of (M,v)-CP =
(B, <,#,L£, M), the return set may be not complete and may even be the empty
set. Because E is only a subset of E. For instance with some receiving event e; €
E, if By(es) is maximal in the poset (E,<) then <(Bs(es)) = 0 and consequently,
NotConflict(es, Dep(e?) + 1) = 0.

Now, let us give some details of Algorithm 5.7 and show that it is not far from

Algorithm 5.6 because M-CP is just a particular case of (M,v)-CP where v = . The

104

5.2. Causality processes’ unfolding

algorithm is split into two parts corresponding to the type of its input event e. In both
case, one start by removing e from the possible extension PE (line 4).

Algorithm 5.7: Function Extendsy, for (M,v)-CP

1 function Extende(E,PE,e)

2 varY

3 begin

4 PE := PE\ {e}

5 if L(e) € !M then

6 let meM s.t. L(e)='m

7 for each m’ € M do

8 (€,PE, ey,) := Create(€, PE, {e}, m)

9 end for

10 if (Jv| =0) & (Dep(e) =1) then

11 (g, PE, e7,,) = Create(g, PE, {e}, ?m)

12 else if exists e, € (NotConflict(e,Dep(e) — 1) \ PE) then
13 (€,PE, e,) := Create(€, PE, {e, ez }, 7m)
14 end if

15 else

16 if Dep(e) < |v| then

17 let m’ be the (Dep(e) + 1) message of v
18 (€,PE, €9,y) := Create(€, PE, {e}, 7m’)

19 else

20 Y := NotConflict(e, Dep(e) + 1) \ PE

21 for each ¢y, in Y do

22 (g, PE, e) := Create(g, PE, {e, ey }, 7m/)
23 end for

24 end if

25 end if

26 return (E,PE)

27 end function

When extending a sending event (lines 5-14), one gets the message which corresponds
to the label of e and denotes it by m (line 6), i.e. £(e) = !m. Accordingly, let us denote
e by e,. The "for each" loop at lines 7-9 in Algorithm 5.7 does the same thing as the
one at lines 8-11 in Algorithm 5.6. This loop simply inserts |M| sending events which
are direct successors of ey, into the prefix €. Notice that these sending events has only
one direct predecessor which is e. Since e is no more in PE, the insertion of such sending
events respects to the invariant I3 of Extendj,’s correctness by Definition 5.1.3. Now,
look at whether a receiving successor, denoted by ez, of ey, has to be created (lines
10-14). In the first case (lines 10-11) where v is the empty word, i.e. |[v| = 0, and ey,
is a minimal event w.r.t. causality, i.e. Dep(e;,) = |v| + 1 = 1, sending event es,,,
which has only ey, as a direct predecessor, is inserted. This corresponds to the case
at lines 13-14 in Algorithm 5.6. In the second case, since v is not the empty word,
the event e, must be a direct successor of another receiving event es,,,. As explained
previously, we have NotConflict(e,,, Dep(ey,) — 1) C {ez,} (line 12). Notice that e,
is either the maximal event w.r.t. causality in E/ (when ey, is a minimal one, i.e.

105

Chapter 5. Compositional unfolding techniques

Dep(ern,) = |v| + 1) or the unique event in the set B2(>(er,)). No matter what ez,
corresponds to, event es,, is added (line 13) if and only if es,, is already extended.
One can see that NotConflict(ey,,, Dep(ey,) — 1), when v = g, corresponds more or less
to the set <(ey,) in line 17 in Algorithm 5.6. And if e;,, exists then an common
direct successor of e and e7,,,y should be added to the prefix € in order to reestablish the
invariant I3.

When extending a receiving event (lines 15-24), denoted by es,,, there are also two
cases. The first one which does not exists in Algorithm 5.6, is when es,,, € Ef and e,
is not the maximal one w.r.t. causality in £/ (lines 16-18), i.e. Dep(e) < |v]. One
simply creates the unique successor of ez,. This successor is also an event in E/ and has
only one direct predecessor which is es,, € PE. Hence, the invariant I3 is guaranteed.
In the second case, let us denote S; = NotConflict(es,,, Dep(ez,,) + 1). If es,, is the
maximal event w.r.t. causality in £/ then S) is thus the set of minimal sending events,
ie. S) = Min<(Ey). Otherwise, we have S; = <(B2(e7,)) N Ei. In both sub-cases,
extending es,, requires that one creates the receiving successor of each event ey, in S
if ey, has been extended, i.e. ey € Y = (S \ PE) (the loop’s condition in line 21).
Particularly, if [v| = 0, the set Y is obvious the set <(ey,,,) \ PE = <(Bi(e1n)) \ PE used
in the loop’s criterion in line 23 in Algorithm 5.6. Precise instructions for adding these
successors (line 22) is the same as in the loop at lines 23-26 in Algorithm 5.6.

As usual, in both cases, the new prefix € and possible extension PE are returned (line
26).

(M, v,b)-causality processes

The (M,v,b)-CP defined in Definition 3.3.36 on page 52 may also constructed by our
unfolding algorithm. One can slightly modify the Algorithm 5.7 to have an algorithm
of function Extend for (M,v,b)-CP. Because, by definition, (M,v,b)-CP differs from
(M,v)-CP only on the causality which comes from the constraint of boundedness.

<o ={(e, f) € (E x E) \ #) / Dep(f) = Dep(e) + b}

As illustrated in Figure 3.13 on page 51, this causality based on pairs of a sending
event e € F) and a receiving event e; € E» such that e # e; and Dep(e;) = Dep(es) + b.
Intuitively, in order to guarantee the bound of b, e must be a successor, and more
precisely, a direct successor of ez, i.e. e? < e;. This fact means that one can insert into
the FIFO channel a message indexed by Dep(e;) if and only if the message indexed by
Dep(e?) has been released. Because, the bounded FIFO channel can contains at most b
messages at a time. The difference between (M, v, b)-CP and (M, v)-CP may be depicted,
in another way, by using its predecessor relations.

=<\ <
= {(e7,e)) € (By x E)) / e; #e> and Dep(ey) = Dep(es) + b}

Here, < and <’ are respectively the predecessor relations of (M, v,b)-CP and its corre-
sponding (M, v)-CP (see Definition 3.3.36 on page 52). We are going to show how to mod-
ify Algorithm 5.5 as well as Algorithm 5.7 to have adapted algorithms for (M, v, b)-CP.
Intuitively, for creating any sending event ey, one needs to take care of not only the direct
sending predecessor €] of ey, i.e. €] <’ er, but also the corresponding receiving event e-
according to <, i.e. e? <<per. The event ef as well as the event es may not exist for some
event e;. Modification in the function Extend for (M, v,b)-CP concerns only instructions

106

5.2. Causality processes’ unfolding

for adding sending events to the prefix. And instructions for adding receiving events are
the same as the ones in Algorithm 5.7. Notice that we still use two functions Dep and
NotConflict previously described.

Remark: Given any (M,v,b)-CP, the bound parameter b must not be zero. Moreover,
due to the boundedness, the initial word v can not has a length greater than b, i.e.
lv| < b.

Consider now the function Init. One initializes the prefix e by the same way as in
the function Inityg, except for minimal sending messages w.r.t. causality. Because for
the particular case where the length of v is b, all sending events must be preceded by the
maximal receiving event £/ ! w.r.t. the causality <. Formally, if {e;} = Max<(E7) then
{e2} xMin<(E)) C <. As a consequence, the "for each" loop at lines 5-7 in Algorithm 5.5
must be enclosed by a test as in the following.

if |v] <b then
for each m € M do
(€,PE, e1,,) := Create(€, PE,), 'm)
end for
end if

Notice that if |v| = b, the return prefix € of Init() contains only the minimal event
f of Ef which is a receiving one. It is done as the same manner as in function Inityg,.
The minimal sending event in Min<(E)) will be added to the prefix € when extending f
afterward.

Next, there are two modifications on Extendj, according to the type of argument
event e of function Extend. First, when e is a sending event, i.e. e € Ej, e has |M|
sending successors and one receiving successor in (M, v, b)-CP which are all direct ones.
A such sending successors ey, on its turn, have two common direct predecessors which are
e and, possibly, another receiving event e;. The first one is due to the usual total order
of messages in channel while the second one is in order to guarantee the boundedness,
i.e. e? <p er. Let us denote the set of direct sending successors of e by Si, we have:

o {e2} = NotConflict(e, Dep(e) — b+ 1), and
o for all ey €), >(er) = {e,e2}.

Therefore, one must take care of the existence of e;. If D(e) < b, and consequently
D(ey) < b for all e; € S, then such e; does not exists in &, i.e. >,(e)) =0 for all ey € S).
In other words, every event ey € S has only one direct predecessor which is e, and should
be add to the prefix £. Otherwise, i.e. £ contains corresponding event e;, the invariant
13 in Definition 5.1.1 for Extend’s correctness requires that ey € Sy is added iff e; is in
the prefix € and has been extended, i.e. es € (E \ PE). The "for each loop" at lines 7-9
in Algorithm 5.7 which generates these events Sy should be modified as follows:

if (Dep(e) <b) then
for each m’ € M do
(€,PE, ey,) := Create(€, PE, {e},!m’)
end for
else if exists e; € (NotConflict(e, Dep(e) —b+ 1) \ PE) then
for each m’ € M do

n (M, v,b)-CP as well as in (M, v)-CP, E7 is the event sets of the corresponding flushing process.

107

Chapter 5. Compositional unfolding techniques

(€,PE, ey) := Create(€, PE, {e, e2}, Im)
end for
end if

When no sending successors is created, it intuitively means that e is extended sooner
than e;. An eventual calling Extend(e;) will take care of creating events in S). As
discussed above, the boundedness constraint has no influence on whether the direct
receiving successor of e is added. Hence, instructions concerning this receiving event at
lines 10-14 in Algorithm 5.7 remain unchanged in our function Extend for (M, v, b)-CP.

Second, when e is a receiving event, its direct receiving successors are added to the
prefix < by the same manner as shown at lines 16-24 in Algorithm 5.7. In addition, let
Xy denote the set <p(e) C Ei, we are in need of some new instructions for adding events
in S if possible. Once again, every event in <;(e) has two direct predecessors which are
e and another sending event e in the set NotConflict(e, Dep(e)+b—1). Therefore, events
in Sy is created based on its second direct predecessors. These instructions are shown
below and may be inserted, for instance, into Algorithm 5.7 just before line 16.

for each e in (NotConflict(e, Dep(e) +b— 1) \ PE) do
for each m’ € M do
(€,PE, ey) := Create(€, PE, {e, e}, !m/)
end for
end for

Each event e € NotConflict(e, Dep(e) + b — 1) \ PE) gives rise to |M| new successors
whose labels are pairwise different due to the inner loop. And because e € (E’ \ PE)
as a consequence of the outer loop’s criterion, the invariant I3 for Extend’s correctness
is respected. In all cases, new events added to the prefix are also be inserted into the
possible extension PE. The function Extend finally returns € and PE as usual.

Estimation of time complexity

The complexity of function Extend for (M, v)-CP as well as (M, v,b)-CP depends on the
complexity of the function Dep and especially of the function NotConflict. One can have
a function Dep of time complexity O(1) by relating a depth value to each event since
it is created. This manner does not increase the space complexity of our algorithms.
However, time complexity of NotConflict(e, d) is somehow in function of d and the depth
of event e.

Let us first consider only two particular cases of parameters e and d in Algorithm 5.7.
First, e is a sending event in Ey and d = Dep(e) — 1 (line 12). The computation of
NotConflict may be more or less instructions at lines 16-17 in Algorithm 5.6. Intuitively,
one gets the direct predecessor of e, denoted by er, and then return the receiving direct
successor of ey if exists. It thus has time complexity O(1). Second, e is a receiving event
in E» and d = Dep(e) + 1 (line 20). Function NotConflict returns a set of at most |M]|
sending events and its time complexity is proportional to O(|M|). This complexity comes
from the corresponding instructions at lines 23-24 in Algorithm 5.6 while assuming that
successor set as well as label of an event can be returned in O(1) time. Therefore, one can
have an implementation of Dep and NotConflict so that Algorithm 5.7 for (M, v)-CP has
a same time complexity as Algorithm 5.6 for M-CP, which is O(|M]). Notice that the
time complexity here is of function Extendj, and not of the global unfolding algorithm

108

5.3. Synchronized products’ unfolding

(Algorithm 5.1) which must also depends on |v].

Now, consider the algorithm of function Extend for (M, v,b)-CP. Its most expensive
part in terms of time complexity is intuitively the third modification described above.
Since e is a receiving event in E? and d = Dep(e) +b— 1, function NotConflict creates the
set S of sending events which are in causal with the sending predecessor ey of e. Notice
that in (M,v,b)-CP, events in causal with e, i.e. <(e), with the causality between
them forms an intuitive tree of which the root is e;. Moreover, it follows from the fact
Dep(er) = Dep(e) and Ve| € Si : Dep(ey) = Dep(e) + b — 1 that S is the set of all node
of distance (b — 1) from the root e;. Because each node of this tree may also have |M|
successors, in the worst case, the size of Sy is [M|?~!. Therefore, due to the unique nested
loop in the algorithm of function Extend for (M, v,b)-CP, this function Extend has time
complexity of O(|M|.|M|*~1) = O(|M®).

5.3 Synchronized products’ unfolding

Our idea of constructing synchronized products of labeled event structures is similar
to that of well-known unfolding algorithm in other works [McM95a, ER99, KK03]. We
assume that one does have algorithms for constructing labeled event structures of the
components by means of function Extend described in Section 5.2.

Given n labeled event structures &1 = (E1, <1, #1, L1, M1),...,&n = (En, <p, #n, Ln, My)
and an action set ¥ € ®.(Codom(L;),...,Codom(L,,)). The synchronized product
Esp = (E,<,#,L,M) of &1,...,&, wr.t. ¥ (Definition 3.3.44 on page 57) is a part
of the maximal product of n event structures (E1,<i,#1),..., (En, <n,#n) (Defini-
tion 3.3.39 on page 54) that satisfies the synchronization X, i.e. constructing events e
satisfying Ly(e) € 3. Recall that both the labeling function £ = Ly and the marking
function M = My are well defined by those of component labeled event structures and
the function V (see Notation 3.3.43 on page 57). Therefore, in this section, we are going
to show how to algorithmically construct €gp in terms of product of event structures.
In other words, our algorithms compute only prefixes (E’, 2,#) of (E,<,#) and the
corresponding vectors vCv.

Recall that, by Definition 3.3.44, every event e € E corresponds to an unique pair
(C,v) where C = >(e) and v = V(e) € ®.(E1, Es, ..., Ey). Given an E-prefix of Egp, the
unfolding algorithm intuitively finds new pairs (C, v) that represent events which may be
added to the prefix. Since v must satisfy the labeling constraint: (£i(v]1),...,Ln(v]n
)) = L(e) € X, one groups such pairs (C,v) into disjoint subsets based on different
actions a € ¥, and searches these subsets separately. The computation of a pair (C,v)
corresponding to an action a consists more or less of:

1. Initializing C, may be by the empty set.

2. Successively finding v]; = e; € E; for some e; satisfying L£;(e;) = al; for all i such

that al; # ¢.

3. For every found v |; # €, successively enlarging C' by adding events in E to C in

order to have that C' is still a configuration in Cg¢y, and v |; is an extension of

In our algorithm described later, the two functions ConfigVectorSet and ConfigVectorSet i
are respectively dedicated to the second and the third sub-processes above. ConfigVectorSet
successively calls ConfigVectorSet i for all index i such that a|; # . Both ConfigVectorSet
and ConfigVectorSet i may fail that means there is no pair (C,v) corresponding to the
action a. In the first case, it is because, for instance, there is no event labeled by a|;

109

Chapter 5. Compositional unfolding techniques

in &;; while in the second case, it is because there is no configuration C’ O C in the
E’—preﬁx of & such that V(C")|;F; e; for previously obtained e;.

By calling ConfigVectorSet, the function Initgp as well as the function Extendgp for
synchronized products has to initialize action a as well as configuration C so that all and
only pairs (C,v) corresponding to new events e € (E \ E) will be found. In the same
way as function Extend for component labeled event structures, it is due to the use of
the possible extension PE and by limiting C' to subsets of E\ PE.

Before giving details on ConfigVectorSet i as well as ConfigVectorSet, let us introduce
the notion of config-vector which is the base type of these functions’ parameter.

Notation 5.3.1. Given n € N and n sets X, Xo,..., X, for any x € ®.(Xj,
Xo,...,Xp), we denote I(x) the set of indices i € {1,2,...,n} satisfying z|; # e.

Definition 5.3.2 (Config-vector). Given a synchronized product Egp of some n labeled
event structures £1,E9,...,&, wr.t. X. A config-vector of Egp is any triple (C,v,a)
where C C E, v € ®.(E1, Ea,...,E,), and a € ¥ such that:

1. Cis a configuration in Cg,,,,

2. for all i € {1,2,...,n}, either v]; = ¢ or L;(v];) = al;.

3. for alli e {1,2,...,n}, if v]; # e then v|; ¢ V(C)]; and v|; is not in conflict with
any event in C, i.e. {v];}#V(C)l;.

A config-vector (C,v,a) is partially complete for an index i if v]; is an extension event

of V(C)lz in 82‘, i.e. V(C)lz l_i ?}li.

Definition 5.3.3 (Complete config-vector). A config-vector (C,v,a) is complete if
1. I(v) = I(a),
2. (C,v,a) is partially complete for every index i € I(v), and
3. for every event e € Max<(C), there exists an index i such that V(e)|; <;v|;.

Let us take an example of a config-vector cv = (>(e),V(e), L(e)) where e is a given
event in E. By definition, cv is complete. Let C' be any configuration so that e is
one of its extension event, i.e. C'F e. One can verify that the triple (C,V(e), L(e)) is
also a config-vector which is partially complete for every index i € I(V(e)) = I(L(e)).
However, the third property of a complete config-vector in Definition 5.3.3 may not hold.
The reason is that C' may contain some event e’ which is concurrent with e. In other
words, the this property requires somehow that C' is equal to >(e).

Recall that, in the synchronized product £gp, there may exist other events f also
satisfying V(f) = V(e), consequently, L(f) = L(e), and (>(f),V(e), L(e)) is a complete
config-vector. Therefore, for a same vector v corresponding to some label a, one could
have many complete config-vectors (C, v, a).

Lemma 5.3.4. Given a synchronized product & = (E,<,#,L, M) of n labeled event
structures € = (Eq,<1,#1,L1,M1), ..., & = (En, <n, #n, Ln, My) w.r.t. some syn-
chronization constraint ¥. Let v be any vector in @.(En, ..., E,) satisfying that (L1(v]1
)y s Ln(vln)) = a for some given a € X. Let C'S be the set of configurations C' such
that (C,v,a) is a complete config-vector. Then

CS={>(e)/e e E and V(e) =v}

Proof. Let C be any configuration in C'S. Let ¢ be any maximal event w.r.t. the
causality in C, i.e. € € Max<(C). It follows from Definition 5.3.2 that there exists an
index ¢ € {1,2,...,n} satisfying V(C) |;t; v |;, we have V(') |; <;v];. Due to the

110

5.3. Synchronized products’ unfolding

maximality w.r.t. isomorphism of &, by Definition 3.3.44 of synchronized products of
labeled event structures, there exists an event e € E such that V(e) = v and ¢’ < e for
all ¢/ € Max<(C'). One can simply write C' = >(e) for some event e € E.

Conversely, it is straightforward from Definition 5.3.2 and Definition 5.3.3 that, for
every event e, if V(e) = v then (>(e),v,a) is a complete config-vector. This lemma is
thus proved.]

Remark: The two functions ConfigVectorSet i and ConfigVectorSet in the next subsec-
tions are recursive functions. In order to compute config-vectors of Egp, they have access
to the being constructed prefix Esp of the synchronized product € as well as its corre-
sponding prefixes &;, i = {1,2,...,n}, of all component labeled event structures &;.
However, these functions do not modify or add anything to the prefixes. This is done in
the function Extend.

5.3.1 Function ConfigVectorSet i

The function ConfigVectorSet i(F,i,C,v,a) is given in Algorithm 5.8 and has 5 param-
eters. The first parameter is a downward-closed set of events in E while the second one
is an index in I(a). The three last parameters form a config-vector, and there are two
additional conditions on the input of ConfigVectorSet i:

e v]; is some event in F;, i.e. v];# €, and as a consequence from Definition 5.3.2,

vli= als;
e Cis asubset of F,i.e. C C F.

The output of this function is the set of all config-vectors (C’,v,a) which are partially
complete for the index 7, moreover, C' is a subset of C’, and C’ is a subset of F at the
same time, i.e. C CC' C F.

Let us explain intuitive ideas of Algorithm 5.8. The set F; obtained at line 3 is the set
of v|;’s direct predecessors in component €, which are not included in V()1i. If this set
P; is empty (line 4), by definition, the config-vector (C, v, a) is already partially complete
for the index 4, hence one just returns the singleton {(C,v,a)} (line 5). Otherwise (lines
6-17), one needs to add events in F' to C in order to satisfy the partial completeness
in the component i. These added events, if exist, correspond 1-to-1 to the component
events in P;. The finding procedure is recursive.

The algorithm takes an event e} in P; (line 7). Intuitively, €} is a missing predecessor
of v|; so that (C,v,a) is still not partially complete for index i. The set X obtained in
line 8 is the set of all events ¢’ in F' which is related to €} and is not in conflict with events
in C'. It worth to notice that by definition of synchronized product of event structures
(Definition 3.3.39 on page 54), €’ can not be in C' and, as a consequence, (C N X) = ()
because V(') |;= e, € Py and P, N V(C)Li= 0.

If X is empty (line 9), there is no partially complete config-vector {C’,v,a} where
C’" O C. The function simply returns the empty set (line 10). Otherwise (lines 11-
16), for each event ¢/ € X, one tries to search partially complete config-vector from
(CU>(€),v,a,i) by calling ConfigVectorSet i itself. Found config-vectors are inserted
into the set CVS (line 14) which will be finally returned by the function ConfigVectorSet i
(line 16).

Lemma 5.3.5. Let CVS be the return set of some call
ConfigVectorSet i(F,i,C,v,a).

111

Chapter 5. Compositional unfolding techniques

Algorithm 5.8: Function ConfigVectorSet i

© 00 N O Ot kW N

10
11
12
13
14
15
16
17
18
19

function ConfigVectorSet i(F,i,C,v,a)
begin

Py = >i(vls) \ V(O) L
if P, =0 then
return {(C,v,a)}
else
take a component event eé in B,
X :={e € F/V()]i= ¢, and {'} #5 C}
if X =0 then
return (
else
CVS:=10
for each ¢ € X do
CVS := CVS U ConfigVectorSet _i(F,i,C U>(€'),v,a)
end for
return CVS
end if
end if

end function

o CVS contains only config-vectors (C',v,a) which are partially complete for the com-

ponent i; and

o the projection of CVS on the first component, i.e. CVS |1, is equal to the set

Minc{C" € € /C CC'CF and V(C')lit; vli}.

Proof. As the invariant of ConfigVectorSet i’s input, we have C' C F' and (C,v,a) is a

config-vector. Since event v]; has only finite direct predecessors in &;, we will prove this
lemma by induction on the size k = |>;(v];) \ V(C)l;|.

112

o The first property: When k = 0, due to lines 4-5 in Algorithm 5.8, we have CVS =

{{C,v,a)}, where (C,v,a) is a config-vector. It follows from Definition 5.3.2 for
config-vector (C, v, a) that v]; & V(C)|; and {v];} #5 V(C)];. Hence, V(C)]t vl
because >;(v];) C @(C’)li. As a consequence, (C,v,a) is partially complete for
component i by definition. Suppose that this property is correct for some k > 0 and
P, = >;(v];) \T?(C)ll (line 3) has k + 1 events. There are two cases depending on
the set X obtained in line 8. First, if X is empty, then CVS contains nothing, and
consequently, this property is true. Second, if X is not empty. For every event ¢
taken in the loop (line 13), by definition of X in line 8, we have that the downward-
closed set >(C U {€/}) = C U >(¢) is a configuration. And (C'U >(¢')) C F
because F' also downward-closed w.r.t. the causality < and ¢ € F. Event ¢
can not be in C' because V(¢/) = ¢, & V(C)];. Let us denote C” = C U >(e),
(C',v,a) is thus a config-vector. Once again, it follows from the definition of X that
(i () \V(C")]i) = (Zi(v]:) \V(C)]; \é€}), and consequently, |(>;(v]:)\ V(C")|;
)| = k+1—1 = k. By induction hypothesis, calling ConfigVectorSet i(F,i,C” v, a)
returns only partially complete config-vector (C’,v,a) for component i. So do the
final return set CVS in line 16. The first property is thus proved.

5.3. Synchronized products’ unfolding

e The second property: Let C'S denote the set {C” € Cz, /C CC'CF and T7(C”)ll-

i vli}. When k =0, ie. >;(v];) \\A7(C)l,~: (), the return set CVS contains only
(C,v,a) (line 5). Thanks to the first property, (C,v,a) is partially complete for
component ¢. By Definition 5.3.2, we have T7(C’)li F; v];. Hence, C is included in
C'S, moreover, C' is the minimal configuration in C'S w.r.t. the inclusion order C.
Because every configuration C’ in C'S satisfies C/ D C by definition of C'S. This
property thus holds in the base case. Suppose that it holds for some number £,
and we have |[>;(v];) \ V(C)|;| =k + 1.

First, let C’ be any configuration in the set Minc C'S, we will prove that C' € CVS|;
(1). Let €, be the event in €; obtained at line 7. Tt follows from V(C')|;+; vl
that e} € V(C') |;. Thanks to the exponentially downward closure of C’, there

exists an event ¢/ € C' satisfying V(¢/) = ¢,. Notice that ¢ can not be in C

because V(e') = e, & V(C) ;. In addition, since C’ C F is also configuration, ¢
must be in the set X obtained at line 8. By the for-loop at lines 13-15, (C’, v, a)
must be returned when calling ConfigVectorSet i(C'U >(€’),v,a,4) (line 16) and
is thus included in the final set CVS (line 18). Because, in the one hand, C’ €
Minc{C’ € Ce,, /C C C' C Fand V(C') l;F; v} and € € C’ implies that
C" € Minc{C" € Cz,, /(CUS(€')) € C' C F and V(C")|;F; v];}; and in the other
hand, the second set is the return value of ConfigVectorSet i(F,i,C U >(€/),v,a)
due to the induction hypothesis (*) where |5;(v];) \ V(C U =) i | = |5:(v s
J\V(C)|i \{e/}| = k+1—1=k. Therefore (1) is true.

Second, let (C',v,a) be any config-vector in the return set CVS. We will prove
that C’ must be in the set C'S and moreover, it is minimal w.r.t. inclusion or-
der (2). This config-vector must come from some call ConfigVectorSet i(F,i,C U
>(¢/),v,a,i) in line 14 for some event ¢ obtained at lines 7-8. Once again,
thanks to induction hypothesis (*), we must have ¢’ 2 (C'U =>(¢’)) D C and
T?(C/) liF; v l;. Hence, C' is in CVS. Suppose that C’ is not minimal w.r.t.
inclusion order, that means there exists another configuration C" € CS satisfy-
ing C” c C'. Since V(C") |;F; v |; there exists an event ¢” € C” such that
V(") |i= V() |; € Si(v];). Tt follows from ¢/ € C', ¢ € C" C C' and the
conflict-free of C’ that ¢’ and €” must be the same event, i.e. ¢ = €”. As a con-
sequence, C” D (C' U =(¢')). Therefore, C’ is not minimal, w.r.t. inclusion order,
in the return set of ConfigVectorSet i((C' U >(¢’)) due to the existence of C”. Tt
contradicts to the induction hypothesis. Hence, C’ is thus minimal configuration
in CVS, and (2) is true.

From (1) and (2), the induction hypothesis (*) holds for all finite number k. And
the lemma is thus proved by induction.

O

It is worth giving some details here on the minimality property w.r.t. the inclusion
order C of config-vectors returned by ConfigVectorSet i. Let e be any event in the syn-
chronized product, suppose that e has two direct predecessors f,g, i.e. >(e) = {f,g}.
Thanks to Lemma 5.3.4, cv = (>(e),V(e), L(e)) is a complete config-vector. Let us de-
note C' = (>(e))\{f,g}. It is obvious that (C,V(e), L(e)), (CU{f},V(e),L(e)) and (CU
{g},V(e), L(e)) are config-vectors. But they are not complete due to some component
indices. Assume that (C,V(e), L(e)) is not partially complete for some component i but

113

Chapter 5. Compositional unfolding techniques

(CU{f},V(e),L(e)) is. When calling the function ConfigVectorSet i(F,i,C,V(e), L(e)),
for a given downward-closed set F' D (>(e)), the value (CU{f},V(e), L(e)) is returned.
Although cv is partially complete for index 4, it is not returned. One can see that
(CU{f}) C >(e), and it respects to the second property in Lemma 5.3.5. The mini-
mality property on configurations of returned config-vectors intuitively means that one
adds only necessary event to C' in order to complete the config-vector (C,V(e), L(e)) for
index 7. The config-vector cv may be returned afterward, for instance, when one tries to
complete (CU{f},V(e),L(e)) for another index j by calling ConfigVectorSet i(F,j,C'U

{f},V(e), L(e)).

Lemma 5.3.6. If F is finite, then function ConfigVectorSet i(F,i,C,v,a) in Algo-
rithm 5.8 terminates.

Proof. The recursive call of ConfigVectorSet i can not be infinite. Suppose the opposite
that means there exists an infinite sequence of configurations C,C5, ... where C; = C
and ConfigVectorSet _i(F,i,Cj, v, a) calls to ConfigVectorSet_i(F,i,Cj11,v,a) for all j >
1. We have not only C; C Cj41 due to line 14 but also (>;(v[;) \ @(CJ)) O (5wl
) \\A7(C’j+1)) for all j > 1. The infiniteness of decreasing sequence >;(v ;) \\A7(C])
w.r.t. inclusion order contradicts to the finiteness of predecessor set of v |; in /E\Z by
definition of event structures (see Definition 3.3.39 on page 54). Moreover, since F is
finite too, for every call of ConfigVectorSet i, the set X obtained in line 8 is finite. As a
consequence, the loop at lines 15-17 is finite. Therefore, the function ConfigVectorSet i
terminates. U

Remark: One can consider the unfolding algorithm in [ER99] as the one for synchronized
product of labeled event trees, and the unfolding algorithm in [McM95a| as the one for
synchronized product of labeled event structures modeling simple Petri net’s place. In
both case, one still has some function like ours ConfigVectorSet i. It is much simpler
though because every component event has at most one predecessor. As a consequence,
there is no need to use the recursion shown in Algorithm 5.8.

5.3.2 Function ConfigVectorSet

Algorithm 5.9 represents the function ConfigVectorSet(F, C, v, a) which takes a downward-
closed set, w.r.t. the causality, of events F' and a config-vector (C,v,a) as parameters.
The config-vector (C,v,a) must (satisfy the invariant that it is) partially complete for
all index @ € I(v). The function ConfigVectorSet(F,C,v,a) then computes and returns
all complete config-vectors (D, w,a) such that

e wl;=wv]; for all i € I(v), and

e D is asubset of F,i.e. D C F.

By Definition 5.3.2, it follows from the partial completeness of config-vectors (D, w, a)
that w|; is an extension event of D|; for all ¢ € I(a). As a consequence, direct predeces-
sors of w|; are included in D|; C F|;. Therefore, aiming at computing such complete
config-vectors in a prefix Egp of the synchronized product, one requires that El con-
tains all events whose predecessors are in F'|; for all . Formally, for all i, e; € EA]Z if
>i(e;) = >i(e;) C F|;. The following is straightforward.

Lemma 5.3.7. Let (C,v,a) be a complete config-vector where C' is a subset of a down-
ward closed set ' w.r.t. the causality. If E; 2 {e; € E;/>i(e;) C F|;} for all i, then
v e ®€(E15 EQ, s aEn)

114

5.3. Synchronized products’ unfolding

In Algorithm 5.9, in the base case where I(v) = I(a) (line 3), it follows from the
constraint on parameters that the config-vector (C,v,a) is already complete. The func-
tion simply returns the singleton {(C,v,a)} (line 4). In the general case (lines 5-18), by
definition, I(v) must be a subset of I(a). The algorithm takes any index i in the different
set (I(a)\ I(v)) (line 6) and tries to partially complete the config-vector (C,v,a) for the
component i. Then, it tries to assign some component event e in gz to v]; (line 11). By
definition of config-vectors, v|; should be labeled by al;. The set X; obtained at line 7
thus represents the set of such component events e}. Notice that, for every component
event e, € E;, if either e} € V(C) |; or e; is in conflict with some event in V(C) i,
exploiting such an event e, does not give rise to any complete config-vector from C.
Therefore, the restriction of X; line 9, in the one hand, is an algorithmic amelioration,
and in the other hand, is in order to guarantee the invariant that one always works with
config-vectors.

The loop at lines 10-13 searches all partially complete config-vectors (C’,v’,a) for
the index 7 by calling ConfigVectorSet i(F,i,C,v’,a). Due to assignments at lines 8 and
11, vectors v and v’ are different only on index . More precisely, we have v]; = ¢ while
v']; = €] for some ¢} € X;. All found config-vectors (C’,v', a) are stocked in the set CVS;.
Notice that if X; is empty, the algorithm skips this loop, and CVS; is thus empty. As a
consequence, in this case, the algorithm skips also the loop at lines 15-17 and return the
empty set CVS (line 20). Otherwise, i.e. X; # (), every config-vector (C’,v’, a) is partially
complete for all index in the set I(v') = I(v) U {i}. As a consequence, (C’',v',a) may
be used as parameter for the function ConfigVectorSet itself (line 16). Due to the loop
at lines 15-17, the return set CVS (line 18) hopefully contains complete config-vectors
(D,w,a) where D O C and I(w) = I(a) D I(v).

Algorithm 5.9: Function ConfigVectorSet

1 function ConfigVectorSet(F,C,v,a)

2 begin

3 if I(v) =I(a) then

4 return {(C,v,a)}

5 else

6 take an index ¢ in (I(a)\ I(v)) o

7 Xii={e; € (BA\V(O)) / Lile}) = ali and {e[} 4 V(C)1:}
8

9

/

v =
CVS, = @

10 for each ¢ € X; do

11 V'] =€

12 CVS; := CVS; U ConfigVectorSet _i(F,i,C v, a)

13 end for

14 CVS:=10

15 for each (C’,v',a) € CVS; do

16 CVS := CVS U ConfigVectorSet (F, C’,v', a)

17 end for

18 return CVS

19 end if

20 end function

115

Chapter 5. Compositional unfolding techniques

Lemma 5.3.8. Let F' be any downward-closed set, w.r.t. the causality. Let (C,v,a) be
any config-vector such that:

1. C is a subset of F', 1.e. C C F,

2. (C,v,a) is partially complete for every indezx i € I(v), and

3. for every e € Max<(C), there exists an index i € I(v) satisfying that (C \ {e}, v, a)
18 not partially complete for index i.

If E’, D {e; € E;/>i(e;) C Fl;} for all i, then the return value of
ConfigVectorSet(F, C, v, a) is the set of complete config-vectors (D, w,a) such that C C
D C F and wl;=v]; for alli € I(v).

Proof. Let CVS denote the return value of ConfigVectorSet(F,C,v,a) and CS the set of
complete config-vectors (D, w,a) satisfying C C D C F and w|;= v|; for all ¢ € I(v).
We will prove by induction on the finite size k of the set (I(a)\I(v)), i.e. k= |[I(a)\I(v)|,
that CVS = CS.

sumption that (C,v,a) is partially complete for all indices i € I(v), (C,v,a) is
thus complete by Definition 5.3.3. And the return set CVS (C,v,a)} is of
course a subset of CVS. In the general case, by definition, (C,v',a) (line 12) is a
config-vector for all event e chosen in the set X; obtained in line 7. Thanks to
Lemma 5.3.5, the set CVS; obtained after the loop at lines 10-13 in Algorithm 5.9
contains config-vectors (C’,v’,a’) which satisfies C C €' C F, and at the same
time, is partially complete for not only for the indices in I(v) but also for the index
i obtained in line 6. Moreover, let e be any maximal event in C’ w.r.t. the causal-
ity, i.e. e € Max<(C") = Maxz(C"). If e € (C'\ C), then (C"\ {e},v',a) is not
partially complete for index i. Because, suppose the opposite, (C', v, a) is returned
by calling ConfigVectorSet i(F,i,C,v',a) but C’ is not the minimal configuration
of the set {C" € Cg,, /C C C” C F and V(C") |+ o' i} due to the exis-
tence of the configuration (C"\ {e}) C C’. It contradicts to Lemme Lemma 5.3.5.
Therefore, the config-vector (C’,v,a) satisfy thus the three property stated by
this Lemma as the condition of ConfigVectorSet’s input. So that, when calling
ConfigVectorSet(F,C’, v, a) in line 16, since (I(a) \ I(v")) C (I(a) \ I(v)), by in-
duction hypothesis, its return value is a subset of C'S. And so does the final return
value of ConfigVectorSet(F,C,v,a) (line 18).

o We first prove that CVS C C'S: In the base case, i.e. I(v) = I(a), due to the as-
S

o We now prove that C'S C CVS: Thanks to Lemma 5.3.7, for every complete config-
vector (D, w,a), since D C F, we have w € ®5(E1,E2, A En) In the base case,
i.e. I(v) = I(a), one has CVS = {(C,v,a)}. Suppose that there exists a complete
config-vector (D,w,a) € CS which is not included in CVS. By definition, one
obtains C' C D C F and v = w. Let e be any event in Maxz (D\C') C Maxz(D). Its
follows from the conflict-freeness of configuration D that, for all ¢, @(e)li ¢ \A7(C)li.
Moreover, since (C,v,a) is partially complete for all indices i € I(v) = I(a), we
have @(C’)li I vl;, and consequently, >;(v];) C @(C’)li for all i € I(v). Therefore,
the third property in Definition 5.3.3 does not hold for (D,v,a) because, for all
i € I(v), @(6) li <ivli. It contradicts to the completeness of (D,v,a). As a
consequence, C'S = {(C,v,a)} is thus a subset of CVS.

In the general case, i.e. I(v) C I(a), let {D,w,a} be any complete config-vector
in CS. Let ¢ be the value obtained at line 6 in Algorithm 5.9, and €, = w |;.

116

5.3. Synchronized products’ unfolding

One must have C C D because if otherwise, (D,w,a) = (C,w,a) can not be
complete. Since (D,w,a) is a config-vector and C' C D, one has then w |; &
V(C) |; and {w |;} #5V(C) |; by Definition 3.3.39 on page 54. It follows from
Li(w];) = al; (by Definition 5.3.2) that w |; must be in the set X; obtained
at line 7. As a consequence, in the loop at lines 10-13, there is a step where
v']i=wl; and v/ |j= v]; for all j # ¢. Thanks to Lemma 5.3.5, when calling
ConfigVectorSet i(F,i,C,v',a), it must return some config-vectors. Thanks to
Lemma 5.3.5, among such return config-vectors in CVS;, there exists (C’,v',a)
such that C’ C D. Because configuration D satisfies \A7(D)ll- F; v'];. By the same
reasoning as in the previous case, one can verify that (C’, v/, a) satisfies the input’s
variant of the function ConfigVectorSet like (C,v,a). So that by the induction
hypothesis, the complete config-vector (D, w, a) must be found in the final set CVS
due to some call ConfigVectorSet(F,C’,v’,a) in line 16.

One can finally conclude that CVS is equal to C'S. O

The third property on configuration C as input of ConfigVectorSet is important. As
seen in the proof above, it corresponds more or less to the third property in the definition
of complete config-vectors (see Definition 5.3.3 on page 110). Without such a property on
input configurations C, calling ConfigVectorSet(F, C, v, a) may return some config-vector
(D,w,a) which is partially complete for all indices i € I(w) = I(a). However, (D, w,a)
is not complete, and as a consequence of Lemma 5.3.4 on page 110, it corresponds to
no event in the synchronized product Egp. Aiming at constructing prefixes of Egp, the
computation of config-vector (D, w,a) is useless.

Lemma 5.3.9. IfE as well as El,EQ, . E’n is finite, then the function ConfigVectorSet
in Algorithm 5.9 terminates.

Proof. Let (F,C,v,a) denote some input of ConfigVectorSet. We will prove this Lemma
by induction on the size k of (I(a) \ I(v)) since k can not exceeds the number of com-
ponents, and is thus finite. When k = 0, i.e. I(v) = I(a), one falls into the base case
of the function ConfigVectorSet’s recursion (lines 3-4). The function ConfigVectorSet
just terminates. Suppose that ConfigVectorSet terminates for all £ smaller than some
number m > 0. We will prove that it also terminates for k& = m. For every value of
1 obtained at line 6, the set X; is finite because E’, is finite. Thanks to Lemma, 5.3.6,
ConfigVectorSet i(F,C’,v',a,i) terminates because F C E is finite, and at the same
time, thanks to Lemma 5.3.5, its return set has a cardinal smaller than or equal to the
one of {C” € Cz,, /C" D C}. As a consequence, the loop at lines 10-13 terminates
and the set CVS; obtained afterward is finite. Consider now the loop at lines 15-17.
Because |I(a) \ I(v')| = [I(a) \ I(v) \ {i}| = m — 1, by induction hypothesis, the call
of ConfigVectorSet(C’,v',a) at line 16 terminates. This loop with finite bound |CVS;]
should terminates. As a consequence, the function ConfigVectorSet terminates. O

5.3.3 Functions Initgp and Extendgy

In this subsection, we assume that one has already n functions Init; as well as n functions
Extend;, i € {1,2,...,n}, for unfolding n component labeled event structures. In addi-
tion to the prefix ggg: of Egp which is being constructed, we always have n prefixes of the
components. The function Initgp as well as Extendgp should use these 2n functions for
expanding components prefixes if necessary. Moreover, component possible extensions
PE;, i € {1,2,...,n} can be accessed from Initgp and Extendgsp.

117

Chapter 5. Compositional unfolding techniques

As stated by Lemma 5.3.4, in a synchronized product of labeled event structures,
complete config-vectors correspond to events. Formally, we say that (C, v, a) corresponds
to event e if C = >(e),v = V(e), and a = L(e). In addition, due to the maximality
and no-duplication property in Definition 3.3.44 on page 57, this correspondence is a
bijection.

By definition, a minimal event e, w.r.t. the causality, in the synchronized product
is a synchronization of minimal events in component labeled event structures. Formally,
e € Minc(Egp) iff >(e) = 0 and V(e) € ®-(Min<,(E1),...,Min<, (E1)). In order to
building the prefix Egp|pmin -(E), function Initgp intuitively computes complete config-
vectors (0,v,a) where v € ®.(Min<, (E1),...,Minc, (E1)) and a = (L1(v]1),...,

L, (v]y,)) is included in synchronization constraint X.

Algorithm 5.10: Function Initgp for synchronized products

1 function Initgp()

2 constant v. = (g,¢,...,¢)

3 begin

4 E=0:2=0V:=0

5 for i:=1 to n do

6 (€;, PE;) = Init;()

7 end for

8 CVS =10

9 for each a in ¥ do

10 CVS := CVS U ConfigVectorSet (), 0, v., a)
11 end for

12 for each (C,v,a) € CVS do
13 e = Create(/S\, PE, 0, a)
14 Vo= Vu{(,v)}

15 end for

16 return (E,E)

17 end function

Algorithm 5.10 represents the function Initgp. The synchronized prefix is initialized
without events (line 4). Component prefixes are also initialized by calling the corre-
sponding functions Init; for all i € {1,2,...,n} due to the loop at lines 5-7. As seen
in Section 5.2, after this loop, each component prefix Ei, i€{1,2,...,n}, contains only
minimal events w.r.t. its causality <;. Due to the loop at lines 9-11, the algorithm thus
computes all complete config-vectors (C, v, a) by calling ConfigVectorSet (), 0, v., a) for all
actions a in the synchronization constraint 3. The constant v. declared in line 2 is just
for initializing the third parameter when calling ConfigVectorSet. Since the first param-
eter F' of ConfigVectorSet is the empty set, C' is empty too. Each complete config-vector
(B, v,a) in CVS intuitively corresponds to an minimal event e’ w.r.t. the causality in the
global labeled event structure because >(e’) = (). Function Initgp ﬁnally creates events
according to config-vectors in CVS and accordingly updates function V. This is done by
the loop at lines 12-15. Recall that the conflict relation # and the labeling function C
may be computed from the ones of component prefixes, i.e. #Z and EZ, the predecessor
relation < and the vector V. In Algorithm 5.10, only instructions for < and V are shown.
The following is straightforward.

118

5.3. Synchronized products’ unfolding

Lemma 5.3.10. If Init;() is correct that means its return value (/E\Z, PE;) is correct w.r.t.
& and & = ity() = Eilmin (g,), then the return value (&, E) is correct w.r.t. the

synchronized product Egp, moreover, & = 8|Min<(E)-

Now, we can go into details of the function Extendgp. Recall the principal mechanism
of Extend: one avoids adding two times a same event, and at the same time, does not
omit any possible event. In order to do that:

e One adds only successors €’ of event e where e is the parameter of Extend. By
Definition 3.3.39, the complete config-vector (C,v, L(€’)) corresponding to e’ must
satisfies that V(e)|; <;v|; for some index i, and at the same time, C contains e.

e One adds only and all those events ¢’ whose predecessors have been extended, i.e.
>(¢') C (E \ PE) where E is the event set of the actual prefix, and PE C E is the
set of events that have not been extended.

Let us explain the instructions of Extendgp given in Algorithm 5.11. As usual, when
extending event e, the algorithm first removes e from the possible extension PE (line 4).
Then, it extends the component events corresponding to e by the loop at lines 5-9 if
necessary. Let i be an index in I(V(e)), when the test V(e)|; € PE; (line 6) is false, it
may be due to extending another event e’ before e where €’ concerns the same component
event as e, i.e. @(e)li = @(e’)li. In this case, the algorithm does nothing so that Extend;
is called with argument V(e)]; at most one time. Otherwise, i.e. V(e)|; € PE;, it means
that component event V(e)|; in €; has not been extended. One must extend it by calling
Extendi(/gi, PE;,V(e)l;) (line 7). After this instruction, V(e)]; is no more in PE;.

Algorithm 5.11: Function Extendgp for synchronized products

1 function Extendgfp(g,PE, e)

2 constant v. = (g,¢,...,¢)

3 begin

4 PE:=PE\{e}

5 for each i € I(T?(e)) do

6 if V(e)|; € PE; then

7 (€;,PE;) := Extend;(&;, PE;, V(e) ;)

8 end if

9 end for

10 CVS;i:=10

11 for each i € I(\A7(e)) do

12 v =,

13 for each v; € <;(V(e);) do

14 U/li =

15 for each a € {a € ¥ /al;= L;(v;)} do
16 CVS; := CVS; U ConfigVectorSet _i((E \ PE),i,>(e), v, a)
17 end for

18 end

19 end for

20 CVS:=0

21 for each (C’,v',a) € CVS; do

22 CVS := CVS U ConfigVectorSet((E \ PE),C’, v/, a)
23 end for

119

Chapter 5. Compositional unfolding techniques

24 for each (C,v,a) € CVS do

25 ¢/ := Create(&, PE, Maxz(C), a)
26 V:=VU{(,v)}
27 end for

28 return (g,PE)
29 end function

Remark: In our unfolding algorithm for a synchronized product of labeled event struc-
tures, we only use Algorithm 5.1 for the global product, and not for its components. The
function Extendgyp of the global product, on the one hand, is responsible for constructing
prefixes Egp of the synchronized product, and on the other hand, takes control of how
to develop prefixes &;, i € {1,2,...,n}, of the components. The choice of extending
component events is no more random as seen at line 4 in Algorithm 5.1. In other words,
a event e; in some component &; is extended by calling Extend; only when a global event
e in the synchronized product which concerns e;, i.e. V(e)|;= e;, is extended.

The computing process of complete config-vectors CVS which correspond to direct
successors €' of e is started by finding partially complete config-vectors (C’,v’,a) for
some index i € I(V(e)) (the nested loops at lines 11-19).

o Since € is a direct successor of e, by the third property of Definition 3.3.39, V(e’);

must be a direct successor of V(e)]|; in some component labeled event structures
;. Hence, one restricts index i on the set I(V(e)) (line 11).

o The component event V(e)|; may have many direct successors in ;. For such a
direct successor v; (line 13), one initializes v’ so that it is different from the constant
vector v (line 2) only on the index ¢ due to instructions at lines 12 and 14. All
partially complete config-vectors obtained afterward must be based on the same
vector v,

e One groups partially complete config-vectors (C’,v’,a) into different sets which
based on label a € ¥. By Definition 5.3.2, one has, of course, al; = L;(V(v') ;=
L;(v;) where v; is an event in &; obtained previously.

 The calling ConfigVectorSet i with the configuration parameter >(e) (line 16) guar-
antees somehow that return config-vectors (C’,v',a) satisfies C' D (>(e)). As a
consequence, new event e’ corresponding to (C’,v’,a) satisfies (>(e)) 2 (>(e))
and is thus a direct successor of e.

All partially complete config-vectors in CVS; are thus used for computing complete
config-vectors by the loop at lines 21-23. One simply call the function ConfigVectorSet
(line 33). Notice that obtained config-vectors in CVS may be different on its vectors
or its corresponding actions. However, the configuration of such config-vectors always
contains e, and is thus a superset of >(e).

Finally, as in the function Init, for every complete config-vector (C,v,a) in CVS, a
new event e’ is created and inserted into the global prefix by the loop at lines 24-27.
Since only events in Maxz(C) are direct predecessor of €. Maxz(C) is passed as the

parameter value of ConfigVectorSet (line 25). The function V is also modify for adapting
to new events (line 26). The set of new events is returned as usual (line 28). However,
the set CVS as well as CVS; may be empty. In this case, the loop at lines 21-24 as
well as the one at lines 24-27 is algorithmically skipped. And as a consequence, no new
successors of e is created and returned in the end of the call Extend(e).

Lemma 5.3.11. If Extend; is correct w.r.t. &; for all i € {1,2,...,n} then the function

120

5.3. Synchronized products’ unfolding

Extendgyp in Algorithm 5.11 is correct w.r.t. the synchronized product Egp = (E,<
yH#, L, M) of these n labeled event structures €1,E,...,E, w.r.t. X.

Proof. Let us denote by € = (E,<,#,L,M'), & = (E/, <’ %E’,E’,/\//?) respectively the
values of structure variables of the synchronized products just before and after calling
Extendgp(e) for some e € ({e} UE’); and by the same manner, &, = (E/, </, #!, L, M}),
&l = (B, < #!, L M) for the values of structure variables of every component
ie{1,2,... n}

Let S be the set of successors €’ of e in Egp whose predecessors has been already
extended, i.e. S ={¢' € E/e<e and >(¢/) C (E\PE")}. Here PE' = (PE\{e})U(E'\E)
due to line 4 and the calls of Create in line 25. We will prove that there is a bijection
between S and the final config-vectors set CVS in the function Extendgp (*).

Due to the loop at lines 5-9 that tries to extend component events each time one
extends a global event, one can easily prove by induction that for all 7, (EZ \ PE;) D
(E’ \ PE)|; just before instructions for computing CVS in the function Extend (line 10).
As a consequence, for every event ¢ € E, if (>(¢')) C (E' \ PE) then (>;(V(¢) |;
) € (>(¢)]; € (E"\ PE)|;= (E!\ PE;). Moreover, due to the correctness of Extend;,
(>i(V(¢) li)) € (E!\ PE;) implies that event V(e’) |; must be already in the event
set E/ of component prefix £,. Now, for each successor €/ € S, let us associate it to
the complete config-vector (>(¢’), V(¢'), £(¢')). We have then (>(¢/)) C (E \ PE') and
V(e') € ®.(E], EY, ..., E]). In other words, event sets Ef, Ej, ..., E] are sufficient for
computing the complete config-vectors (>(e), V(e'), L(e)).

Consider the nested loops at lines 11-19. Since €’ is a successor of e, by definition
of synchronize products of event structures (see Definition 3.3.39), there exists an in-
dex 7 such that V(e)|; <;V(¢') ;. Moreover, the action a = L(e') € ¥ satisfies that
ali= L;(V(e')];). Let v’ is the vector satisfying v'|; = V(e')]; and v’ |; = & otherwise.
Thanks to Lemma 5.3.5, after this nested loop, CVS; must contain some partially com-
plete config-vector (C’,v', a) for the index ¢ due to the call ConfigVectorSet_i(E\ (PE\
e),>(e),v’,a) in line 16. Moreover, (>(e)) C C’ and C’ C (>(¢€')) due to its minimality
w.r.t. the inclusion order. Therefore, it follows from Lemma 5.3.8 that CVS contains
(>(e"),V(e), L(e)) (1) because of the call ConfigVectorSet
(E\ PE,C’,v',a) in line 33.

Reversely, let (C,v,a) be any complete config-vector in CVS in the end of the loop
at lines 21-23. Once again, C is a supset of another configuration C’ which contains
e; and v is based on another vector v which satisfying that v' |; = V(e) |; for some
index 7. Thanks to Lemma 5.3.4, there exists an event €/ € F such that V(¢/) = v and
C = >(€'). Notice that C C (E’\ (PE\ {e})) because the first parameter F’ when calling
ConfigVectorSet as well as ConfigVectorSet i is always equal to E\ (PE\ {e}). Moreover,
since e is a maximal event w.r.t. the causality in E by Lemma 5.1.2 on page 89, e is
also a maximal one in C'= >(¢€’). The event e is just a direct predecessor of ¢’ and as a
consequence, ¢’ must be in S (2). It follows from (1) and (2) that (*) is obvious. The
bijection, denoted by B, may be defined by B(e') = (>(¢’), V(e'), L(¢')).

The for loop at lines 24-27 simply adds events in S to the E’—preﬁx of the synchronized
product. Because e is maximal event in E, its successors do not exist in E. As a conse-
quence, adding these successors guaranties that final &’ is a prefix of £gp. The unfolding
invariant I3 in Definition 5.1.1 on page 89 is a direct consequence of (*) while invariants
11,12 as well as conditions C2, 3 of the Extend’s correctness are straightforward. The
function Extendgp is thus correct w.r.t. Egp.]

Lemma 5.3.12. The function Extendgp terminates sz as well as Ei, ie{1,2,...,n},

121

Chapter 5. Compositional unfolding techniques

18 finite.

Proof. Thanks to Lemma 5.3.6 and Lemma 5.3.9, ConfigVectorSet i and ConfigVectorSet
terminates. The size of the set returned by ConfigVectorSet i (Algorithm 5.8 on page 112)
does not exceed the number of subsets of E , and is thus finite. On its turn, the function
ConfigVectorSet (Algorithm 5.9 on page 115) has two finite loops: the first one calls to ter-
minating function ConfigVectorSet i and the second one which calls to ConfigVectorSet
itself. Since the number n of components is finite, the depth of recursion is bounded by
n. Then, the function Extendgyp in Algorithm 5.11 terminates. O

In order to find new direct successors of an event in the actual prefix Eofa synchro-
nized product Egp, i.e. €= Egp|g, the functions ConfigVectorSet and ConfigVectorSet_i
are the most important and slowest parts of unfolding algorithms. Although Egp is
simply a synchronized product of Petri nets’ places (or of counters), the complexity of
ConfigVectorSet as well as Extendgp in the worst case is a NP-complete problem as stated
in [ERV96, Hel99]. The question of how to efficiently compute such successors is still
open. Some concrete ideas on Petri nets can be found in [Kho03].

In practice, one aims only at a finite prefix of the synchronized product €gp which is
complete for some verification problem. As seen in the next section, the better cutting
context is, the more compact prefixes one obtains. Because the complexity in time and in
space of Extendgp depends on the size of these prefixes, a good choice of cutting context
could reduces this complexity (see Chapter 6).

5.4 Truncating

Once we have a correct function Extend for constructing prefixes of a labeled event
structure €, we wish to modify the unfolding algorithm given in Algorithm 5.1 on page 89
to obtain some truncations of €. A computed truncation, if it exists and is finite, will
be used to verify the corresponding decidable problem (see Chapter 4).

As seen in previous sections, our unfolding algorithm as well as various functions
Extend respect the idea of partial-order. Intuitively, one does not need to look at the
whole set of configurations when computing new events and extending prefixes. In or-
der to integrate truncation technique into the unfolding algorithm, we are particularly
interested in local cutting contexts (€, <€, CL) (see Section 4.3.1). Moreover, recall that
well-preorders <C over configurations are restricted to the ones defined in Section 4.2.3.
Formally, that means <= (<M M) where < is an adequate order over configurations.

Remark: Without the risk of confusion, we simply write e < ¢’ in the place of (>(e)) <
(>(¢")) for all events e,e’ € E. Therefore, < may be considered as an order over the
event set F. And it is well-founded when € is finitely-branching.

Recall that, the truncation of € w.r.t. to a local cutting context (<€, CL) is the
maximal subset of events that contains no outer one (¢f. Definition 4.2.12 on page 74
and Lemma 4.3.2 on page 79). Algorithm 5.12 represents our truncating algorithm
which aims at constructing the the prefix € of € based on the truncation T(€E,<C, Glg),
ie. &= 8\7(8’4(;7@%). While trying to keep the being constructed prefix Eof& away from
outer events, one simply does not extend cutoff events.

In Algorithm 5.12, we use a variable CE to stock cutoff events. This variable is, of
course, initialized by the empty set (line 2). The algorithm starts with the prefix of &€
based on its minimal events w.r.t. the causality < (line 3) as the same manner as in
Algorithm 5.1. However, the loop for enlarging the actual prefix terminates if possibly

122

5.4. Truncating

Algorithm 5.12: Truncating algorithm

1 begin

2 CE := 0

3 (& PE) := Init()

4 while (PE\ CE)#0 do

5 take an event e in Ming(PE\ CE)
6 if isCutoff(e) then

7 CE := CEU{e}

8 else

9 (€,PE) := Init(€, PE, e)
10 end if

11 end while

12 end

extensible events in PE are all cutoff ones (line 4). For each event e obtained at line 5,
one must test whether e is cutoff event by calling the function isCutoff. If e is a cutoff
event, one simply inserts it into the set CE (line 7). Notice that, in this case, e always
belongs to the set PE. If e is not a cutoff event, one extends e by calling Extend by the
same manner as in Algorithm 5.1.

If the principal loop terminates, in the end of truncating algorithm, we obtain an
finite prefix of €. In the result, CE is equal to PE and is the set of minimal cutoff
events w.r.t. the causality <. Moreover, the event set of the final prefix is a superset
of the truncation T(&,<¢,CL). Let E denote the event set of the actual prefix along
an execution of the truncating algorithm, it is worth noticing some intuitive ideas in
Algorithm 5.12:

o In order to prevent adding outer events as well as its successors afterward, cutoff
events should not be removed from PE. Because calling Extend(:‘l\, PE,e) returns
successors of e whose predecessors are all in E’\ PE due to the correctness of Extend.

o CE is always a subset of both PE and Ming(ﬁ}c) where E° is the set of cutoff event
in the E—preﬁx of & w.r.t. <¢. They converge only when the loop terminates.

o The implementation of the function isCutoff is not far from the definition of cutoff
events (see Definition 4.2.10 on page 74 and Definition 4.3.1 on page 79).

true if exists ¢/ € (E \ CE) : (>(e)) <€ (>(¢)

isCutoff(e) returns { false otherwise

However, computation in isCutoff does not base on the whole labeled event struc-
ture € but only on one of its finite prefix, here is the E-prefix.

5.4.1 Algorithmic cutoff events

Consider an execution of Algorithm 5.12, let us simply call CE the set of algorithmic
cutoff events. Recall that, as stated by Proposition 5.1.4 on page 90, one obtains an
increasing sequence of prefixes of €. By definition, every algorithmic cutoff event is a
cutoff event in €. However, there may be some cutoff event in € which is not detected
as an algorithmic cutoff event, and is eventually extended. This fact is the cause of an
final prefix, if algorithm terminates, which is bigger than the desired truncation.

123

Chapter 5. Compositional unfolding techniques

Therefore, the choice of extending some minimal event e w.r.t. the adequate order <
in (PE\ CE) (line 5) is very important. First, it reduces the risk of adding a cutoff event
to the actual prefix without perceiving it as an algorithmic cutoff event and inserting
it into CE. Second, for every prefixe obtained along the execution after extending e,
isCutoff(e) always returns the same value.

Proposition 5.4.1. Let us denote by /E\k = (Ek, ik,%&k,fk,ﬂk) and PEy respectively
the value of structure variables and PE after k steps, k = 0,1,..., of the principal loop
in Algorithm 5.12 (lines 4-11). Let ex, k = 1,2,..., the value of variable e chosen at the
Kt step of this loop. Suppose that Extend is correct w.r.t. €. Then isCutoff(es,) (line 6)
returns true iff ex is a cutoff event in g, foralln > (k—1).

Proof. Thanks to Proposition 5.1.4 on page 90, since Extend is correct w.r.t. &, for
every k, & is a prefix of &. And moreover, Eo CE C... Asa consequence, ey, is
a cutoff event in Ek_l, i.e. isCutoff(er) returns true, implies that e is a cutoff event
in &, for all n > (k — 1). Now, suppose that isCutoff(e;) = false but ey is a cutoff
event in &, for some n > k (*). Without lost of generality, one can assume that k
is the minimal number satisfying (¥). There exists thus another event ¢/ € E, such
that (>(er)) <€ (>(¢/)). Then, €’ < eg. Since adequate order < refines the inclusion
order C, we have that ¢” < ¢/ < e for all ¢’ € (>(€’)). Due to the choice of extending
minimal event w.r.t. < at line 5 in Algorithm 5.12, ¢’ must be extended before ej, for
all ¢ € (>(¢')). It follows from the correctness of Extend that Ej_; contains ¢/. This
contradicts to isCutoff(ey) = false and to (*). This proposition is thus proved. O

b1 b3 2

Figure 5.1: (a) An one-safe Petri net and (b) its corresponding labeled occurrence net.

Ezample 5.4.2. Figure 5.1.a represents an one-safe Petri net (N, m’) which has 6 places,
5 transition and m‘(p) = 1 if p € {p1, p2,p3,pa} and mi(p) = 0 otherwise. Its labeled
occurrence net is also an one-safe Petri net (N, m’ Z) and may be obtained by the well-
known unfolding technique [McM95a|. These two Petri nets are obviously bisimilar.
Figure 5.1.b illustrates (N, m'"). By considering more or less only transitions of (N, m'"),
one intuitively obtained a equivalent labeled event structure & which is illustrated in
Figure 5.2.a.

124

5.4. Truncating

) QO<> 5B S s BN Lo @ /><\OQ
HL;7OL7(> S) S g 10,7[;7 . s S ;
[e]] [b [a] [c] [d] (b [a]
€4 €9 €3 (&) €q €9 €3 (&)
d d
€5 e €5

Figure 5.2: (a) The labeled event structure corresponding to the labeled occurrence net
in Figure 5.1.b, and (b) the final prefix generated by Algorithm 5.12.

Among 6 events in &, there are two couples of events whose local configurations are the
same. Intuitively, both >(e1) and >(e3) lead to the marking where only places p1, p2, p4
have a token; while both >(e5) = {e5, e5} and >(¢’) = {€/, e3} lead to another marking
where only places p4, pg has a token. Consider the lexicographic labeling order < based
on the total order < over labels such that ¢ < ¢/ < b < ¢ < ¢ (see Definition 4.2.17
on page 78. In this deterministic labeled event structure &, e is a cutoff event w.r.t. the
local cutting context (€,Z m >, Glg) due to e1, and e5 is a cutoff event due to €.

Since the choice of expanding events in Algorithm 5.12 respects <, es is determined as
an algorithmic cutoff event and its successor ¢’ should not be added to the constructing
prefix. And as a consequence, e5 is neither an algorithmic cutoff event nor a cutoff event
in the final prefix generated by the truncating algorithm. The final prefix which consists
of 5 events in E' = {e1, e9, €3, €4, €5} is represented by Figure 5.2.b, while the truncation
T(E, M, Glg) is the set {e1, €9, e3,e4} by definition.

Remark: We use the notation of algorithmic cutoff event for distinguishing between an
event determined by Algorithm 5.12 and a cutoff event by Definition 4.3.1 on page 79.
However, both kinds of cutoff conditions depend on the cutting context (&, <M @m>, 6’15)
One can deduce from Algorithm 5.12 a inductive definition of CE together with event
set E as follows:

o ¢ € Eif (3(¢))NCE =0, and
e ¢ €CEife € E and € is a cutoff event w.r.t. (&,<M @E,G%) where € is the
E—preﬁx of &.

In this way, the sets E and CE are similar to the sets of feasible events and of static cutoff
events in [Kho03]. The difference only comes from the fact that we use a local cutting
context (&, xM mD>, Gle) in the place of the global one (€, <™ m>, C¢). In other words,
an algorithmic cutoff event is due to some local configuration while a static cutoff event
is due to arbitrary configuration in E.

5.4.2 Complete prefixes

Theorem 5.4.3 (Termination). Let (€, <°) be a converse well-preordered labeled event
structure where € s finitely-branching. If Extend is correct w.r.t. € and then Algo-
rithm 5.12 terminates.

Proof. Thanks to Definition 5.1.3, structure variables always give rise to some E’-prefix
of & where F’ is its actual event set. Since Extend is correct and € is finitely-branching,

125

Chapter 5. Compositional unfolding techniques

Algorithm 5.12 does not terminates only if it calls the function Extend an infinite number
of times. Parameters e of such calls are pairwise different due to the instruction at line
9. Let us denote by ey, k = 1,2,..., the parameter of the k" calling of Extend. By
the same reasoning as in the proof of Theorem 4.2.15 on page 76, since & as well as
its prefixes is finitely-branching, the infinite sequence ey, e, ... must contain an infinite
subsequence e;, , €;,, ... which are in causal order where i1, 45, ... is a increasing sequence
of indices. It follows from the converse well-preorder <€ that there exits indices i; and
im such that (>(e;.)) <€ (>(e;,)) and i; < 4,,. Moreover, since e;, is strictly smaller
than e;,, w.r.t. the causality, one has (>(e;,,)) <C (>(e;,)). Event e;, is thus a cutoff
event and it contradicts to the fact that isCutoff(e;,) returns false in the test at line 6.
Therefore, Algorithm 5.12 must terminate. O

Theorem 5.4.4 (Termination). If Extend is correct w.r.t. € and Algorithm 5.12 termi-
nates then the truncation T(&,<C, @lg) is a subset of the final event set E' computed by
this truncating algorithm.

Proof. Let E™ denote the set of events in £/ which are neither a cutoff event nor an outer
event w.r.t. the cutting context (&, <, Glg) Thanks to Proposition 5.4.1, for every event
e € (E' N E™), isCutoff(e) returns true and e should be extended by calling Extend(e)
(line 10 in Algorithm 5.12). As a consequence of Definition 5.1.3 on page 90, one can
prove by induction on local configurations’ size that E™ is a subset of E’. Let E° denote
the set of cutoff events in €, and let €’ be any event in Min<(E°). Due to its minimality
w.r.t. the causality <, one has (>(¢/)) N E€ = (). Hence, (>(¢’)) C E™ C E’. Event
€/ must be inserted into E’ while extending some predecessor of €¢/. Therefore, E™ and
Min< (E€) are both subset of E’. This lemma is thus a consequence of Lemma 4.3.2 on
page 79 which states that T(€,<¢,CL) = E™ UMin<(E°). O

The inclusion order C is a particular case of adequate order < in local cutting contexts
(see termination and boundedness problems in Section 4.3.3). Since the order of adding
events Algorithm 5.12 respects the inclusion order, an event is algorithmic cutoff event
if and only if it is a cutoff one. The following is straightforward.

Corollary 5.4.5. When Extend is correct w.r.t. € and Algorithm 5.12 terminates, its
generated prefiz is the T(E, <€, Glg)—preﬁ:v of & if <€ includes D.

The final prefix obtained by the truncating algorithm sometimes is much bigger, in
terms of number of events, than necessary. This problem may be reduces by using a
better adequate order. Esparza has given in [ERV96] an example showing that one can
obtain a prefix of polynomial size with a lexicography-based adequate order in the place
of a prefix of exponential size with a sized-based adequate order. In our framework of
modeling system by synchronized products of labeled event structures in a hierarchical
way, the truncating technique using cutoff conditions may be applied only at the top
level, i.e. the global labeled event structure.

However, each verification problem discussed in Section 4.3 may have a more suitable
algorithm which is derived from Algorithm 5.12. For example, when deciding bounded-
ness of a labeled event structure € such an algorithm can terminate if the first strictly
cutoff event has been found. This on-the-fly algorithm, in the case where € is unbounded,
generates in general a prefix which is more compact than the corresponding truncation.

Finally, it is worth noticing that when the adequate order is a total order over
the event set E, Algorithm 5.12 is deterministic. Otherwise, the algorithm is non-
deterministic and it is not clear that every run of it returns the same prefix. This

126

5.4. Truncating

phenomenon was stated for the case of Petri nets in [HKKO02|. It was shown there that,
for any adequate order, all possible runs give the same prefix. We conjecture that it is
the case also for our algorithm.

127

Chapter 6

Experimental results

Contents
6.1 Modeling and verification of heterogeneous systems 129
6.1.1 Alternating Bit Protocol oL 129
6.1.2 Modeling the ABP as a synchronized product 130
6.1.3 Verification of counter’s boundedness 132
6.1.4 Verification of lossy FIFOs’ coverability 134
6.2 Thetool ESU & . . ittt ieeeeenen 137
6.2.1 Modeling Petrinets 139
6.2.2 Redundancy reductiono L. 141
6.3 Experiment results on Petrinets 149
6.3.1 1l-safe Petrinets 149
6.3.2 General bounded Petrinets 151
6.3.3 Unbounded Petrinets 154

We firstly demonstrate how to model an heterogeneous system and use our technique
for verifying some properties on this system. The Alternating Bit Protocol (ABP) is
taken as the case study in Section 6.1. Then, our model-checker ESU is briefly described
in Section 6.2. The auto-concurrency problem of the unfolding technique will be discussed
in this section. We also detail our technique for reducing redundancy that is integrated
in ESU in order to attack the auto-concurrency problem. Finally, Section 6.3 is dedicated
to experimental results as well as a comparison of ESU and other well-known tools.

6.1 Modeling and verification of heterogeneous systems

6.1.1 Alternating Bit Protocol

The Alternating Bit Protocol (ABP) [BSW69| is a connection-less protocol for transfer-
ring messages in one direction between two entities. These entities, called the sender
and the receiver, exchange messages by means of two FIFO channels. This protocol
guarantees the retransmission of lost or corrupted messages by using acknowledge bits.
Intuitively, each message from both the sender and the receiver contains a bit, i.e. a
value that is either 0 or 1. When the sender sends a message m, it sends it continuously,
until it receives an acknowledgment bit from the receiver that is the same bit in m.
When it happens, the sender starts transmitting the next message with the complement

129

Chapter 6. Experimental results

of this bit. At the receiver side, when it receives a message with bit 0, it starts sending
bit 0 as acknowledgment, and keep doing so until it receives another message with bit 1.
Then, it starts sending bit 1, and so on.

In this example, we are not interested in the fact that the channels may corrupt
messages as well as the way that the sender and the receiver decide whether a message
is correct. For simplicity, we assume that exchanged messages are the bits 0 and 1
themselves. We will see further that ABP is tolerant to lost messages in channels.

SENDER RECEIVER

RQS?I S2R!0 SQR?l RQS!l
a - FIFO channel S2R e
“[o] 1

R2S571 R2570 S2R?1 S2R70

e

e “" FIFO channel R2S e
S2R!1 R2S?O R2510 S2R?o

Figure 6.1: A model for the Alternating Bit Protocol

In other works, the ABP is generally modeled by two finite-state machines, that
correspond to the sender and the receiver, communicating through two channels [AAB99].
Figure 6.1 illustrates such a model in which both the sender and the receiver have only
two states. As previously assumed, these channels, named S2R and R2S, are FIFO
channels over M = {0,1}. The sender, at the left side of Figure 6.1, may either insert
messages into the channel S2R or remove messages from the channel R2S. These actions
are graphically represented by loops or curved arrows over the sender’s states A and B,
or more precisely by the label of these loops and arrows. In addition, an arc connecting
two states intuitively means that the sender changes its state while a loop does not. For
example, when the sender’s state is A, it inserts only messages 0 into the channel S2R
until it removes a message 0 from the channel R2S. In this case, the sender changes its
state to B and starts inserting messages 1 into the channel S2R. In the same manner,
the receiver is shown at the right side of Figure 6.1.

6.1.2 Modeling the ABP as a synchronized product

The first thing we have to do is to decompose the ABP into some simple components.
There are two reasons. First, we can use standard labeled transition systems for model-
ing these components, and as a consequence, we obtain their corresponding labeled event
structures that are introduced in Section 3.3. The ABP may be modeled by both the
synchronized product of these component labeled transition systems and the synchro-
nized product of these labeled event structures. Second, by using unfolding algorithms
of Chapter 5, we can iteratively construct such labeled event structures, and moreover,
the synchronized product one inherits the concurrency of its components.

In our example, the ABP can be naturally considered as a composition of four com-
ponents: a sender S, a receiver R, two FIFO channels S2R, R2S over {0, 1} for messages
from the sender to the receiver and for messages from the receiver to the sender respec-
tively. In addition, we assume that there is a counter in order to compute the number
of successfully transmitted messages.

130

6.1. Modeling and verification of heterogeneous systems

A2A B2B

? |
“71 0

()

a2a b2b

? |
“71 0

(d)

Figure 6.2: Components modeling the ABP: (a) Sender S, (b) Receiver R, (c¢) Channel
S2R, (d) Channel R2S, (e) (Unbounded) counter.

The sender, as well as the receiver, can be simply modeled by a labeled transition
system with two states A, B, and four transitions that correspond to the fact of staying
on a same state: A2A, B2B; or changing from one state to the other state: A2B,
B2A. We suppose that, at the initial state, the sender is in state A, the receiver is in
state a, the two FIFO channels are empty, and the counter is set to 0. Hence, these two
FIFO channels S2R and R2S may be represented by the ({0, 1}, e)-FF labeled transition
system (see Definition 3.3.22 on page 43), and the counter is formally defined by the 0-CT
labeled transition system (see Definition 3.3.6 on page 34). Figure 6.2 illustrates these
five components.

‘ Sender ‘ Receiver ‘ FIFO S2R ‘ FIFO R2S ‘ Counter H Vector name ‘

A2A € 10 € € A2AS10
A2A € 71 € A2AR?1
A2B € 70 € A2BR?0
B2B € 1 € € B2BS!'1
B2B € 70 € B2BR?0
B2A € 71 € B2AR?1
€ aa € 1 € a2aR!1
€ a2a 71 € a2aS7?1
€ a2b 70 + a2bS70+
€ b2b € 10 € b2bR!0
€ b2b 70 € b2bS70
€ b2a 71 + b2aS71+

Table 6.1: Synchronization constraint for the ABP with counter of successfully trans-
mitted messages.

The ABP is then modeled by a synchronized product of these five labeled transition
systems. Therefore, its set of states is S = {A, B} x{a, b} x{0,1}*x{0,1}* xN. Table 6.1
shows all synchronization vectors, i.e. actions in ¥, of the synchronized product. For

131

Chapter 6. Experimental results

example, the first vector A2AS510 = (A2A,¢,10,¢,e) means that the action A2A of the
sender (Figure 6.2.a) must be synchronized with the sending action !0 of the FIFO
channel S2R (in Figure 6.2.c). This global action intuitively corresponds to the loop
with label S2R!0 over the state A of the sender in Figure 6.1. Notice that, since the
counter computes the number of successfully transmitted messages, its increment action
'+ should be synchronized with receiving actions of the channel S2R (70 or 71) that
change the state of the receiver R (a2b or b2a).

6.1.3 Verification of counter’s boundedness

We investigate the question whether the number of successfully transmitted messages is
bounded if the two channels are bounded. Suppose that these two FIFO channels are
bounded by 2. The answer "no" means that by using the ABP, we can transmit as many
messages as we want from the sender to the receiver.

To exploit the concurrency, we prefer to use labeled event structures than labeled
transition systems in order to model components of the ABP, and to verify the prop-
erty above. The synchronized product of these labeled event structures w.r.t. the
synchronization vectors in Table 6.1 represents then all behaviors of the ABP. Hence,
the synchronized product is sufficient for verifying this property. Here, we use the
({0,1}, ¢, 2)-causality process, denoted by g9 = ({0,1},¢,2)-CP (see Section 3.3.3),
for both bounded channels S2R and R2S. Figure 6.3 graphically shows Eg4. Labeled
event trees introduced in Section 3.3.1 are convenient for the sender as well as for the
receiver, because they have no concurrency. Finally, one can let any causality process
given in Section 3.3.2 model the counter. Let g, Er, Eeg respectively denote the labeled
event structures for the sender, the receiver, and the counter.

Figure 6.3: The ({0, 1},¢,2)-causality process for the empty-initialized FIFO channel
over {0,1} that is bounded by 2, i.e. ({0,1},¢,2)-BC.

Notice that these component labeled event structures Eg4,Eg,ER, and Eeg are all
deterministic and coherent. The identity relation "=" is compatible with €44, £g, Eg due
to the finiteness of their marking sets, and moreover, with a reflexive and strict compati-
bility. One can verify that (Eey, <) is also a well-preordered labeled event structure with
reflexive and strict compatibility where < is the "less than or equal" relation over N. Let
€ denote the synchronized product of &g, ER, Eg7, Egg, Eer w.r.t. the synchronization
constraint ¥ shown in Table 6.1; and let < be the product preorder ®@(=,=,=,=, <).
Thanks to Lemma 4.1.8 on page 65, (£, <) is a well-preordered labeled event structure
with reflexive and strict compatibility. Here, there is no internal action, i.e. X7 = (.

132

6.1. Modeling and verification of heterogeneous systems

Therefore, we can use the truncation technique to answer the boundedness problem (as
described in Section 4.3.3).

Let us give some details on how the truncation algorithm (Algorithm 5.12 on page 123)
works based on the local cutting context (3= @ D, €!). Tt is worth noticing that the ad-
equate order is the subset order over (local) configurations, i.e. < = C. One may
obtain the answer "yes" which means that the ABP is unbounded without completely
constructing the truncation T(€,%= M C,). In other word, any strict cut-off event is
enough to conclude the unboundedness. Moreover, the verifying process can quickly
terminate while using depth-first-search. That means, in the unfolding algorithm, when
an event e is extended before another event €/, the successors of e should be extended
before €’ too if these successors are not cut-off events. In order to do so, we simply imple-
ment the possible extension PE (see Algorithm 5.12) as a stack based on the principle
last-come-first-served.

[A2A450] [a2aR! |

€1 €9 o\
A2A510
€3 ﬁn
| 526570 | = <[b2bRI0 |
i €5 €6
[A2A4510] [A2BR?0] [b2bS?0 |« < | b2bR!0 |
er €g €9 €10
B2BS!1
€11

(B2BS!1] [b2aS?71+]

e12 \ e13

’ a2aS?1 \ @ ’ a2aR!1 \
e14 e1s
€16

Figure 6.4: Obtained prefix for boundedness problem of the ABP initialized by s =
(A, a,e,¢,0).

Figure 6.4 illustrates the prefix of € that is generated by our algorithm. Its event
set is thus a subset of the truncation T(&, %= @ C, €!). The local configuration of event
e1g is the set >(e16) = {e1, e, €6, €8, €11, €13, €15, €16}, and its marking is M(>(e16)) =
(A, a,¢e,e,2). Event ejg is thus a marking-strict cutoff event due to the particular event ¢,
or more precisely, due to the empty configuration §) € €, because M(0) = (4, a,¢,¢,0) <
(A,a,e,e,2) = M(>(e16)) (see Definition 4.3.18 on page 84). Thanks to Theorem 4.3.19,
the ABP is unbounded. Hence one can conclude that the counter counting successfully
transmitted messages is unbounded too because the sender and the receiver have finite

133

Chapter 6. Experimental results

states and the two channels are bounded.

6.1.4 Verification of lossy FIFOs’ coverability

Now, assume that the two channels S2R and R2S may loose messages. There are
different formal models for these lossy channels, e.g. the v-initialized lossy FIFO channels
over {0,1} with or without internal actions 37 (see Definition 4.1.2 on page 63 and
Definition 4.1.3 on page 63). However, for the simplicity of the demonstration, we
prefer to define lossy FIFO channels over {0,1} as the labeled transition systems FL =
(M*,M U?M,—gg,e) where M = {0,1}, and

—gr = {{(w,!'m,w’) /m € M,w,w' € M* and w' 5 w.m}

U {(w" . maw,?m,w') /m e M,w,w' ,w" € M* and w' 5 w}

In the definition above, < is the subword order over M* (see Definition 2.2.1 on page 12).
The labeled transition system FL intuitively means that the channel may loose messages
at the moment of sending or receiving a message. In other words, for example, a receiving
operation ?m from a word w”.m.w consists of the loss of its prefix w”, the normal
receiving action ?m, and finally another loss of messages in w. Moreover, one could find
out that the subword order < is reflexively compatible with the transition relation — g .

Let us use the same labeled transition systems as in the previous section for the
sender, the receiver, and the counter, and denote them respectively by LT8¢, LTS, and
CT. The lossy ABP, denoted by 8P, is the synchronized product of LT8¢, LTS g, FL, FL, CT
w.r.t. the synchronization constraint Ygp shown in Table 6.1. One can easily verify that
the product preorder xgp = ®(=,=, %, <, <) is compatible with 8P with a reflexive and
strong compatibility.

In the alternating bit protocol, the sender continues to transmit a new message
only if the receiver has already received the previous one and has replied by sending
an acknowledgment. Assume that, in our simple model of the ABP, the old message
corresponds to some consecutive messages 0 in the channel S2R. The possibility of
transmitting a new message corresponds thus to the fact that the sender’s state is B. In
this case, one may obviously deduce that, in the channel S2R, such consecutive messages
0 may not be preceded by some message 1. Hence, all states (B,s,10,w,n) where
s € {a,b},w € M*,n € N, are not reachable in 8P. For instance, the state (B, b, 10,¢,0)
is not covered in the well-preordered transition system (8P, <gp), i.e. (B,b,10,¢,0) ¢
=sp(postssy). In the view of backward analysis, it is formulated as the following:

<A7 a,é,¢g, 0> ¢ preg?(#ST(<B7 b7 107 €, O>))

We will verify this statement based on our forward analysis technique discussed in Sec-
tion 4.1.3. Let us define a function pb : (1AM U?M) x M* — Py(M*) such that, for all
m € M and w' € M*,

e pb(lm,w’.m) = {w',w' .m},
e pb(Im,w’) = {w'} if w' € (M*\ (M*.m)), and
e pb(?m,w') = {m.aw'}.

The two first properties correspond to the sending actions !m in the lossy FIFO channel
FL above while the last one corresponds to the receiving actions ?m where m € M.
One can easily verify that pb is a finite pred-basis for (FL, <) by Definition 4.1.13. As a

134

6.1. Modeling and verification of heterogeneous systems

consequence, let us denote Ry, = (M*,\MU?M, —g,, ,€) the pb-reverse of (FL, <, pb).
We obtain thus

—Rye =L (W' . m,tm, '), (W m,Im,w’ .m) fm e M,w' € M*}
U {{w',!'m,w’) /m e M,w' € (M*\ (M*.m))}
u{',?m,mw’)y /me M,w' € M*}

={{w . m,'m,w') /m € M,w € M*}
U {(w''m,w’) /m € M,w' € M*}
U {(w',?m,mw'y /m e M,w" € M*}

Here, for the purpose of an easy understanding, we rename the actions in Rgg by
using ’m € ?M instead of !m € !M and reversely. Then, Rg¢ differs from the &-
initialized FIFO channel over M, i.e. (M,e)-FF, only on the reception-error transitions
{(w',?m,w’") /m € M,w" € M*}. These transitions intuitively correspond to sending
actions of messages that the channel loses afterward. Therefore, we associate a simple
labeled event structure that is derived from the {0, 1}-causality process {0,1}-CP (see
Definition 3.3.27) in order to representing Rg. This labeled event structure, denoted
by €r,. , is shown in Figure 6.5.a. The additional events illustrated by double frames
correspond to reception-errors. They are not in conflict with any other events. In our
example, for simplicity, we restrict reception-error events of a given label ?m € ?M to be
pairwise causal. While considering R4¢, as a FIFO channel like system where its state is
a word, messages are inserted at the beginning of the word by sending actions, and one
removes messages at the end of the word by receiving actions.

Let us denote by Ei, E», and EY, respectively the sets of sending events, of (normal)
receiving events and of reception-error events in €r,,. These event sets are pairwise
disjoint. The marking function M is then defined like in the ({0, 1}, €)-causality process
(Definition 3.3.27) that formally is M(C) = (I}, (LY (a7))) " (I}, (LY (a1))) where oy
and o7 are respectively the linearisations, w.r.t. the converse relation > of the causality
<, of (CNEy) and (CNE») = (C\ Er\ E). Recall that reception-errors in Rgyg, do not
change the content of the channel, the marking function M does not take reception-errors
events Ej into account. More interestingly, events in EY, give the strong compatibility in
the well-preordered labeled transition system (Ex,).

Figure 6.5.b illustrates our labeled event structure &z, for the pb-reverse of (FL, <
,pb) where FL' is the labeled transition system modeling the 10-initialized lossy FIFO
channel over {0,1}, i.e. FL' = (M*,!M U ?M,10, —g¢). Intuitively, €r,,., comes from
the ({0, 1},01)-causality process (see Definition 3.3.31 on page 49).

For the sender LT8g, the receiver LTS, and the counter €T, we simply define three
finite pre-basis pbg, pbp, and pbey respectively as follows:

e pbg(l,s) ={s'/s' Lg s} for all (I,s) € {A24, A2B, B2A, B2B} x {A, B},
o pbp(l,s) = {s'/s' Lp s} for all (I, s) € {a2a,a2b,b2a,b2b} x {a,b}, and

e pbes(l,n) = {0’ /1’ Legn} for all (I,n) € {+, -} x (N\ {0}),
pb@ﬂ‘(+70) = {1}7 and pr‘J’(_7O) = {O}

It is worth noticing that LTS8g, LTSg, €T are all deterministic and their dual labeled
transition systems are themselves respectively (see Definition 4.1.12 on page 66). The

135

Chapter 6. Experimental results

(2)
2] [z1]

o - oS - o - S g
Iy S d 2 o4 2 z o4 2 | |
AN

I

AT Y A Y /

5 L o L S -
Y Sld Z 1N Y B S A [ARY B I
[}

Figure 6.5: Labeled event structures modeling the pb-reverse Rgy and R4/ of lossy
FIFO channels FL and FL' over {0,1} where: (a) FL is initially empty, and (b) the
initial state of FL' is 10.

three finite pre-basis above give rise to these (dual) labeled transition systems by means
of their pb-reverse. For example, the pb-reverse of (LJT8g,=,pbg), denoted by Rg, is
intuitively the well-preordered transition labeled system (LJT8g, =) if one renames actions
in Rg so that A2B becomes B2A, and B2A becomes A2B reversely. Therefore, one may
use the preordered labeled event tree g (Er) for representing the pb-reverse Rg (Rr
resp.) (see Section 3.3.1) and any k-causality process CP for representing the pb-reverse
Reg of (CT, <, pbeg) (see Section 3.3.2).

Now, let us define the finite pre-basis pbgp of the lossy ABP §P such that, for all
l = (ls,lr.ls2r lR2s, lex) € Bsp, s = (Ss,5R, 552R, SR25, Se7) € Ssp = {A, B} x {a,b} x
(IMU?M) x (\MU?M) x {+,—},

pbsp(l, 5) =pbg(ls,ss) X pbr(lr,sr) x pb(ls2r, ss52R) ¥
pb(lr2s, Sras) X pbeg(leT, ser)

The pb-reverse Rgp of (8P, <sp, pbgp) is finally a synchronized product of the pb-
reverses Rg, Rr, R, Rgr/, and Reg. Moreover, Rgop is the induced labeled transition
system of a synchronized product Egp of &g, Er, Erye, Er,,,y and Eeg. It is worth
noticing that, due to the change of actions’ name discussed above, the synchronized
constraint E;zw for Rgp as well as for Egp that is shown in Table 6.2 slightly differs
from the one for the synchronized product 8P given in Table 6.1.

Thanks to Lemma 4.1.11 on page 66, both (Rgp,=sp) and (Egp, =gp) are well-

136

6.2. The tool ESU

‘ Sender ‘ Receiver ‘ FIFO S2R ‘ FIFO R2S ‘ Counter H Vector name ‘

A2A € 70 € € A2AS570
A2A € 1 € A2AR!1
A2B € 11 € A2BR!1
B2B € 71 € € B2BS71
B2B € 10 € B2BR!0
B2A € 10 € B2AR!0
€ a2a € 71 € a2aR?1
€ aa 1 € a2aS!1
€ a2b 1 € - a2bS'1—
€ b2b € 70 € b2bR?0
€ b2b 10 € € b2bS'10
€ b2a 10 € — b2aS10—

Table 6.2: Synchronization constraint of the synchronized product Rgsp.

preordered with reflexive compatibility. Notice that the initial state of Rgp is (B, b, 10, ¢, 0).
It follows thus from Lemma 4.1.14 that

pregp(<sp({(B,b,10,¢,0)})) = <sp(postr,,, ({(B,b,10,£,0)}))
<sp(postr,,)

Moreover, (Egp, =sp) is converse well-preordered labeled event structure with reflexive
(strong) compatibility, the sub-covering question can be answered by using our truncation
technique for sub-coverability problem (see Section 4.3.2).

By using the truncating algorithm (Algorithm 5.12 on page 123), we obtain the
truncation T = (Egp, (=gp M >), (?lew) that is illustrated in Figure 6.6.a. Boxes with
double frame represent cutoff events, and among them, the ones with dashed frame are
reception-errors. Experimental result gives 58 reachable states that are the marking of all
configurations in the truncation J. The table in Figure 6.6.b shows all maximal markings
w.r.t. the product preorder =gp as well as configurations in accordance. Therefore,
thanks to Lemma 4.3.9 on page 81, one can deduce that

preg?(ﬁSTP({<B7 b,10,¢, 0>})) = 48?(p05t;259>)
= <sp(M(C7))

Hence,

(Rsp(postr,)) N{({A,a,w,w', ¢) /w,w" € M*,ce N}
- (48T(<A7a7017870>)) U (48?((’47 a,e, 07O>))

and thus, (4,a,¢,¢,0) ¢ <45§p(post}‘zm/)). It means that, in the lossy ABP 8P, one can
never obtain states (B, b, 10,¢,n), for all n € N, from the initial state (A, a,¢e,e,0).

6.2 The tool EsU

In order to test applicability of the results previously shown, we have developed a model-
checker named EsSU [esu]|. This tool is implemented in Objective Caml (Ocaml) and

137

Chapter 6. Experimental results

Figure 6.6:

\B2BS7L

& Z

€3

z

(526R70 |

[A2A570]

z

IR IR

b205'0

o
A
I |

b205'0

‘ Configuration C' | M) |
{e1,e3,e4,6e6} (A,a,01,¢,0)
{e1,e3,e4,€5,¢e6,€7,€8,€9,€10} | (4,a,¢,0,0)
{e1,e3,e4} (A,b,1,¢,0)
{e1,e3,e4,€5,€7,€9} (A, b,e,01,0)
{61,63,64,65,66,67,68} <B,CL,O,€,0>

{61, €3, €4, €5, €6, €7, €8, €9, €10, 611} <B, a, e, 10, 0>
{} (B,b,10,¢,0)
{61,63,64,65,67} <B,b,€,1,0>

(B,b,10,¢,0): (a) The truncation, (b) Maximal markings w.r.t. =gop.

138

Truncation for sub-coverability problem of &gy, where M(0)

6.2. The tool ESU

permits the verification of termination, boundedness and quasi-liveness properties for
the class of (infinite-state) well-structured systems.

Systems are modeled in ESU as synchronized products of (heterogeneous) components
in a hierarchical way: a component itself can be a synchronized product of other compo-
nents. The semantics of components is given in terms of labeled event structures. ESU
has three important modules dedicated to modeling systems, unfolding (synchronized
products) and the truncation technique respectively.

Component labeled event structures In fact, in the implementation of our ESU tool,
each labeled event structure is represented by an object of a class in which Extend
is a method and structure variables are instance variables (see Chapter 5). The
construct of a synchronized product can be done on the fly, and of course it is
not necessary to construct the components completely in advance but they can be
constructed on demand too.

Several standard systems, e.g. counter, queue, are predefined in ESU by simply
defining concurrent labeled event structures given in Section 3.3 on page 32. ESuU
facilitates also extensions by new types of components.

Unfolding synchronized product Due to the constructive definition of the unfolding,
a synchronized product can be used as a component in ESu. Hence, we associate
synchronized products to a class derived from the base class for labeled event struc-
tures. In addition, this class has an instance variable for synchronisation vectors V
(see Section 3.3.4 on page 54). The well-known unfolding technique, more precisely
function Extend for synchronization products [ER99], is implemented in this class
(see Section 5.3 on page 109). In order to extend a prefix of a synchronized prod-
uct, the main part of this function Extend is computing new possible combinations
of events in component labeled event structures, and consequently, updating V.

Truncation technique This module concerns truncation techniques given in Chap-
ter 4. In fact, Algorithm 5.12 on page 123 is implemented with local cutting
contexts in Section 4.3 on page 78. ESU provides not only McMillan’s and Es-
parza’s techniques [McM95a, ERV96] for bounded Petri nets but also our tech-
niques [HST07] for termination, boundedness and quasi-liveness of (infinite) well-
preordered systems (see Section 4.3.3 on page 83).

Esu has its own file format in order to describe input systems. Some details on
this format are given in the next section. In addition, ESU also provides a converter
that allows transforming a standard net’s file [pep] to ESU’s one. As a command-line
program, ESU’s options give users a versatility control of what verification problem to
solve, of what technique to use, and also how the results are reported to users. Thanks
to the GRAPHVIZ application [gra], ESU permits users to have a graphical representation
of the generated prefix.

6.2.1 Modeling Petri nets

Since all experimental results in Section 6.3 are taken for Petri nets, let us detail on how
Petri nets are modeled in Esu. As discussed in Section 2.5 and along with this work, we
assume that a Petri net is generally a synchronized product of n counters where n is the
number of its places. Within ESU, one can associate any labeled event structure given
in Section 3.3.2 to each place, and the synchronization constraint corresponds to the set
of the Petri net’s transitions.

139

Chapter 6. Experimental results

However, in some Petri nets, for instance, the one given in Example 5.4.2 on page 124,
the place po may not be represented by neither a counter nor a k-causality process.
Because this place concerns the transition b that tests whether py contains a token but
firing b does not consume any token on ps. Therefore, when modeling py (and also
ps) as a counter-like labeled transition system, we need a new action in addition to
the increment and the decrement ones. Formally, the place po may be represented by
the labeled transition system P = (N,{+,—, 0}, —,1) where — = {(n,+,n + 1), (n +
1,—,n),(n+1,0,n+1)/n € N}

6 // number of places (counters)
BP 1 1 // pl

P11 /] p2

KP 1 1 // p3

P11 // pa

BP 10 // pb

BP 1 0 // p6

5 // number of synchronized actions
NO-NNN// a

NN-ONN//D

-N-N+N//c

--NNN=+ // &

N-NN-+//¢c

Figure 6.7: An example of ESU’s input file

It is worth noticing that this Petri net is 1-safe. As a consequence, one can associate
not only some labeled event structure of P but also any labeled event structure of P1 =
Pl0,13 to the place p2. One may realize that the actions +, —, 0 of P1 are pairwise not
independent. Therefore, we simply use the labeled event tree of P1 in order to represent
the place po as well as the place py. The Petri net in Example 5.4.2 on page 124 may
be given by the input file shown in Figure 6.7. The number of places, here 6, is given
in the first line and places are separately described in the 6 following lines. Such a line
starts with a type of some predefined labeled event structure in EsuU, and additional
parameters come after this type. In this input file,

e 'BP b v’ stands for the b-bounded processes initialized by v, i.e. (b,v)-BP (see Sec-
tion 3.3.2);

e 'P1 v’ stands for our labeled event structure for a place that is bounded by 1 and
has initially v token. Recall that v is either 0 or 1, and 'P1 1’ corresponds to the
labeled event tree of P1 discussed above;

o KP k v’ stands for the (k,v)-causality processes, i.e. (k,v)-CP (see Section 3.3.2).

Although these 6 places are all 1-bounded, one may associate different types to a place
and obtain finite prefixes having the same size. But it is not true when working with Petri
nets that are not 1-safe. Some examples and comparisons will be shown in Section 6.3.2.
Moreover, a good choice for modeling places sometimes avoids or reduces the redundancy
in the generated prefix of the synchronized product. This phenomenon is detailed in the
next section.

140

6.2. The tool ESU

The last 6 lines in the input file (Figure 6.7) give the number of the Petri net’s
transitions and description of these transitions themselves line by line. Each transition,
as usual, intuitively consists of component actions. Notice here that the "do nothing"
action ¢ is represented by the character N.

6.2.2 Redundancy reduction

The advantage of using concurrent labeled event structures for components when unfold-
ing is that the synchronized product not only exploits concurrency between components
but also the intrinsic concurrency inside each component. As consequence, the construct-
ing prefix is hopefully more compact. However, redundancy in the synchronized product
may come from component events that are concurrent and have the same label at the
same time. In this case, the generated prefix of the synchronized product is usually much
bigger than necessary. This phenomenon is called the auto-concurrency problem [KKO03|.
Let us take an example in order to clarify this problem. Figure 6.8.a illustrates a
bounded Petri net that has three places and three transitions. One can simply represents
its places p1, p2, p3 by using bounded processes as shown in Figure 6.8.b in the left-to-
right order respectively. Hence, the Petri net is represented by the synchronized product,
denoted by Egp = (E, <, #,L, M), of these bounded processes w.r.t. to the synchro-
nization constraint ¥ = {a,b,c} where a = (—,+,¢),b = (¢,+,—), and ¢ = (+,—,¢).
Figure 6.8.c gives a prefix containing only 10 events of the synchronized product. Let
us denote S = {sy, s2, s3, S4, S5, Sk, S6, S§, S7, Ss }, this prefix is accordingly represented
by Esp|s. Recall that a global event in the synchronisation product is nothing but a
synchronization of component events, hence, a global one may be illustrated by a closed
curve that groups component ones as illustrated in Figure 6.8.b. For instance, the closed
curve labeled sy means that V(s2) = (e1, f2,¢); while both global events sf, si have the
same synchronization vector, i.e. V(s;) = V(s;), and is represented by the same curve.
The bounded process (2,0)-BP corresponding to the place py consists of two bounded
process (1,0)-BP (see Definition 3.3.13 on page 38). Intuitively, one distinguishes tokens
on py so that there are concurrent events of the same label in (2,0)-BP. For example,
fo is somehow a copy of f; and vice versa. When computing the synchronized product
by the unfolding technique, fi; and fo give rises to two different global events labeled
a = (—,+,¢) that are respectively s; and so. However, s; is in conflict with sy because
they correspond to a same event e; in the first component (see Definition 3.3.39 on
page 54). As a consequence, the empty configuration) = (>(s1)) = (>(s2)) has two
extensions s1, s9, i.e. 0 F s and () - so, that satisfy that £(s1) = L(s2) and s1#ss2. It
means that the synchronized product is redundant by Definition 3.2.14 on page 32. Once
again, ss is a copy of s1 so that the successors of s are just redundant duplication of the
ones of s1. All configurations containing so as well as successors of so may be removed
in the global labeled event structure without loss of information up to isomorphism.
Let us use the same notation of isomorphism in Definition 3.2.7 on page 29 for
configurations and events. We say that two configurations C' and C’ of a labeled event
structure & are isomorphic and write C' ~ C’ if the two prefixes &|¢ and &|o are
isomorphic, i.e. &|c & &|¢r. By a same manner, two events e, €’ are isomorphic, denoted
by e ~ ¢’ if their local configurations are isomorphic, i.e. >(e) ~ >(e’). In the prefix
Espls, we have 5 pairs of isomorphic events: s1 & s2, $3 &= sS4, S5 &~ Sg, S7 ~ Sg, and
st ~ si. As discussed above, sy may be intuitively removed from the prefix Egp|s as well
as the whole labeled event structure Egp and all configurations are still preserved, due
to isomorphism, in g = EsP|E\(<(s))- Formally, for all configurations C of Egp, there

141

Chapter 6. Experimental results

(a) (b)

[+ 1) (e Al] ERy

€2

P1 P2 P3
@[b] GFH egLﬂ [?fS [_jfz; gQEFF

~ - ~ JH/—/

Figure 6.8: Redundancy illustration: (a) a bounded Petri net, (b) bounded processes
modeling its three places, and (c) a prefix of the synchronized product of these bounded
processes w.r.t. the Petri net’s transitions.

exits a configuration C” of €5, such that C'~ C’. Therefore, in order to verify decidable
problems given in Section 4.3, one intuitively prefers the compact prefix Egp|ss where
S" = {s1, s3, 5, sk, s7} than the prefix Egp|g.

Moreover, the prefix Egp|gs still contains redundancy because of the extensions s
and sg of the configuration {s1,s3}. Recall that the linearisations of events’ labels in Egp
correspond to firing sequences of the induced labeled transition system of Egp. Consider
now the two configurations {si, s3,ss5} and {si, s3, s;}. The first one give rise to label
linearisations £W({s.53.55,51.55.53,53.51.55}) = {abc,ach,bac} while the second one
corresponds only to label linearisations £({s1.s3.55, s3.51.55}) = {abc, bac}. Therefore,
in order to reduce redundancy, one would rather keep s5 than s because one will loose
the label linearisation acb when removing s5. The prefix Egp|(s, 5,55} 18 intuitively more
compact than the one 88y|{31,33,s/5}. These prefixes differ only on whether the causality
between events labeled a and c exists. We say that 839:]{5175378/5} is a sub-linearisation of

88T|{81,83,55}'

Definition 6.2.1. Let & = (E, <,#,L, M) and & = (E', <", #', L', M) be two labeled
event structures. We say that & is a sub-linearisation of & and write & < &' if € is
isomorphic with some labeled event structure (E', <", #' L', M’) where the relation <”
is an extension of the causality <’, i.e. (<) C (<”).

A configuration C is a sub-linearisation of another one C’, denoted by C' < C’, if the
C-prefix €|¢ is a sub-linearisation of the C’-prefix &|c.

Let us return to the idea of our technique for reducing redundancy. That is, given
a labeled event structure & = (F, <,#, L, M), trying to remove some event as well as

142

6.2. The tool ESU

its successors while preserving label linearisations of €. Such an event r is called an
useless event w.r.t. €. Then, one may continue by removing another useless event r’
w.r.t. €|p<(r), and so on. The final labeled event structure as well as all intermediate
ones, denoted by &', must satisfy that, for all configurations C' € Cg, there exists a
configuration €’ € Cg such that C < C’. The obtained labeled event structure &’
is much more compact than &€, and has possibly no redundancy. In practice, when &
is constructed using the unfolding technique, successors of an useless r event may be
avoided by not extending r.

Notice that Ce|,, ., = Ce \{C € C¢/r € C}, hence an event r is useless if for all
C € Cg¢ satisfying r € C, there exists a configuration C’ € C¢ such that r ¢ C’ and
C < C'. This condition is usually guaranteed by the existence of another event e € F
that is, for instance, isomorphic and in conflict with 7. In the prefix Egp|s above, one
can take r = s, e = s9 as an example. Formally,

Ce={C€eCe/e,rgCtu{Cele/ecCtu{Cels/reC}

It follows from the conflict between e and r that they can not be found in any given
configuration. As a consequence, the three subsets above are pairwise disjoint. In order to
determine whether r is useless, one needs to verify if configurations in {C' € C¢ /r € C}
are sub-linearisations of configurations in {C' € C¢ /e € C'}. We will show that this
condition is guaranteed in coherent labeled event structures and one does not have to
compute the set of the configurations containing r as well as the ones containing e that
are usually infinite.

However, when 7 is useless due to e, in general, e is also useless due to . The difficult
point here is to define which event to remove. In order to integrate our technique for
reducing redundancy into the unfolding technique, we naturally use the total order < in
which events are inserted into or extended in the constructing prefix. This order < is
a linear extension of the causality < and is useful to break the symmetry of the notion
'useless’. Let us return back to the example in Figure 6.8. Suppose that so is computed
after s, i.e. s1 <183, one can simply notice that s, is redundant and will not extend ss.
And as a consequence, the obtained prefix does not contain successors of ss. However,
it is worth noticing that useless events can not be independently removed. Because, a
naive solution such as removing both ss and s3 due the existence of s; and sy satisfying,
for instance s; <1 s and s4 <1 §3, may result in losing some label linearisations. In such a
case, the prefix €[y, 4,3 as well as &|p\ (< ({ss,s3})) CONtains no configuration C' such that
either the configuration {s1, s3} or the configuration {s,s4} is its sub-linearisation. As
a consequence, the label linearisations ab and ba that are firing sequences of the induced
labeled transition system are not preserved. The reason for this 'counter-example’ is
that, after removing sg, in the prefix €|\ (<(s,)), 54 is useless due to s3 but not in the
reverse sense. Therefore, as stated in the following definition, the determination of a
useless event not only depends on another event e, but is also based on some E’-prefix
containing e. As we will see later, this E'-prefix is the constructing prefix manipulated
by the unfolding algorithm and does not contain any other useless event.

Definition 6.2.2 (<J-redundance). Let &€ = (E, <,#, L, M) be a deterministic labeled
event structure € = (F, <,#, L, M), and let < be a linear extension of the causality <.
Given a downward-closed set of events £/ C E, let us denote & the E’-prefix of &. An
event r € E is <-redundant w.r.t. & if there exists another event e € E’ such that

1. e«<r,

2. L(e) = L(r),

143

Chapter 6. Experimental results

3. eFr,
1 (>(6)) € (>(r) C B, and
5. for all f € (>(r) N E'), f#e implies f#r.

For simplicity, Definition 6.2.2 concerns only deterministic labeled event structures
such that their induced labeled transition systems are also deterministic (see Lemma 3.2.5
on page 29). For non-deterministic and well-preordered ones, conditions for the marking
function M are needed. This is a subject of future work.

The advantages of applying <-redundance definition in practice come from its sim-
plicity. As mentioned above, since < is the insertion order or extending order of events
in the constructed prefix, one has to look for r only on the part of the labeled event
structure that has already been built, formally represented by the E’-prefix. The second
condition is easy to verify while the third and the fifth conditions take only the con-
flict relation into account. So there is no need to compute global configurations. This
is in line with the partial-order idea of the unfolding technique. The fourth condition
of <-redundant event does not mean that e and r are isomorphic. This restriction re-
duces somehow the number of useless events that may be defined as <-redundant in
our technique (see Section 6.3.2). We restrict to two particular cases that are when
(>(r)) = (>(e)) and when (>(r)) D (>(e)). These two disjoint cases could be found in
the example in Figure 6.8. For instance, e = s1,7 = s9 and (>(s1)) = (>(s2)) = 0; or
e=ss,r=sgand (>(s5)) = {s1} C {s1,s3} = (>(s5)).

The main idea of <-redundant events is that they are useless. As in the truncation
technique (see Chapter 4), they form somehow a frontier between their successors and the
other events, called non-<-redundant events. By keeping only non-<-redundant events,
one obtains a compact prefix that preserves needed information for verification and may
be formally defined as follows:

Definition 6.2.3. Let & = (E, <,#, L, M) be a deterministic labeled event structure
and let < be a linear extension of the causality <. An E’-prefix & of &, where E’ is a
downward-closed subset of E' w.r.t. <, is called a prefix without <-redundant event if

o for all e € F/, e is not <-redundant w.r.t. &, and
o for all e € Min<(E \ E'), e is <-redundant w.r.t. &

Lemma 6.2.4. Let & = (E,<,#,L, M) be a deterministic labeled event structure and
let < be a linear extension of the causality <. € has an unique prefix without J-redundant
event.

Proof. We first prove by contradiction the uniqueness of the prefix without <-redundant
event. Suppose that there exists two different prefixes without <-redundant event &’
and &”. Let E' and E” respectively denote their sets of events. Observe that E’ and
E" are downward closed w.r.t. <, moreover, since these sets are not the same, the set
X = (E'\E")U(E"\ E) is not empty. Let r be the minimal event of X w.r.t. the total
order <. Without loss of generality, assume that r € E’, and consequently, » &€ E”. Tt
follows from the choice of minimal event r that (>(r)) is a subset of both E’ and E”,
and at the same time, (>(r)) N E' = (>(r)) N E”. Hence, r is <-redundant w.r.t. &”
because r € Min<(E \ E”), and more precisely, it is due to some event e € (>(r) N E”).
Event r is therefore also <-redundant w.r.t. & because e € E’. This contradicts to the
fact that r € E’. Therefore, we have E/ = E” and the two prefixes & and &” are the
same.

Now, we will prove the existence of a prefix of € without <J-redundant event. Let P be
the set of E'-prefixes of E, here E' C E, satisfying that for all events e € Min<(E'\ E'):

144

6.2. The tool ESU

o ¢ is <-redundant w.r.t. the E’-prefix of & !, and
o for every <-redundant event f € E’ w.r.t. the E'-prefix of €, e < f.

P is not empty because it contains, of course, €. Notice that the set of all prefixes of €
is partially ordered w.r.t. the inclusion order over their event sets, and moreover, every
totally ordered subset of them admits a greatest lower bound. It is straightforward that
P is too. Let us define a function F from P to the set of prefixes of € as follows: for
every prefix & € P, let E’' denote its event set,

&’ if & contains no < -redundant event w.r.t. &’
F(&) =< the (E'\ (L(f)))-prefix of &', where
[=Ming{r € E' /ris <-redundant w.r.t. £}, otherwise.

It directly follows from the second property of prefixes in P and the choice of the minimal
<J-redundant event f in the definition of F that F(&') € P for all & € P, ie. F: P — P.
Moreover, F(&') is a prefix of & and hence is always smaller than or equal to & w.r.t.
the inclusion order over event sets. Therefore, F has a fixed point. It means that
there exists a prefix & € P satisfying F(&') = €. Once again, by definition of F and
the set P, one can deduce that this prefix & is a prefix without <-redundant event
by Definition 6.2.3. U

Let NR(¢ «) denote the event set of the prefix without <-redundant event of €. This
set is downward-closed w.r.t. the causality order <. The NRg o-prefix of & may be
generated by an algorithm that is slightly different from the unfolding one (Algorithm 5.1
on page 89) as below.

Algorithm 6.1: Unfolding algorithm with redundancy reduction

1 begin

2 (&PE) = Init()

3 while PE # () do

4 take an event e in PE

5 if isRedundant(€, PE,e) then
6 PE := PE\ {e}

7 &= RemoveEvent(E, e)

8 else

9 (€, PE) := Extend(€, PE, ¢)
10 end if

11 end while

12 end

In Algorithm 6.1, there are two additional functions: isRedundant and RemoveEvent.
The first one is an implementation of Definition 6.2.2 while the second one simply removes
a <J-redundant event e from both extension set PE and the constructed prefix €. In this
way, <-redundant events are removed and will not be extended. As a consequence, the
prefix € at the end of the main loop (lines 3-11) is exactly the N R¢ <y-prefix of €. In
the implementation of this algorithm, we simply define < as the extending order that
depends on the choice of event in line 4. Hence, it is worth noticing that when calling

!This corresponds to the second item in Definition 6.2.3.

145

Chapter 6. Experimental results

isRedundant(E, PE,e), e is the maximal event, w.r.t. <, in (E\ PE)U {e}, and at the
same time, is the minimal event, w.r.t. <, in PE. So that, for the fifth property of
<-redundant event in Definition 6.2.2, we have (>(e) N E) = (E \ PE).

Let us give some more details on the function isRedundant in Algorithm 6.2. The set
X in line 2 contains all events satisfying the first and fourth properties in Definition 6.2.2.
The loop’s condition at lines 4 restricts to events €’ in X that has a same label as e. It
respects the second property. The third and the last ones are handled by the test in
line 5. The function terminates and returns true whenever an event ¢’ satisfies this test.
Otherwise, it finally returns false (line 9).

Algorithm 6.2: Function isRedundant determines whether e is <-redundant by Defini-
tion 6.2.2 where < is the order of extending events in the unfolding algorithm by default.

1 function isRedundant(€, PE, ¢)

2 begin

3 X:={d e(E\PE)/(5(e) € (3(¢))}

4 for each ¢ € {¢/ € X /L(¢/) = L(e)} do

5 if ¢/ #e and (#£(¢') \ PE) C (#(e) \ PE) then
6 return true

7 end if

8 end for

9 return false

10 end

Proposition 6.2.5. Let &€ = (E, <,#,L, M) be a deterministic, coherent, and finitely-
branching labeled event structure and let < be a linear extension of the causality <.
For every configuration C € Cg, there exists a configuration C' € Cg¢ that contains no

J-redundant event, i.e. C' C NRg), and M(C) = M(C").

Proof. Let us define an order <e on Cg¢ by: for all configuration C,C’" € Cg, let [
and I’ be respectively the linearisations of C' and C’ w.r.t. the total order <, C <¢
C" if 1 is lexicographically smaller than or equal to I’ w.r.t. <. It follows from the
important property of lexicographical orders that the well-foundedness and totality of <
are preserved. It means that <e is also a well-founded and total order over Ceg.

Therefore, for every configuration C' € Cg, the set {C' € C¢ / M(C') = M(C)} is
well-founded and admits a minimal configuration w.r.t. <e. We will prove that the
minimal configuration C,, w.r.t. <e of the set {C" € C(&) / M(C") = M(C)} contains
no <-redundant event, so that C,, C N R(g,ﬂ).

Let us prove this by contradiction, i.e. assume that C,, £ NR «), and let r =
Ming(Cy \N R(¢ <y)- Because < is a linear extension of the causality <, forall e € (>(r)),
we have that e <7, and consequently, (>(r)) C NR ¢ «). Hence r € Min<(E\ NR¢ <))
and we get from Definition 6.2.3 that r is a <J-redundant event w.r.t. the NRg -
prefix of € and to some event e € NRg). Let us denote C_ = (>(r) N Cp,) and
Cy = (<Q(r)N Cy,). We have thus C_ and Cy are disjoint and C,,, = C_ U Cy U {r}.
Moreover, it holds that C— C NR¢ «).

It follows from the definition of <-redundant event (Definition 6.2.2) that:

1. e«<r,

146

6.2. The tool ESU

2. L(e) = L(r).
3. e#r. That implies e &€ (), and hence e & C_.

4. (>(e)) € (>(r)), and consequently, (>(e)) € C_. Because, on the one hand, of
the downward-closed property, w.r.t. the causality <, of Cy, that (>(r)) C Cj,
and on the other hand, of the linear extension < of < that (>(r)) C (>(r)).

5. for all f € (>(r) N NR¢ «), f#e implies f#r. Observe that C_ C (>(r) N
NRg). Since (C_U{r}) C Cp, we get that 7 is in conflict with no event in C"_.
Therefore, e is in conflict with no event f € C_.

By combining the last three properties above, one obtains that e is an extension event
of C_,i.e. C_ I e. More precisely, (C_U{r}) < (C_U{e}). Due to the restriction that
the induced labeled transition system is deterministic, M(C_ U {r}) = M(C_ U {e}).
Thanks to Lemma 3.2.10 on page 30, it follows from the coherency of & that the two
suffixes of € based on the configurations (C_ U {r}) and (C_ U {e}) give rise to the
same set of markings. In other words, there exists a configuration C/, € Ceg such that
(C_ U{e}) € €Y and M(Crn) = M(CL).

Since fr>r>efor all f € Cy, we have thus C), <eC,, by definition. This contradicts
to the minimality of C,,. Therefore, the assumption above is not true, and consequently
C,, contains no <-redundant event. O

A consequence of Proposition 6.2.5 is that the N R(¢ «)-prefix of & preserves informa-
tion for verifying problems based on coverability (see Section 4.3.2) on €. This technique
for reducing redundancy is well adapted to the truncating technique (see Chapter 4) when
<e is a linear extension of the adequate order over configurations. One only needs to
compute the prefix & NR(e <)) of € that contains no <-redundant event and truncate it
afterward. The final prefix preserves all markings of €. Intuitively, as shown in the proof
of Theorem 4.2.14 as well as of Proposition 6.2.5, the key here is that marking of a con-
figuration C is preserved by another configuration C’ <ie C' whenever C' contains a cutoff
event or a <-redundant event. Thanks to the well-foundedness of <e and the adequate
order, it gives rise to a configuration in the prefix that contains neither a <-redundant
event nor a cutoff event.

Recall that the adequate order used in definition of cut-off events forces that succes-
sors of a cut-off event are also cut-off ones. Hence, cut-off events form an upward-closed
set w.r.t. the causality. We also aim at giving another definition of <-redundancy based
on some improved order < satisfying the adequate property. In such a case, successors
of <-redundant events are also <-redundant events, and that may make our technique
for reducing redundancy more efficient. However, the existence of such a total order
<, said total adequate order, is still an open problem for truncating technique as stated
in [ERV96].

It is worth noticing that our technique for reducing redundancy improves substan-
tially the truncating technique. Because in many cases, <-redundant events may not
be seen as cut-off events whatever adequate order is used (see Section 4.2.3). However,
they may be safely removed when considering the conflict relation in addition as in Def-
inition 6.2.2. For example, as illustrated in Figure 6.8, two isomorphic events s; and
so can not be cut-off events, but one of these events may be removed because of the
<-redundancy. Experimental results may be found in Section 6.3.2.

Let us return to Definition 6.2.2. If one modifies it so that an event r is <-redundant
event w.r.t. a configuration C' C (>>(r) N NR(¢ o)) in the place of another event e, then

147

Chapter 6. Experimental results

Proposition 6.2.5 still holds. Notice that the local configuration >(r) must be a sub-
linearisation of such a configuration C' (see Definition 6.2.1) and r must be in conflict with
some event in C. This idea coincides with the one of truncating technique used in PEP.
In other words, like cutting contexts for cutoff events, <-redundant property of events
may based on the purely local cutting context or some arbitrary one (see Section 4.2).
However, in Definition 6.2.2, we restrict to a simple case where C' = ((>(r)) - e) for
some event e satisfying £(e) = L(r) and e#r. This avoids to compute the configurations
in &l (NN Ree .« when determining whether an event r is <J-redundant, and respects well
the partial-order idea.

Last but not least, there is a challenge to go further by giving some redundant crite-
rion based on the global cutting context. That means a configuration is somehow useless
due to another one so that we can remove redundant events while keeping all configu-
rations by means of isomorphism or the sub-linearisation relation (Definition 6.2.1). As
seen in the proof of Proposition 6.2.5, when a configuration C contains a <-redundant
event r w.r.t. another event e, the configuration (C_ U {r}) = (>(r) " NR¢ <)) U {r}
is a sub-linearisation of the configuration (C_ U {e}). One may hope that C is a sub-
linearisation of another configuration C” such that (C—U{e}) C C afterward. Formally,
if C < D then for every configuration C’ extended from C, i.e. C I- C’, there exists a
configuration D’ extended from D, i.e. D Ik D’ such that C' < D" (*). However, it is not
true. The reason is that the sub-linearisation relation in Definition 6.2.1 is not preserved
in general w.r.t. the extension relation IF (see Section 3.1.2).

(a) (b)

@ D @ L
el i f g1 51 Eph 87 gf

| = o el-rd]
Al 6T Tl T e a e s
w_/\ ~ Jw_/

(1,1)-BP (2,1)-BP (1,1)-BP

Figure 6.9: Sub-linearisation relation over configurations is not preserved by the exten-
sion relation: (a) the three components, and (b) a prefix of the synchronized product
w.r.t. the synchronization ¥ = {a, b, c} where a = (—,+,¢),b = (g, —,¢),c = (e, +, —).

Figure 6.9 gives an counter-example of the statement (*) above as a case study for
our future work. In the prefix of the synchronization product of the three components
(1,1)-BP, (2,1)-BP, and (1,1)-BP, the configuration C' = {ss, s3} is a sub-linearisation
of the configuration D = {s1,s2}, i.e. C' < D. Because there is no causality between s;
and so. Intuitively, the first configuration corresponds only to the label linearisation ba
while the second one corresponds to both the label linearisations ab and ba. Consider
now the configuration C’ = {s9, s3, 54} that is extended from the configuration C, i.e.
C |- C'. This configuration C’" gives two label linearisations that are bac and cbha.
However, one can not find any configuration that contains both s; and so, and gives at
least the same label linearisations as the configuration C’ at the same time. Formally,
there is no configuration D’ such that D I+ D', i.e. {s1,s2} C D', and C' < D'.

148

6.3. Experiment results on Petri nets

This counter-example intuitively shows the reason that the N R g «)-prefix of € only
preserves markings of € as stated in Proposition 6.2.5, and not its label linearisations, or
in other words, not the firing sequences of the induced labeled transitions system LT8¢
of €. Suppose here that s1 <159 <153 <154 <155 <156 <s7. When applying our technique,
the obtained prefix will not contain the <-redundant event s3 due to the existence of s7.
In other words, the label linearisation cba will not be generated from such a prefix. But
this is not a problem for verification of reachability-based properties.

Our technique for reducing redundancy discussed above is implemented in ESU and
some experimental results will be shown in Section 6.3.2.

6.3 Experiment results on Petri nets

In order to evaluate the benefits of our approach we have experimented ESU on some
well-known examples and compared with two tools for Petri nets: the PEP environment
which provides an unfolding tool for bounded Petri nets [GB96, pep|, and TINA which
analyzes arbitrary Petri nets using structural analysis techniques and forward Karp-
Miller reachability analysis [BRV04, tin]. The execution times in our experimental results
are obtained on an Intel(R) Pentium(TM) 1.2GHz, with 1GB memory.

6.3.1 1-safe Petri nets

Table 6.3 shows our experimental results as well as the one obtained by using PEP
tools [GB96, pep| on various one-safe Petri nets. These benchmark examples are collected
by Corbett, McMillan, Melzer, Merkel and Romer, and detailed description can be found
in [Kho03, Cor96, MR97]. In the table, the columns S and T respectively refer to the
number of places and the number of transitions of the Petri nets; while the columns E and
E.; represent the numbers of events and of cutoff-events of the truncation, respectively.
The last column named T(s) gives the execution time in seconds. When the truncation
may not be computed within 1 minute, we mark the execution time by —.

Table 6.3: Experimental results on one-safe Petri nets.

PEP Esu
|Problem (size)| S T| E E; T(s)| E Eg T(s)
Cyclic (3) 23 17| 23 4 0.00] 23 4 0.00
Cyclic (6) 47 35| 50 7 0.00| 50 7 0.02
Cyclic (9) 71 53| 77 10 0.00| 77 10 0.06
Cyclic (12) 95 71| 104 13 0.00(104 13 0.11
DAC (6) 42 34| 53 0 0.00] 53 0 0.00
DAC (9) 63 52| 95 0 0.00] 95 0 0.02
DAC (12) 84 70| 146 0 0.00{146 0 0.06
DAC (15) 105 88| 205 0 0.01/206 0 0.12
DME (2) 135 98| 122 4 0.01[122 4 0.15
DME (3) 202 147| 321 9 0.06(321 9 0.62
DME (4) 269 196| 652 16 0.18(652 16 2.17
DME (5) 336 245(1145 25 051 - — -
DP (6) 36 24 96 30 0.00] 96 30 0.02
DP (8) 48 32| 176 56 0.01|176 56 0.05
DP (10) 60 40| 280 90 0.01|280 90 0.12
DP (12) 72 48| 408 132 0.02408 132 0.22

149

Chapter 6. Experimental results

PEP Esu
|Problem (size)| S T E Eg T(s)| E E;g T(s)
DPD (4) 36 36| 296 81 0.01| 296 81 0.11
DPD (5) 45 45| 790 211 0.06] 790 211 0.58
DPD (6) 54 54| 1892 499 0.34|1892 499 3.32
DPD (7) 63 63| 4314 1129 3.14| - - -
DPFM (2) 7 5 5 2 000 5 2 0.0
DPFM (5) 27 41 31 20 0.00] 31 20 0.00
DPFM (8) 87 321 209 162 0.00| 209 162 0.06
DPH (4) 39 46| 336 117 0.01| 533 207 0.25
DPH (5) 48 67| 1351 547 0.13[2949 1389 5.83
DPH (6) 57 92| 7231 3377 6.90| - - -
Elevator (1) 63 99| 157 59 0.00| 157 59 0.07
Elevator (2) 146 299 15 0 0.00| 827 331 1.19
Elevator (3) 327 783| 3895 1629 1.21|3895 1629 36.79
Furnace (1) 27 37| 326 189 0.21| 394 235 0.09
Furnace (2) 40 65| 3110 1989 1.21[4980 3331 7.83
Furnace (3) 53 99(20759 13826 28.19| - - -
GasNQ (2) 71 85| 164 45 0.01| 169 46 0.08
GasNQ (3) 143 223| 1191 399 0.10|1301 437 3.29
GasQ (1) 28 21 15 2 0.00] 21 4 0.00
GasQ (2) 78 97| 164 53 0.00| 173 54 0.08
GasQ (3) 284 475| 1262 486 0.10]1297 490 5.58
GasQ (4) 1428 2705| 9853 3986 15.05| -~ = - -
Hartstone (25) 127 77| 102 1 000 102 1 0.07
Hartstone (50) | 252 152 202 1 001|202 1 042
Hartstone (75) | 377 227| 302 1 004 302 1 1.36
Hartstone (100) | 502 302| 402 1 008 402 1 3.09
MMGT (1) 50 58] 58 20 0.00] 58 20 0.01
MMGT (2) 86 114| 643 259 0.03|1178 493 2.00
Over (2) 33 32| 35 8 0.00] 41 10 0.01
Over (3) 52 53| 187 53 0.00| 296 81 0.18
Over (4) 71 74| 807 243 0.05[1556 495 3.17
Over (5) 90 95| 3846 1288 1.89| - - -
Ring (3) 39 33| 47 11 0.00| 47 11 0.01
Ring (5) 65 55| 166 36 0.00| 167 37 0.08
Ring (7) 91 77| 403 79 0.02| 403 79 0.32
Ring (9) 117 99| 795 137 0.08| 795 137 1.31
RW (6) 33 85| 397 327 0.00| 397 327 0.06
RW (9) 48 181| 4627 4106 0.02[4627 4106 2.24
Sentest (25) 104 55| 216 40 0.02] 223 39 1.23
Sentest (50) 179 80| 241 40 0.02] 248 39 1.23
Sentest (75) 254 105 266 40 0.02| 273 39 1.23
Sentest (100) 329 130 291 40 0.03] 298 39 2.15

Since these Petri nets are all one-safe, we model most of them by synchronized
products of 1-bounded processes. However, certain examples may not be presented
based on bounded processes, and we simply choose the appropriate labeled event tree
as discussed in Section 6.2.1. The examples’ name are shown in italic in Table 6.3. For

150

6.3. Experiment results on Petri nets

this first implementation, our ESU tool has not much amelioration yet, the computation
time is little slow when comparing with PEP. Observe that PEP has integrated some
advanced techniques for the unfolding process, for instance, an improved structure of
the queue of possible extension as well as an optimized routine for generating possible
extensions in the unfolding algorithm. Hence, PEP can achieve significant speed up.

We use the Esparza and Romer’s adequate order [ERV96| for determining the trun-
cation. In many cases, PEP and ESU give truncations of the same size and the same
number of cutoff events. However, it is worth noticing that the cutting context used in
PEP differs from the local cutting context used in ESu. In PEP, a cut-off event is defined
based on a configuration that may not be a local one. As a consequence, one can find
out more cut-off events and the generated prefix is more compact. Experimental results
indicates well this fact. For instance, ESU gives a truncation twice bigger than the one
obtained by PEP on example 'Over (3)’, and explodes on example 'Over (4)’. We have
also observed that the version of PEP used in these experiments does not always produce
correct results, for example, in the case of "Elevator (2)’.

6.3.2 General bounded Petri nets

We have then tested ESU on some parameterized, concurrent and production systems
that are modeled by Petri nets. Our case studies consist of

o Central Server Model (CSM) [MBC™95],

« Continuous Transportation (CTS) [MBCT95],
o Flexible Manufacturing System (FMS) [CM97],
« Kanban [CM97],

¢ Mutual Exclusion

o Multi poll [MC99], and

« Mesh 2x2 [MBC+95].

In Table 6.4, K defines the initial number of resources, i.e. number of tokens in
parameterized places of these Petri nets, representing the systems; E (resp. E.f, N, M)
denotes the number of events in the truncation (resp. cutoff events, nodes in TINA’s
reachability tree, markings computed by TINA), and a ‘-’ means that the analysis did
not finish within 10 minutes.

As explained in Section 6.2.2, when unfolding Petri nets which are not one-safe, i.e.
K > 1, the truncation may contains many redundant events due to the auto-concurrency
problem. This redundancy does not have too much influence on CSM and Multi Poll
because tokens obtained by redundant events will be separately unfolded. In other
examples, e.g. FMS, Kanban or Mesh 2x2, since there are combinations of these tokens
afterward, the size of constructed unfolding explodes very quickly.

Thanks to the technique for reducing redundancy implemented in ESU, one can ob-
serve that truncations computed by ESU are smaller than or equal to the ones computed
by PEP, w.r.t. the number of events E. This redundancy is entirely eliminated on the
Mutual Exclusion and the Swimming Pool. However, redundancy in the unfolding can
not be avoided in other cases, e.g. Mesh and Kanban. It is worth noticing that the results
in Table 6.4 are obtained while using the McMillan truncation technique. The Esparza,
Romer and Vogler’s one is more advantageous only on Mesh 2x2. By combining with
our technique for reducing redundancy, for K = 2 in Mesh 2x2, ESU gives a truncation
containing 2481 events of which 1280 events are cut-off, i.e. |E| = 2481, |E.f| = 1280,
after 4.58 seconds.

151

Chapter 6. Experimental results

PEP TINA Esu
| Example | K E Eg T(s) M N T(s) E Eg T(s)
CSM 2 75 23 0.00 76 208 0.00 29 9 0.00
CSM 5 180 66 0.00 584 2264 0.00 64 20 0.02
CSM 10 605 231 0.02 3564 16224 0.06 121 37 0.08
CSM 40 8405 3321 5.33 183844 961684 12.13 456 132 5.61
FMS 1 81 19 0.00 120 345 0.00 32 7 0.00
FMS 2 | 26668 10204 84.35 3444 16311 0.06 585 124 0.54
FMS 3 — — — 48590 297382 2.84 — — —
Kanban 1 31 9 0.00 160 616 0.00 31 9 0.00
Kanban 2 | 58824 22946 575.47 4600 28120 0.10 8827 2127 44.83
Mutual Exclusion 5 120 100 0.00 3 4 0.00 4 2 0.00
Mutual Exclusion | 10 440 400 0.00 3 4 0.00 4 2 0.00
Mutual Exclusion | 40 6560 6400 0.10 3 4 0.00 4 2 0.00
Mesh 2x2 1 48 16 0.00 1881 7776 0.02 48 16 0.01
Mesh 2x2 2 — — — 200544 1325472 17.62 | 18968 11296 132.30
Multi Poll 2 123 48 0.00 11328 75241 0.56 155 48 0.04
Multi Poll 5 354 147 0.00 230664 1728412 30.06 191 48 0.10
Multi Poll 10 1019 432 0.02 - - - 211 48 0.22
Multi Poll 40 | 12359 5292 1.90 - - - 331 48 1.32
Swimming Pool 2 388 168 0.00 21 36 0.00 12 2 0.00
Swimming Pool 3| 37593 18009 162.61 56 126 0.00 18 3 0.01
Swimming Pool 5 - - - 252 756 0.00 30 5 0.02
Swimming Pool 10 — — — 3003 12012 0.04 60 10 0.18
Swimming Pool 40 - - — | 1221759 6516048 189.96 240 40 96.38

Table 6.4: Experimental results on some parameterized Petri nets.

152

6.3. Experiment results on Petri nets

Without the technique for reducing redundancy, the difference between the results of
PEP, TINA and ESU comes from the choice of modeling Petri nets’ places. Intuitively,
when using TINA there is no concurrence between tokens of a same places, or in other
words, a place is represented by an event tree. While using PEP, each place corresponds
more or less to a K-bounded process. The unfolding of synchronized products of these
bounded process, in examples of parameterized Petri nets here, do not really make use
of the concurrency in bounded processes, but reversely, commits the auto-concurrency
problem. For instance, on the Mutual Exclusion corresponding to a simple Petri net with
4 transitions and 5 places, PEP generates truncations that are approximately K? times
bigger than necessary. Notice here that ESU uses l-causality processes, i.e. (1,v)-CP
where v is the initial number of tokens, in order to model these parameterized Petri nets.

2-CP 1-CP M-CP like M-CP like (¥)
[K| F Ey T()|E By T(5)| E Ey T(s)|| E By T(5)
2] 12 2 000]12 2 0.00] 20 4 000]] 21 4 0.00
3 [4136 2855 7.19|18 3 0.00| 67 14 0.02] 71 14 0.02
4] = = |24 4 001] 205 43 0.10| 214 44 0.10
5] - - |30 5 002] 616 120 0.71] 637 121 0.76
6| - - |36 6 0.02]1872 324 5901932 325 6.46
7] - - —|42 7 0.05|5858 892 61.34][6045 901 61.84
8 - - |48 8 o007 - - - - — -

Table 6.5: Experimental results on the Swimming Pool with different choices of compo-
nents’ labeled event structures. Results in the last columns are obtained without using
our technique for reducing redundancy, i.e. the truncation may contain <-redundant
event(s).

Let us give some details on how the choice of modeling a place is related to the
auto-concurrency problem. Table 6.5 shows results on the Swimming Pool while places
are represented by the following labeled event structures:

« 2-causality processes (2-CP): each increment event has two direct successors that
are increment ones and concurrent; decrement events are pairwise concurrent (see

Section 3.3.2).

o l-causality processes (2-CP): it differs from 2-CP only on the fact that all increment
events are pairwise causal.

o M-CP like: it is derived from the M-causality process for FIFO-channels where
the alphabet M is a singleton (see Section 3.3.3). We have not only that increment
events are pairwise causal but also that decrement events are too.

When modeling a place like M-CP, there are few events that are concurrent and
labeled by the same label. These events concerns the decrement action that removes
initial tokens of such a place. Hence, the unfolding have not much useless events. By
comparing the 6 last columns in Table 6.5, one can see that the results obtained with or
without our technique for reducing redundancy do not really differ. When using 2-CP,
the concurrency between decrement events as well as between increment ones makes the
unfolding explode quickly. Our technique for reducing redundancy does not work well in
this case.

However, when using 1-CP, redundant events may be completely avoided. The gen-
erated truncation has 6 * K events where 6 is the number of transition in the Swimming

153

Chapter 6. Experimental results

Pool and K is the number of tokens initially in parameterized places. Although it is
not shown in Table 6.5, it is worth noticing that the truncation obtained while using
K-bounded process (K-BP in Section 3.3.2) has the same size 6+ K. Moreover, this trun-
cation intuitively consists of K disjoint sub-structures of which each is the truncation
obtained on the Swimming Pool 1,ie. K = 1.

6.3.3 Unbounded Petri nets

We are motivated by a model-checker for infinite systems, but almost all benchmark
examples of Petri net are unfortunately bounded. The few unbounded ones are not
very suitable due to some advanced type of transitions, e.g. Petri nets with inhibitor
arcs or with transfer arcs. Therefore, for experimental purpose, we’ve created a simple
unbounded Petri net which represents a concurrent Producer/Consumer system with n
independent production lines and m machines on each line. This example is derived
from the one of McMillan [McM95a]. Figure 6.10 illustrates the corresponding Petri net
where n = m = 3.

n lines

Figure 6.10: A concurrent Producer/Consumer Petri net with m = 3 and n = 3.

Intuitively, this Petri net consists of an n x m matrix of places, and another particular
place ps for storing the final product that is combined from the products in n lines. Each
place among the n places at the top of n columns (lines), has initially a token on itself.
Transitions representing machines allow to move a token either from a place down to the
place just below it in the same column, or from a place at the bottom of a column up to
the place at the top of the same column. And lastly, there is a transition t; which allows
to, if every places at the bottom of n columns has a token on it, add a new token on the
place ps, and move all tokens at the bottom places of n columns to its top places.

The classical technique for deciding boundedness problem of Petri nets is to compute
a Karp-Miller graph. On the example above, the corresponding graph contains many
useless interleavings of actions from different production lines. The size of this graph
is thus exponential in the size of the example. As shown in Table 6.6, TINA gives

154

6.3. Experiment results on Petri nets

reachability trees that represents m™ markings and have a size of O(m'). Notice that in
the last three cases, verification using TINA can not finish within 10 minutes.

TINA Esu

| mxn T TG6)| E Eg T(s)
5x5 4636 0.02 | 25 5 0.00
x5 21396 0.12 | 35 5 0.01
10x5 115911 1.22 | 50 5 0.02
5X7 125552 1.16 | 36 8 0.01
7x7 | 1094241 14.87 | 50 8 0.01
10x7 - — |71 8 0.02
5x10 - — | 46 6 0.01
7x10 - ~ 1 66 6 0.02
10x 10 - - 196 6 0.04

Table 6.6: Experimental results on the Producer/Consumer.

However, ESU resolves the boundedness problem on this Producer/Consumer system
while exploiting well its intrinsic concurrency. The prefix generated by ESU is intuitively
smaller than or equal to the Petri net representing this system in which there are exactly
|E| = (m — 1) xn + 1 transitions.

155

Chapter 7

Conclusions

The verification of infinite-state concurrent systems presents two difficult challenges:
first dedicated techniques (such as symbolic model checking, abstraction or truncations)
must be used to deal with the infinite state space, and then reduction techniques (such as
partial-order methods) must exploit the concurrency in the models to fight state-space
explosion. In this thesis, we have shown how to combine the unfolding technique, a
partial-order method, with analysis techniques for well-structured (infinite-state) sys-
tems.

We have presented a general framework for partial-order modeling and analysis of
heterogeneous systems. In this approach, systems are modeled as labeled event struc-
tures [Win86]. The modelization is no more on the system level (that does not capture
concurrency), but rather on a behavioral, branching and non-interleaving level [SNW96].
In labeled event structures, atomic computation steps of the corresponding system are
represented by events, and concurrency as well as causality between such events, if ex-
ists, are explicitly described. Our labeled event structures for standard systems such as
counters and FIFO channels demonstrate that the concurrency may be well captured in
this approach.

A reactive system generally consists of several components. Classic models such as
synchronized products of labeled transition systems turn out not to be satisfactory when
components are concurrent systems. Our solution is modeling them by synchronized
products of labeled event structures. The main advantage is that we model not only the
concurrency between components but also the intrinsic concurrency inside each of them.
Moreover, it permits hierarchical modeling of systems.

On the one hand, at the behavior level, labeled event structures preserve all infor-
mation about systems in terms of Mazurkiewicz’s trace semantics [Maz86], and may be
directly used for reasoning about system’s properties. On the other hand, since there is
no interleaving of concurrent events, their compact size admits efficient verification algo-
rithms. The model-checking concerns first in algorithmically constructing such labeled
event structures. We have adapted the unfolding technique [McM95a], initially developed
for Petri nets, to labeled event structures. Our algorithms are proved to be correct when
constructing component labeled event structures, such as counters and FIFO channels,
and allow to efficiently build their synchronized products.

Most of verification problems for infinite-state systems are undecidable. Fortunately,
the decidability of interesting properties, for instance termination and boundedness,
holds on a subclass of infinite systems having some weak-simulations that are well-
preorders. We have introduced well-preordered labeled event structures and shown that
decidable results [FS01] may be obtained in this model. In other words, by giving

157

Chapter 7. Conclusions

a definition of a general cutting-context, we have shown that well-preordered labeled
event structures admit some finite prefixes that preserve reachability-based properties.
Hence, such prefixes may be algorithmically computable, and more interestingly, they
are more compact than interleaving ones [Fin91] due to the partial-order approach. We
also explain how to obtain standard backward analysis results by using our forward
partial-order analysis.

Finally, a prototype implementation, the EsSu tool, of our method has been devel-
oped. Boundedness, termination, and state covering problems may be checked using
Esu. In addition, it has an advanced technique allowing to reduce the auto-concurrency
problem that is well-known for Petri nets’ unfolding. By using this technique and the
truncation technique together, one generally obtains a more compact prefix, and it some-
times produces an "optimal" prefix with just enough events to preserve reachability-based
information. The first practical evaluations are very encouraging.

7.1 Future work

The work presented in this thesis can be extended in several ways. We give here a non
exhaustive enumeration of possible objectives that, of course, are not really disjoint.

o The first possible extensions should concern the modelization. As discussed in Sec-
tion 3.3.2 on page 37 and shown in experimental results in Section 6.3.2 on page 151,
one needs to choose a value for the parameter k£ when modeling counters by causal-
ity processes. The unfolding algorithm then creates k increasing events when it
is necessary. This fact may give rise to harmful auto-concurrency [KK01, KKO03|
and is different from the original idea of the unfolding technique [McM95a]. One
possible solution consists of not only improving our unfolding algorithm but also
of making use of our 0-causality process. It certainly demands adapting the trun-
cation technique for synchronized products of labeled event structures so that it
does not strictly rely on the finitely-branching property of the components.

Moreover, we also aim at giving appropriate labeled event structures for standard
components other than counters and FIFO channels in order to apply our methods
on a larger body of realistic heterogeneous systems.

« Defining the semantics of given systems as labeled event structures and/or design-
ing dedicated unfolding algorithms for those systems is sometimes hard. It requires
some prior study on the system’s concurrency because the independence between
events should be explicitly given. In fact, it is not always possible nor desired
to have specific algorithms. Although one may use our event trees containing no
concurrency for any component system, it is preferable to give a general algorithm
capable of determining independences between events while efficiently constructing
the corresponding labeled event structure. Such an algorithm is given in [HST07]
allowing to construct a (component) labeled event structure from its induced la-
beled transition system. The conflicts between events are computed on-the-fly by
comparing the markings of their interleavings if they exist. As a result, by applying
this algorithm, one obtains corresponding M-causality processes from labeled tran-
sition systems modeling FIFO channels over M. However, this algorithm requires
modification in order to be applicable to algorithmic construction of synchronized
products of labeled event structures.

158

7.1. Future work

o Almost all results in this thesis are stated for nondeterministic labeled event struc-
tures in which a configuration corresponds to some set of system’s states. Although
symbolic methods [BCM ™92, BW94] are not discussed in this work, we intend to
use them in conjunction with our methods. We also plan to consider acceleration
techniques [BW94, Sut00], as a tool for truncating (infinite) labeled event struc-
tures, hence enforcing the termination of our algorithms while preserving reacha-
bility properties.

« Finding abstraction algorithms is a good solution in order to build more com-
pact and concurrent event structures. Structural properties may be used to stati-
cally compute over-approximations of the reachability set of a Petri net as shown
in [EMO00], adapting such results to our framework may be possible. Another big
challenge for us is to avoid abstraction algorithms that manipulate system’s states
as standard abstraction techniques, but rather giving algorithms that compute
appropriate over-approximations of system’s concurrency. In other words, such al-
gorithms would abstract away causality and conflict information that is irrelevant
w.r.t. to a desired property.

o« We plan to work on improvement of our unfolding algorithm, and in particular,
to deal with the auto-concurrency problem on synchronized products of labeled
event structures. Even though our first attempt is encouraging for reachability-
based verifications (see Section 6.2.2 on page 141), it turns out not to be entirely
satisfactory since the truncation does not preserve Mazurkiewicz’s trace semantics.

159

Bibliography

[AABY9]

[ABC94]

[ACJ00]

[ACTT96]

[ACIT00]

[ADY4|

[AINOO]

[AJ93)|

[AJO4]

[AJ96]

[ANS2]

[Arn92]

P. A. Abdulla, A. Annichini, and A. Bouajjani. Symbolic verification of
lossy channel systems: Application to the bounded retransmission protocol.
In Tools and Algorithms for Construction and Analysis of Systems (TACAS),
volume 1579 of LNCS, pages 208-222. Springer, 1999.

A. Arnold, D. Bégay, and P. Crubillé. Construction and analysis of transition
systems with MEC. World Scientific Publishing, 1994.

P. A. Abdulla, K. Cerans, and B. Jonsson. Algorithmic analysis of programs
with well quasi-ordered domains. Information and Computation, 160(1-
2):109-127, 2000.

P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability
theorems for infinite-state systems. In Symposium on Logic in Computer
Science (LICS), pages 313-321, 1996.

P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. Algorithmic analysis
of programs with well quasi-ordered domains. Information and Computation,
160(1-2):109-127, 2000.

R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183-235, 1994.

P. A. Abdulla, S. P. Iyer, and A. Nylén. Unfoldings of unbounded Petri
nets. In Computer Aided Verification (CAV), volume 1855 of LNCS, pages
495-507. Springer, 2000.

P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels.
In Symposium on Logic in Computer Science (LICS), pages 160-170. IEEE
Computer Society, 1993.

P. A. Abdulla and B. Jonsson. Undecidable verification problems for pro-
grams with unreliable channels. In International Colloguium on Automata,
Languages and Programming (ICALP), volume 820 of LNCS, pages 316-327.
Springer, 1994.

P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels.
Information and Computation, 127(2):91-101, 1996.

A. Arnold and M. Nivat. Comportements de processus. In Colloqgue AFCET
"Les mathématiques de I’Informatique”, pages 35—68, 1982.

A. Arnold. Systémes de transitions finis et sémantique des processus commu-
nicants. Masson, 1992.

161

Bibliography

[BBF01]

[BCKO04]

[BOM+92

[BHFJ03]

[BHKO6]

[BHRO6|

[BMYY]

[BocT8]

[BRV04]

[Bry86|

[BSW69)

[BW94]

[BZ83]

[CCJ06]

162

B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
P. McKenzie, and P. Schnoebelen. Systems and Software Verification: model-
checking techniques and tools. Springer, 2001.

P. Baldan, A. Corradini, and B. Konig. Verifying finite-state graph grammars:
An unfolding-based approach. In International Conference on Concurrency
Theory, volume 3170 of LNCS, pages 83-98. Springer, 2004.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Sym-
bolic model checking: 10%° states and beyond. Information and Computation,
98(2):142-170, 1992.

A. Benveniste, S. Haar, E. Fabre, and C. Jard. Distributed monitoring of
concurrent and asynchronous systems. In International Conference on Con-
currency Theory, volume 2761 of LNCS, pages 1-26. Springer, 2003.

P. Baldan, S. Haar, and B. Konig. Distributed unfolding of Petri nets. In
Foundations of Software Science and Computation Structures (FoSSaCS),
volume 3921 of LNCS, pages 126-141. Springer, 2006.

P. Bouyer, S. Haddad, and P.-A. Reynier. Timed unfoldings for networks
of timed automata. In Automated Technology for Verification and Analysis
(ATVA), volume 4218 of LNCS, pages 292-306. Springer, 2006.

A. Bouajjani and R. Mayr. Model checking lossy vector addition systems.
In Symposium on Theoretical Aspects of Computer Science (STACS), volume
1563 of LNCS, pages 323—-333. Springer, 1999.

G. V. Bochmann. Finite state description of communication protocols. Com-
puter Networks (and ISDN Systems), 2:361-372, 1978.

B. Berthomieu, P.O. Ribet, and F. Vernadat. The tool TINA — construction
of abstract state spaces for Petri nets and time Petri nets. International
Journal of Production Research, 42(14), 2004.

R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35(8):677-691, 1986.

K.A. Bartlett, R.A. Scantlebury, and P.T. Wilkinson. A note on reliable full-
duplex transmission over half-duplex links. Communications of the ACM,
12(5):260-261, 1969.

B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In Com-
puter Aided Verification (CAV), volume 818 of LNCS, pages 55-67. Springer,
1994.

D. Brand and P. Zafiropulo. On communicating finite-state machines. Jour-
nal of the ACM, 30(2):323-342, 1983.

F. Cassez, T. Chatain, and C. Jard. Symbolic unfoldings for networks of
timed automata. In Automated Technology for Verification and Analysis
(ATVA), volume 4218 of LNCS, pages 307-321. Springer, 2006.

Bibliography

[CES1]

[CESS6]

[CF97]

[CGLY4]|

[CGPOO]

[CGPO1]

[CJ99]

[CJ04]

[CJ06]

[CIEF96]

[CLMS9|

[CM97]

[Cor96]

E. M. Clark and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Logic of Programs, volume
131 of LNCS, pages 52—-71. Springer, 1981.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Trans. Program. Lang. Syst., 8(2):244-263, 1986.

G. Cécé and A. Finkel. Programs with quasi-stable channels are effectively
recognizable (extended abstract). In Computer Aided Verification (CAV),
volume 1254 of LNCS, pages 304-315. Springer, 1997.

E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction.
ACM Transactions on Programming Languages and Systems (TOPLAS),
16(5):1512-1542, 1994.

J.-M. Couvreur, S. Grivet, and D. Poitrenaud. Designing a LTL model-
checker based on unfolding graphs. In International Conference on Applica-
tions and Theory of Petri Nets (ICATPN), pages 123-145, 2000.

J.-M. Couvreur, S. Grivet, and D. Poitrenaud. Unfolding of products of sym-
metrical Petri nets. In International Conference on Applications and Theory
of Petri Nets (ICATPN), volume 2075 of LNCS, pages 121-143. Springer,
2001.

H. Comon and Y. Jurski. Timed automata and the theory of real numbers.
In International Conference on Concurrency Theory, volume 1664 of LNCS,
pages 242-257. Springer, 1999.

T. Chatain and C. Jard. Symbolic diagnosis of partially observable concur-
rent systems. In Formal Description Techniques for Distributed Systems and
Communication Protocols (FORTE), volume 3235 of LNCS, pages 326-342.
Springer, 2004.

T. Chatain and C. Jard. Complete finite prefixes of symbolic unfoldings of
safe time Petri nets. In International Conference on Applications and Theory
of Petri Nets (ICATPN), volume 4024 of LNCS, pages 125-145. Springer,
2006.

E. M. Clarke, S. Jha, R. Enders, and T. Filkorn. Exploiting symmetry in
temporal logic model checking. Formal Methods in System Design, 9(1/2):77—
104, 1996.

E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional model check-
ing. In Symposium on Logic in Computer Science (LICS), pages 353-362,
1989.

G. Ciardo and A. S. Miner. Storage alternatives for large structured state
spaces. In Computer Performance Fvaluation, volume 1245 of LNCS, pages
44-57. Springer, 1997.

J.C. Corbett. Evaluating deadlock detection methods for concurrent software.
IEEE Transactions on Software Engineering, 22(3), 1996.

163

Bibliography

[DJINO4]

[DJS99]

[EC82]

[EFMY9]

[EHO0]

[EHO1]

[EMO00]

[ER99]

[ERV96]

[ERV02]

[ES96]

[esu]

[FGMT92]

[Fin87]

[Fin90]

164

J. Desel, G. Juhas, and C. Neumair. Finite unfoldings of unbounded Petri
nets. In International Conference on Applications and Theory of Petri Nets
(ICATPN), volume 3099 of LNCS, pages 157-174. Springer, 2004.

C. Dufourd, P. Jan¢ar, and Ph. Schnoebelen. Boundedness of reset P/T
nets. In International Colloguium on Automata, Languages and Programming
(ICALP), volume 1644 of LNCS, pages 301-310. Springer, 1999.

E. A. Emerson and E. M. Clark. Using branching time temporal logic to
synthesize synchronization skeletons. Science of Computer Programming,
2(3):241-266, 1982.

J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast proto-
cols. In Symposium on Logic in Computer Science (LICS), pages 352-359,
1999.

J. Esparza and K. Heljanko. A new unfolding approach to LTL model check-
ing. In International Colloquium on Automata, Languages and Programming
(ICALP), volume 1853 of LNCS, pages 475-486. Springer, 2000.

J. Esparza and K. Heljanko. Implementing LTL model checking with net
unfoldings. In International SPIN Workshop, volume 2057 of LNCS, pages
37-56. Springer, 2001.

J. Esparza and S. Melzer. Verification of safety properties using integer
programming: Beyond the state equation. Formal Methods in System Design,
16(2), 2000.

J. Esparza and S. Romer. An unfolding algorithm for synchronous products
of transition systems. In International Conference on Concurrency Theory,
volume 1664 of LNCS, pages 2-20. Springer, 1999.

J. Esparza, S. Romer, and W. Vogler. An improvement of McMillan’s un-
folding algorithm. In Tools and Algorithms for Construction and Analysis of
Systems (TACAS), volume 1055 of LNCS, pages 87-106. Springer, 1996.

J. Esparza, S. Romer, and W. Vogler. An improvement of mcmillan’s unfold-
ing algorithm. Formal Methods in System Design, 20(3):285-310, 2002.

E. A. Emerson and A. P. Sistla. Symmetry and model checking. Formal
Methods in System Design, 9(1/2):105-131, 1996.

Esu. http://www.labri.fr/“tran/esu/.

J. C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez, and
J. Sifakis. A toolbox for the verification of LOTOS programs. In Inter-
national Conference on Software Engineering (ICSE), pages 246-259, 1992.

A. Finkel. A generalization of the procedure of Karp and Miller to well
structured transition systems. In International Colloguium on Automata,
Languages and Programming (ICALP), volume 267 of LNCS, pages 499-508.
Springer, 1987.

A. Finkel. Reduction and covering of infinite reachability trees. Information
and Computation, 89(2):144-179, 1990.

http://www.labri.fr/~tran/esu/

Bibliography

[Fin91]

[Fin94]

[FS00a]

[FS00b]

[FS01]

[FS02]

[GBY6)|

[GHP92)

[God90]

[gra]

[GS97]

[GWO1]

[Haa99]

[HCF+02]

[Hel99)]

A. Finkel. The minimal coverability graph for Petri nets. In Applications and
Theory of Petri Nets, volume 674 of LNCS, pages 210-243. Springer, 1991.

A. Finkel. Decidability of the termination problem for completely specified
protocols. Distributed Computing, 7(3):129-135, 1994.

A. Finkel and G. Sutre. An algorithm constructing the semilinear Post"
for 2-Dim Reset/Transfer VASS. In Mathematical Foundations of Computer
Science (MFCS), volume 1893 of LNCS, pages 353-362. Springer, 2000.

A. Finkel and G. Sutre. Decidability of reachability problems for classes of
two counters automata. In Symposium on Theoretical Aspects of Computer
Science (STACS), volume 1770 of LNCS, pages 346-357. Springer, 2000.

A. Finkel and Ph. Schnoebelen. Well-structured transition systems every-
where! Theoretical Computer Science, 256(1-2):63-92, 2001.

H. Fleischhack and C. Stehno. Computing a finite prefix of a time Petri
net. In International Conference on Applications and Theory of Petri Nets
(ICATPN), volume 2360 of LNCS, pages 163-181. Springer, 2002.

B. Grahlmann and E. Best. PEP - more than a Petri net tool. In Tools and
Algorithms for Construction and Analysis of Systems (TACAS), volume 1055
of LNCS, pages 397-401. Springer, 1996.

P. Godefroid, G. J. Holzmann, and D. Pirottin. State-space caching revisited.
In Computer Aided Verification (CAV), volume 663 of LNCS, pages 178-191.
Springer, 1992.

P. Godefroid. Using partial orders to improve automatic verification methods.
In Computer Aided Verification (CAV), pages 176-185, 1990.

GRAPHVIZ - A graph visualization software. http://www.graphviz.org/.

S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In
Computer Aided Verification (CAV), volume 1254 of LNCS, pages 72-83.
Springer, 1997.

P. Godefroid and P. Wolper. Using partial orders for the efficient verification
of deadlock freedom and safety properties. In Computer Aided Verification
(CAV), volume 575 of LNCS, pages 332-342. Springer, 1991.

S. Haar. On occurrence net semantics of Petri nets. Research Report 3718,
INRIA Lorraine, 1999.

F. Herbreteau, F. Cassez, A. Finkel, O. Roux, and G. Sutre. Verification of
embedded reactive fiffo systems. In Latin American Theoretical INformatics
(LATIN), volume 2286 of LNCS, pages 400-414. Springer, 2002.

K. Heljanko. Deadlock and reachability checking with finite complete pre-
fixes. Technical Report A56, Laboratory for Theoretical Computer Science,
HUT, Espoo, Finland, 1999.

165

http://www.graphviz.org/

Bibliography

[HKK02]

[HKT96]

[Hol97]

[HST07]

[Tba78§]

[ISDT02]

[TP93]

[KhoO3]|

[KKO1]

[KK03]

[KKO05]

[KKV03]

[KKY04]

[KM69)

[Kos82]

166

K. Heljanko, V. Khomenko, and M. Koutny. Parallelization of the Petri net
unfolding algorithm. In Tools and Algorithms for Construction and Analysis
of Systems (TACAS), volume 2280 of LNCS, pages 371-385. Springer, 2002.

P. Hoogers, H. Kleijn, and P. Thiagarajan. An event structure semantics for
general Petri nets. Theoretical Computer Science, 153(1-2):129-170, 1996.

G. J. Holzmann. The model checker SPIN. IEEFE Transactions on Software
Engineering, 23(5):279-295, 1997.

F. Herbreteau, G. Sutre, and T-Q. Tran. Unfolding concurrent well-
structured transition systems. In Tools and Algorithms for Construction
and Analysis of Systems (TACAS), volume 4424 of LNCS, pages 706-720.
Springer, 2007.

O. H. Ibarra. Reversal-bounded multicounter machines and their decision
problems. Journal of the ACM, 25(1):116-133, 1978.

O. H. Ibarra, J. Su, Z. Dang, T. Bultan, and R. A. Kemmerer. Counter ma-
chines and verification problems. Theoretical Computer Science, 289(1):165—
189, 2002.

B. Jonsson and J. Parrow. Deciding bisimulation equivalences for a class
of non-finite-state programs. Information and Computation, 107(2):272-302,
1993.

V. Khomenko. Model Checking based on Prefizes of Petri Net Unfoldings.
PhD thesis, University of Newcastle upon Tyne, 2003.

V. Khomenko and M. Koutny. Towards an efficient algorithm for unfolding
Petri nets. In International Conference on Concurrency Theory, volume 2154
of LNCS, pages 366-380. Springer, 2001.

V. Khomenko and M. Koutny. Branching processes of high-level Petri nets.
In Tools and Algorithms for Construction and Analysis of Systems (TACAS),
volume 2619 of LNCS, pages 458-472. Springer, 2003.

B. Kénig and V. Kozioura. AUGUR - a tool for the analysis of graph trans-
formation systems. Bulletin of the FATCS, 87:126—137, 2005.

V. Khomenko, M. Koutny, and W. Vogler. Canonical prefixes of Petri net
unfoldings. Acta Informatica, 40(2):95-118, 2003.

V. Khomenko, M. Koutny, and A. Yakovlev. Logic synthesis for asynchronous
circuits based on Petri net unfoldings and incremental SAT. In International
Conference on Application of Concurrency to System Design (ACSD), pages
16-25. IEEE Computer Society, 2004.

R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Com-
puter and System Sciences, 3(2):147-195, 1969.

S. R. Kosaraju. Decidability of reachability in vector addition systems. In
ACM Symposium on Theory of Computing, pages 267-281, 1982.

Bibliography

[Lam78|

[LB99]

[L105]

[LS02]

[May84]

[Maz86]

[MBC*95]

[MC99]

[McM95a]

[McM95b)

[Mil71]

[MR97]

[MRE96)

[NPWS0)

[Pel94]

L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-565, 1978.

R. Langerak and E. Brinksma. A complete finite prefix for process algebra. In
Computer Aided Verification (CAV), volume 1633 of LNCS, pages 184-195.
Springer, 1999.

Y. Lei and S. P. Iyer. An approach to unfolding asynchronous communica-
tion protocols. In Formal Methods, volume 3582 of LNCS, pages 334-349.
Springer, 2005.

D. Lugiez and Ph. Schnoebelen. The regular viewpoint on PA-processes.
Theoretical Computer Science, 274(1-2):89-115, 2002.

E. W. Mayr. An algorithm for the general Petri net reachability problem.
SIAM Journal on Computing, 13(3):441-460, 1984.

A. W. Mazurkiewicz. Trace theory. In Advances in Petri Nets, volume 255
of LNCS, pages 279-324. Springer, 1986.

M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Mod-
elling with Generalized Stochastic Petri Nets. John Wiley & Sons Ltd (Im-
port), 1995.

A. S. Miner and G. Ciardo. Efficient reachability set generation and storage
using decision diagrams. In International Conference on Applications and
Theory of Petri Nets (ICATPN), volume 1639 of LNCS, pages 6-25. Springer,
1999.

K. L. McMillan. A technique of state space search based on unfolding. Formal
Methods in System Design, 6(1):45-65, 1995.

K. L. McMillan. Trace theoretic verification of asynchronous circuits using
unfoldings. In Computer Aided Verification (CAV), volume 939 of LNCS,
pages 180-195. Springer, 1995.

R. Milner. An algebraic definition of simulation between programs. In Inter-
national Joint Conference on Artificial Intelligence (IJCAI), pages 481-489,
1971.

S. Melzer and S. Rémer. Deadlock checking using net unfoldings. In
Computer Aided Verification (CAV), volume 1254 of LNCS, pages 352-363.
Springer, 1997.

S. Melzer, S. Romer, and J. Esparza. Verification using PEP. In Alge-
braic Methodology and Software Technology (AMAST), volume 1101 of LNCS,
pages 591-594. Springer, 1996.

M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures and
domains. Theoretical Computer Science, 13(1):85-108, 1980.

D. Peled. Combining partial order reductions with on-the-fly model-checking.
In Computer Aided Verification (CAV), volume 818 of LNCS, pages 377-390.
Springer, 1994.

167

Bibliography

[pep]
[Pet62]

[Pnu77]

[Prag86]

[QS82]

[Rei85]

[San04]

[San07]

[SG90]

[SK04]

[SNW96|

[SSE03]

[Sta89]

[Sut00]

[SY96]

[tin]

[Val89]

168

PEP. http://theoretica.informatik.uni-oldenburg.de/ pep/.

C. A. Petri. Kommunikation mit Automaten. PhD thesis, Univ. Bonn, 1962.
Schriften des Instituts fiir Instrumentelle Mathematik.

A. Pnueli. The temporal logic of programs. In Foundations of Computer
Science (FOCS), pages 4657, 1977.

V. R. Pratt. Modelling concurrency with partial orders. International Journal
of Parallel Programming, 15(1):33-71, 1986.

J. P. Queille and J. Sifakis. Specification and verification of concurrent sys-
tems in CESAR. In Symposium on Programming, volume 137 of LNCS, pages
337-351. Springer, 1982.

W. Reisig. Petri nets with individual tokens. Theoretical Computer Science,
41:185-213, 1985.

D. Sangiorgi. Bisimulation: From the origins to today. In Symposium on
Logic in Computer Science (LICS), pages 298-302, 2004.

D. Sangiorgi. On the origins of bisimulation, coinduction, and fixed points.
Research Report 24, University of Bologna, 2007.

G. Shurek and O. Grumberg. The modular framework of computer-aided
verification. In Computer Aided Verification (CAV), volume 531 of LNCS,
pages 214-223. Springer, 1990.

C. Schréoter and V. Khomenko. Parallel LTL-X model checking of high-
level Petri nets based on unfoldings. In Computer Aided Verification (CAV),
volume 3114 of LNCS, pages 109-121. Springer, 2004.

V. Sassone, M. Nielsen, and G. Winskel. Models for concurrency: Towards
a classification. Theoretical Computer Science, 170(1-2):297-348, 1996.

C. Schroter, S. Schwoon, and J. Esparza. The model-checking kit. In Inter-
national Conference on Applications and Theory of Petri Nets (ICATPN),
volume 2679 of LNCS, pages 463-472. Springer, 2003.

E. W. Stark. Connections between a concrete and an abstract model of con-
current systems. In Mathematical Foundations of Programming Semantics,
volume 442 of LNCS, pages 53-79. Springer, 1989.

G. Sutre. Abstraction et accélération de systémes infinis. PhD thesis, ENS
de Cachan, 2000.

A. Semenov and A. Yakovlev. Verification of asynchronous circuits using time
Petri net unfolding. In ACM/IEEE Design Automation Conference, pages
59-62, 1996.

TINA. http://wuw.laas.fr/tina/.

A. Valmari. Stubborn sets for reduced state space generation. In Applications
and Theory of Petri Nets, volume 483 of LNCS, pages 491-515. Springer,
1989.

http://theoretica.informatik.uni-oldenburg.de/~pep/
http://www.laas.fr/tina/

Bibliography

[Valoo|

[VSYOS]

[VWS6]

[WGO3]

[Win82]

[Win86]|

A. Valmari. A stubborn attack on state explosion. In Computer Aided Veri-
fication (CAV), volume 531 of LNCS, pages 156-165. Springer, 1990.

W. Vogler, A. L. Semenov, and A. Yakovlev. Unfolding and finite prefix for
nets with read arcs. In International Conference on Concurrency Theory,
volume 1466 of LNCS, pages 501-516. Springer, 1998.

M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Symposium on Logic in Computer Science (LICS),
pages 332-344, 1986.

P. Wolper and P. Godefroid. Partial-order methods for temporal verification.
In International Conference on Concurrency Theory, volume 715 of LNCS,
pages 233-246. Springer, 1993.

G. Winskel. Event structure semantics for CCS and related languages. In In-
ternational Colloguium on Automata, Languages and Programming (ICALP),
volume 140 of LNCS, pages 561-576. Springer, 1982.

G. Winskel. Event structures. In Adwvances in Petri Nets, volume 255 of
LNCS, pages 325—-392. Springer, 1986.

169

Index

action, 14

adequate order, 77, 122
algorithmic cutoff event, 123
alphabet, 12

behavior, 18, 21
bijection, 12, 25
boundedness, 7, 84
bounded, 84
branching, 21

causal, 22
causality, 22
causality process
M-causality process, 46
k-causality process, 35
coherent, 30, 70, 84
compatible, 64
compatibility, 7, 62, 132
concurrent, 22
concurrent relation, 22
concurrent system, 1
configuration, 24
local configuration, 24
conflict, 22
conflict-inheritance, 22
minimal conflict, 45
self-conflict, 22
counter, 34
bounded counter, 38
coverability
coverability problem, 81
covering
sub-covering, 7, 82
cutoff
cutoff configuration, 74
cutoff event, 122
cutting context, 73, 122
local cutting context, 77

DAG, 13

deteministic

deterministic labeled event structure,

27, 33, 143
deterministic, 16
nondeterministic, 72
downward closure, 13
duality, 7
dual, 66, 135
duplication, 58, 89, 118, 141

event structure, 4, 27
prime event structure, 22
extension, 24, 70, 89

FIFO channel, 43
finitely-branching, 24
firing sequence, 16

global action, 17, 82

identity, 12

induced labeled transition system, 28, 69

initial state, 15
interleaving, 2
internal action, 63
isomorphic, 25

label function, 27
labeled event structure, 27
labeled event tree, 33

labeled transition system, 14, 63

letter-morphism, 43
lexicographic labeling order, 78
linear extension, 13
linearisation, 13, 46, 78
liveness, 3

marking, 27
marking preorder, 69
message, 43

noninterleaving, 2, 21

partial order, 13
partial-order

Index

partial-order method, 157
poset, 13
possible extensions, 88
power set, 11
pred-basis, 67, 134
predecessor
direct predecessor, 22
prefix, 25
finite prefix, 5, 25, 72, 89, 122
word, see subword
preorder, 13
preordered system, 62
product preorder, 65
well-preorder, see well-preorder

quasi-liveness, 7
quasi-live, 82

reachability, 3, 68
reachability set, 16
reachability-based property, 3
reachable, see state, reachable
reactive system, 1, 157
receiving action, 43
redundant, 32
<-redundant, 143
reflexive, 12

reflexive and transitive closure, 12

relation, 11
binary relation, 12
converse relation, 11
identity relation, see identity
predecessor relation, 23
restriction, 11

restriction

component restriction, 17, 55, 65

relation, see relation,restriction
sub-structure, 24

sending action, 43
simulation, 18
singleton, 11, 27, 53
state, 14

covered, see covering

reachable, 16
structure variables, 88
subword, 12, 62

subword order, 12, 63, 64
successor

direct successor, 22

172

suffix, 25, 42
symmetric, 12
synchronization constraint, 17, 58, 110
synchronized product of labeled event struc-
tures, 57, 73, 109
synchronized product of labeled transition
systems, 6, 17, 54
synchronization constraints, 17

termination, 7, 83
total order, 13, 126, 143
transition, 15
transitive, 12
transitive closure, 12
truncation, 74, 76
finite prefix, 76
truncating algorithm, 122

unfolding algorithm, 87, 88
upward closure, 13

well-founded, 13, 64
well-preorder, 13
well-preordered labeled event structure,
62, 69
well-preordered labeled transition sys-
tem, 64

	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	1 Introduction
	1.1 Model checking
	1.2 Approaches to the state-space explosion: the unfolding technique
	1.3 Verification of infinite state systems
	1.4 Contributions
	1.5 Organization of the thesis

	2 Preliminaries
	2.1 Relations and functions
	2.2 Alphabet and words
	2.3 Orders
	2.4 Labeled transition systems
	2.4.1 Behaviors and properties
	2.4.2 Synchronized products of labeled transition systems
	2.4.3 Simulation

	2.5 Petri nets

	3 Modeling concurrent systems by labeled event structures
	3.1 Prime event structures
	3.1.1 Example and graphical representation
	3.1.2 Configurations and extensions
	3.1.3 Sub-structures
	3.1.4 Prime vs general event structures

	3.2 Labeled event structures
	3.2.1 Semantics of labeled event structures
	3.2.2 Properties of labeled event structures

	3.3 Modeling concurrent systems
	3.3.1 Labeled event trees
	3.3.2 Counters
	Parameter k in causality processes
	Bounded counters
	Counters initialized by positive values

	3.3.3 FIFO channels
	FIFO channels initialized with non-empty word
	Bounded FIFO channels

	3.3.4 Synchronized Products of Labeled Event Structures
	Graphical representation of a product of event structures

	4 Truncation for well-preordered labeled event structures
	4.1 Well-preordered systems
	4.1.1 Adapting preordered compatibility to labeled transitions
	An example: Lossy FIFO channels
	Internal actions Acti

	4.1.2 Well-preordered labeled transition systems
	A class of infinite systems with decidability results
	Synchronized products of well-preordered labeled transition systems

	4.1.3 From forward analysis to backward analysis in well-preordered transition systems

	4.2 Truncation of well-preordered labeled event structures
	4.2.1 Well-preordered labeled event structures
	Preordered labeled transition systems vs preordered labeled event structure
	Products of preordered labeled event structures

	4.2.2 Truncation techniques
	Cutting context
	Truncation's properties

	4.2.3 Well-preorders on configurations

	4.3 Partial-order verification for well-preordered labeled event structures
	4.3.1 Local cutting contexts
	4.3.2 Coverability and quasi-liveness
	4.3.3 Termination and boundedness

	5 Compositional unfolding techniques
	5.1 Unfolding algorithm
	5.2 Causality processes' unfolding
	5.2.1 k-causality processes
	5.2.2 M-causality processes
	5.2.3 Generalization
	(M, v)-causality processes
	(M, v, b)-causality processes
	Estimation of time complexity

	5.3 Synchronized products' unfolding
	5.3.1 Function ConfigVectorSet_i
	5.3.2 Function ConfigVectorSet
	5.3.3 Functions Initsp and ExtendSP

	5.4 Truncating
	5.4.1 Algorithmic cutoff events
	5.4.2 Complete prefixes

	6 Experimental results
	6.1 Modeling and verification of heterogeneous systems
	6.1.1 Alternating Bit Protocol
	6.1.2 Modeling the ABP as a synchronized product
	6.1.3 Verification of counter's boundedness
	6.1.4 Verification of lossy FIFOs' coverability

	6.2 The tool Esu
	6.2.1 Modeling Petri nets
	6.2.2 Redundancy reduction

	6.3 Experiment results on Petri nets
	6.3.1 1-safe Petri nets
	6.3.2 General bounded Petri nets
	6.3.3 Unbounded Petri nets

	7 Conclusions
	7.1 Future work

	Bibliography
	Index

