
N◦ d'ordre : 3808
THÈSEprésentée àL'UNIVERSITÉ BORDEAUX 1ÉCOLE DOCTORALE DEMATHÉMATIQUES ET INFORMATIQUEpar

Thế Quang Trầnpour obtenirLE GRADE DE DOCTEURSpé
ialité: INFORMATIQUEUnfolding Based Veri�
ationof Con
urrent In�nite-State Systems
Soutenue le 19 juin, 2009Après avis des rapporteurs :MM. Serge Haddad PR. ENS de Ca
hanClaude Jard PR. ENS de Ca
han/BretagneDevant le jury
omposé de :MM. Bernard Berthomieu CR. CNRS/LAASBruno Cour
elle PR. Univ. Bordeaux 1Jean-Mi
hel Couvreur PR. Univ. d'OrléansSerge Haddad PR. ENS de Ca
hanFrederi
 Herbreteau MC. ENSEIRBClaude Jard PR. ENS de Ca
han/BretagneGrégoire Sutre CR. CNRS/LaBRIIgor Walukiewi
z DR. CNRS/LaBRIDire
teur de thèse Igor Walukiewi
zCo-en
adrants Frédéri
 Herbreteau et Grégoire SutreLaboratoire LaBRI

Véri�
ation des systèmes
on
urrents in�nis par te
hnique de dépliagesRésumé: Nous proposons une te
hnique de dépliage pour véri�er les systèmes
on-
urrents in�nis bien stru
turés. Certaines propriétés d'intérêt
omme la bornitude, la
ouverture et la terminaison sont dé
idables grâ
e à la bonne stru
ture de
es sys-tèmes. D'autre part, le dépliage réduit e�
a
ement l'explosion
ombinatoire en ex-ploitant l'ordre partiel entre les événements des systèmes
on
urrents. Nous proposonsune modélisation par stru
ture d'événements pour des systèmes bien stru
turés élémen-taires, tels les
ompteurs et les �les de
ommuni
ation. Le dépliage d'un réseau destru
tures d'événements, étant une stru
ture d'événements, nous proposons ensuite uneappro
he hiérar
hique à la modélisation et à la véri�
ation des systèmes, qui préserve labonne stru
ture. En�n, nous proposons une te
hnique d'élimination des événements re-dondants. La mise en ÷uvre de notre appro
he dans l'outil ESU nous permet de
on
lureà son e�
a
ité.Mots
lés: algorithme de dépliage, ordre partiel, préordre, système in�ni, produit syn-
hronizé, stru
ture d'événements, pre�xe �ni, bornitude, terminaison, quasi-viva
ité.

A
knowledgmentsMy foremost gratitude goes to my dire
tor Igor Walukiewi
z for his guidan
e. Despitehis
rowded s
hedule, he always found some time to help me to over
ome problems.His help was really signi�
ant to write this thesis. I wish to also thank my two �rstdire
tors André Arnold and Jean-Mi
hel Couvreur although we had not mu
h time towork together.I am very grateful to my
o-dire
tors Frédéri
 Herbreteau and Grégoire Sutre whoinitiated me to the resear
h, and then have
ondu
ted me throughout this thesis. Astheir �rst PhD student, we have shared an ex
ellent experien
e. They taught me a lotabout not only how
omputers aid veri�
ation but also how
ompetent and
heerfulsupervisors aid a student like me. It is not an overstatement to say that without theirpatien
e and guidan
e this thesis would not exist.Many thanks to Bernard Berthomieu, Bruno Cour
elle, Jean-Mi
hel Couvreur, SergeHaddad, and Claude Jard for having kindly a

epted to be members of the jury andreview the thesis. This important task is always time
onsuming and deserve all mygratitude. I parti
ularly thank Bruno Cour
elle for having been my supervisor for sixmonths.Thanks to Anne Di
ky, Alain Gri�aut, and Olivier Ly for their friendship. I alsowould like to thank all the members of the Formal Methods group of LaBRI.A spe
ial thanks has to be addressed to Mi
hel Mouyssinat. He has looked after meand always been there when I needed help. I wish to thank Antoine Blas
os, anotherfren
h friend of mine that I appre
iate very mu
h his friendship.Finally, I would like to swit
h to my mother tongue in the following page to thankmy family and my vietnamese friends.

i

Biết ơn

Tôi muốn dành đôi dòng ngắn ngủi viết bằng tiếng mẹ đẻ cho những người mà chính họ
đã tạo nên tôi với những kết quả đạt được trong nghiên cứu này.

Trước hết là với bố mẹ, những người đến giờ mới yên lòng vì đã lo xong cho con ăn
học tới nơi tới chốn. Con trai của bố mẹ chỉ biết làm nhẹ bớt lo toan đó bằng những
kết quả đẹp - cái mà bố mẹ luôn tự hào suốt quá trình học dài đằng đẵng của con. Cái
đạt được ngày hôm nay, một lần nữa, chính là quả chín đền đáp công ơn nuôi nấng con
ăn học.

Tiếp đến là với những người thân trong gia đình: anh Kỳ, chị Lê, anh Hà, chị Thảo,
Quân, Minh, và cả Thỏ con nữa. Mọi người đã gánh giúp em, giúp cậu, những việc mà
một người con trai lớn khi xa nhà không thể làm được. Hơn nữa, niềm tin của anh chị
và các cháu với em đã không cho phép em buông xuôi, và luôn là động lực để em có đi
có đến.

Mảnh đất Bordeaux cho rượu và con người làng Nho cho tình. Đếm năm tháng cứ
ngỡ là dài nhưng nhắm mắt nhớ lại thì thấy quá ngắn. Từ anh Khuê già cho nhà đón
ngày đầu, đến Đai fou cho nhà tù ngày cuối, biết bao người ở làng này, nếu không muốn
nói là tất cả, đã giúp tôi ăn-ở-vui-chơi, nói chung là sống, để mà học tốt. Nợ chẳng trả
đủ đành cười xoà nói lời cám ơn. Tôi cũng xin phép không kể hết tên chủ nợ vì quá dài.

Nếu coi bạn bè như chân tay thì mấy năm xa nhà cũng đủ làm tôi khác người (hy
vọng không giống ngợm). Hơn nữa, tính rẻ hai năm có thêm một đầu đã là quá hời: anh
Hoàng cong, Đức chích, Đại fou. Những cái đầu sẵn sàng chung vai mà không bao giờ
làm đau đầu tôi, quả là đáng quý. Đáng quý hơn nữa khi biết rằng làm nghiên cứu là
đã phải đau đầu.

Có những người đã gửi trái tim cho tôi lúc đang còn là nghiên cứu sinh, và tôi đã
dùng phí họ trả để hoàn thành nghiên cứu này. Tôi chỉ xin nêu tên người duy nhất muốn
được nêu tên, và cũng là người duy nhất, đến lúc viết những lời này, tôi vẫn giữ: Thuỷ.

Là giai chưa vợ, lời cuối cùng lại là vu vơ nhất, đó là dành cho vợ [tương lai của] tôi
- sức ép vô hình giục tôi hoàn thành sớm nghiên cứu này.

iii

Contents
List of Figures ixList of Tables xiList of Algorithms xiiGlossary xiii1 Introdu
tion 11.1 Model
he
king . 21.2 Approa
hes to the state-spa
e explosion: the unfolding te
hnique 41.3 Veri�
ation of in�nite state systems . 51.4 Contributions . 61.5 Organization of the thesis . 82 Preliminaries 112.1 Relations and fun
tions . 112.2 Alphabet and words . 122.3 Orders . 132.4 Labeled transition systems . 142.4.1 Behaviors and properties . 162.4.2 Syn
hronized produ
ts of labeled transition systems 162.4.3 Simulation . 182.5 Petri nets . 193 Modeling
on
urrent systems by labeled event stru
tures 213.1 Prime event stru
tures . 223.1.1 Example and graphi
al representation 233.1.2 Con�gurations and extensions . 233.1.3 Sub-stru
tures . 243.1.4 Prime vs general event stru
tures 273.2 Labeled event stru
tures . 273.2.1 Semanti
s of labeled event stru
tures 283.2.2 Properties of labeled event stru
tures 303.3 Modeling
on
urrent systems . 323.3.1 Labeled event trees . 323.3.2 Counters . 34Parameter k in
ausality pro
esses 37Bounded
ounters . 38Counters initialized by positive values 40v

Contents3.3.3 FIFO
hannels . 43FIFO
hannels initialized with non-empty word 48Bounded FIFO
hannels . 503.3.4 Syn
hronized Produ
ts of Labeled Event Stru
tures 54Graphi
al representation of a produ
t of event stru
tures 564 Trun
ation for well-preordered labeled event stru
tures 614.1 Well-preordered systems . 624.1.1 Adapting preordered
ompatibility to labeled transitions 62An example: Lossy FIFO
hannels 62Internal a
tions Στ . 634.1.2 Well-preordered labeled transition systems 63A
lass of in�nite systems with de
idability results 64Syn
hronized produ
ts of well-preordered labeled transition systems 654.1.3 From forward analysis to ba
kward analysis in well-preorderedtransition systems . 664.2 Trun
ation of well-preordered labeled event stru
tures 684.2.1 Well-preordered labeled event stru
tures 69Preordered labeled transition systems vs preordered labeled eventstru
ture . 69Produ
ts of preordered labeled event stru
tures 724.2.2 Trun
ation te
hniques . 73Cutting
ontext . 73Trun
ation's properties . 754.2.3 Well-preorders on
on�gurations 774.3 Partial-order veri�
ation for well-preordered labeled event stru
tures . . . 784.3.1 Lo
al
utting
ontexts . 784.3.2 Coverability and quasi-liveness . 814.3.3 Termination and boundedness . 835 Compositional unfolding te
hniques 875.1 Unfolding algorithm . 885.2 Causality pro
esses' unfolding . 925.2.1 k-
ausality pro
esses . 935.2.2 M -
ausality pro
esses . 965.2.3 Generalization . 103
(M,v)-
ausality pro
esses . 103
(M,v, b)-
ausality pro
esses . 106Estimation of time
omplexity . 1085.3 Syn
hronized produ
ts' unfolding . 1095.3.1 Fun
tion ConfigVectorSet_i . 1115.3.2 Fun
tion ConfigVectorSet . 1145.3.3 Fun
tions InitSP and ExtendSP . 1175.4 Trun
ating . 1225.4.1 Algorithmi

uto� events . 1235.4.2 Complete pre�xes . 125vi

Contents6 Experimental results 1296.1 Modeling and veri�
ation of heterogeneous systems 1296.1.1 Alternating Bit Proto
ol . 1296.1.2 Modeling the ABP as a syn
hronized produ
t 1306.1.3 Veri�
ation of
ounter's boundedness 1326.1.4 Veri�
ation of lossy FIFOs'
overability 1346.2 The tool Esu . 1376.2.1 Modeling Petri nets . 1396.2.2 Redundan
y redu
tion . 1416.3 Experiment results on Petri nets . 1496.3.1 1-safe Petri nets . 1496.3.2 General bounded Petri nets . 1516.3.3 Unbounded Petri nets . 1547 Con
lusions 1577.1 Future work . 158Bibliography 161Index 171

vii

List of Figures
2.1 A
ounter . 152.2 A FIFO
hannel . 152.3 A syn
hronized produ
t of three
ounters. 172.4 Simulation relation. 182.5 A Petri net . 203.1 Graphi
al representation of prime event stru
tures 233.2 The {f1, f3}-su�x of E . 263.3 Examples of labeled event stru
tures . 283.4 Graphi
al representation of the indu
ed labeled transition system 293.5 Coheren
e of labeled event stru
tures . 313.6 Tree with labeled events . 333.7 Examples of k-
ausality pro
esses . 363.8 Graphi
al representation of k-bounded pro
esses 383.9 The 4-
ountdown pro
ess . 403.10 Example of (k, v)-
ausality pro
esses . 413.11 M -
ausality pro
esses where M = {a, b} 463.12 A (M,v)-
ausality pro
ess together with the
orresponding (M,v)-�ushingpro
ess . 493.13 An adaptation of (M,v)-
ausality pro
ess for bounded
onstraint on FIFO
hannels . 513.14 A (M,v, b)-
ausality pro
ess . 543.15 Two graphi
al representations of a produ
t of event stru
tures 564.1 Compatibility . 624.2 Forward and ba
kward analysis for rea
hability 674.3 Counter examples of impli
ation between
ompatibilities 714.4 Coheren
e vs
ompatibility . 724.5 Trun
ation example of a labeled event stru
ture for 2-bounded
ounterinitialized by 1. 754.6 Lo
al vs global
utting
ontexts . 795.1 Labeled o

urren
e net of an one-safe Petri net 1245.2 Algorithmi

uto� events and the trun
ation 1256.1 A model for the Alternating Bit Proto
ol 1306.2 Components modeling the ABP . 1316.3 The ({0, 1}, ε, 2)-
ausality pro
ess . 1326.4 Obtained pre�x for boundedness problem of the ABP 1336.5 Labeled event stru
tures modeling the pb-reverse of lossy FIFO
hannels . 136ix

List of Figures6.6 Trun
ation for sub-
overability problem of ERSP
. 1386.7 An example of Esu's input �le . 1406.8 Redundan
y illustration . 1426.9 Sub-linearisation relation over
on�gurations is not preserved by the ex-tension relation . 1486.10 A
on
urrent Produ
er/Consumer Petri net 154

x

List of Tables
6.1 Syn
hronization
onstraint for the ABP with
ounter of su

essfully trans-mitted messages. 1316.2 Syn
hronization
onstraint of the syn
hronized produ
t RSP. 1376.3 Experimental results on one-safe Petri nets. 1496.4 Experimental results on some parameterized Petri nets. 1526.5 Experimental results on the Swimming Pool with di�erent
hoi
es of
om-ponents' labeled event stru
tures . 1536.6 Experimental results on the Produ
er/Consumer. 155

xi

List of Algorithms5.1 Unfolding algorithm . 895.2 Fun
tion Create . 935.3 Fun
tion Initk for the k-
ausality pro
ess k-CP 935.4 Fun
tion Extendk for the k-
ausality pro
ess k-CP 945.5 Fun
tion InitM for the M -
ausality pro
ess M -CP 965.6 Fun
tion ExtendM for the M -
ausality pro
ess M -CP 975.7 Fun
tion ExtendMv for (M,v)-CP . 1055.8 Fun
tion ConfigVectorSet_i . 1125.9 Fun
tion ConfigVectorSet . 1155.10 Fun
tion InitSP for syn
hronized produ
ts 1185.11 Fun
tion ExtendSP for syn
hronized produ
ts 1195.12 Trun
ating algorithm . 1236.1 Unfolding algorithm with redundan
y redu
tion 1456.2 Fun
tion isRedundant determines whether e is E-redundant 146

xii

GlossaryBelow are the notations used in this thesis for important entities and
onstru
tions,together with the number of page in whi
h ea
h notation is de�ned or �rst appears.
∅ empty set, p. 20
× Cartesian produ
t, p. 11|X|
ardinality of a set X, p. 11|w| length of a word w, p. 12
↓i
omponent restri
tion, Notation 2.4.11, p. 16
{x /Φ} set of x su
h that Φ, p. 11
≤
ausality relation, De�nition 3.1.1, p. 21
≥(X) downward
losure of X w.r.t. ≤, p. 13
≤(X) upward
losure of X w.r.t. ≤, p. 13
⋖ minimal relation of whi
h the transitive and re�exive
losure is ≤, No-tation 2.3.6, p. 14
⋖(e) dire
t su

essors of e, p. 22
⋗(e) dire
t prede
essors of e, p. 22

on�i
t relation, De�nition 3.1.1, p. 21
‖
on
urrent relation, Notation 3.1.2, p. 22
⊢ extension relation, De�nition 3.1.6, p. 23
C ⊢ e event e is an extension of
on�guration C, p. 23
C
 X X is an extension set of
on�guration C, p. 23
≈ isomorphi
 relation, De�nition 3.2.7, p. 29
→ transition relation, De�nition 2.4.1, p. 14
s

a
−→ s′ s′ is rea
hable from s by a
tion a, p. 14

4 well-preorder, De�nition 2.3.1, p. 12
4⊗ produ
t (well-)preorder, De�nition 4.1.7, p. 64
4C (well-)preorder on the
on�guration set, p. 68
4M marking preorder, De�nition 4.2.2, p. 69
E adequate order, p. 77
El adequate order based on lexi
ography, De�nition 4.2.17, p. 78
A∗ �nite words over an alphabet A, p. 12
Aω in�nite words over an alphabet A, p. 12
B bije
tion between two event sets, De�nition 3.1.13, p. 25
b-BC

v v-initialized bounded
ounter, De�nition 3.3.12, p. 37
b-BP b-bounded pro
ess, De�nition 3.3.13, p. 38 xiii

Glossary
CE
on�gurations of E, Notation 3.1.5, p. 23
Cl

E
lo
al
on�gurations of E, p. 23

Codom(F)
odomain of a fun
tion F , p. 11
CT, v-CT
ounter, v-initialized
ounter, De�nition 3.3.6, p. 34
CP
ausality pro
ess, p. 34
k-CP k-
ausality pro
ess, De�nition 3.3.9, p. 35
(k, v)-CP (k, v)-
ausality pro
ess, De�nition 3.3.19, p. 40
M -CP M -
ausality pro
ess, De�nition 3.3.27, p. 46
(M,v)-CP (M,v)-
ausality pro
ess, De�nition 3.3.31, p. 49
D the depth fun
tion, De�nition 3.3.34, p. 51
Dom(F) domain of a fun
tion F , p. 11
E events, De�nition 3.1.1, p. 21
ε empty word, p. 12
E labeled event stru
ture, De�nition 3.2.1, p. 27
E|F restri
tion of (labeled) event stru
ture E onto event set F , De�ni-tion 3.1.10, p. 24
Ê pre�x under
onstru
tion, p. 88
FF FIFO
hannel, p. 42
(M,v)-FF v-initialized FIFO
hannel over M , De�nition 3.3.22, p. 42
FL lossy FIFO
hannel, p. 62
IX identity relation over X, p. 12
L label fun
tion, De�nition 3.2.1, p. 27
LET labeled event tree, De�nition 3.3.3, p. 32
LTS labeled transition system, De�nition 2.4.1, p. 14
LTS

E labeled transition system indu
ed by E, De�nition 3.2.4, p. 28
LW fun
tion on words that is based on a label fun
tion L, p. 12
M FIFO
hannel's messages, p. 42!M sending a
tions, Notation 3.3.23, p. 42?M re
eiving a
tions, Notation 3.3.23, p. 42
Max≤(X) maximal elements of X w.r.t. ≤, p. 13
M marking fun
tion, De�nition 3.2.1, p. 27
Min≤(X) minimal elements of X w.r.t. ≤, p. 13
NR(E,E) the pre�x without E-redundant event of E, p. 143
post∗

LTS
rea
hability set of LTS, p. 16

P(X) power set of a set X, p. 11
pb �nite pred-basis, De�nition 4.1.13, p. 67
PE possible extensions, p. 88
Π!M , Π?M M -letter morphisms, De�nition 3.3.24, p. 43
6R or R
omplement of a relation R, p. 11
R|X restri
tion of a relation R to X, Notation 2.1.1, p. 11
R∗ re�exive and transitive
losure of a relation R, p. 12
R+ transitive
losure of a relation R, p. 12
R−1
onverse relation of a relation R, p. 11xiv

Glossary
S set of states, De�nition 2.4.1, p. 14
s0 initial state, De�nition 2.4.1, p. 14
SP a syn
hronized produ
t of labeled transition systems, De�nition 2.4.12,p. 17
Σ set of a
tions, De�nition 2.4.1, p. 14
Στ internal a
tions, p. 63
T(E,4C ,C) the trun
ation of E w.r.t. the
utting
ontext (4C ,C), De�nition 4.2.12,p. 74
V fun
tion representing syn
hronization in syn
hronized produ
ts of (la-beled) event stru
tures, De�nition 3.3.39, p. 54
(X,≤) partially ordered set, De�nition 2.3.2, p. 13
⊗(X1, . . . ,Xn) n-dimension spa
e, Notation 2.4.10, p. 16
(Ê, ≤̂, #̂, L̂,M̂) stru
ture variables, p. 88

xv

Chapter 1Introdu
tion
Contents1.1 Model
he
king . 21.2 Approa
hes to the state-spa
e explosion: the unfolding te
h-nique . 41.3 Veri�
ation of in�nite state systems 51.4 Contributions . 61.5 Organization of the thesis . 8Be
ause of the su

ess of embedded systems in automobiles, airplanes and othersafety
riti
al systems in our everyday life, we are likely to be
ome more dependent onthe proper fun
tioning of
omputing devi
es. Bugs and errors may lead to dramati

onsequen
es. Even when failure is not life-threatening, the
onsequen
es of having torepla
e
riti
al
ode or
ir
uitry
an be a substantial e
onomi
 loss. This fa
t emphasizesthe ne
essity of
on�den
e in su
h systems.At the same time, the advan
es in
omputer s
ien
e and espe
ially in hardware ledto an in
rease of systems'
omplexity, and
onsequently, makes it hard to design thesesystems without defe
ts. This situation is more alarming sin
e
on
urrent systems are
ustomarily used. In fa
t, a
on
urrent system is
omposed of several
omponents thatrun in parallel, possibly on di�erent lo
ations, and
ommuni
ate with ea
h other. Ea
h
omponent
an be viewed as a rea
tive system that
ontinuously intera
ts with its en-vironment whi
h may be another
omponent. Hen
e, the e�e
t of even very minorprogramming mistakes in a
ertain
omponent
an
ause major system failures. Testingis also of limited help in
on
urrent system's design sin
e it usually involves providing
ertain inputs and observing the
orresponding outputs. Therefore,
he
king all of thepotential behaviors resulting from all intera
tions between the di�erent
on
urrent
om-ponents of the system using testing te
hniques is rarely possible. Many errors
an easilygo through the testing phase undete
ted and show up only after a long period of oper-ation. Moreover, even if some bug is found during a parti
ular testing run, it may noto

ur during the next runs, and lo
ating
on
urren
y related bugs is a di�
ult task.Formal veri�
ation has been proposed as a way to obtain guarantees on the
orre
t-ness of safety
riti
al systems. Veri�
ation means that a system des
ription
onformsto its expe
ted properties. Therefore, all possible behaviors of the system have to be
he
ked to determine if all of them are
ompatible with the given property. In order tobe able to perform su
h a veri�
ation, one needs a formal modeling language in whi
h1

Chapter 1. Introdu
tionthe system
an be des
ribed, a formal spe
i�
ation language for the formulation of prop-erties, and a dedu
tive
al
ulus or algorithm for the veri�
ation pro
ess. Hen
e, thereare roughly two approa
hes to formal veri�
ation: logi
al inferen
e and model
he
king.The �rst one
onsists of using a formal version of mathemati
al reasoning about thesystem, usually using theorem provers. Methods in this approa
h are more general butharder to use be
ause they are usually only partially automated. Although there hasbeen
onsiderable resear
h on the use of theorem provers, these methods are time
on-suming and often require a great deal of manual intervention. Only an experien
ed userwith
ertain understanding of the system
an perform a nontrivial proof, for instan
e, inwhi
h he has to �nd loop invariants or indu
tive hypotheses.On the
ontrary, mu
h of the su

ess of model
he
king, �rstly developed in theearly 80's [CE81, QS82, EC82℄, is due to the fa
t that it performs a fully automati
veri�
ation. With model
he
king, all the user has to provide is a model of the system anda formulation of the property to be
he
ked. The veri�
ation tool will either terminatewith an answer indi
ating that the model satis�es the formula or show why the formulafails to hold in the model. These
ounter-examples are parti
ularly helpful in lo
atingerrors in the model. If the model does not satisfy a given
orre
tness spe
i�
ation, this isoften
onne
ted to a mistake in the real system. Nevertheless, as an over-approximationof the real system, the model is sometimes too
oarse and does not satisfy some
orre
tproperties, although the real system does. In su
h a
ase, the model of the system mustbe re�ned to get
loser to the real system. Aiming at automati
 veri�
ation methods,let us fo
us on model
he
king.1.1 Model
he
kingModel
he
king is a veri�
ation te
hnique that applies to a large
lass of systems and
onsists of three steps.Modeling systems by mathemati
al models. A mathemati
al model of the seman-ti
s of a system or of a program is a mathemati
al stru
ture, in general, an algebra,
onsisting of sets, fun
tions, graphs, and possibly logi
al predi
ates. Su
h a modelis an idealized abstra
tion that needs syntax to represent it dire
tly. Examples ofmodels often used are: (timed, hybrid) automata, Kripke stru
tures, �nite statema
hines, (labeled) transition systems, Petri nets, pro
ess algebra, (labeled) eventstru
tures.Many powerful models have been introdu
ed in order to in
orporate some spe
i�
aspe
ts, i.e. data view (in heterogeneous systems), state view (in rea
tive systems),or supporting the
on
ept of hierar
hi
al de
omposition (in
omplex
on
urrentsystems). Mu
h e�ort of the theory of
on
urren
y has been devoted to the study ofsuitable models for
on
urrent rea
tive systems, and to the formal understanding oftheir semanti
s. As ea
h system has an implementation in terms of a state ma
hine,it always has a state spa
e, and so does the
orresponding model. Su
h modelshave a
ommon idea that they are based on atomi
 units of
hange - transition,a
tions, events - whi
h are indivisible and allow the system to
hange its state.The di�eren
e between the models for
on
urrent systems may be expressed w.r.t.three relevant parameters: behavior or system model, interleaving or noninterleav-ing model, and linear or bran
hing time model [SNW96℄. In other words, models for
on
urren
y
an be
lassi�ed into the eight
lasses of models obtained by varyingthese three parameters in all the possible ways.2

1.1. Model
he
kingRepresenting the property in a spe
i�
ation language. Among spe
i�
ation lan-guages, the �rst and probably the most su

essful one is �rst-order logi
. Almostall interesting properties of programs
an be formulated in this language. How-ever, this
lassi
al logi
 is not well-suited for spe
ifying properties of
on
urrent
omputations. Temporal logi
, whi
h
an assert how the behavior of the systemevolves over time, has proved to be suitable for this purpose. Be
ause temporallogi
s, su
h as LTL, CTL, CTL∗ [Pnu77, CE81℄
an des
ribe the ordering of eventswithout introdu
ing time expli
itly.In general, properties of interest go under the
ategory of ordered exe
utions. Itrelates to veri�
ation of event and state ordering. Properties su
h as safety andliveness belong to this
ategory. When a system has to be veri�ed, it often turns outthat the property we are interested in is simply expressible in terms of rea
hability.This thesis is dedi
ated to rea
hability based problems.Model
he
king algorithm. On
e the model is built, one formally states the propertyto be
he
ked by a logi
al formula, and uses an appropriate algorithm to verifyif the formula holds in the model. State spa
e exploration is one of the mostsu

essful approa
hes parti
ularly when rea
hability-based properties have to be
he
ked. It
onsists in exploring a global state graph representing all behaviors ofthe model/system. This is done by re
ursively
omputing all su

essor states of allstates en
ountered during the exploration, starting from a given initial state, byexe
uting all possible a
tions/transitions in ea
h state. If the state spa
e is �nite,it
an be explored entirely.The �rst model
he
kers worked by
onstru
ting the whole state spa
e prior toproperty
he
king, but modern tools are able to perform veri�
ation on-the-�y asthe states are
omputed.Veri�
ation by state spa
e exploration has been studied by many resear
hers. Thesimpli
ity of the strategy lends itself to easy, and thus e�
ient, implementations. More-over, the range of properties that state spa
e exploration te
hniques
an verify has beensubstantially broadened thanks to the development of model
he
king methods for vari-ous temporal logi
s [CES86, QS82, VW86℄. As many veri�
ation tools have been devel-oped, for example Caesar, Spin (see [FGM+92, Hol97, BBF+01℄), the e�e
tiveness ofmodel
he
king, and parti
ularly the state spa
e exploration te
hniques, for debuggingand proving
orre
t systems is in
reasingly be
oming established. The number of su

essstories about applying these te
hniques to industrial-size systems keeps growing.However, model-
he
king su�ers from two main drawba
ks. Firstly, even a relativelysmall system model
an (and often does) yield a very large state spa
e. More pre
isely,owing to simple
ombinatori
s, the size of the state spa
e
an be exponential in the sizeof the model being analyzed. This exponential growth is known as the state explosionproblem. Se
ondly, when the system under study has an in�nite state spa
e, su
h asheterogeneous systems whose states
onsist of unbounded values (integers,
hannels in
ommuni
ation proto
ols),
lassi
al model
he
king no longer applies. Moreover, it doesnot allow to
he
k for some essential properties su
h as the boundedness of the
ommu-ni
ation
hannels of a proto
ol (this is an important property when implementation isan obje
tive). 3

Chapter 1. Introdu
tion1.2 Approa
hes to the state-spa
e explosion: the unfoldingte
hniqueOne
ategory of te
hniques ta
kling state-spa
e explosion are symboli
 methods [BCM+92℄that attempt to represent and manipulate sets of states impli
itly with a help of spe
i�
data stru
tures, rather than expli
itly as enumerations of their
omponents. The su

essof these methods is primarily due to the use of binary de
ision diagrams (BDD) [Bry86℄,for representing sets and relations over Boolean variables symboli
ally, making it pos-sible to verify systems with a very large number of states (more than 10100 rea
hablestates). Be
ause of this and other te
hni
al advan
es in symboli
 model
he
kers, it isnow possible to verify some rea
tive systems of realisti
 industrial
omplexity.Although symboli
 representations have greatly in
reased the size of the systemsthat
an be veri�ed, many realisti
 systems are still too large to be handled. Thus,it is important to �nd te
hniques that
an be used in
onjun
tion with the symboli
methods to extend the size of the systems that
an be veri�ed. Su
h te
hniques are,for instan
e,
ompositional reasoning [CLM89, SG90℄, abstra
tion [CGL94, GS97℄, andsymmetry redu
tion [CJEF96, ES96℄.A
olle
tion of veri�
ation te
hniques atta
king dire
tly the sour
es of state-spa
eexplosion phenomenon on
on
urrent rea
tive systems have demonstrated that exploringall interleavings of
on
urrent events is not a priori ne
essary for veri�
ation. Indeed, in-terleavings
orresponding to the same
on
urrent exe
ution
ontain related information,e.g. the same rea
hable state. The intuition behind these te
hnique is exploiting theindependen
e between
on
urrent exe
uted events, or in other words, the partial orderover events. Hen
e, these te
hniques are
alled partial-order methods.Many partial-order methods are based on partial-order redu
tions �rst appeared inde-pendently in [Val89℄ and [God90, GW91℄, and were developed further in [Val90, GHP92,WG93, Pel94℄. The stubborn sets [Val89℄, the persistent sets [God90℄, and the amplesets [Pel94℄ di�er in the a
tual details, but
ontain many similar ideas. Intuitively,rather than
hoosing to work with dire
t representations of partial orders, the model
he
king algorithms in these methods keep an interleaving representation of partial or-ders, but attempt to limit the expansion of ea
h partial-order
omputation to just oneof its interleavings, instead of all of them. A property to be
he
ked needs to be veri-�ed only on a redu
ed part of the global state spa
e. Partial-order methods yield resultsidenti
al to those of veri�
ation methods based on
lassi
al interleaving. Thus they makeit possible to perform the veri�
ation more e�
iently.Partial-order redu
tions des
ribed above are quite di�erent from the partial-ordermethod in our work,
alled unfolding te
hnique [M
M95a℄. Unfolding te
hnique is basedon the results of the theory of true
on
urren
y to repla
e the
lassi
al state/transi-tion models by partially ordered graphs. More pre
isely, using the unfolding theoryin [NPW80℄, the dynami
s of a safe Petri net is
aptured by the dynami
s of an a
y
li
net that lies in the
ategory of o

urren
e nets. O

urren
e nets as well as event stru
tures- a more abstra
t representation - belong to so
alled partial-order models of
on
urren
ythat were dis
ussed by many resear
hers in the 80's [Lam78, Maz86, Win86, Pra86℄. Un-folding algorithms intuitively
onsist of
omputing some behavioral models of the systemthat preserve Mazurkiewi
z's tra
e semanti
s [Maz86℄, and the properties are
he
keddire
tly on these partial-order models. The veri�
ation pro
ess is generally done togetherwith the
onstru
tion of the behavior models.Sin
e its introdu
tion in [M
M95a℄, the unfolding te
hnique has attra
ted
onsider-able attention and inspired a fairly large number of works.4

1.3. Veri�
ation of in�nite state systems
• The algorithm for
onstru
ting �nite pre�xes of the behavior model has beenfurther analyzed and improved [ERV96, KK01, CGP01, ERV02, KKV03℄, par-allelized [HKK02, SK04℄, and distributed [BHK06℄.
• The initial veri�
ation te
hnique, that only allowed to
he
k the rea
hability ofa state or the existen
e of a deadlo
k [M
M95a, MR97℄, has been extended toalgorithms for (almost) arbitrary properties expressible in Linear Temporal Logi
[CGP00, EH00, EH01℄.
• The unfolding te
hnique, initially developed for systems modeled as safe Petri nets,has been extended to high-level Petri nets [KK03℄, symmetri
al Petri nets [CGP01℄,unbounded Petri nets [AIN00℄, nets with read ar
s [VSY98℄, time Petri nets [FS02,CJ06℄, produ
ts of transition systems [ER99℄, automata
ommuni
ating throughqueues [LI05℄, networks of timed automata [BHR06, CCJ06℄, pro
ess algebras[LB99℄, and graph grammars [BCK04℄.
• The unfolding te
hnique has been implemented in several model
he
kers [SSE03,HKK02, KK05, GB96, MRE96℄ that allow, among others:
onforman
e
he
k-ing [M
M95b℄, analysis and synthesis of asyn
hronous
ir
uits [KKY04℄, moni-toring and diagnosis of dis
rete event systems [BHFJ03, CJ04℄, and analysis ofasyn
hronous
ommuni
ation proto
ols [LI05℄.1.3 Veri�
ation of in�nite state systemsThe veri�
ation of in�nite-state systems is one of the most
hallenging resear
h areasin formal and
omputer-aided veri�
ation. Being able to verify in�nite-state systems isinteresting not only due to the existen
e of
omplex systems that
omprise unboundedvariables, but also for several other reasons:
• Even though realizable,
omputer systems are �nite in some sense, their size isoften mu
h larger than what
an be handled by �nite-state methods. In�nite-statemodels are good abstra
tions of large �nite-state systems. Indeed, approximatinga large �nite domain by an unbounded one is usually more pre
ise than imposingunrealisti
ally small bounds on data values.
• In�nite-state systems are natural models of parameterized systems, when the rangeof parameter values is unbounded. It is often more
omfortable to reason indepen-dently from any limit than to impose an arbitrary upper bound on the size of asystem.
• The solutions developed for analyzing in�nite-state systems are usually also appli-
able to systems whose state spa
e is �nite but very large.In order to represent rea
tive systems as well as to extend the properties that
ouldbe
he
ked, models for in�nite-state systems were introdu
ed. Most of them are basedon a �nite-state automata extended with unbounded data [AJ93, EFM99℄: for instan
e,
ommuni
ating �nite-state ma
hines [Bo
78, BZ83℄ allow to model
ommuni
ation pro-to
ols, and Petri nets [Pet62℄
an represent systems with
ountably many resour
es.Most of the time, model
he
king is unde
idable for in�nite-state models sin
e they
ansimulate Minsky ma
hines. 5

Chapter 1. Introdu
tionHowever, for some
lasses of in�nite-state systems, some problems remain de
idable,su
h as the rea
hability problem for Petri nets [Kos82, May84℄. This lead to many workson the identi�
ation of de
idable sub
lasses of in�nite-state models along with dedi-
ated model-
he
king algorithms [Fin94, AJ96, CF97, HCF+02, Iba78, ISD+02, DJS99,EFM99, BM99, FS00b, FS00a, AD94, CJ99, LS02℄. Another
hallenge is that mostsystems are heterogeneous: for instan
e
he
king the boundedness of
ommuni
ation
hannels may require to
onsider the
hannels themselves as well as the number of
om-muni
ating pro
esses, hen
e pro
edures spe
i�
 to homogeneous systems do not apply.Fortunately, some of these te
hniques [KM69, AJ96℄ were found not to rely on the
lassof model, but rather on their stru
tural properties, leading to the
lass of well-stru
turedtransition systems [Fin87, Fin90, A�J00, FS01℄. They form a sub
lass of in�nite-statemodels in
luding Petri nets and some of their extensions, lossy
ommuni
ating ma
hines,some pro
ess algebras, et
. The well-preorder
ompatibility over states/transitions inwell-stru
tured transition systems gives rise to a ni
e feature: only a �nite pre�x of thesystem's behaviors needs to be
onsidered for
on
luding on the (in)satisfa
tion of severalproperties, parti
ularly boundedness or termination.1.4 ContributionsOur aim is the veri�
ation of
on
urrent systems that manipulate variables on unboundeddomains, hen
e in�nite-state systems. In this thesis, we explore the bene�ts of
ombiningthe e�
ient veri�
ation based on unfolding te
hnique and de
idability results on well-stru
tured transition systems.We provide a general framework for partial-order modeling of heterogeneous systems.We �rst show how labeled event stru
tures [NPW80, Win82℄
an be used for e�
ientmodeling of
ounters and FIFO
hannels. Moreover, the ideas that we used for themodeling of these two data types
an be applied in other
ases: they show how a
olle
tionof elements
an be e�
iently modeled, and how the order between these elements
anbe taken into a

ount if needed. The modelization is thus no more on the system level,but on the behavioral level.The labeled event stru
tures as behavioral/bran
hing/partially-ordered models arestri
tly related to system/linear/interleaving models generally used in model-
he
kingsu
h as labeled transition systems. We also give a stri
t
orresponden
e between thesetwo kinds of models by means of
oheren
e property. However, the advantage of the �rstmodel, hen
e our
hoi
e, in
omparison with the se
ond one is that it
an be dire
tly usedfor veri�
ation. Moreover, be
ause of the partial-order inside, labeled event stru
turesare generally
ompa
t, and this fa
t makes su
h veri�
ations more e�
ient. It is worthnoti
ing that our labeled event stru
tures without restraint on their labeling fun
tionsmay be nondeterministi
, i.e. a marking may
orrespond to a potentially in�nite setof system's states. As a
onsequen
e, they are general enough to be
ombined withsymboli
 te
hniques.The unfolding te
hnique, initially developed for systems modeled as Petri nets[M
M95a℄, requires a formalism having a notion of
on
urrent
omponents; in parti
ular,the formalism should allow us to determine for ea
h a
tion of the system whi
h
ompo-nents parti
ipate in the a
tion and whi
h ones remain idle. The most straightforwardapproa
h in order to apply the unfolding te
hnique for
on
urrent systems is Arnoldand Nivat's syn
hronized produ
ts of labeled transition systems [AN82, Arn92℄. Looselyspeaking, in this formalism,
omponents are modeled as labeled transition systems andmay exe
ute joint a
tions by means of a very general syn
hronization me
hanism. The6

1.4. Contributionsresult in [ER99℄ makes it
lear that the unfolding te
hnique is not tied to a parti
ularformalism, although its details may depend on the formalism to whi
h it is applied.However, this turns out not to be satisfa
tory: imagine that one models a
ounter byan interleaving model su
h as a labeled transition system, then if, say, three di�erentpro
esses want to in
rease the
ounter, their a
tions will get interleaved. As in prin
iplethose a
tions are independent, we lose a good deal of
on
urren
y present in the originalsystem. Our solution is to model a
on
urrent system by syn
hronized produ
t of (het-erogeneous)
omponents where the semanti
s of
omponents is given in terms of labeledevent stru
tures. Hen
e, when applying the unfolding te
hnique, one takes advantage ofthe intrinsi

on
urren
y in ea
h
omponent.Our syn
hronized produ
ts of labeled event stru
tures provide more information thanPetri nets about the stru
ture of the system. In parti
ular, we show that a Petri net maybe
onsidered as the parallel
omposition of its pla
es viewed as
ounters. Moreover, weshow that syn
hronized produ
ts of (labeled) event stru
tures
onform to event stru
turesemanti
s [Win82℄, and are thus (labeled) event stru
tures themselves. Hen
e, one easilyobtain a hierar
hi
al modelization for
omplex systems.Although labeled event stru
tures are
ompa
t representations of systems, they arein general in�nite due to the existen
e of in�nite
omputations. However, resear
h onveri�
ation of �nite systems shows that properties
an be
he
ked using
ertain �nitepre�xes,
alled
omplete pre�xes, of their state-spa
e. Of
ourse, there is no hope tohave a notion of
omplete pre�x for in�nite systems. There is hope though when su
hsystems have a weak simulation relation that is a well-preorder over states. We showhow to adapt the results in [Fin87, FS01℄ to labeled event stru
tures. We fo
us onthe following four veri�
ation problems: termination, boundedness, quasi-liveness andsub-
overing , that
an be fully de
ided with algorithms. In other words, veri�
ationalgorithms have theoreti
al termination guarantee.We show a way to dedu
e a (well-)preorder over
on�gurations of labeled event stru
-tures from the one over system states. Noti
e that, sin
e a
on�guration may
orrespondto several states, these two preorders are quite di�erent. They
oin
ide only for deter-ministi
 labeled event stru
tures. We give a notion of
ompatibility of transitions/eventsw.r.t. these preorders. Therefore, on
e the relation between preorders are determined,one may swit
h
orresponding
ompatibilities ba
k and forth between system/behaviormodels. We also show preservation of (well-)preorders as well as
ompatibilities underparallel
omposition using syn
hronized produ
ts.Based on the trun
ation
riteria in the unfolding te
hnique, we propose a generalde�nition of a
utting-
ontext for well-preordered labeled event stru
tures and show thatthey admit a �nite pre�x preserving one or more properties depending on the system'sstru
ture. Parti
ularly, we give appropriate
utting-
ontexts for the veri�
ation problemsthat we fo
us on: termination, boundedness, quasi-liveness and sub-
overing. Remarkthat these results
annot be dire
tly obtained from previous te
hniques on well-stru
turedsystems sin
e one needs to take into a

ount the partial-order between events. We
larifythe di�eren
e between global and lo
al
utting-
ontexts. The former one is similar tote
hniques used in interleaving models [Fin91, FS01℄ while the other one respe
ts the keyidea of the unfolding te
hnique, and is thus more suitable to partial-order veri�
ations.Although our te
hnique is based on forward partial-order analysis, we show that standardba
kward analysis te
hniques (see e.g. [AJ96℄)
ould be embedded. The intuitive idea
omes from the duality in the
ategory of (labeled) transition systems.As we use behavior models for systems, the model
he
king algorithms
onsist in
onstru
ting su
h models. In general, rea
hability-based properties may be
he
ked7

Chapter 1. Introdu
tionon-the-�y. We present a generalization of the unfolding algorithm in [M
M95a, ER99℄to parallel
omposition of labeled event stru
tures. The idea is that, one iterativelytries to enlarge some pre�x by adding new possible events without looking at global
on�gurations/states. We detail our unfolding algorithm into two parti
ular
ases: for
omponent labeled event stru
tures and for syn
hronized produ
ts of them. In the�rst
ase, on
e a
omponent is given by some labeled event stru
ture, its events formsomehow
on
rete patterns. By analyzing su
h patterns, one may obtain simple unfoldingalgorithms appropriate for the
omponent. We propose algorithms for
ounters andFIFO
hannels and some of their variants. Other labeled event stru
tures for standard
omponents may have dedi
ated algorithms in the same manner. In the se
ond
ase, theunfolding algorithm takes the notion of
on
urrent
omponent given by syn
hronization
onstraints into a

ount. The pro
ess of �nding events to be added must
onsider theasso
iated
omponent pre�xes.It is worth noti
ing that, in unfolding algorithms for Petri nets or syn
hronizedprodu
ts of interleaving models, adding events depends on
omponent states. But, inour algorithm for syn
hronized produ
ts of labeled event stru
tures, we syn
hronize
omponents' events. This task must be a

ompanied with an additional
he
king in orderto see if su
h a syn
hronization satis�es the
omponentially downward-
losed property inthe syn
hronization produ
t. The advantage of our te
hnique is that it allows the intrinsi

on
urren
y in
omponents to be preserved. Moreover, we show that the labeled eventstru
ture for a
omplex system may be algorithmi
ally
onstru
ted in a hierar
hi
al way.It is not ne
essary to
ompute
omponent labeled event stru
tures prior to unfoldingsyn
hronized produ
ts. Indeed, the syn
hronized produ
t's pre�x and its
omponentpre�xes are
onstru
ted together on-the-�y, and
omponent ones are extended whenneeded.Finally, as a pra
ti
al
ontribution, we have implemented a model
he
ker, Esu, thatruns our algorithms. It has been written in OCaml. To our knowledge, Esu is the�rst tool that
ombines the unfolding te
hnique and de
idable results on well-preorderedsystems. We also analyse the results obtained using Esu and some other well-establishedtools su
h as Pep and Tina to
ompare the bene�ts of di�erent methods. In addition, aheuristi
 te
hnique is integrated in Esu to generate more
ompa
t trun
ations. Althoughsu
h trun
ations do not preserve behaviors of the system in terms of Mazurkiewi
z'stra
e semanti
s, they are enough to
he
k rea
hability-based properties that we areinterested in. Experimental results show that this te
hnique is promising sin
e, for
ertain ben
hmark examples, we obtain trun
ations of whi
h the size does not ex
eedthe number of the system's rea
hable states.1.5 Organization of the thesisThis thesis is organized as follows.Chapter 2 provides basi
 notions that will be used along the thesis. We also introdu
etwo well-known models: labeled transition systems and Petri nets, as well as theirsemanti
s.Chapter 3 presents labeled event stru
tures, based on prime event stru
tures, togetherwith their properties. We motivate the
hoi
e of this model and brie�y
ompareit to other types of event stru
tures. We de�ne a stri
t
orresponden
e betweenlabeled event stru
tures and labeled transition systems modeling the same system.8

1.5. Organization of the thesisThe major part of this
hapter is dedi
ated to modeling
on
urrent systems. La-beled event stru
tures for standard systems su
h as
ounters and FIFO
hannelsare given. Their variants adapting to boundedness or di�erent initial values intu-itively demonstrate the ease of this modelization approa
h. We de�ne syn
hronizedprodu
ts of labeled event stru
tures and show how to use it for modeling
on
ur-rent systems as a hierar
hi
al stru
ture. In fa
t, a Petri net may be
onsidered assome syn
hronized produ
t of its pla
es, and ea
h pla
e, in its turn, is similar to a
ounter.Chapter 4 addresses the trun
ation te
hnique to obtain
omplete pre�xes of labeledevent stru
tures w.r.t. a given veri�
ation problem. We �rst de�ne (well-)preorderand
ompatibility on labeled event stru
tures that may be dedu
ed from the oneon labeled transition systems. We show that well-preorder and
ompatibility arepreserved in parallel
omposition.Cutting-
ontexts for interesting veri�
ation problems su
h as boundedness, ter-mination, quasi-liveness and sub-
overing, are given. The de
idability of theseproblems on well-preordered labeled event stru
tures are proved. We also study ate
hnique for adapting our forward analysis in order to obtain the same results assome ba
kward analysis.Chapter 5 des
ribes our general unfolding algorithm. We then detail it into two
ases:for syn
hronized produ
ts of labeled event stru
tures, and for their
omponentsthat, of
ourse, may be syn
hronized produ
ts. Appropriate algorithms for
oun-ters, FIFO
hannels, and even arbitrary systems (that have no lo
al
on
urren
y)are given. The
orre
tness and termination of all these algorithms are proved.In addition, we show that trun
ation te
hnique
an be integrated into the unfoldingalgorithm. Hen
e, the veri�
ation may be done together with the
onstru
tion oflabeled event stru
tures.Chapter 6 illustrates a methodology for modeling of heterogeneous systems on theexample of the Alternating Bit Proto
ol, and explains how to verify interestingproperties. Then, we brie�y des
ribe our model-
he
ker Esu. Experimental resultson standard ben
hmark examples are given. We also
ompare its results to the onesobtained by using well-established tools: Pep and Tina.Moreover, the well-known problem,
alled auto-
on
urren
y problem, of unfoldingte
hniques for Petri nets is dis
ussed. We show that its negative e�e
t may be wellredu
ed by using our heuristi
 te
hnique and as a
onsequen
e, the obtained pre�xis more
ompa
t but still preserves enough information for some rea
hability-basedproperties.Chapter 7
on
ludes the thesis and presents some perspe
tives of our work.
9

Chapter 2Preliminaries
Contents2.1 Relations and fun
tions . 112.2 Alphabet and words . 122.3 Orders . 132.4 Labeled transition systems . 142.4.1 Behaviors and properties . 162.4.2 Syn
hronized produ
ts of labeled transition systems 162.4.3 Simulation . 182.5 Petri nets . 192.1 Relations and fun
tionsWe use standard notations on sets. The power set of a set X, written P(X), is the set ofall subsets of X, and X is
alled the base set of P(X). Any subset F of P(X) is
alleda family of sets over X. We denote Pf (X) the family whi
h
ontains all �nite subsetsof X. A set of
ardinal one, X = {x} for some element x, is
alled a singleton. Wenotationally identify a singleton X by its only element x if there is no risk of
onfusion.A relation R between two sets X and Y is a subset of the Cartesian produ
t X ×Y .Let X ′ be a subset of X, the (left-)restri
tion of R to X ′ is another relation R′ between
X ′ and Y de�ned by R′ = {(x, y) ∈ R /x ∈ X ′}.Notation 2.1.1. The restri
tion of R to X ′ is denoted by R|X′ .We denote xR y the fa
t that (x, y) ∈ R. The
onverse relation of R, denoted byeither Ror R−1, is a relation between Y and X de�ned by {(y, x) ∈ Y × X /xR y}.The
omplement of R is denoted either by 6R or R , i.e. 6R = R = (X × Y) \ R. Fora given x ∈ X, the set of all elements y ∈ Y satisfying xR y is denoted by R(x), andmoreover it indu
es naturally the same notation on subsets of X.Notation 2.1.2. For any subset X ′ ⊆ X, R(X ′) =

⋃
x∈X′(R(x)).A relation R between X and Y is single-valued if R pairs x ∈ X with at most one

y ∈ Y , i.e. for all x ∈ X, |R(x)| ≤ 1; and R is total for all x ∈ X, there exists y ∈ Y su
hthat xR y. A fun
tion F from X to Y is any total and single-valued relation between11

Chapter 2. Preliminaries
X and Y . We write F : X → Y and
all X,Y respe
tively the domain of F , denoted by
Dom(F), and the
odomain of F , denoted by Codom(F).A fun
tion F : X → Y is bije
tive if it is

• inje
tive: ∀x, x′ ∈ X,F(x) = F(x′)⇒ x = x′; and
• surje
tive: ∀y ∈ Y,∃x ∈ X : F(x) = y.A bije
tive fun
tion is also
alled a bije
tion or one-to-one fun
tion.A binary relation R on a set X is a relation between X and X, i.e. R ⊆ X × X.Binary relation R is
• re�exive (irre�exive) if xRx (not xRx, resp.) for all x ∈ X,
• transitive if for all x, y, z ∈ X, xR y and yR z imply xR z,
• symmetri
 (asymmetri
) if for all x, y ∈ X, xR y implies yRx (yRx, resp.),
• antisymmetri
 if for all x, y ∈ X, xR y and yRx imply x = y.The identity relation over X is the set IX = {(x, x) /x ∈ X}. It is thus a re�exive,transitive, symmetri
 and antisymmetri
 binary relation. Given a subset X ′ ⊆ X, therestri
tion of R to X ′, denoted by R|X′ , is the set of all pairs (x, y) ∈ R for whi
h both

x and y are in X ′. Formally, R|X′ = R ∩ (X ′ ×X ′).The transitive
losure of a binary relation R on X, denoted by R+, is the smallesttransitive relation on X whi
h
ontains R. Relation R+ exists and is unique (as stated)for any binary relation R. The transitive
losure R+ may be de�ned as follows: ∀x, y ∈
X, xR+y i� there exists a non-empty and �nite sequen
e of element x1, . . . , xn ∈ X su
hthat x = x1, x1Rx2, . . . , xn−1Rxn, and xnR y (this
ondition
an be simply written as
x = x1Rx2 . . . RxnR y). The re�exive and transitive
losure of a binary relation Ron X, denoted by R∗, is the binary relation IX ∪ R+. Noti
e that the (re�exive and)transitive
losure of a (re�exive and) transitive relation R is R itself.2.2 Alphabet and wordsLet A be an alphabet, i.e. a �nite set of symbols, a �nite (in�nite) word w over A is any�nite (in�nite, resp.) sequen
e of symbols in A. We denote by A∗ (Aω) the set of all�nite (in�nite, resp.) words over A. The length of a word w is denoted by |w|, and wealso use ω to denote an in�nite length. And ε is the empty-word, whose length is equalto zero. Moreover, given any I ⊆ (N ∪ ω), we use notation AI to denote a subset ofwords based on words' length. Formally, AI is the set of all words in (A∗ ∪ Aω) whoselength is in I, i.e. AI = {w ∈ (A∗ ∪Aω) / |w| ∈ I}.For two words w ∈ A∗, w′ ∈ (A∗ ∪ Aω), we let w.w′ denote the
on
atenation of wand w′. A �nite word w ∈ A∗ is a pre�x of a word w′ ∈ (A∗ ∪Aω) if there exists anotherword w′′ ∈ (A∗ ∪Aω) satisfying w′ = w.w′′. Similarly, the word w′′ is then
alled a su�xof w′, and we write w′′ = (w−1)w′.Let A,B be two alphabets, and L be a fun
tion L : A→ B. We de�ne the fun
tion
LW on words over A whi
h is based on L, LW : (A∗ ∪Aω)→ (B∗ ∪Bω), as follows:

• LW(ε) = ε, and
• LW(w.w′) = LW(w).LW(w′) for all w ∈ A∗, w′ ∈ (A∗ ∪Aω).De�nition 2.2.1 (Subword order). Let M be an alphabet. The subword order 4 over

M∗ is de�ned by: for all w = m1m2 . . . mn ∈ M∗, for all w′ ∈ M∗, w′ 4 w i� w′ =
mi1mi2 . . . mik for some k ≤ n and 1 ≤ i1 < i2 < . . . < ik ≤ n.For every word w ∈M∗, its pre�xes as well as its su�xes are parti
ular subwords of
w itself.12

2.3. Orders2.3 OrdersA preorder ≤ on a set X is any re�exive and transitive binary relation on X.De�nition 2.3.1 (Well-preorder). A preorder 4 on a set X is a well-preorder (
onversewell-preorder) if every in�nite sequen
e x1, x2, . . . , xk, . . . of elements in X must
ontainan in
reasing (de
reasing, resp.) pair xi 4 xj (xi < xj, resp.) where i < j.A partial order ≤ is an antisymmetri
 preorder. For example, one
an dedu
e thatthe subword order over some �nite alphabet M de�ned in the previous sub-se
tion is apartial-order on M∗.De�nition 2.3.2 (poset). A partially ordered set (poset) is a pair (X,≤) where X is aset and ≤ is a partial order on X.Lemma 2.3.3. Let (X,≤) be a poset. For every subset Y of X, (Y,≤|Y) is a poset.Proof. By de�nition, ≤|Y is also a partial order on X as well as on Y ⊆ X be
ause there�exivity, transitivity and antisymmetry of ≤ are all preserved on ≤|Y .A total order E on X is a partial order su
h that for all x, y ∈ X, we have either
xEy or y Ex. A stri
t partial order on X is any irre�exive and transitive (and thereforeantisymmetri
) binary relation on X. Every partial order ≤ on X
orresponds to oneand only one stri
t partial order on X, denoted by <, whi
h is de�ned as < = (≤\ IX).Given two binary relations R andR′ on a set X, we say that R re�nes R′ if whenever
xR′ y it also holds that xR y. In other words, R
ontains R′, i.e. R′ ⊆ R. A linearextension of a partial order ≤ on X is any total order E on X whi
h re�nes the partialorder ≤.De�nition 2.3.4 (Linearisation). Let (X,≤) be a poset and Y be a subset of X. Alinearisation of Y w.r.t. ≤ is any sequen
e
ontaining all elements y1, y2, y3, . . . , of Ysu
h that y1 ⊳ y2, y2 ⊳ y3, . . ., for some linear extension E of ≤|Y .Remark: We sometimes represent a linearisation y1, y2, y3, . . . of Y by the
orrespondingword w = y1.y2.y3 . . . ∈ (Y ∗ ∪ Y ω).Let (X,≤) be a poset and Y be a subset of X, then y ∈ Y is a minimal (maximal)element of Y w.r.t. ≤ if for all y′ ∈ Y , y′ ≤ y (y ≤ y′, respe
tively) implies y′ = y.And ≤ is well-founded (
onverse well-founded) if every non-empty subset Y ⊆ X has aminimal element w.r.t. ≤.Minimal (maximal) elements of a subset Y need not exist (for example, when ≤ isnot well-founded) and there may be many minimal (maximal) elements. We denote theset of minimal (maximal) elements of a subset Y (w.r.t. ≤) by Min≤(Y) (Max≤(Y),respe
tively). If x, y ∈ Min≤(Y), x 6= y implies that neither x ≤ y nor y ≤ x.Sin
e ≤ is a binary relation between X and itself, given a subset Y ⊆ X, ≤(Y)
ontains all x ∈ X satisfying: there exists y ∈ Y where y ≤ x. The set ≤(Y) is
alledthe upward
losure of Y ⊆ X w.r.t. the poset (X,≤). Similarly, we have the downward
losure of Y , denoted by ≥(Y). A set Y is upward
losed (downward
losed) w.r.t. (X,≤)if it is equal to its upward
losure (downward
losure, resp.), i.e. Y = ≤(Y) (Y = ≥(Y),resp.).De�nition 2.3.5 (DAG). A dire
ted a
y
li
 graph (DAG) is a pair (V,E) in whi
h:

• V is
alled the set of verti
es, 13

Chapter 2. Preliminaries
• relation E ⊆ V × V is
alled the set of dire
ted edges, and
• E+ is irre�exive.We say that there exists a (dire
ted) path from a vertex v to another vertex v′ if

v E+v′. The last property in De�nition 2.3.5 intuitively means that there is no (non-empty) dire
ted path that starts and ends on a same vertex. Ea
h DAG gives rise to apartial order ≤ on its verti
es. Formally, if (V,E) is a DAG then (V, (E+ ∪ IV)) is aposet, where IV is the identity relation on V .Reversely, a poset (X,≤) is usually represented by and
omputed from one of DAGs
(X,E) (there are many) whi
h
orresponds to the poset, i.e. E+ = < = (≤ \ IX). Forthe sake of simpli
ity, the relation E would be as small as possible. If ≤(x) is �nite forall x ∈ X, ≤ gives rise to a unique minimal relation ⋖ so that ⋖

+ = <. Therefore, inthis thesis, we always
hoose the minimal relation ⋖ for representing (X,≤) as well asgraphi
ally illustrating it afterward.Notation 2.3.6. For a given poset (≤,X), we denote ⋖ the relation
⋂

R⊆(X×X) :R∗=≤

RLemma 2.3.7. If ≥(x) is �nite for all x ∈ X, then ⋖
∗ = ≤.Proof. Let S denote the set of all binary relation R on X satisfying R∗ = ≤. Due to thetransitive property of ≤, we have ≤∗ =≤, and
onsequently, ≤ ∈ S. Therefore, ⋖ ⊆ ≤and ⋖

∗ ⊆ ≤. We only need to prove that ⋖
∗ ⊇ ≤, that means, for all x, y ∈ X, if x ≤ ythen x ⋖

∗ y (1) by indu
tion on the size of ≥(y) be
ause it is �nite. In the base
ase,when |≥(y)| = 1, we must have x = y and obviously x ⋖
∗ y. In general, if x = y then(1) is also true, otherwise, i.e. x < y, there are two sub-
ases.First, if there does not exists any element z ∈ X su
h that x < z and z < y (2),let R be any relation in S. Sin
e R∗ = ≤ ∋ 〈x, y〉, there exists a �nite sequen
e

x = x0Rx1R . . .Rxn = y where n ∈ N and x0, x1, . . . , xn are pairwise di�erent.Moreover, n is not equal to 0 be
ause x 6= y. If n = 1 then xR y. Otherwise, thereexists an index i su
h that i ∈ {1, 2, . . . , n − 1} and x = x0R
+ xiR

+ xn = y. As a
onsequen
e, x = x0 ≤ xi ≤ xn = y. It follows from x0 6= xi 6= xn that x < xi < y. It
ontradi
ts to (2). Therefore, we have xR y for all R ∈ S, and
onsequently, x ⋖ y.Se
ond, if there exists z ∈ X su
h that x < z < y. Assume that z is
hosen sothat there is no other element z′ ∈ X satisfying z < z′ < y. Su
h an element z mustexist be
ause otherwise, one thus obtains an in�nite sequen
e z′ < z′′ < . . . < y. Andit
ontradi
ts to the �niteness of the set ≥(y). As in the previous sub-
ase, we have
z ⋖ y. Moreover, sin
e |≥(z)| is less than |≥(y)|, by the indu
tion hypothesis (1), wehave x ⋖

∗ z, and
onsequently, x ⋖
∗ y.Therefore, in both sub-
ases, we have x ⋖

∗ y. This lemma is proved.2.4 Labeled transition systemsDe�nition 2.4.1. A labeled transition system is a quadruple LTS = (S,Σ,→, s0) where:
• S is a (potentially in�nite) set of states,
• Σ is a �nite set of a
tions,
• the labeled transition relation → is any subset of S × Σ× S, and14

2.4. Labeled transition systems
• s0 ∈ S is the initial state.Intuitively, one
an evolve from a state s ∈ S to another state s′ ∈ S due to atransition whi
h is a

omplished by an a
tion a ∈ Σ, i.e. 〈s, a, s′〉 ∈→. It is thusreasonable to write su
h a transition as s

a
−→ s′. Formally, for any a
tion a ∈ Σ, a

−→ isa binary relation on S, de�ned as a
−→ = {(s, s′) ∈ S × S / 〈s, a, s′〉 ∈→}. We say thata
tion a is enabled from the state s and simply write s

a
−→ .Remark: The
lassi
al model
alled transition system
an always be
onsidered as labeledtransition system without labeling transitions by a
tions. A labeled transition system

(S,Σ,→LTS, s0) gives rise to a transition system (S,→TS, s0) where →TS⊆ S × S su
hthat for all s, s′ ∈ S, s −→TS s′ i� there exists a ∈ Σ satisfying s
a
−→LTS s′.Example 2.4.2. The
ounter initialized by 1 is the labeled transition system CT =

(N, {+,−},→, 1) where its labeled transition relation → is de�ned by {〈n,+, n + 1〉|n ∈
N} ∪ {〈n + 1,−, n〉|n ∈ N}.0 1 2 3+

−

+

−

+

−Figure 2.1: Graphi
al representation of the
ounter in Example 2.4.2Figure 2.1 illustrates the
ounter initialized by 1 in Example 2.4.2 (see Se
tion 3.3.2for formal de�nition of
ounter's family and detailed expli
ations) by a dire
ted graph.States are represented by
ir
les and every transition 〈s, a, s′〉 ∈→ is represented by anarrow leading from s to s′ labeled by a. The double frame of the
ir
le
orresponding tostate 1 indi
ates that it is the initial state of the system.Example 2.4.3. A FIFO (First-In-First-Out)
hannel in whi
h we
an send messagesranging over M = {a, b} and re
eive messages in its sending order,
an be modeled by
FF = (S,Σ,→, s0) where:

• S = M∗: ea
h state is a �nite word over M ,
• Σ = {!a / a ∈ M} ∪ {?a / a ∈ M}: a
tion !a (?a) means sending (re
eiving, resp.)message a into (from, resp.) the
hannel,
• →= {〈w, !a,w.a〉 /w ∈M∗, a ∈M} ∪ {〈a.w, ?a,w〉 /w ∈M∗, a ∈M}

• s0 = a: there are initially a message a and a message b in the
hannel.
a b

?a

?b

!a

!bFigure 2.2: The FIFO
hannel in Example 2.4.3Remark: By sending a
tions, the environment inserts messages into the
hannel, and
onversely, it removes messages from the
hannel by re
eiving a
tions. Sending andre
eiving intuitively mean a
tions of the environment and not the ones of the
hannel.This naming is naturally
onvenient while using
hannels in modeling
omplex systemsby syn
hronized produ
t (see Se
tion 3.3.4). 15

Chapter 2. Preliminaries2.4.1 Behaviors and propertiesDe�nition 2.4.4. Let LTS = (S,Σ, s0,→) be a labeled transition system. A �nite path(resp. in�nite path) in LTS is any �nite (resp. in�nite) sequen
e π = s1
a1−→ s′1, s2

a2−→

s′2, . . . , sk
ak−→ s′k, . . . of transitions su
h that s′i−1 = si for every index i > 1 in thesequen
e.We shortly write π = s1

a1−→ s2
a2−→ . . . sk

ak−→ sk+1 . . ., and we say that π starts in
s1. The transition relation (→) is extended to its transitive
losure (։).Notation 2.4.5. Given a word σ = a1.a2 . . . ak ∈ Σ∗, s1։sk+1

σ means that there is su
ha path π from s1 to sk+1.Let π = s1
a1−→ s2

a2−→ . . . sk
ak−→ sk+1 . . . be a path of a labeled transition system

LTS = (S,Σ, s0,→). π is
alled an exe
ution if it starts in the initial state of LTS, i.e.
s1 = s0. The word a1.a2 . . . ak is
alled a �ring sequen
e, and sk+1 is
alled rea
hable byexe
ution π.The rea
hability set of a labeled transition system LTS, denoted by post∗

LTS
, is theset of all rea
hable states of LTS.De�nition 2.4.6. Let LTS = (S,Σ, s0,→) be a labeled transition system, and S′ ⊆ Sbe some subset
ontaining the initial state s0. The restri
tion of LTS to S′, denoted by

LTS|S′ , is the labeled transition system LTS
′ = (S′,Σ,→′, s0) where →′ = → ∩ (S′ ×

Σ× S′).Given two labeled transition systems LTS and LTS
′, when their restri
tions on theirrea
hable states post∗

LTS
and post∗

LTS
′ are the same, i.e. LTS|post∗

LTS
= LTS

′|post∗
LTS′

, theyare intuitively inter
hangeable.De�nition 2.4.7. Let LTS = (S,Σ, s0,→) be a labeled transition system. LTS is:
• �nite (in�nite) if its set of states S is �nite (in�nite, respe
tively);
• deterministi
 if for all a
tion a ∈ Σ, a

−→ is single-valued fun
tion, i.e. s
a
−→ s′ and

s
a
−→ s′′ imply s′ = s′′; and

• �nitely-bran
hing if for all state s ∈ S, the set {s′ ∈ S /∃a ∈ Σ, s
a
−→ s′} is �nite.Be
ause the set of a
tions Σ in De�nition 2.4.1 is �nite, we have:Corollary 2.4.8. Deterministi
 labeled transition systems are �nitely-bran
hing.Proof. Obvious due to the �niteness of the a
tion set Σ in De�nition 2.4.1.Example 2.4.9. The
ounter in Example 2.4.2 and FIFO
hannel in Example 2.4.3 areboth �nite, deterministi
 and �nitely-bran
hing labeled transition systems.2.4.2 Syn
hronized produ
ts of labeled transition systemsWe now present a
omposition primitive that we use to build
omplex systems frombasi

omponents: the syn
hronized produ
t of labeled transition systems [ABC94℄. Ina syn
hronized produ
t,
omponents must behave a

ording to so-
alled syn
hronizationve
tors.Notation 2.4.10. Given a number n ∈ N and n sets X1,X2, . . . ,Xn, we denote the n-dimension spa
e X1 × X2 × . . . × Xn by ⊗(X1,X2, . . . ,Xn). When ε 6∈ Xi for all i in

{1, 2, . . . , n}, we denote the n-dimension spa
e (X1∪{ε})× (X2∪{ε})× . . .× (Xn∪{ε})by ⊗ε(X1,X2, . . . ,Xn).16

2.4. Labeled transition systemsNotation 2.4.11 (Component restri
tion). Given n sets X1,X2, . . . ,Xn. For all tuple
x = 〈x1, x2, . . . , xn〉 ∈ ⊗(X1,X2, . . . ,Xn) and for all i ∈ {1, 2, . . . , n}, we
all xi the
omponent restri
tion onto i of x, and denote it by x ↓i. Therefore, the
omponentrestri
tion onto i of a subset Y ⊆ X is the set {x↓i /x ∈ Y }, and is denoted by Y ↓i.Given n labeled transition systems LTS1,LTS2, . . . ,LTSn where LTSi = (Si,Σi,→i

, s0
i), i ∈ {1, 2, . . . , n}. A syn
hronization ve
tor is any n-tuple v in ⊗ε(Σ1,Σ2, . . . ,Σn),and a syn
hronization
onstraint is any subset ΣSP ⊆ ⊗ε(Σ1,Σ2, . . . ,Σn) of syn
hro-nization ve
tors. Intuitively, a label a in a syn
hronization ve
tor means that the
orre-sponding
omponent must take a transition labeled by a, whereas an ε means that the
omponent must not move. The syn
hronized produ
t is formally a labeled transitionsystem in whi
h the set of a
tions,
alled global a
tions, are determined by syn
hroniza-tion
onstraints.De�nition 2.4.12. Given n labeled transition systems LTSi = (Si,Σi,→i, s0

i) where
i ranges over {1, . . . , n} and a syn
hronization
onstraint ΣSP ⊆ ⊗ε(Σ1,Σ2, . . . ,Σn).The syn
hronized produ
t of LTS1,LTS2, . . . ,LTSn with respe
t to ΣSP is the labeledtransition system SP = (SSP,ΣSP,→SP, s0

SP
) de�ned by:

• SSP = ⊗(S1, S2, . . . , Sn),
• for all s, s′ ∈ SSP, a ∈ ΣSP: s

a
−→SP s′ i�, for every i ∈ {1, . . . , n}, s↓i

a↓i
−−→ s′↓i(noti
e that s↓i

ε
−→ s′↓i simply means that s↓i = s′↓i), and

• s0
SP

= 〈s0
1, . . . , s

0
n〉.Example 2.4.13. Let CT1 = (N, {+,−},→, 0), CT2 = (N, {+,−},→, 1), and CT3 =

(N, {+,−},→, 1) be three
ounters de�ned as in Example 2.4.2 with only di�eren
ein its initial states. Let ΣSP be the syn
hronization
onstraint de�ned as: ΣSP =
{〈−,+,+〉, 〈+,−,+〉, 〈ε, ε,−〉}. The semanti
s of the syn
hronized produ
t of CT1,CT2,and CT3 with respe
t to ΣSP is illustrated in Figure 2.3 where +SP,+′

SP
,−SP are respe
-tively abbreviations for global a
tions 〈−,+,+〉, 〈+,−,+〉, 〈ε, ε,−〉 .

〈1, 0, 0〉 〈0, 1, 1〉 〈1, 0, 2〉

〈0, 1, 0〉 〈1, 0, 1〉 〈0, 1, 2〉

+SP
+′

SP

+′
SP

+SP

−SP

−SP

−SP

−SP

Figure 2.3: A syn
hronized produ
t of three
ounters.Remark: Syn
hronized produ
t of labeled transition systems is a labeled transition sys-tem. This syn
hronized produ
t
an be a
omponent labeled transition system of anothersyn
hronized produ
t. In other words, syn
hronized produ
ts give us a way to hierar-
hi
ally model
omplex systems.Lemma 2.4.14. Syn
hronized produ
t of labeled transition systems is �nite, determin-isti
, �nitely-bran
hing if its
omponents are all �nite, deterministi
, �nitely-bran
hing,respe
tively. 17

Chapter 2. Preliminaries2.4.3 SimulationA labeled transition system is an abstra
t model of some real system in whi
h one is onlyinterested in
ertain a
tions or behaviors. Hen
e, a real system gives rise to many labeledtransition systems whi
h may be pairwise di�erent on the abstra
t level. Among them, alabeled transition system
an simulates another one, it means that every behavior of these
ond one is also a behavior of the �rst one,
alled an abstra
tion. And both of themsimulate the real system. The term "simulation" is used as in "this program simulatesthe pro
ess of people making de
isions".The de�nition of labeled transition systems immediately suggests a notion of simula-tion: initial states must be mapped to initial states, and for every a
tion the �rst labeledtransition system
an perform in a given state, it must be possible for the se
ond labeledtransition system to perform the
orresponding a
tion, if any, from the
orrespondingstate.De�nition 2.4.15 (Simulation). Let LTS1 = (S1,Σ1,→1, s
0
1) and LTS2 = (S2,Σ2,→2

, s0
2) be two labeled transition systems. A simulation relation from LTS1 to LTS2 is apair R = (RS ,RΣ) where RS ⊆ S1×S2 and RΣ ⊆ Σ1×Σ2 are two relations, su
h that:
• s0

1RS s0
2, and

• for all 〈s1, a1, s
′
1〉 ∈→1, s2 ∈ S2, s1RS s2 implies that there exists a transition

〈s2, a2, s
′
2〉 ∈→2 satisfying s′1RS s′2 and a1RΣ a2.

s1 s2

s′1 s′2

RS

a1

RS

a2RΣ

∀

∃

LTS1 LTS2

Figure 2.4: Simulation relation.Figure 2.4 illustrates the intuitive idea of De�nition 2.4.15. It is worth noti
ing thatour de�nition of simulation
on
erns not only the states but also the a
tions of twolabeled transition systems. The standard de�nition of simulation/bisimulation [Mil71,JP93, San04, San07℄ is thus a parti
ular
ase in whi
h two a
tion sets Σ1 and Σ2 are thesame and RΣ is the identity relation on Σ1. Our de�nition slightly di�ers from that of amorphism between labeled transition systems given by Sassone et al. [SNW96℄ in whi
h
RΣ is a partial fun
tion, i.e. Dom(RΣ) ⊆ Σ1, hen
e some a
tions of a labeled transitionsystem
ould be simulated by the ε-a
tion of another labeled transition system, i.e. theother system does not move.Example 2.4.16. Consider the FIFO
hannel in Example 2.4.3 FF = (M∗, {!a, !b, ?a, ?b},
→FF, a), where M = {a, b} and the syn
hronized produ
t of three
ounters in Exam-ple 2.4.13 SP = (N3, {+,+′,−},→SP, 〈0, 1, 1〉). Let us de�ne:18

2.5. Petri nets
• RS = {〈v,w〉 ∈ N

3 ×M∗ su
h that |w| = v3}, and
• RΣ = {〈+, !a〉, 〈+′, !b〉, 〈−, ?a〉, 〈−, ?b〉}.It is easy to see that (RS ,RΣ) is a simulation relation from SP to FF, and we say that FFsimulates SP. More pre
isely, a state 〈i, j, k〉 in SP is simulated by a word w = abab . . .where |w| = k.Now let us restri
t the state set of FF to the set of words in whi
h the �rst message,if exists, is a and two
onse
utive messages are always di�erent, and
alled it S′

FF
. Itmeans that S′

FF
= {ε, a, ab, aba, abab, . . .}. Let R′

S be the restri
tion of RS to the newdomain S′
FF

. Then (R′
S ,RΣ) is still a simulation relation from SP to the new labeledtransition system FF

′ and
onversely, (R′−1
S ,R−1

Σ) is also a simulation relation from FF
′to SP.Remark:When a labeled transition LTS1 is simulated by another one LTS2 w.r.t. to somesimulation relation (RS ,RΣ), by De�nition 2.4.15, we also have that LTS1 is simulatedby LTS2 w.r.t. every relation (RS ,R′

Σ) satisfying R′
Σ ⊇ RΣ. And parti
ularly, one
an
hoose su
h a relation R′

Σ so that it is the maximal one w.r.t. the in
lusion order, i.e.
R′

Σ = Σ1 × Σ2.Su
h a simulation relation (RS ,Σ1 × Σ2) intuitively indu
es to simulations betweentransition systems without labeling a
tions in whi
h one is interested in only systems'states. However, the smaller the relation RΣ is, the more information about
orre-sponden
e between systems' a
tion that one
an �gure out. This fa
t is also true forbisimulations de�ned as follow:De�nition 2.4.17 (Bisimulation). Two labeled transition systems LTS1 and LTS2 arebisimilar, or in bisimulation, if there exists a simulation relation (RS ,RΣ) from LTS1 to
LTS2 su
h that (R−1

S ,R−1
Σ) is also a simulation relation from LTS2 to LTS1.Notation 2.4.18. We denote the fa
t that LTS1 and LTS2 are bisimilar by LTS1 ∼ LTS2.Example 2.4.19. Given the
ounter in Example 2.4.2 CT = (N, {+,−},→CT, 1) and thesyn
hronized produ
t of the three
ounters in Example 2.4.13 SP = (N3, {+SP,+′

SP
,−SP},

→SP, 〈0, 1, 1〉). These two labeled transition systems are in bisimulation w.r.t. the bisim-ulation relation (RS ,RΣ), where
• RS = {〈v, k〉 ∈ N

3 × N su
h that k = v3}, and
• RΣ = {〈+SP,+〉, 〈+′

SP
,+〉, 〈−SP,−〉}.Intuitively, by grouping verti
es
orresponding to states 〈0, 1, k〉 and 〈1, 0, k〉 for every

k ∈ N in the Figure 2.3, we dire
tly obtains the graph representing the
ounter inFigure 2.1. The a
tions +SP, +′
SP

are identi
al and both
orrespond to the same a
tion'+' in the
ounter.2.5 Petri netsA net [NPW80, Rei85℄ is a triple (P, T,F) where P is a set of pla
es, T is a set oftransitions, and F ⊆ (P × T) ∪ (T × P) is its �ow relation su
h that P and T arepairwise disjoint. The preset (postset) of a node n ∈ P ∪ T , denoted by •n (resp. n•) isthe set of nodes {n′ ∈ P ∪ T / 〈n′, n〉 ∈ F} (resp. {n′ ∈ P ∪ T / 〈n, n′〉 ∈ F}).A multiset over a set X is a fun
tion µ : X → N. Noti
e that any subset of X maybe viewed as a multiset over X. We denote x ∈ µ if µ(x) ≥ 1, and for two multisets
µ, µ′ over X we write µ ≤ µ′ if µ(x) ≤ µ′(x),∀x ∈ X. The sum of two multisets µ and19

Chapter 2. Preliminaries
µ′ over X, denoted by µ + µ′, is given by (µ + µ′)(x) = µ(x) + µ′(x); and when µ′ ≤ µ,the di�eren
e, denoted by µ− µ′, is given by (µ− µ′)(x) = µ(x)− µ′(x).A marking of a net N = (P, T,F) is simply a multiset over P .De�nition 2.5.1 (Petri net). A Petri net is a quadruple (P, T,F ,m0) where N =
(P, T,F) is a net and m0 is a marking of N. m0 is
alled the initial marking.Figure 2.5 illustrates a Petri net in whi
h we use the standard rules about drawingnets: pla
es are represented as
ir
les, transitions as solid bars, �ow relation F by ar
s,and markings are shown by pla
ing tokens within
ir
les.

P = {p1, p2, p3}

T = {t1, t2}

F = {〈p1, t1〉, 〈t1, p2〉, 〈t1, p3〉}

∪ {〈p2, t2〉, 〈t2, p1〉, 〈t1, p3〉}

∪ {〈p3, t3〉}

m0 = {〈p1, 0〉, 〈p2, 1〉, 〈p3, 1〉}

•

•

p1 p2

p3
t1 t2

t3Figure 2.5: A Petri netThe semanti
 of a Petri net (P, T,F ,m0), is given by the one of its
orrespondinglabeled transition system LTS = (S,Σ, s0,→) where S is the set of all possible markingof (P, T,F), Σ = T , s0 = m0 and for all marking m,m′ and transition t, we have m
t
−→ m′i� •t ≤ m and m′ = m − •t + t•. Intuitively, �ring a transition t from a marking m isremoving a token in every pla
e in •t and then adding a token to every pla
e in t•.More interestingly, a pla
e p initialized with k tokens may be seen as a parti
u-lar Petri net ({p}, {t+, t−}, {〈p, t−〉, 〈t+, p〉}, {〈p, k〉}). This Petri net
orresponds to a
ounter CT = (N, {+,−},→CT, k). An arbitrary Petri net, on its turn,
orresponds to asyn
hronized produ
t of
ounters. For instan
e, let us
onsider the syn
hronized produ
t

SP of three
ounters in Example 2.4.13 and the Petri net (P, T,F ,m0) in Figure 2.5,pla
es in P are mapped to the
omponent
ounters of SP, and transitions in T aremapped to the syn
hronization
onstraint {〈−,+,+〉, 〈+,−,+〉, 〈ε, ε,−〉} of SP.De�nition 2.5.2. A k-bounded Petri net is a Petri net (P, T,F ,m0) in whi
h everyrea
hable marking m must satisfy that m(p) ≤ k for all p ∈ P .A parti
ular
ase of parameter k in De�nition 2.5.2 is when k = 1. In this
ase,su
h a Petri net is
alled 1-safe or a safe Petri net. A Petri net is used to des
ribe awide range of systems. In [M
M95a℄, M
Millan has proposed a veri�
ation te
hniqueon Petri nets whi
h is based on the
on
ept of net unfolding [NPW80℄. The unfoldingof a Petri net is a net with simpler stru
ture,
alled (labeled) o

urren
e net. However,for te
hni
al reasons, algorithms for
onstru
ting labeled o

urren
e nets of a Petri net
(P, T,F ,m0) requires two following restri
tions:

• there is no transition with empty preset, i.e. for all t ∈ T , •t 6= ∅, and
• the syn
hronization is �nite, i.e. for every transition t ∈ T , •t and t• are �nite sets.It is re
ommended to have a look at [Sta89, M
M95a, ERV96℄ for more details.20

Chapter 3Modeling
on
urrent systems bylabeled event stru
tures
Contents3.1 Prime event stru
tures . 223.1.1 Example and graphi
al representation 233.1.2 Con�gurations and extensions 233.1.3 Sub-stru
tures . 243.1.4 Prime vs general event stru
tures 273.2 Labeled event stru
tures . 273.2.1 Semanti
s of labeled event stru
tures 283.2.2 Properties of labeled event stru
tures 303.3 Modeling
on
urrent systems 323.3.1 Labeled event trees . 323.3.2 Counters . 343.3.3 FIFO
hannels . 433.3.4 Syn
hronized Produ
ts of Labeled Event Stru
tures 54Event stru
tures [NPW80, Win82℄, abstra
t away from the
y
li
 stru
ture of thepro
ess and
onsider only events, assumed to be the atomi

omputational steps, andthe
ause/e�e
t relationships between them. Thus, we
an
lassify event stru
turesas behavioral, bran
hing and noninterleaving models. In Se
tion 3.1, we introdu
e primeevent stru
tures as well as asso
iated
lassi
al notations. A brief
omparison with generalevent stru
tures is also given in this se
tion.In order to model a system's behavior, we are rather interested in labeled eventstru
tures. It allows us to represent states and di�erent operations of a system bymeans of labeling fun
tions. As a
onsequen
e, one will �nd in Se
tion 3.2 some stri
t
orresponden
e between su
h labeled event stru
tures and labeled transition systemswhi
h model a same system. The advantage of the �rst model, in
omparison with these
ond one, is that it
an be dire
tly used for veri�
ation (see Chapter 4). And moreover,be
ause of the partial-order inside, labeled event stru
tures are generally
ompa
t, andthis fa
t makes veri�
ations more e�
ient.Con
urrent labeled event stru
tures for well-known systems, su
h as
ounters andFIFO
hannels, will be given in Se
tion 3.3. They provide a set of examples of how21

Chapter 3. Modeling
on
urrent systems by labeled event stru
turesto exploit independen
e between a system's a
tions. This independen
e brings forththe
on
urren
y of labeled event stru
tures afterward. Then, we also de�ne a
lass ofsyn
hronized produ
ts of labeled event stru
tures that
onforms to the syn
hronizationidea on produ
ts of labeled transition systems given in Chapter 2. Su
h a syn
hronizedprodu
t of labeled event stru
tures inherits well the
on
urren
y of its
omponents.3.1 Prime event stru
turesDe�nition 3.1.1 (Prime Event Stru
ture). A prime event stru
ture is a triple E = (E,≤
,#) where E is a set of events, ≤ ⊆ E×E is a partial order on E, the
ausality relation,and # ⊆ E × E is a symmetri
, irre�exive relation, the
on�i
t relation, satisfying:

• �nitary : ∀e ∈ E, ≥(e) is �nite, and
•
on�i
t-inheritan
e: ∀e, e′, e′′ ∈ E, e#e′ and e′ ≤ e′′ implies that e#e′′.Intuitively, events (stri
tly speaking event o

urren
es) in a prime event stru
tureare ordered w.r.t. the
ausality relation. This partial order means that an event mustbe pre
eded by, or o

ur after, some other one; and moreover, by only a �nite number ofevents. It is worth noti
ing that this property of �nitary in De�nition 3.1.1 is fundamentalfrom a
omputational point of view. The reason for this is that we assume that only�nitely many events
an o

ur in a �nite amount of time. And therefore, only eventswith �nitely many
auses
an o

ur.Hen
e, a prime event stru
ture is simply a poset (E,≤) equipped with a
on�i
trelation # whi
h means that two events, for example e and e′,
an not both o

ur. Andnaturally, events afterward are thus in
on�i
t as the
on�i
t-inheritan
e property states.Noti
e that an event
an not be in
on�i
t with itself due to the irre�exivity of
on�i
t relation. This
ondition is sometimes
alled
onsistent [Win82℄ or non-self-
on�i
t property in similar
on
urrent stru
tures, e.g. o

urren
e nets [M
M95a℄. Twoevents are
on
urrent if they are neither
ausal nor in
on�i
t. This
on
urrent relationis thus a symmetri
 and irre�exive binary relation on E.Notation 3.1.2. We denote ‖ the
on
urrent relation ((E × E) \ (≤ ∪ ≥)) \#.We extend the relations of
on�i
t and of
on
urren
y to subsets of E, and respe
-tively denote by #s, ‖s , as follows:
• X#sY i� # ∩ (X × Y) 6= ∅, and
• X ‖s Y i� (X × Y) ⊆‖.In words, two subsets X,Y are
on�i
t if there exists a pair of event x ∈ X and

y ∈ Y whi
h are in
on�i
t; and these subsets are
on
urrent if all su
h pairs of eventsare
on
urrent. Given an event e, re
all that e
an stand for the singleton {e}, hen
e
e ‖s X means that e is
on
urrent with every event in X. An event set X ⊆ E is
alled
on
urrent if e ‖s (X \ e) for all events e ∈ X.Thanks to Lemma 2.3.7, it follows from the �nitary property that the binary relation
⋖
orresponding to the poset (E,≤) (see Notation 2.3.6 on page 14) satis�es that ⋖∗ = ≤.Moreover, sin
e ⋖ is the interse
tion of all binary relations whose transitive
losures areequal to ≤, ⋖ is the minimal one w.r.t. the in
lusion order.As in graph theory, for two di�erent events e, f ∈ E, if e < f then we say that e isa prede
essor of f , and reversely, that f is a su

essor of e. More pre
isely, e is a dire
tprede
essor of f and f is a dire
t su

essor of e if there does not exists another event
g su
h that e < g and g < f . As shown in the proof of Lemma 2.3.7, the relation ⋖22

3.1. Prime event stru
turesformally represents this dire
t prede
essor/su

essor relation, i.e. e ⋖ f . Hen
e, the setof dire
t prede
essors (su

essors) of an event e is the set ⋗(e) (⋖(e) respe
tively). Inthis work, we brie�y
all ⋖ the prede
essor relation.3.1.1 Example and graphi
al representationExample 3.1.3. The prime event stru
ture E = (E,≤,#) where:
• E = {e1, e2, e3, e4, e5, e6},
• ≤= IE ∪ ({e2} × {e3, e4, e5, e6}) ∪ ({e4} × {e5, e6}), and
• # = ∅,has no
on�i
t. Its events are pairwise in
ausal or
on
urrent.(a)

e1 e2

e3 e4

e5 e6

(b)
f2

f4 f5

f8 f9

f1 f3

f6 f7

Figure 3.1: Graphi
al representation of prime event stru
turesFigure 3.1.a illustrates the prime event stru
ture in Example 3.1.3. We adopt thestandard rules about drawing o

urren
e nets. Events are drawn with boxes, and
ausalrelation is the the transitive re�exive
losure of the relation depi
ted by the orientedar
s. In other words, boxes and ar
s in this �gure
orrespond to verti
es and edges of aDAG (E, ⋖) whi
h give rise to the poset (E,≤).For the purpose of adapting other works on the unfolding te
hnique,
ausal eventsare in top-down dire
tion w.r.t.
ausal relation.The
on�i
t relation is represented by ar
 drawn like: f2 f3, as we
an seein another example of prime event stru
ture E′ = (E′,≤′,#′) whi
h is shown in Fig-ure 3.1.b. It is worth noti
ing that our graphi
al representation depi
ts only a sub-set #′′ of the
on�i
t relation #. For
larity, this relation #′′ should be as small aspossible, however, in addition of the
on�i
t-inheritan
e, #′′ is enough for
omputing
#. Formally, #′′ = {〈e, f〉 ∈ #′ />(e)#′s >(f)}. In this example, it follows from
#′′ = {〈f2, f3〉, 〈f3, f2〉, 〈f5, f7〉, 〈f7, f5〉} that the
on�i
t relation #′ is given by:

#′ =
(
≤′(f2)×≤

′(f3)
)
∪

(
≤′(f3)×≤

′(f2)
)

∪
(
≤′(f5)×≤

′(f7)
)
∪

(
≤′(f7)×≤

′(f5)
)

= ({f2, f4} × {f3, f5, f6, f7, f8, f9}) ∪ ({f3, f5, f6, f7, f8, f9} × {f2, f4})

∪ ({f5, f8, f9} × {f7}) ∪ ({f7} × {f5, f8, f9})3.1.2 Con�gurations and extensionsA subset of E is
alled
on�i
t free if it does not
ontain events that are in
on�i
t. 23

Chapter 3. Modeling
on
urrent systems by labeled event stru
turesDe�nition 3.1.4 (Con�guration). Let E = (E,≤,#) be an prime event stru
ture. A
on�guration of E is any �nite subset C of E su
h that C is downward
losed w.r.t.
(E,≤) and
on�i
t free.For all event e ∈ E, the downward-
losed set ≥(e) is a
on�i
t free set due to the
on�i
t-inheritan
e and irre�exivity of the
on�i
t relation in De�nition 3.1.1. Hen
e,
≥(e), �nite by de�nition, is also a
on�guration and is
alled the lo
al
on�guration of
e.Notation 3.1.5. Let E = (E,≤,#) be an prime event stru
ture. We denote by CE and
Cl

E
respe
tively the set of
on�gurations and the set of lo
al
on�gurations of E.De�nition 3.1.6 (Extension). Let C be a
on�guration of a prime event stru
ture

E = (E,≤,#). An event e ∈ E is an extension of C, denoted by, C ⊢ e if e 6∈ C and
C ∪ {e} is a
on�guration of E.The extension of a
on�guration by events dire
tly gives rise to a notion of extensionby a set of events. We
all a subset X ⊆ E an extension set of
on�guration C, andwrite C
 X, if X and C are disjoint and C ∪X is also a
on�guration.Remark that our set extension
 on prime event stru
tures slightly di�ers from theextension notion
′ on lo
al event stru
tures [HKT96℄ in whi
h an extension set X mustbe a
on
urrent set, and it dedu
es that X = Min(E,≤)(X). The triple (E,CE,
′) is thusa lo
al event stru
ture.Lemma 3.1.7. Given a
on�guration C of a prime event stru
ture E = (E,≤,#). Forall non-empty extension set X ⊆ E of C we have:1. ∃e ∈ X su
h that C ⊢ e and (C ∪ e)
 (X \ e), and2. if X is �nite, then ∃f ∈ X su
h that C
 (X \ f) and ((C ∪X) \ f) ⊢ f .Proof. First item: Let g be any event in X. Due to the �nitary property of E inDe�nition 3.1.1, ≥(g) is �nite, and so does ≥(g) \ C. There exists a minimal event e of
(≥(g) \ C) w.r.t. (E,≤). Hen
e C ∪ e is downward
losed w.r.t. (E,≤). Sin
e C ∪X is
on�i
t free, and (C ∪ e) ⊆ (C ∪X), C ∪ e is thus a
on�guration. We have C ⊢ e and
(C ∪ e)
 (X \ e) by de�nition.The se
ond item
an be proved by the same manner as the �rst one while
hoosing
f as a maximal event w.r.t. (E,≤) of the �nite set X.Corollary 3.1.8. For every extension set X of a
on�guration C, i.e. C
 X, forevery linearisation e1, e2, e3, . . . of X w.r.t. (E,≤) we have C ⊢ e1, (C ∪{e1}) ⊢ e2, (C ∪
{e1, e2}) ⊢ e3, . . .The de
idability of some veri�
ation problems on prime event stru
tures (see laterin Se
tion 4.2) requires that prime event stru
tures satisfy the following property.De�nition 3.1.9. A prime event stru
ture E = (E,≤,#) is �nitely-bran
hing if every
on�guration C ∈ CE has a �nite number of extension events, i.e. {e ∈ E /C ⊢ e} is�nite.3.1.3 Sub-stru
turesDe�nition 3.1.10. Let E = (E,≤,#) be a prime event stru
ture, F ⊆ E be a set ofevents. The restri
tion of E onto F , denoted by E|F , is the triple (F,≤|F ,#|F) where
≤|F ,#|F are respe
tively the restri
tions of ≤,# onto (F × F).24

3.1. Prime event stru
turesLemma 3.1.11. E|F is a prime event stru
ture for every subset F ⊆ E.Proof. (F,≤|F) is a poset by Lemma 2.3.3 on page 13, let us denote ≤|F by ≤′. Thesymmetry and irre�exivity are preserved in binary relation #|F . Moreover, ≥′(f) ⊆ ≥(f)is �nite for all event f ∈ F , and
on�i
t-inheritan
e is also guaranteed with ≤|F and
#|F . E|F is thus a prime event stru
ture.De�nition 3.1.12 (Pre�xes). Let E = (E,≤,#) be a prime event stru
ture. Given adownward-
losed set F ⊆ E w.r.t. the
ausality ≤, the restri
tion of E onto F , i.e. E|F ,is
alled the F -pre�x of E.In pra
ti
e, one only works on some �nite pre�x E|F of E, i.e. F is �nite (seeChapter 5). The pre�x E|F gives not only a downward-
losed set of events but also the
ausality and the
on�i
t relation between these events. The notion of sub-stru
tures,as a
onsequen
e, the notion of pre�x,
ould be generalized to event stru
tures of whi
hevent sets may be disjoint. It bases on so
alled isomorphism whi
h is de�ned as follows:De�nition 3.1.13 (Isomorphism). We say that two event stru
tures (E,≤,#) and
(E′,≤′,#′) are isomorphi
 if there exists a bije
tion B between E and E′ su
h that, forall events e, f ∈ E,

• e ≤ f i� B(e) ≤ B(f), and
• e#f i� B(e)#′B(f).Then, an event stru
ture E′ is also
alled a pre�x of another one E = (E,≤,#), w.r.t.isomorphism, if E′ is isomorphi
 with some pre�x E|F of E. In this
ase, we say that E′is smaller than or equal to E w.r.t. isomorphism. It intuitively de�nes a partial-order onthe set of all event stru
tures,
alled the pre�x-order. In this poset, the event stru
turewithout event, i.e. (∅, ∅, ∅), is the minimal one.Another parti
ular kind of sub-stru
tures
on
erning E is its su�x . A su�x is basedon some
on�guration C ∈ CE. Re
all that C is intuitively a set of events,
ertainlydownward-
losed and
on�i
t-free, whi
h
an o

ur together. One is interested in eventsthat
an o

ur afterward, or together with events in C. The set of su
h events is theset ((E \ C) \#(C)) whi
h may be determined in another way by the union set of allextension sets of C in E.De�nition 3.1.14 (Su�xes). Given a
on�guration C of a prime event stru
ture E =

(E,≤,#), the restri
tion of E onto ((E \ C) \#(C)) is
alled the C-su�x of E.As detailed in Se
tion 3.3, when aiming at modeling a system by
ertain event stru
-ture E, ea
h
on�guration C in E
orresponds somehow to a system's state. The C-su�xof E intuitively models another system that is di�erent from the �rst one only on itsinitial state. Therefore, in a theoreti
al view, su�xes of an event stru
tures allow us tomodel a family of systems. As a dire
t
onsequen
e of Lemma 3.1.11, su�xes as well aspre�xes of a prime event stru
ture are prime event stru
tures.Example 3.1.15. Figure 3.2 depi
ts the {f1, f3}-su�x of the prime event stru
ture E =
(E,≤,#) shown in Figure 3.1.b. The event set of this su�x is
omputed as follows:

E′ = ((E \ {f1, f3}) \#({f1, f3}))

= ((E \ {f1, f3}) \ {f2, f4})

= {f5, f6, f7, f8, f9} 25

Chapter 3. Modeling
on
urrent systems by labeled event stru
tures
f2

f4 f5

f8 f9

f1 f3

f6 f7

Figure 3.2: The {f1, f3}-su�x of E given in Figure 3.1.b.Lemma 3.1.16. Let E = (E,≤,#) be a prime event stru
ture, and C be a
on�gurationin E. X is an extension set of C, i.e. C
 X, i� X is a
on�guration in the C-su�x of
E.Proof. Let S denote the event set of the C-su�x of E, i.e. S = (E \ C) \ #(C). Byde�nition of event set, X ∩ #(C) = ∅, and
onsequently, X is thus a subset of S.(⇒) Sin
e (C ∪ X) is downward
losed w.r.t. (E,≤), X is downward
losed w.r.t.

(E \C,≤|(E\C)). Moreover, it follows from the
on�i
t-freeness of (C ∪X) that Xis also
on�i
t-free w.r.t. both # and #|S . Therefore, X is a
on�guration in E|S .(⇐) It follows from X∩ #(C) = ∅ that (C∪X) is thus a
on�i
t-free set w.r.t. #. Let ebe any event in≥(C∪X), thanks to the
on�i
t-freeness of (C∪X), e is not in #(C),and
onsequently, e is either in C or in S. Noti
e that ≥(C∪X) = ≥(C)∪≥(X), if
e ∈ S then e must be in ≥(X)∩S. Sin
e X is downward-
losed w.r.t. ≤|S , we have
e ∈ (≥(X) ∩ S) = ≥|S(X) = X. Hen
e, we always obtain either e ∈ ≥(C) = C or
e ∈ X. As a
onsequen
e, ≥(C ∪X) = (C ∪X) that means (C ∪X) is downward-
losed w.r.t. the
ausality ≤. Therefore, X is an extension set of C.Corollary 3.1.17. Let C be a
on�guration of a prime event stru
ture E = (E,≤,#).

• if E is �nitely-bran
hing then the C-su�x of E is �nitely-bran
hing; and
• if every event in E is not in
on�i
t with C, i.e. #(C) = ∅, and the C-su�x of Eis �nitely-bran
hing then E is �nitely-bran
hing.Proof. Let S denote the event set of the C-su�x of E, i.e. S = (E \C) \#(C). Thanksto Lemma 3.1.16, every
on�guration X in the C-pre�x gives rise to a
on�guration

(C ∪X) in E. The left-to-right impli
ation is obvious.For the right-to-left impli
ation, let C ′ be any
on�guration in E and let X = C ′ \C.Sin
e #(C) = ∅, S and C are disjoint sets and E = C ∪ S. The event set X, maybeempty, is thus an extension set of C and is a
on�guration in the C-su�x E|S due toLemma 3.1.16. An extension of C ′ in E must be either an event in C or, otherwise, anextension of C ∪X. On
e again, thanks to Lemma 3.1.16, in the se
ond
ase, su
h anextension
orresponds to another extension of X in E|S . Sin
e C is �nite and X has�nitely many extensions in E|S , C ′ has a �nite number of extensions in E too. Therefore,
E is �nitely-bran
hing.26

3.2. Labeled event stru
tures3.1.4 Prime vs general event stru
turesPrime event stru
ture is a sub
lass of event stru
ture [NPW80, Win82℄ whi
h is generallyde�ned by a
ouple (E,C) where E is a set of events, C is a family of sets over event sets
E, or set of
on�gurations. There is an equivalen
e between this de�nition of prime eventstru
tures and De�nition 3.1.1. However, we are interested in the se
ond one be
ause,for many standard systems, the
on�i
t and
ausality relations may be naturally de�ned.Then these relations serve to
ompute
on�gurations, and not
onversely.Moreover, aiming at
onstru
ting event stru
ture for systems, we have no
on
ern inevent stru
tures not belonging to this sub
lass. That means event stru
tures whi
h donot satisfying the following properties of prime event stru
tures:

• full : every event is asso
iated to at least one
on�guration, and
•
ausality relation is global : order between two events, if exists, is not varied ina

ordan
e with some
on�guration whi
h
ontains these events.From now on, we will say event stru
tures for short, always meaning prime eventstru
tures.3.2 Labeled event stru
turesDe�nition 3.2.1 (Labeled event stru
tures). A labeled event stru
ture is a tuple E =

(E,≤,#,L,M) where (E,≤,#) is an event stru
ture, and
• L,
alled label fun
tion, is a fun
tion from event set E to some alphabet Σ, and
• M,
alled marking fun
tion, is a fun
tion from
on�guration set CE to the powerset of some (maybe in�nite) set S.Re
all that the
o-domain is part of the de�nition of a fun
tion. Although the sets

Σ and S are not expli
itly given in the tuple (E,≤,#,L,M) representing a labeledevent stru
ture, we always denote Σ the
o-domain of L, i.e. Σ = Codom(L), and S thebase set of the
o-domain of M, i.e. P(S) = Codom(M). These sets Σ, S are
alledrespe
tively the set of a
tions and the set of states.A labeled event stru
ture E = (E,≤,#,L,M) is simply an event stru
ture (E,≤,#)equipped with two additional labeling fun
tions in order to model the behavior of asystem. Hen
e, all notations and de�nitions on its event stru
ture (E,≤,#) previouslyde�ned in Se
tion 3.1, su
h as
on�guration, extension, pre�x and su�x, are generalizedfor the labeled event stru
ture itself. Labeling fun
tions for a sub-stru
ture E′ based onsubset event E′ are thus its left-restri
tions to E′, i.e. L|E′ andM|C′ where C′ = CE′ isthe
on�guration set of E′.De�nition 3.2.2. A labeled event stru
ture E = (E,≤,#,L,M) is deterministi
 if the
o-domain of the marking fun
tionM
ontains only singletons of the set of states S, i.e.
Codom(M) = {{s} / s ∈ S}.Remark: For deterministi
 labeled event stru
tures, marking fun
tionsM may be simplyde�ned as a fun
tion from
on�guration set CE to the set of states S, and its
o-domainis then extended to the power set P(S). 27

Chapter 3. Modeling
on
urrent systems by labeled event stru
tures3.2.1 Semanti
s of labeled event stru
turesLabeled event stru
ture is used for modeling behaviors of a system. Intuitively, the labelfun
tion L tells whi
h events are o

urren
es of whi
h system's a
tion, while the markingfun
tionM asso
iate a
on�guration to some states of the system.
−

e1

+
e2

−
e3

+
e4

−
e5

+
e6

−SP

e1

+′
SP

e2

−SP

e3

+SP

e4

−SP

e5

+′
SP

e6

MCT MSP

1← ∅ → 〈0, 1, 1〉
0← {e1} → 〈0, 1, 0〉
2← {e2} → 〈1, 0, 2〉
1← {e1, e2} → 〈1, 0, 1〉
1← {e2, e3} → 〈1, 0, 1〉
3← {e2, e4} → 〈0, 1, 3〉
0← {e1, e2, e3} → 〈1, 0, 0〉
2← {e1, e2, e4} → 〈0, 1, 2〉
2← {e2, e3, e4} → 〈0, 1, 2〉
2← {e2, e4, e5} → 〈0, 1, 2〉
4← {e2, e4, e6} → 〈1, 0, 4〉
1← {e1, e2, e3, e4} → 〈0, 1, 1〉
1← {e1, e2, e4, e5} → 〈0, 1, 1〉
3← {e1, e2, e4, e6} → 〈1, 0, 3〉
1← {e2, e3, e4, e5} → 〈0, 1, 1〉
3← {e2, e3, e4, e6} → 〈1, 0, 3〉
0← {e1, e2, e3, e4, e5} → 〈0, 1, 0〉
2← {e1, e2, e3, e4, e6} → 〈1, 0, 2〉
2← {e2, e3, e4, e5, e6} → 〈1, 0, 2〉
1←{e1, e2, e3, e4, e5, e6}→ 〈1, 0, 1〉

CE

Figure 3.3: Examples of labeled event stru
turesExample 3.2.3. Let's
onsider the event stru
ture (E,≤,#) depi
ted in Figure 3.1.b.We
an have two di�erent labeled event stru
tures whi
h are deterministi
 and are re-spe
tively de�ned by two pairs of labeling fun
tions (LCT,MCT) and (LSP,CTSP) where:
• LCT : E → {+,−}, MCT : CE→ N, and
• LSP : E → {+SP,+′

SP
,−}, MSP : CE→ N

3.These labeled event stru
tures are illustrated in Figure 3.3.Labeled event stru
tures are graphi
ally represented like event stru
tures (see Se
-tion 3.1.1). In addition, the label of an event is shown inside the box
orresponding tothe event. In Figure 3.3, the marking fun
tion MCT, as well as MSP, is individuallyde�ned for ea
h element (
on�guration) in its domain CE.De�nition 3.2.4. Let E = (E,≤,#,L,M) be a labeled event stru
ture. A labeledtransition system indu
ed by E, denoted by LTS
E, is de�ned as follows:

• the set of states is the base set S of
o-domain of the marking fun
tionM,
• the set of a
tions is the
o-domain Σ of the label fun
tion L,
• the transition relation → satisfying that for all s, s′ ∈ S, a ∈ Σ, s

a
−→ s′ i� thereexists a
on�guration C ∈ CE and an event e ∈ E su
h that C ⊢ e, s ∈M(C), a =

L(e) and s′ ∈M(C ∪ {e}).28

3.2. Labeled event stru
tures
• the initial state s0 ∈M(∅).Remark: Due to the last item in De�nition 3.2.4, a labeled event stru
ture does notindu
e an unique labeled transition system.Moreover, sin
e a
on�guration
orresponds to a set of states, indu
ed labeled tran-sition systems are generally not deterministi
. Although of the determinism of a labeledevent stru
ture (De�nition 3.2.2), its indu
ed labeled transition systems are determinis-ti
 only if, from every
on�guration C, all extensions whose labels are the same, give asame marking. The following lemma is straightforward.Lemma 3.2.5. Let E = (E,≤,#,L,M) be a deterministi
 labeled event stru
ture. Iffor every
on�guration C ∈ CE and for all extensions e, f of C, L(e) = L(f) implies

M(C ∪ e) = M(C ∪ f); then E has one and only one deterministi
 indu
ed labeledtransition system.Example 3.2.6. The labeled transition system indu
ed by the labeled event stru
ture
(E,≤,#,LCT,MCT) in Example 3.2.3 is (N, {+,−},→CT, 1) where

→CT = {〈0,+, 1〉, 〈1,+, 2〉, 〈2,+, 3〉, 〈3, +, 4〉}

∪ {〈1,−, 0〉, 〈2,−, 1〉, 〈3,−, 2〉, 〈4,−, 3〉}0 1 2 3 4+

−

+

−

+

−

+

−Figure 3.4: Graphi
al representation of the indu
ed labeled transition system in Exam-ple 3.2.6. Noti
e that it is similar to the one in Figure 2.1 on page 15. But here, thereare only 5 rea
hable states.We have now an intuitive relation between labeled event stru
tures and labeled tran-sition systems - a
lassi
 model:
on�gurations
orrespond to states, events
orrespondto a
tions, extension ⊢ and set extension
 respe
tively
orrespond to transition relation
→ and exe
ution relation ։. In Example 3.2.6, both �ring sequen
es +− and −+are represented by
on�guration {e1, e2} in whi
h there is no interleaving due to the the
on
urren
e between these (o

urren
e) events. Therefore, due to the independen
e be-tween a
tions or
on
urren
e between events, labeled event stru
tures give us somehowa way of
ompa
tly representing possible �ring sequen
es of a system.De�nition 3.2.7. Two labeled event stru
tures E = (E,≤,#,L,M) and E′ = (E′,≤′,
#′,L′,M′) are isomorphi
 and we write E ≈ E′, if (E,≤,#), (E′,≤′,#′) are isomorphi
w.r.t. some bije
tion B and1. L(e) = L′(B(e)) for every event e ∈ E, and2. M(C) =M′(B(C)) for every
on�guration C ∈ CE.Remark: When the underlying event stru
tures of E and E′ are isomorphi
 w.r.t. to B(see De�nition 3.1.13), the bije
tion B gives rise to a bije
tion between
on�guration sets
CE and CE′ in whi
h a
on�guration C ∈ CE is asso
iated to the
on�guration B(C) ∈ CE′ .29

Chapter 3. Modeling
on
urrent systems by labeled event stru
turesCorollary 3.2.8. Let LTS
E and LTS

E′ be respe
tively indu
ed labeled transition systemsof two labeled event stru
tures E and E′. If E and E′ are isomorphi
, then LTS
E and

LTS
E′ are bisimilar.Proof. Obvious by De�nition 2.4.17 and De�nition 3.2.4.Example 3.2.9. Indu
ed labeled transition systems of the labeled event stru
tures inExample 3.2.3 are bisimilar w.r.t. the bisimulation relation (RS ,RΣ) de�ned in Exam-ple 2.4.19.Moreover, one
an �nd out that the labeled transition system indu
ed by E = (E,≤,

#,LCT,MCT) in Example 3.2.3 is simulated by the
ounter in Example 2.4.2 by simplyobserving its semanti
s depi
ted in Figure 2.1 and Figure 3.4. The formal reason isthat E is just a pre�x of the labeled event stru
ture for this
ounter latterly de�nedin Se
tion 3.3.2.Lemma 3.2.10. Let C be a
on�guration of a labeled event stru
ture E = (E,≤,#,L,M).Let (S,Σ,→, s0), (S′,Σ′,→′, s0′), and (S′′,Σ′′,→′′, s0′′) be indu
ed labeled transitions of
E, its C-pre�x E|≥(C), and its C-su�x E|(E\C\#(C)), respe
tively. We have:

• S = S′ ∪ S′′,
• Σ = Σ′ ∪ Σ′′,
• → =→′ ∪→′′, and
• s0 ∈M(∅), s0′ =M(∅), s0′′ ∈M(C).Proof. Obvious due to Lemma 3.1.16 and De�nition 3.2.4.3.2.2 Properties of labeled event stru
turesAs previously mentioned, we will
onstru
t labeled event stru
tures representing sys-tems' behavior. More pre
isely, suppose that a system is impli
itly de�ned by a labeledtransition system where rea
hable states are represented by
on�gurations' markings and�rable a
tions are represented by extensions. Therefore, if two
on�gurations
on
ernsa same state s, i.e. its markings
ontain s, su
h
on�gurations should have extensionsin a

ordan
e with all �rable a
tions from s.De�nition 3.2.11 (Coheren
e). A labeled event stru
ture is
oherent if for all
on�gu-rations C,C ′ ∈ CE,
• ifM(C) ∩M(C ′) 6= ∅ then for every a ∈ Σ = Codom(L) we have

⋃

e∈E,L(e)=a,C⊢e

M(C ∪ {e}) =
⋃

e∈E,L(e)=a,C′⊢e

M(C ′ ∪ {e})

• ifM(C) =M(C ′) then for every extension e ∈ E of C, there exists an extension
e′ ∈ E of C ′ su
h that L(e) = L(e′) andM(C ∪ {e}) =M(C ′ ∪ {e′}).Figure 3.5 illustrates the �rst property of the
oheren
e. A simple
onsequen
e of
oheren
e is that if the markings of two
on�guration C and C ′ are not disjoint sets,they are extended by the same set of labels/a
tions a in Codom(L). One
an say that these
ond property whi
h is a parti
ular
ase of the �rst one when
on�gurations have a samemarking, sounds more reasonable. However, we are in favor of the �rst one when workingon non-deterministi
 labeled event stru
tures as well as on non-deterministi
 systems. Ito�ers further some possibility of marking abstra
tion for labeled event stru
tures.30

3.2. Labeled event stru
tures
C

(C ∪ {e}) (C ∪ {f})

C ′

(C ′ ∪ {e′}) (C ′ ∪ {f ′})

M(C) ∩M(C ′) 6= ∅

e f

⋃
M

e′ f ′L

Figure 3.5: Coheren
e of labeled event stru
turesOn
e again, look at the labeled event stru
ture in Example 3.2.6. It representsonly some �nite exe
utions of its indu
ed labeled transition system. The
oheren
eproperty is not satis�ed in this example be
ause, for instan
e,
on�gurations ∅ and
{e1, e2, e3, e4, e5, e6} have a same marking, however, the �rst one
an be extended whilethe se
ond one
an not. This example explains well that
oherent labeled event stru
turesare generally not �nite. In fa
t, a
on�guration in a labeled event stru
ture represents notonly rea
hable states by means of its marking, but also �ring sequen
es of some indu
edlabeled transition system. Hen
e, if the indu
ed system has an in�nite exe
ution, thenthe
orresponding labeled event stru
ture should be in�nite too.Lemma 3.2.12. Let E = (E,≤,#,L,M) be a
oherent labeled event stru
ture and
LTS

E = (S,Σ, s0,→) be an indu
ed labeled transition system of E. For all s ∈ S and
σ ∈ Σ+, we have s0։s

σ i� there exists a non-empty
on�guration C ∈ CE and alinearisation l of C w.r.t. (E,≤) su
h that σ = LW(l) and s ∈M(C).Proof. This lemma is a dire
t
onsequen
e of the following property: s0 a1−→ s1, s1
a2−→

s2, . . . is a path of LTS
E i� there exists a sequen
e of events e1, e2, . . . su
h that a1 =

L(e1), ∅ ⊢ e1 and s1 ∈ M({e1}); a2 = L(e2), {e1} ⊢ e2 and s2 ∈ M({e1, e2});This property
ould be easily proved by indu
tion on the length of the path and usingLemma 3.1.16, De�nition 3.2.4 and Lemma 3.2.10.Lemma 3.2.12 only states about non-empty �ring sequen
es. However, the emptyword ε is of
ourse a �ring sequen
e of LTS
E where its rea
hable state is equal to theinitial state s0. Other states s
on
erning the empty
on�guration ∅, i.e. s ∈ (M(∅)\s0)does not mean that s is rea
hable. The following
orollary is straightforward fromLemma 3.2.12.Corollary 3.2.13. Given a labeled event stru
ture E = (E,≤,#,L,M), if M(∅) is asingleton s0 then the rea
hable state set of its unique labeled transition system LTS

E, i.e.
post∗

LTS
E , is equal to ⋃

C∈CE

M(C).As a
onsequen
e of the Lemma 3.2.12, one
on�guration of the labeled event stru
-ture may represent several exe
utions of its indu
ed labeled transition system. Theseexe
utions are simply di�erent interleavings of events of the
on�guration, or in otherwords, interleavings of a
tions' o

urren
es. The more
on
urren
y between events ofthe
on�guration, the more
orresponding exe
utions it has. Therefore, in the view ofmodeling systems by labeled event stru
tures, it is worth noti
ing that for two labeledevent stru
tures whose indu
ed labeled transition systems are the same, the one in whi
hthere are more
on
urren
y, seems to be the more
ompa
t. 31

Chapter 3. Modeling
on
urrent systems by labeled event stru
turesDe�nition 3.2.14 (Redundan
y). A labeled event stru
ture E = (E,≤,#,L,M) isredundant if there exists a
on�guration C ∈ CE whi
h has two di�erent extensions
e, e′ ∈ E su
h that e#e′, L(e) = L(e′) and (M(C ∪ {e}) ∩M(C ∪ {e′})) 6= ∅.De�nition 3.2.14 is similar to the one used in labeled o

urren
e nets [M
M95a℄.However, non-redundan
y in labeled event stru
tures does not give rise to the notionof unique labeled event stru
ture for some system. In other words, we
an have manynon-redundant labeled event stru
tures whi
h model a same system, i.e.
orrespond tothe labeled transition system modeling it. More details on redundan
y will be given inSe
tion 6.2.2.3.3 Modeling
on
urrent systems3.3.1 Labeled event treesDe�nition 3.3.1. An event tree is an event stru
ture E = (E,≤,#) satisfying that allevents are pairwise in
ausality or in
on�i
t, i.e. (≤ ∪≥ ∪#) = (E × E).Corollary 3.3.2. Let E = (E,≤,#) be a tree,1. for every
on�guration C ∈ CE, the restri
tion of ≤ onto C, i.e. ≤|C is a totalorder, and C has thus one and only one linearisation w.r.t. the
ausality, and2. every non-empty
on�guration C is the lo
al
on�guration of some event e ∈ Ewhere e is the maximal event in C w.r.t. the
ausality, i.e. {e} = Max≤(C) and

C = ≥(e).Proof. Sin
e every
on�guration C is
on�i
t-free, i.e. #|C = ∅, all its events are pairwisein
ausality. The partial-order ≤|C is thus a total order on C. It de�nes the uniquelinearisation of C w.r.t. ≤ by De�nition 2.3.4. The �rst item is proved.As a
onsequen
e, the �nite set C with its total order ≤|C admits a unique maximalevent w.r.t. ≤. Let us denote this maximal event by e, {e} = Max≤(C) if C is not empty.It follows from the downward-
losure of C that ≥(e) ⊆ C. Be
ause of the uniqueness of
e, one has e′ ≤ e for all e′ ∈ C, and
onsequently, C ⊂ ≥(e). Therefore, ≥(e) = C, andthe se
ond item is also proved.One
an �nd di�erent ways of de�ning a tree in other works [Fin87, Fin91, SNW96℄.For an intuitive
omparison, in our de�nition, non-empty
on�gurations C (or eventswhose lo
al
on�guration is C)
orrespond to nodes, the empty
on�guration ∅
orre-sponds to a parti
ular node,
alled root ; and the a
y
li
 property says that there existsone and only one path from the root to any node of the tree. The notion of path isrepresented by the linearisation of events or equally by the extension of
on�gurations(see Corollary 3.1.8) over event stru
tures. Su
h an a
y
li
 property
orresponds to the�rst item in Corollary 3.3.2.Figure 3.6 illustrates an event tree in whi
h events are labeled by either '−' or '+',and there is, in addition, an added root ∅ representing the empty
on�guration ∅. Bygiving a simple marking fun
tionM : CE→ N de�ned as follow:

M(C) = 1 + |{e ∈ C /L(e) = +}| − |{e ∈ C /L(e) = −}|one
an obtain a deterministi
 labeled event stru
ture LET whose indu
ed labeled tran-sition system is the same as the one indu
ed from the labeled event stru
ture E inExample 3.2.3 on page 28. However, LET is mu
h bigger than E be
ause LET has no
on
urren
y between its events while E does.32

3.3. Modeling
on
urrent systems
∅

−

+

−

+

−

+

+

−

+

−

−

+

+

−

+

−

−

+

−

−

+

−

+

+

−

+

−

−

+

+

−

+

−

−

+

−

−

−

+

+

−

+

−

−

+

−

−

−Figure 3.6: Tree with labeled eventsDe�nition 3.3.3 (Labeled event tree). A labeled event tree is a
oherent and non-redundant labeled event stru
ture LET = (E,≤,#,L,M) where (E,≤,#) is an eventtree.Proposition 3.3.4. Let LET = (E,≤,#,L,M), LET
′ = (E′,≤′,#′,L′,M′) be twolabeled event trees whose indu
ed labeled transition systems are the same. If LET,LET

′are deterministi
 then LET and LET
′ are isomorphi
.Proof. Let LTS = (S,Σ, s0,→) denote the indu
ed labeled transition system of both

LET and LET
′. Sin
e LET and LET

′ are deterministi
, we have s0 =M(∅) =M′(∅).First, let us de�ne a relation R between Min≤(E) and Min≤′(E′) as follow: eR e′ if
L(e) = L′(e′) andM({e}) =M′({e′}). Noti
e that Min≤(E) are the set of extensions ofthe empty
on�guration ∅ in LET. Let e be any event in Min≤(E), and denote a = L(e),
s = M({e}). By de�nition of indu
ed labeled transition system (De�nition 3.2.4), itfollows from ∅ ⊢ e and M({e}) = s that s0 a

−→ s. Thanks to Lemma 3.2.12, in LET
′,there exist a
on�guration that is a singleton {e′} su
h that L′(e′) = a and M(e′) isthe rea
hable state s. Therefore, eR e′ be
ause ≥′(e′) = {e′} and thus e′ ∈ Min≤′(E′).

R is thus total. Suppose that R is not single-valued, there exists two events e′, f ′ ∈
Min≤′(E′) su
h that {e′, f ′} ⊆ R(e) for some event e ∈ Min≤(E). We have then,
L′(e′) = L′(f ′) = L(e), M′({e′}) = M′({f ′}) = M({e}), and in addition, e′#′f ′ dueto Corollary 3.3.2. The labeled event tree LET

′ is thus redundant by De�nition 3.2.14.It
ontradi
ts to De�nition 3.3.3. Therefore, R is single-valued, and is a fun
tion from
Min≤(E) to Min≤′(E′), i.e. R : Min≤(E) → Min≤′(E′). By the same reasoning, we alsoobtain that R−1 : Min≤′(E′)→ Min≤(E). Hen
e, we
an
on
lude that R is a bije
tionbetween Min≤(E) and Min≤′(E′).Se
ond, let e be any event in Min≤(E) and e′ = R(e). Sin
e LET,LET

′ are de-terministi
 labeled event trees, their
orresponding su�xes, denoted by LET|E\{e}\#(e)and LET
′|E′\{e′}\#′(e′), are also deterministi
 labeled event trees. Moreover, be
ause

M({e}) =M′({e′}), it follows from Lemma 3.2.10 on page 30 that these su�xes indu
ethe same indu
ed labeled transition system. Therefore, as previously proved, there existsa bije
tion R′ between the sets of minimal events in these su�xes LET|E\{e}\#(e) and
LET

′|E′\{e′}\#′(e′), su
h that L(f) = L(f ′) and M({e, f}) = M({e′, f ′} if R′(f) = f ′.33

Chapter 3. Modeling
on
urrent systems by labeled event stru
turesIt is straightforward that the domain and the
o-domain of the bije
tion R′ are the setsof dire
t su

essors of e and e′ respe
tively, i.e. ⋖(e) and ⋖
′(e′).We
an thus de�ned a relation B between E and E′ whi
h is the union of all bije
-tions R,R′, . . . in a
onstru
tive way. Sin
e LET,LET

′ are event trees, these bije
tions'domains as well as its
o-domains are pairwise disjoint. Moreover, noti
e that every
on-�gurations of an event tree is the lo
al
on�guration of some event, i.e. CLET = Cl
LET

.
B is thus a bije
tion that satis�es properties in De�nition 3.2.7 on page 29. Therefore,
LET and LET

′ are isomorphi
.Proposition 3.3.4 gives rise to the notion of unique labeled event tree, up to isomor-phism, for labeled transition system.De�nition 3.3.5. Given a labeled transition system LTS, the deterministi
 labeled eventtree of LTS is a deterministi
 labeled event tree LET whose indu
ed labeled transitionsystem is LTS.Although deterministi
 labeled event tree, a
lassi
al stru
ture for system's behavior,is not
ompa
t and in general is not the minimal labeled event tree for some labeledtransition system, it is simple to
onstru
t in pra
ti
e (see Chapter 5). The reason isthat every
on�guration represents only an exe
ution of the underlying system. And thesize of su
h a labeled event tree be
omes huge easily due to interleaving of �rable a
tions.Therefore, we only use labeled event trees for modeling
omponent systems in whi
h itis di�
ult to �nd or there exists no
on
urren
y between a
tions/events (see Chapter 6),for instan
e, modeling systems' state without queues'
ontent in
ommuni
ating �nitestate ma
hines [Bo
78, BZ83, LI05℄.3.3.2 CountersA
ounter is a well-known datatype with values ranging over the set of natural numbers
N, equipped with two operations: '+' and '−' that respe
tively in
reases and de
reasesits value. A
ounter takes a natural number as its initial value, and may be viewed as alabeled transition system.De�nition 3.3.6 (Counter). A v-initialized
ounter, where v ∈ N, is a labeled tran-sition system v-CT = (N, {+,−},→CT, v) where the transition relation →CT is the set
({〈n,+, n + 1〉 /n ∈ N} ∪ {〈n + 1,−, n〉 /n ∈ N}).By de�nition,
ounters are thus deterministi
. Example 2.4.2 on page 15 shows thesemanti
s of the 1-initialized
ounters. In the following, we aim at de�ning
on
urrentlabeled event stru
tures dedi
ated to behaviors of su
h
ounters. We �rst restri
t to theones modeling the 0-initialized
ounter.De�nition 3.3.7 (k-
ausality event stru
tures). Let k be a natural number, a k-
ausalityevent stru
ture is an event stru
ture E = (E,≤,#) where # = ∅ and ≤ satis�es:1. for all e ∈ Min≤(E), ⋖(e) 6= ∅;2. for all e ∈ E, if ⋖(e) 6= ∅ then |⋖(e)| = k + 1 and |{e′ ∈ ⋖(e) / ⋖(e′) = ∅}| = 1;3. for all e ∈ (E \Min≤(E)), ⋗(e) is a singleton; and4. |Min≤(E)| = k if k > 0 and |Min≤(E)| =∞ if k = 0.Re
all that ⋖ is the prede
essor relation and is the minimal relation w.r.t. thein
lusion order su
h that ⋖

∗ = ≤. For an event e, ⋖(e) = ∅ means that e has no (dire
t)su

essors, and is
alled a leaf (as in graph theory). A minimal event (w.r.t.
ausality)34

3.3. Modeling
on
urrent systemsis not a leaf due to the �rst item. While the se
ond item intuitively means that if anevent e is not a leaf, then it has exa
tly k + 1 dire
t su

essors, formally de�ned by theset ⋖(e), and only one of them is a leaf. The �rst item says that every event e has atmost one dire
t prede
essor, this prede
essor is ⋗(e) if exists. As a
onsequen
e, one
an �nd out that the restri
tion of ≤ onto the lo
al
on�guration of e, i.e. ≤|≥(e), is atotal order. Hen
e, a k-
ausality event stru
ture E is intuitively a set of disjoint eventtrees without
on�i
t relation. The roots of su
h trees
orrespond 1-to-1 to the minimalevents in Min≤(E). The last item distinguishes the parti
ular
ausality event stru
turewhere k is zero, and will be explained lately in Se
tion 3.3.2.Moreover, given any event e whi
h is not a leaf, let S denote the set of dire
t su

essorsof e whi
h are not leaves. Then the restri
tion of the k-
ausality event stru
ture overthe upward-
losure set of S, w.r.t. the
ausality ≤, is isomorphi
 with E itself.Lemma 3.3.8. Given a k-
ausality event stru
ture E = (E,≤,#) and an event e ∈ Esu
h that ⋖(e) 6= ∅. Let e′ be the unique dire
t su

essor of e whi
h has no su

essor,i.e. e ⋖ e′ and ⋖(e′) = ∅. If k > 0 then E and E|>(e)\{e′} are isomorphi
.Proof. Obvious by de�nition.As a
onsequen
e, the k-
ausality event stru
ture are unique, w.r.t. isomorphism, forany given number k. Aiming at modeling the 0-initialized
ounter, a k-
ausality eventstru
ture is nothing but an underlying stru
ture for a k-
ausality pro
ess de�ned below.One intuitively labels its leaf events by the de
rement a
tion '−' and its other events bythe in
rement a
tion '+'.De�nition 3.3.9 (k-
ausality pro
ess). Let k be a natural number, the k-
ausalitypro
ess is a labeled event stru
ture k-CP = (E,≤,#,L,M) where E = (E,≤,#) is the
k-
ausality event stru
ture, and

• labeling fun
tion L : E → {+,−} de�ned as L(e) = −, if e has no su

essor, i.e.
⋖(e) = ∅, and L(e) = +, otherwise;

• marking fun
tion M : CE → N de�ned as M(C) = |{e ∈ C /L(e) = +}| − |{e ∈
C /L(e) = −}|.Figure 3.7 illustrates k-
ausality pro
esses for di�erent values of k. In
ausalitypro
esses, all events, whi
h
orrespond to either in
rement a
tion '+' or de
rement a
tion'−', are pairwise
on
urrent or in
ausality. There are two types of
ausality:
ausalitybetween a de
rement event and an in
rement event, or
ausality between two in
rementevents. The �rst one naturally
omes from the fa
t that a
ounter
an not take a negativevalue, so that a de
rement event must o

ur after some in
rement event. However these
ond type of
ausality is our own
onstraint to
ausality pro
esses in order to guaranteethe �nite-bran
hing property of k-
ausality pro
esses.Lemma 3.3.10. The k-
ausality pro
ess k-CP = (E,≤,#,L,M), for a given �nitenumber k > 0, is a non-redundant and �nitely-bran
hing labeled event stru
ture.Proof. Sin
e there is no
on�i
t in k-
ausality pro
ess, k-CP is thus non-redundant byDe�nition 3.2.14.Let C be any
on�guration of k-CP, and X = {e ∈ E /C ⊢ e} be the set of itsextension events. Due to the downward-
losure property of
on�gurations, we have

e ∈ X only if either e is a minimal event w.r.t.
ausality, i.e. e ∈ Min≤(E), or e is adire
t su

essor of some in
rement event e+ in C, i.e. ∃e+ ∈ C : e+ ⋖ e. Therefore, the35

Chapter 3. Modeling
on
urrent systems by labeled event stru
tures
+

−

+

−

+

−

(a) k = 0

+

− +

− +

(b) k = 1

+

− +

− + +

+

− + +

+

− +

− + +

+

− + +

(
) k = 2

Figure 3.7: Examples of k-
ausality pro
esses
ardinal of X
an not ex
eed |Min≤(E)| + (k + 1)|C| = k + (k + 1)|C|, be
ause ea
hin
rement event has exa
tly (k + 1) dire
t su

essors. It follows from the �niteness of
k and of
on�guration C that the set X is �nite. As a
onsequen
e, k-CP is �nitely-bran
hing by De�nition 3.1.9.Lemma 3.3.11. For any given number k, the k-
ausality pro
ess is
oherent and itsindu
ed labeled transition system is the zero-initialized
ounter CT

0.Proof. Let k-CP = (E,≤,#,L,M) be the k-
ausality pro
ess, and denote E+ = {e ∈
E /L(e) = +} and E− = {e ∈ E /L(e) = −}. Let C be any
on�guration of k-CP.We will �rst prove that there exists an extension event e+ of C su
h that e+ ∈ E+(*). If C ∩E+ = ∅, sin
e Min≤(E) 6= ∅ and Min≤(E) ⊆ E+ by de�nition, we
an
hooseany event e+ in Min(E) that satis�es (*). If C ∩ E+ 6= ∅, let f+ be any maximal, w.r.t.
≤, in
rement event of C, i.e. f+ ∈ Max≤(C ∩ E+), we have then two
ases. In the�rst
ase, k = 0, by De�nition 3.3.7, there are in�nitely many minimal events. Theset (Min≤(E) \ C) is not empty and
ontains only in
rement events. Any event in thisset satis�es (*). In the se
ond
ase, k > 0, let e+ be any event in k in
rement dire
tsu

essors of f+. f+ is not in C and is thus an extension event of C whi
h satis�es.Se
ondly, suppose thatM(C) > 0. We
an dedu
e that Max≤(C) ∩E+ 6= ∅ be
auseotherwise, for every in
rement event of C, its dire
t su

essor whi
h is a de
rement eventis also in C. Hen
e |C ∩ E+|
an not ex
eed |C ∩ E−|, so that M(C) = 0,
ontradi
tto the hypothesis. Let e+ be any in
rement event in Max≤(C) ∩ E+. By de�nition, e+has a dire
t su

essor e− ∈ E−. It is obvious that C ⊢ e−. The reverse, i.e. if C has anextension event e− ∈ E− thenM(C) > 0,
an be proved in the same manner.Now, by de�nition of the marking fun
tion M, if C ⊢ e, we have M(C ∪ {e}) =
M(C)+1 if e ∈ E+ andM(C∪{e}) =M(C)−1 otherwise. Be
ause for any
on�guration36

3.3. Modeling
on
urrent systems
C, it always has an extension event in E+, and in addition, an extension event in E− if
M(C) > 0, the k-
ausality pro
ess is thus
oherent.Therefore, in the indu
ed labeled transition system, we have 〈M(C),+,M(C)+1〉 ∈
→

LTS
k-CP for all
on�guration C of k-CP, and 〈M(C),+,M(C) + 1〉 ∈→

LTS
k-CP for all

C whose marking is positive due to De�nition 3.3.9 and De�nition 3.2.4. Moreover,
M(∅) = |∅ ∩ E+| − |∅ ∩ E−| = 0, the set of states in LTS

k-CP is thus N. Therefore,
LTS

k-CP is the zero-initialized
ounter de�ned in De�nition 3.3.6.Parameter k in
ausality pro
essesThe idea of our k-
ausality pro
ess is inspired by the unfolding te
hnique on Petrinets [M
M95a℄. A
ounter
ould be intuitively
onsidered as a pla
e with tokens ofa Petri net. The value of a
ounter
orresponds thus to the number of tokens in thispla
e. One
an add a token to a pla
e or remove some existing one from this pla
e.These two a
tions are really independent.The 0-
ausality pro
ess is a deterministi
 labeled event stru
ture in whi
h addedtokens are distinguishably represented by a minimal in
rement event and its only dire
tsu

essor. Ea
h pair of su
h events with its
ausality
an be seen as a labeled eventstru
ture for a token. Moreover, a pla
e of a Petri net
an be seen as a syn
hronizedprodu
t of tokens without syn
hronization ve
tor. As a
onsequen
e, the 0-
ausalitypro
ess
an be
omputed by a syn
hronized produ
t of labeled event stru
tures modelingtokens (see Se
tion 3.3.4).Sin
e there is only
ausality between an in
rement event and a de
rement event asnaturally needed, 0-
ausality pro
ess is the most
on
urrent pro
ess. In another words,this
ausality pro
ess admits
ertain ω-
on
urren
y. And by using it in syn
hronizedprodu
ts of labeled event stru
tures, we
an obtain the same stru
ture as with labeledo

urren
e nets [M
M95a, Haa99℄ or bran
hing pro
esses [ERV96, DJN04℄ on Petri nets.However, there are three problems. First, 0-
ausality pro
ess may not be adaptedto de�ning bounded
ounters or safe Petri nets' pla
es (see Se
tion 3.3.2). Se
ond, 0-
ausality pro
ess' in�nitely-bran
hing property prevents itself from
on
urrent veri�
a-tion te
hnique (see Se
tion 4.2). Noti
e here that in other works, veri�
ation te
hniquesfor Petri nets is guaranteed by either the boundedness/safeness of pla
es, whi
h is sup-posed or is proved by other te
hniques. And third, like other k-bran
hing pro
esseswhere k is a great number, 0-bran
hing pro
ess may give rise to enormous redundan
yin a global syn
hronized produ
t in whi
h 0-bran
hing pro
ess is used as a
omponent.This redundan
y is not easy to redu
e (see Se
tion 6.2.2 for more details).By using a positive and �nite number k in
ausality pro
esses, the de
idability of veri-�
ation problems based on labeled event stru
tures is guaranteed. The greater parameter
k is, the less
ausality between in
rement events there is, and as a
onsequen
e, the more
on
urrent
ausality pro
ess we have. Changing k for
omponent
ausality pro
ess is aheuristi
 way to equilibrate the
on
urren
y of the global labeled event stru
ture andits redundan
y; so that one
an obtain a more or less
ompa
t labeled event stru
ture(see
omparison results in Se
tion 6.3.2). Intuitively, if
ounter's value never ex
eeds b,parameter k greater than b is not ne
essary.The 1-
ausality pro
ess is a parti
ular one in whi
h there is a total
ausality (order)over in
rement events. Our pro
ess for bounded
ounters is based on it. 37

Chapter 3. Modeling
on
urrent systems by labeled event stru
turesBounded
ountersA bounded
ounter di�ers from general
ounters (De�nition 3.3.6) only on its set ofrea
hable states. Its value never goes beyond some given number. Formally,De�nition 3.3.12 (b-bounded
ounter). Let b ∈ N, b > 0 and v ∈ {0, 1, . . . b}. A v-initialized bounded
ounter is the labeled transition system b-BC
v = ({0, 1, . . . , b}, {+,−},

→BC, v) where the labeled transition relation →BC is the union set {〈n,+, n + 1〉 /n ∈
{0, 1, . . . , b− 1}} ∪ {〈n,−, n − 1〉 /n ∈ {1, 2, . . . , b}}.Consider the 1-bounded
ounter 1-BC

0 whose initial value is zero. This labeledtransition system has only two states 0 and 1 and two labeled a
tions '+' and '−'for swit
hing its state. An event
orresponding to the in
rement a
tion gives rise toonly one other event whi
h
orresponds to a de
rement a
tion, and inversely. There isno
on
urren
y at all in the behaviors of this bounded
ounter. The minimal, w.r.t.isomorphism, �nitely-bran
hing and
oherent labeled event stru
ture for 1-BC
0 is thusits deterministi
 labeled event tree whi
h is graphi
ally represented in Figure 3.8.a.

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

(a) k = 1. (b) k = 3.

Figure 3.8: Graphi
al representation of k-bounded pro
essesAs previously mentioned, a
ounter
an be seen as a syn
hronized produ
t of tokenson a Petri net's pla
e in whi
h every syn
hronization ve
tor
on
erns only one
omponent.In the
ase of a bounded
ounter, the boundedness may be
erti�ed by limiting thenumber of syn
hronized tokens to some number b. The b-bounded pro
ess de�ned belowis somehow a syn
hronized produ
t of labeled event stru
tures whi
h all aim at modelingbehaviors of 1-BC
0. But with a slight modi�
ation on syn
hronized produ
t's markingfun
tionM so that Codom(M) is N, not N

b (see Se
tion 3.3.4).De�nition 3.3.13 (b-bounded pro
ess). Given a positive natural number b, the b-bounded pro
ess is the labeled event stru
ture b-BP = (E,≤,#,L,M) where:1. # = ∅;2. |Min≤(E)| = b and for all e ∈ (E \Min≤(E), |⋗(e)| = 1;3. L : E → {+,−} andM : Cb-BP→ {0, 1, . . . , b} su
h thatM(C) = |{e ∈ C /L(e) =
+}| − |{e ∈ C /L(e) = −}|.4. for every minimal event e ∈ Min≤(E), b-BP|(<(e)) is the deterministi
 labeled eventtree of 1-BC

0; and38

3.3. Modeling
on
urrent systemsThe �rst item obviously says that there is no
on�i
t in the b-bounded pro
ess.Due to the se
ond item, every event has one dire
t prede
essor ex
ept b minimal eventsw.r.t. the
ausality ≤. As a
onsequen
e, events
an be distributed in b disjoint sets,ea
h set
ontains a minimal event em ∈ Min≤(E), and all events whi
h are in
ausalitywith em. Two events from di�erent sets are thus
on
urrent. The third item statesthat labeling fun
tions of the b-bounded pro
ess are more or less similar to the ones for
ausality pro
esses in De�nition 3.3.9. The last one is the most interesting, it tells thatea
h disjoint set of events above, determines a labeled event tree for 1-bounded
ounter
1-BC

0 by means of restri
tion. And the number of
omponent stru
tures is exa
tly b dueto the se
ond item. As a
onsequen
e of Proposition 3.3.4, for any given b, b-boundedpro
ess is unique up to isomorphism.Figure 3.8 illustrates two bounded pro
esses. Sin
e the
ausality in the labeled eventtree of 1-BC
0 is a total order, every event has a di�erent label with its only dire
tsu

essor. It is obvious that the marking of a
on�guration is determined by the labelof its unique maximal event w.r.t.
ausality. Of the same manner,Remark: We haveM(C) = |Max≤(C) ∩ {e ∈ E /L(e) = +}| for any b-bounded pro
ess.Lemma 3.3.14. Given a �nite number b, the b-bounded pro
ess b-BP is deterministi
and �nitely-bran
hing.Proof. Due to the de�nition of the marking fun
tion in De�nition 3.3.13, b-BP is de-terministi
 by De�nition 3.2.2. Let C ∈ Cb-BP be any
on�guration, C has exa
tly bextension events whi
h are separately lo
ated in b di�erent sub-stru
tures of b-BP. b-BPis thus �nitely-bran
hing due to De�nition 3.1.9.Lemma 3.3.15. Given a positive natural number b, the b-bounded pro
ess b-BP = (E,≤,

#,L,M) is
oherent and its indu
ed labeled transition system LTS
b-BP is the b-bounded
ounter b-BC

0 whose initial state is 0.Proof. As mentioned, sin
e b-BP is intuitively
omposed of b labeled event trees whose
ausality is total, for any
on�guration C ∈ Cb-BP, Max≤(C) is not greater than b. Andmoreover, any of its extension event is either a dire
t su

essor of some maximal eventof C w.r.t. ≤, or a minimal event of E.Let us denote E+ = {e ∈ E /L(e) = +} and E− = {e ∈ E /L(e) = −}. Due to theremark above, if M(C) = k then Max≤(C) ∩ E− = ∅, thus C
an not have extensionevent labeled by '+'. If M(C) < k, we have two
ases. First, if Min≤(E) 6⊆ C, everyevent in the non-empty set Min≤(E) \ C is an extension event of C and is an in
rementevent. Se
ond, if Min≤(E) ⊆ C, we have |Max≤(C)| = k. Sin
e M(C) < k, C has atleast one maximal event whi
h is a de
rement event, and its unique dire
t su

essor,whi
h is an in
rement event, is thus an extension event of C.Therefore, C has extension event whi
h is an in
rement event if and only ifM(C) < k.In the same manner, we
an prove that C has extension event labeled '−' if and only if
M(C) > 0 (1).By de�nition of the marking fun
tion M, when C ⊢ e we have M(C ∪ {e}) =
M(C)+1 if e ∈ E+, andM(C∪{e}) =M(C)−1 if e ∈ E− (2). The b-bounded pro
essis
oherent by De�nition 3.2.11.In addition,M(∅) = |∅∩E+|− |∅∩E−| = 0. From (1) and (2), we
an
on
lude thatthe indu
ed labeled transition system LTS

b-BP is the b-BC
0 de�ned in De�nition 3.3.12.39

Chapter 3. Modeling
on
urrent systems by labeled event stru
turesNow let us dis
uss the possibility of adapting a k-
ausality pro
ess k-CP to modelbehaviors of b-bounded
ounters for some given number b. Our idea is to add some
ausality between events so that the obtained labeled event stru
ture, denoted by E,disallows all
on�gurations of marking b to have an extension event whi
h is an in
rementevent. Let C ∈ Ck-CP be a
on�guration with M(C) = b, X+ and X− are the sets ofextension events of C whi
h are labeled by '+' and '−' respe
tively. Sin
e
ausalitypro
esses' indu
ed labeled transition system LTS
k-CP is zero-initialized
ounter, we have

|X−| = b and X+ 6= ∅.Naturally, any event in X− is still an extension event of C in E while an event in
X+ is not. Moreover, let e+ be any event in X+, e+
ould be an extension event of the
on�guration (C ∪ {e−}) ∈ CE for some (or all) event e− ∈ X−. Due to the absolute
on
urren
y between de
rement events in k-CP, this idea is di�
ult to be implemented.We need somehow a total
ausality over X− and to impose the
ausality between e+ andthe minimal event of X−, w.r.t. ≤, afterward.Due to the intuitive idea above, we
an only
onform 1-
ausality pro
ess to mod-eling bounded
ounters' behaviors. The goal labeled event stru
tures are isomorphi
with bounded M -
ausality pro
esses for FIFO
hannels where M is a singleton (see Se
-tion 3.3.3).Counters initialized by positive valuesThe v-initialized
ounter
an be seen as a Petri net's pla
e in whi
h there are initially vtokens. Behaviors of su
h a pla
e are the same as behaviors of an empty pla
e, modeledby means of 0-initialized
ounter,
ombined with
on
urrent events whi
h remove initialtokens. These v tokens with only removing operations
an be modeled by a simplelabeled transition system,
alled v-
ountdown
ounter.De�nition 3.3.16 (v-
ountdown
ounter). Given a number v, the v-
ountdown
ounteris the labeled transition system CD

v = ({0, 1, . . . , v}, {−},→, v) where the transitionrelation → is the set {〈n,−, n − 1〉 /n ∈ {1, . . . , v}}.Sin
e all events
orresponding to the de
rement a
tion, labeled by '−', are pairwise
on
urrent and there are at most v events. We de�ne a labeled event stru
ture for
ountdown
ounters in whi
h there is no stri
t
ausality and
on�i
t. However, byomitting this total
on
urren
y, one
an also gives other labeled event stru
tures forrepresenting
ountdown
ounters� for instan
e, labeled event trees.De�nition 3.3.17 (v-
ountdown pro
ess). Given a number v, the v-
ountdown pro
essis a labeled event stru
ture v-CD = (E,IE , ∅,L,M) where:
• there are exa
tly v events, i.e. |E| = v,
• labeling fun
tion L : E × {−}, and
• marking fun
tionM : Cv-CD→ {0, 1, . . . , v} is de�ned asM(C) = v − |C|.

− − − −Figure 3.9: The 4-
ountdown pro
essThe following is straightforward.Lemma 3.3.18. Let v ∈ N be any number, the v-
ountdown pro
ess v-CD is a deter-ministi
, �nitely-bran
hing and
oherent labeled event stru
ture for v-
ountdown
ounter
CD

v de�ned in De�nition 3.3.16.40

3.3. Modeling
on
urrent systemsOur labeled event stru
ture for v-initialized
ounters intuitively
onsists of a v-
ountdown pro
ess and a k-
ausality pro
ess, for a given number k.De�nition 3.3.19 ((k, v)-
ausality pro
ess). Let k, v be two natural numbers, the (k, v)-
ausality pro
ess is a labeled event stru
ture (k, v)-CP = (E,≤,#,L,M) where E is theunion set of two disjoint sets Ev and Ek su
h that:1. (k, v)-CP|Ev is v-CD w.r.t. isomorphism,2. (k, v)-CP|Ek
is k-CP w.r.t. isomorphism,3. ≤ = (≤|Ev) ∪ (≤|Ek

) and # = ∅,4. Dom(L) = E and Codom(L) = {+,−}, and5. marking fun
tion M : C(k,v)-CP → N is de�ned as M(C) = v + |{e ∈ E /L(e) =
+}| − |{e ∈ E /L(e) = −}|.Although the labeling fun
tion L is not expli
itly de�ned in De�nition 3.3.19, thanksto the �rst and se
ond items, one
an see that L is the union of two disjoint fun
tions L|Evand L|Ek

whi
h are well de�ned. So that, for instan
e, events in Ev are all labeled by thede
rement a
tion '−' by De�nition 3.3.17. Figure 3.10 shows
ausality pro
esses withdi�erent parameters k and v. For instan
e, in the (3, 2)-
ausality pro
ess (Figure 3.10.
),we have Ev = {e1
v , e

2
v, e

3
v} and Ek = E \ Ev. Noti
e that when v = 0, i.e. Ev = ∅, the

(k, 0)-
ausality pro
ess is the k-
ausality pro
ess in De�nition 3.3.9.
+

−

e1
v

+

−

e2
v

+

−

+

−

(a) k = 0 and v = 2

+

−
ev

+

− +

(b) k = 1 and v = 1

−
e1
v

−
e2
v

−
e3
v

+

− +

− + +

+

− + +

+

− +

− + +

+

− + +

(
) k = 2 and v = 3

Figure 3.10: Example of (k, v)-
ausality pro
essesFigure 3.10.a and Figure 3.10.b show the (k, v)-
ausality pro
esses together with its
orresponding k-
ausality pro
esses for two parti
ular values of k: k = 0 and k = 1.In these two �gures, events in k-
ausality pro
ess whi
h are not in the (k, v)-
ausalitypro
ess are
olored in gray. One
an �nd out that, (k, v)-
ausality pro
ess is intuitively asu�x of k-
ausality pro
ess for every value of v. However, it is true only when k is either41

Chapter 3. Modeling
on
urrent systems by labeled event stru
tures
0 or 1. As a
onsequen
e, it follows from Lemma 3.2.10 that indu
ed labeled transitionsystems of (0, v)-
ausality pro
esses and (1, v)-
ausality pro
esses are all v-initialized
ounters.Lemma 3.3.20. Let k, v be two numbers. (k, v)-CP = (E,≤,#,L,M) is a �nitely-bran
hing if k > 0, deterministi
, non-redundant and
oherent labeled event stru
turewhose indu
ed labeled transition system LTS

(k,v)-CP is the v-initialized
ounter v-CT inDe�nition 3.3.6.Proof. By de�nition of the marking fun
tion M, (k, v)-CP is deterministi
 by De�ni-tion 3.2.2. It is also non-redundant by De�nition 3.2.14 be
ause there is no
on�i
t, i.e.
= ∅.Let C be any
on�guration of (k, v)-CP. By de�nition, (k, v)-CP is intuitively a
ombination of v-CD, k-CP of whi
h event sets are respe
tively Ev, Ek, and these setsare
on
urrent, i.e. Ev ‖

s Ek. Hen
e, every extension event of C in (k, v)-CP is eitheran extension event of C ∩ Ev in v-CD (number of su
h events
an not ex
eed v) oran extension event of C ∩ Ek in k-CP (number of su
h events is �nite if k > 0 due toLemma 3.3.10). Therefore, (k, v)-CP is �nitely-bran
hing.Now, we are going to prove the
oheren
e of (k, v)-CP. Let X be the set of allextension events of C in (k, v)-CP, and denote by X+ = X ∩E+, X− = X ∩E− its twodisjoint subsets of in
rement events, de
rement events respe
tively. X+ is not emptysin
e C has at least one extension event e+ ∈ E+ in k-CP due to Lemma 3.3.11.By de�nition of marking fun
tion M, M(C) = 0 (*) if and only if |C ∩ E−| =
v + |C ∩ E+|. Sin
e Ev ⊂ E−, we
an write |Cv| + |Ck ∩ E−| = v + |Ck ∩ E+| where
Cv = C ∩Ev and Ck = C ∩Ek. Be
ause Ck is a
on�guration of k-CP, so the number ofits de
rement events
an not be greater than the one of its in
rement events; and |Cv | isless than or equal to the number of events in v-CD, hen
e (*) if and only if Cv = Ev and
Mk-CP(Ck) = 0. In this
ase, X− ⊆ Ek, and X− is thus empty due to Lemma 3.3.11.Otherwise, i.e. either Cv ⊂ Ev orMk-CP(Ck) 6= 0, X−
ontains at least one event whi
his in Ev \ Cv or is an event extension e− ∈ Ek of Ck in k-CP.Therefore, for all
on�gurations C of (k, v)-CP, C always has an extension whi
his an in
rement event, and C has an extension whi
h is an de
rement event if andonly if M(C) > 0. Moreover, by de�nition, M(C ∪ e) = M(C) + 1 if e ∈ E+, and
M(C ∪ e) =M(C)− 1 otherwise. (k, v)-CP is thus
oherent.In addition, sin
e M(∅) = v, the indu
ed labeled transition LTS

(k,v)-CP is the v-initialized
ounter v-CT in De�nition 3.3.6.Remark: Combination of labeled event stru
tures like in (k, v)-
ausality pro
esses
ouldbe applied to put together, for instan
e,
ausality pro
esses with di�erent parameters
k, and then with any
oherent and deterministi
 labeled event stru
ture for v-bounded
ounters. But noti
e that the number of these
omponent pro
esses should be �nite inorder to guarantee the �nitely-bran
hing property of the global one. In this way, we
anobtain
oherent labeled event stru
tures for
ounters. The proof's idea is the same asthe one of Lemma 3.3.20.Labeled event stru
tures for bounded
ounters whi
h are initialized by a given num-ber, are just su�xes of bounded pro
esses. As a
onsequen
e, they inherit the
oheren
e,�nitely-bran
hing, and non-redundan
y of bounded pro
esses. Moreover, there is onlyone labeled event stru
ture, w.r.t. isomorphism, for ea
h pair of parameters bound kand initial value v. The following is thus a dire
t sequen
e of Lemma 3.2.10.42

3.3. Modeling
on
urrent systemsLemma 3.3.21. Given natural numbers k > 0, and a natural number v whi
h is notgreater than k. Let C be any
on�guration in the k-bounded pro
ess b-BP = (E,≤
,#,L,M) satisfyingM(C) = v. The C-su�x of b-BP, i.e. b-BP|E\C\#(C), is a labeledevent stru
ture for the k-bounded
ounter whi
h is initialized by v.3.3.3 FIFO
hannelsNowadays, many works on veri�
ation aim at verifying
ommuni
ation proto
ols. Thepopular model Communi
ating Finite State Ma
hine [BZ83℄ for spe
ifying and verifyingthese proto
ols,
an be
onsidered as a syn
hronized produ
t of some FIFO (First-In-First-Out)
hannels and some other �nite-state labeled transition systems. FIFO
hannel is thus a standard model whi
h allows to represent the ex
hange of messages ina
ommuni
ation proto
ol.Intuitively, a FIFO
hannel is a variable holding a �nite word over some alphabet
M . This word determines its
urrent state. At ea
h time, the environment, e.g. the
lient of a server,
an either remove the �rst letter of this word, by a so
alled re
eivingoperation, or insert a new letter in M after the last letter of this word, by a so
alledsending operation.De�nition 3.3.22 (v-initialized FIFO
hannel over M). Let M be a non-empty alphabetand v be any �nite word over M . The v-initialized FIFO
hannel over M is the labeledtransition system (M,v)-FF = (M∗,Σ,→, v) where

• a
tion set Σ = {!m /m ∈M} ∪ {?m /m ∈M}, and
• transition relation → = {〈w, !m,w.m〉 /m ∈M,w ∈M∗} ∪
{〈m.w, ?m,w〉 /m ∈M,w ∈M∗}.Notation 3.3.23. We denote by !M the set {!m /m ∈M} and
all it the sending a
tionset ; and respe
tively ?M = {?m /m ∈M} the re
eiving a
tion set.Figure 2.2 on page 15 illustrates an example of (M,v)-FF where M = {a, b} and

v = a (Example 2.4.3). Although a state of a FIFO
hannel is a �nite word, there isno limit on its size. As a
onsequen
e, any sending a
tion !m where m ∈ M is alwaysenabled. However, a re
eiving a
tion ?m is only enabled from a state w ∈ M∗ if m isa pre�x of the word w. Rea
hable states of (M,v)-FF
an be
omputed by means of
M -letter-morphisms de�ned as follow:De�nition 3.3.24 (M -letter-morphisms). The M -letter-morphisms Π!M and Π?M aretwo fun
tions from (!M ∪ ?M) to (M ∪ {ε}), where ε is the empty word, su
h that

• Π!M (!m) = Π?M (?m) = m for all m ∈M , and
• Π!M (?m) = Π?M (!m) = ε for all m ∈M .Re
all that the fun
tion ΠW

!M (ΠW
?M) is based on Π!M (Π?M , resp.) (see Se
tion 2.2on page 12). By de�nition, for a given word w ∈ (!M ∪ ?M), in order to obtain ΠW

!M(w)(ΠW
?M (w), resp.), one intuitively 'erases' all letters in ?M (!M , resp.) of w, then 'erases'all 'notes of ex
lamation' ('question marks', resp.).Let σ ∈ (!M ∪?M)∗ be any �ring sequen
e of (M,v)-FF, and w be its only rea
hablestate (be
ause (M,v)-FF is deterministi
), i.e. v

σ
−→ w. We have that

w = (ΠW
?M (σ))−1(v.ΠW

!M (σ)) 43

Chapter 3. Modeling
on
urrent systems by labeled event stru
turesIntuitively, one
an �rst insert all messages a

ording to sending a
tions in the �ringsequen
e σ, to obtain the word w′ = (v.ΠW
!M (σ)). Then, by removing all messagesa

ording to re
eiving a
tions in σ from w′, one �nally gets the rea
hable state w. Thisinserting order as well as this removing order should respe
t to the order of a
tions in

σ. Therefore, su
h removing messages form the pre�x ΠW
?M (σ) of w′ while w is a su�xof w′.The key idea of modeling a FIFO
hannel by some labeled event stru
ture E is thatevery event labeled by a sending a
tion !m ∈ !M , shortly
alled a sending event, givesrise to another event labeled by ?m ∈ ?M ,
alled a re
eiving event, that should be asu

essor of the sending one. This relation between sending events and re
eiving ones isa bije
tion. Moreover, it follows from the total order of messages in FIFO
hannels thatsending events should not be
on
urrent. In order to avoid redundan
y, it is natural thata sending event e! has |M | dire
t sending su

essors whi
h
orrespond to di�erent sendinga
tions in !M . The re
eiving event e? asso
iated to e! is hopefully a dire
t su

essor of

e! and
on
urrent with other dire
t sending su

essors of e!.Aiming at labeled event stru
tures for FIFO
hannels, and at �rst for the empty-initialized FIFO
hannel, one may think about using k-
ausality event stru
tures de�nedin De�nition 3.3.7. Re
all that, given a k-
ausality event stru
ture E = (E,≤,#), let
E− = {e ∈ E / ⋖(e) = ∅} and E+ = E \ E−, hen
e E+ and E−
orrespond respe
tivelyto the in
rement event set and the de
rement event set in the k-
ausality pro
ess. Ea
hin
rement event e+ ∈ E+ has exa
tly k + 1 dire
t su

essors, and among them, there isonly one de
rement event. Moreover, B = {〈e+, e?〉 ∈ (E+×E−) / e+ ⋖e−} is a bije
tionfrom E+ to E−. The bije
tion B
ould be obtain in another way that B = (E+×E−)∩⋖.In the following de�nition of M -
ausality event stru
ture, for an alphabet M , we simplyuse the k-
ausality event stru
ture where k is the
ardinal of M , i.e. k = |M |.De�nition 3.3.25 (M -
ausality event stru
ture). The M -
ausality event stru
ture, fora given non-empty alphabet M , is an event stru
ture E = (E,≤,#), where E is unionof two disjoint sets E! and E?, su
h that:1. let ≤′ = (≤\ (E?×E?))∪IE?

, then (E,≤′, ∅) is the |M |-
ausality event stru
tures,and E? = {e ∈ E / ⋖
′(e) = ∅};2. let B! be the bije
tion de�ned by B! = (E! × E?) ∩ ⋖

′ and let B? = B−1
! , then forall e?, f? ∈ E?, e? ≤ f? i� B?(e?) ≤

′ B?(f?); and3. {〈e, f〉 ∈ # />(e)#s >(f)} = {〈e!, f!〉 ∈ (E! × E!) / e! 6= f! and
>(e!) = >(f!)}. 1An M -
ausality event stru
ture is simply a k-event stru
ture, where k = |M |, withadditional
ausality and
on�i
t as stated in the �rst item. Events are separated intotwo sets E! and E? whi
h respe
tively represent sending events and re
eiving events.Be
ause E? = {e ∈ E / ⋖

′(e) = ∅}, re
eiving events intuitively
orrespond to de
rementevents in |M |-
ausality pro
ess.Suppose that the FIFO
hannel is initially empty, a message in the FIFO
hannelmust be inserted by a sending event and
ould be removed by another re
eiving event.These two events are related by bije
tions B! and B? de�ned in the se
ond item. It isobvious that the re
eiving event must o

ur after the sending one, thanks to the
ausality
≤′ in the k-
ausality event stru
ture, so that e! ⋖

′ B!(e!) and equally, e! ⋖ B!(e!) for all
e+ ∈ E!. Moreover, the environment
an only re
eive messages in the order that theywere sent into the
hannel due to its First-In-First-Out property, this fa
t gives rise to1 #s is the
omplement of #s (see Se
tion 2.1 on page 11)44

3.3. Modeling
on
urrent systemsa
ausality on the set of re
eiving events whi
h respe
ts the
ausality on the set of its
orresponding sending events. More pre
isely, two re
eiving events e?, f? ∈ E? are
ausal,for example e? < f?, if and only if in the
hannel, the
orresponding message of e? isinserted before the one of f?. The se
ond
ondition is guaranteed when
orrespondingsending events are
ausal, i.e. B?(e?) < B?(f?) whi
h is equivalent to B?(e?) <′ B?(f?)by de�nition.In the third item, the set {〈e, f〉 ∈ # />(e)#s >(f)} represents the relation ofminimal
on�i
t on events, denoted by #m. In words, e#m f if events in the downward
losure ≥({e, f}) are pairwise either
ausal or
on
urrent, ex
ept the pair e and f . Andwhen e# f and e #m f , we say that e and f are in
on�i
t due to
on�i
t inheritan
ew.r.t.
ausality, that means there exists two prede
essors of e and f whi
h are in
on�i
t.Hen
e, the third item states that minimal
on�i
t #m in M -
ausality event stru
tures
omes from the
on�i
t between sending events whi
h are extension events of a same
on�guration, whi
h
orrespond to sending a
tions from a same state. Intuitively, givenany word w ∈ M∗ whi
h is some
urrent state of a FIFO
hannel FF, one
an �rstlysend a message a ∈ M and then another message b ∈ M , or
onversely. However, sin
emessages in FF are totally ordered, if a di�ers from b, one thus obtains di�erent statesby permuting this su

essive sending a
tions !a and !b. Formally, be
ause w։w.a.b
!a!band w։w.b.a

!b!a , so a 6= b implies w.a.b 6= w.b.a. Sending a
tions are not independent.For the goal of having a non-redundant labeled event stru
ture, ea
h sending eventin M -
ausality event stru
ture has exa
tly |M | sending dire
t su

essors. These dire
tsu

essors are pairwise in
on�i
t, and moreover, it is the origin of the minimal
on�i
t
#m from whi
h the whole
on�i
t relation #
an be
omputed due to
on�i
t inheritan
e.Therefore, all sending events are either in
ausality or in
on�i
t. The
on
urren
y inFIFO
hannel is formally represented by
on
urren
y in the M -
ausality event stru
ture.Proposition 3.3.26. Let E = (E,≤,#) be any M -
ausality event stru
ture de�ned inDe�nition 3.3.25, for a given non-empty alphabet M .

‖ = {〈e?, f!〉, 〈f!, e?〉 / e? ∈ E?, f! ∈ E! and B?(e?) < f!}Proof. As previously mentioned, all sending events are pairwise either
ausal due to
ausality in its k-
ausality event stru
ture, or in
on�i
t by the third item of De�ni-tion 3.3.25. Hen
e there exists no
on
urren
y between sending events (*). And so dofor re
eiving events. Be
ause, suppose the opposite, let e?, f? be any re
eiving eventswhi
h are
on
urrent. As a
onsequen
e of the se
ond item in De�nition 3.3.25, the send-ing events
orrespond to e? and f? w.r.t. B? are also
on
urrent, i.e. B?(e?) ‖ B?(f?).This
ontradi
ts (*). We
an
on
lude that
‖ ∩ (E! ×E!) = ‖ ∩ (E? × E?) = ∅Now, let e? ∈ E? be any re
eiving event, and f! ∈ E! be any sending one. If B?(e?)and f! are
on�i
t, then sin
e e? is a dire
t su

essor of B?(e?), it is also
on�i
t with

f! due to
on�i
t inheritan
e. Otherwise, i.e. B?(e?)# f!, as explained above, B?(e?)and f! must be in
ausality. There are thus two
ases. First, f! ≤ B?(e?), we have
f! < e? be
ause B?(e?) ⋖ e?. Se
ond, B?(e?) < f!, in the k-
ausality event stru
ture,
e? and f! are
on
urrent, hen
e 〈e?, f!〉 6∈ (≤′ ∪ ≥′). We have thus 〈e?, f!〉 6∈ (≤ ∪ ≥)be
ause ≤∩ (E? ×E!) = ≤′ ∪ (E? ×E!) = ∅. Moreover, we have ≥(B?(e?)) ⊂ ≥(e?) and
≥(f!) = ≥(B?(e?)) ∪ F! where F! ⊂ E! is the set of all events in the path from B?(e?) to
f! in the k-
ausality stru
ture. Therefore, suppose that B?(e?)#f!, this
on�i
t must beinherited from some minimal
on�i
t B?(e?)#m f ′

! where f ′
! ∈ F!. This
ontradi
ts the45

Chapter 3. Modeling
on
urrent systems by labeled event stru
turesfa
t that #m ⊂ (E! × E!) stated in the third item of De�nition 3.3.25. Hen
e, in this
ase, e? ‖ f! if and only if B?(e?) < f!. Finally,
‖ = ‖ ∩ ((E! ×E?) ∪ (E? ×E!))

= {〈e?, f!〉, 〈f!, e?〉 / e? ∈ E?, f! ∈ E! and B?(e?) < f!}Proposition 3.3.26 intuitively says that a re
eiving event e? is
on
urrent with allsending events whi
h o

ur after the one
orresponding to e?, i.e. B?(e?). And all
on
urren
y in M -
ausality event stru
tures is of this type.
!a

!a

!a ?a !b

?a !b

!a ?b !b

!b

!a

!a ?a !b

?b !b

!a ?b !bFigure 3.11: M -
ausality pro
esses where M = {a, b}Figure 3.11 gives an example of M -
ausality pro
ess, de�ned in the following, as wellas its M -
ausality event stru
ture. Sin
e M = {a, b}, one
an �nd out that it is similarto the 2-
ausality event stru
ture in Figure 3.7.
. In addition to the 2-
ausality eventstru
ture, there are the minimal
on�i
t #m between sending events E! and the
ausalitybetween re
eiving events E?. This new
ausality is represented by double-line arrows.and are shown in red
olor. Intuitively, ea
h re
eiving event has two dire
t su

essorsthat are also re
eiving events.Remark: Thanks to Proposition 3.3.26, given a
on�guration C of a M -
ausality eventstru
ture, its sending events (C ∩E!) are totally ordered. And so do the re
eiving events
(C ∩ E?). As a
onsequen
e, for all
on�guration C, there is a unique linearisation of
(C ∩ E!), and a unique one of (C ∩ E?), w.r.t. the
ausality.De�nition 3.3.27 (M -
ausality pro
ess). Let M be a non-empty alphabet. The M -
ausality pro
ess is a labeled event stru
ture M -CP = (E,≤,#,L,M) where ((E!∪E?),≤
,#) is the M -
ausality event stru
ture de�ned in De�nition 3.3.25, and

• labeling fun
tion L : (E! ∪ E?)→ (!M ∪ ?M) su
h that1. Codom(L|E!
) = !M and Codom(L|E?

) = ?M ,2. for all e! ∈ E!, Π!M (L(e!)) = Π?M (L(B!(e!))),3. for all e! ∈ E!, let F! = (⋖(e!) ∩ E!), then L|F!
is a bije
tion between F! and

!M ;4. L|Min≤(E) is a bije
tion between Min≤(E) and !M ,
• marking fun
tionM : CM-CP→M∗ de�ned by
M(C) = (ΠW

?M (LW(σ?)))
−1(ΠW

!M (LW(σ!))) where σ! and σ? are respe
tively thelinearisations, w.r.t. the
ausality ≤, of (C ∩ E!) and (C ∩ E?).46

3.3. Modeling
on
urrent systemsIn words, the labeling fun
tion L says that: �rst, sending events E! are labeled bysending a
tions !M while re
eiving events E? are labeled by re
eiving a
tions ?M ; se
ond,by means of M -letter morphisms Π!M and Π?M , sending events and re
eiving eventswhi
h are related by the bije
tion B!, as well as by B?, must
on
ern a same message;and third, events in the sending dire
t su

essor set of any sending event e! ∈ E!, denotedby F!, must be pairwise distinguishably labeled. Sin
e F! = |M | by De�nition 3.3.7, wehave thus L(F!) = {L(e) / e ∈ F!} = !M . The fourth property of labeling fun
tion L islike the third one but the set of sending events here is the set of minimal events w.r.t.
ausality.Noti
e that σ! and σ? in the de�nition of a marking fun
tion are linearisations whi
hare
onsidered as words over alphabets (C ∩ E!) and (C ∩ E?) respe
tively. Therefore,
LW(σ!) as well as LW(σ!.σ?) may be �ring sequen
es of some (M,v)-FF. The de�nitionof marking fun
tionM in De�nition 3.3.27 respe
ts to the way of
omputing rea
hablestates in the empty-initialized FIFO
hannel (M,ε)-FF (see De�nition 3.3.22 on page 43).Lemma 3.3.28. Let M -CP = (E,≤,#,L,M) be the M -
ausality pro
ess for a non-empty alphabet M . M -CP is a
oherent labeled event stru
ture for (M,ε)-FF.Proof. Let C ∈ CM-CP be any
on�guration of the M -
ausality pro
ess, let us denote
C! = C ∩ E! and C? = C ∩ E?. We �rst shows how the marking of C is
omputed from
C! and C?. Sin
e B?(e?) ⋖ e? for all re
eiving events e?, we have thus B?(C?) ⊆ (≥(C?)).It follows from the downward-
losure of C w.r.t. the
ausality ≤ that B?(C?) must bea subset of sending event set C!. Moreover, let C ′

! = C! \ B?(C?), we must have that,for all 〈e!, e
′
!〉 ∈ (B?(C?) × C ′

!), e! < e′! (1). Be
ause, as mentioned above, (C!,≤|C!
) is atotally-ordered set, if e′! < e! then B!(e

′
!) < B!(e!) by the se
ond item of De�nition 3.3.25.Hen
e the re
eiving event B!(e

′
!) must be in C?, and as a
onsequen
e, its
orrespondingsending event e′! is in B?(C?). This
ontradi
ts to the fa
t that C ′

!∩B?(C?) = ∅. Therefore,from (1), the unique linearisation σ! of C!, w.r.t.
ausality ≤, must be σB.σ′
! where σBis the linearisation of B?(C?) w.r.t. ≤. By de�nition of the labeling fun
tion L, wehave ΠW

?M (LW(σ?)) = ΠW
!M(LW(σB)), where σ? is the linearisation of C? w.r.t. ≤. ThemarkingM(C) in De�nition 3.3.27
an be
omputed as follows:

M(C) = (ΠW
?M (LW(σ?)))

−1(ΠW
!M (LW(σB.σ′

!)))= (ΠW
?M (LW(σ?)))

−1(ΠW
!M (LW(σB))).(ΠW

!M (LW(σ′
!)))= (ΠW

!M (LW(σ′
!))) (2)Now, let e′!, f

′
! be respe
tively the minimal and maximal events, if they exist, of C ′

!w.r.t. ≤. Let x? = B!(e
′
!) be the dire
t re
eiving su

essor of e′! and X! = {f! ∈ E! / f ′

! ⋖f!}be the set of dire
t sending su

essors of f ′
! . By de�nition, ({x?} ∪X!) ‖

s C. Sin
e forall x! ∈ X!,≥(x!) = ≥(f ′
!) ∪ {x!} = C! ∪ {x!}, and ≥(x?) = ≥(e′!) ∪ B!(≥(e′!) \ {e

′
!}) =

(B?(C?) ∪ {e
′
!}) ∪ C?, then x ∪ C are thus downward
losed, and moreover
on�i
t-free(by De�nition 3.3.25). Hen
e X = X! ∪ {x?} is the set of extension events of C, be
auseall other events e ∈ (E \ (C ∪X)) whi
h is not
on�i
t with events in C, must be eithera su

essor of some some event x! ∈ X! if e ∈ E!, or a su

essor of x? if e ∈ E?.Noti
e that |X!| is the number of f!'s dire
t su

essors, |X!| must be |M |. It followsfrom the bije
tion L|X!

between X! and !M by De�nition 3.3.27 that, for every m ∈M ,there exists a sending event x! ∈ X! satisfying L(x!) = !M . In other words, C has anextension event that
orresponds to any sending a
tion in !M (3). And if M(C) 6= ε,let m be the �rst letter (or message) in the wordM(C) = ΠW
!M (LW(σ′

!)). Sin
e e′! is theminimal event, w.r.t. ≤, and C ′
! is totally ordered by ≤, the �rst letter of LW(σ′) mustbe L(e′!). We have thus Π!M (e′!) = m, as a
onsequen
e, L(e′!) = !m and L(x?) = ?m.47

Chapter 3. Modeling
on
urrent systems by labeled event stru
turesTherefore, C has one and only one extension event labeled by ?m if and only if m is apre�x ofM(C) (4).Let x! be any sending extension event of a given label !m, i.e. L(x!) = !m. Be
ause,for all e ∈ C ′
! , e < x!, from (2) we have

M(C ∪ x!) = (ΠW
!M (LW(σ′

!.x!)))

= (ΠW
!M (LW(σ′

!))).Π!M (L(x!))

=M(C).mAnd if C has a re
eiving extension event x? ∈ E? with label ?m, i.e. C ⊢ x? and
L(x?) = ?m, on
e again, due to (2),

M(C ∪ x?) = (ΠW
?M (LW(σ?.x?)))

−1(ΠW
!M (LW(σB.σ′

!)))

= (Π!M (L(x!)))
−1.(ΠW

!M (LW(σ′
!)))

= m−1.M(C)In
oordination with (3) and (4), we
an
on
lude that M -CP is
oherent, and that themarking of C ∪ x
orresponding to a state whi
h is rea
hable from the marking of C by�ring the a
tion L(x). Moreover,M(∅) = ε by de�nition, M -CP is a thus labeled eventstru
ture for (M,ε)-FF.Lemma 3.3.29. Let M -CP = (E,≤,#,L,M) be the M -
ausality pro
ess for a non-empty alphabet M . M -CP is �nitely-bran
hing and non-redundant.Proof. Thanks to the proof of Lemma 3.3.28, any
on�guration C ∈ CM-CP has |M |sending extension events and at most one re
eiving extension event. M -CP is thus�nitely-bran
hing by De�nition 3.1.9.Although sending extension events of C, denoted by the set X! are pairwise in
on�i
t,its labels and the re
eiving extension event's label, if exists, are pairwise di�erent be
ause
L|X!

is a bije
tion between X! and !M by De�nition 3.3.27. As a
onsequen
e, M -CP isnon-redundant by De�nition 3.2.14.FIFO
hannels initialized with non-empty wordConsider now a FIFO
hannel (M,v)-FF where v 6= ε. Intuitively, ea
h letter m of v givesrise to only one event whi
h
orresponds to the re
eiving a
tion ?m. Due to the �rst-in-�rst-out property, su
h events, depending on letter m, are totally ordered. Withoutlooking at other events, these |v| events and their
ausality form a simple labeled eventstru
ture
alled a (M,v)-�ushing pro
ess.De�nition 3.3.30 (v-�ushing pro
ess). Let v ∈ M∗ be a �nite word for some givenalphabet M . The (M,v)-�ushing pro
ess, denoted by (M,v)-CP
?, is the deterministi
labeled event tree for the labeled transition system (M∗, ?M,→, v) where → is therestri
tion of the transition relation →FF in (M,v)-FF onto (M∗ × ?M ×M∗).Figure 3.12.a shows an example of (M,v)-�ushing pro
esses. It follows from theDe�nition 3.3.3 that there is no
on
urren
y in (M,v)-CP

?. However, one
an �nd outthat there is no
on�i
t, so that all events are pairwise in
ausal.Now, by the same manner as in
ausality pro
esses for
ounters (see Se
tion 3.3.2),we introdu
e a labeled event stru
ture for a given (M,v)-FF that intuitively
onsists ofa v-�ushing pro
ess, a M -
ausality pro
ess, and some
ausality in addition.48

3.3. Modeling
on
urrent systems
?b

?a

?a

?c

(a)
!a

!a

!a ?a !b

?a !b

!a ?b !b

?b

?a

!b

!a

!a ?a !b

?b !b

!a ?b !b

f?b

f?a

(b)

Figure 3.12: (a) (M,v)-�ushing pro
ess where M = {a, b, c} and v = baac; (b) (M,v)-
ausality pro
ess where M = {a, b} and v = ba.De�nition 3.3.31. Let M be a non-empty alphabet and v be any �nite word over M .The (M,v)-
ausality pro
ess is a labeled event stru
ture (M,v)-CP = (E,≤,#,L,M)where E is the union set of two disjoint sets Ef and Em su
h that1. (M,v)-CP|Ef is the (M,v)-�ushing pro
ess w.r.t. isomorphism,2. (M,v)-CP|Em is the M -
ausality pro
ess w.r.t. isomorphism,3. # = #|Em ,4. ≤ = (≤|Ef) ∪ (≤|Em) ∪ (Ef × Em
?) where Em

? is the set of re
eiving events in
(M,v)-CP|Em .5. the labeling fun
tion L : E → (!M ∪ ?M) is de�ned as L(e) = L≤|

Ef
(e) if e ∈ Ef ,and L(e) = L≤|Em (e) otherwise, and6. the marking fun
tionM : CM-CP→M∗ is de�ned as

M(C) = (ΠW
?M (LW(σ?)))

−1(v.ΠW
!M (LW(σ!))) where σ! and σ? are respe
tively thelinearisations, w.r.t. the
ausality ≤, of C! = {e ∈ C /L(e) ∈ !M} and C? = {e ∈

C /L(e) ∈ ?M}.Figure 3.12.b illustrates ({a, b}, ba)-
ausality pro
ess. Its ({a, b}, ba)-�ushing pro
ess
ontains only two events f?b and f?a that are in the middle of the �gure. In this example,
Ef = {f?b, f?a} and Em = E \ Ef . As stated in the third item of De�nition 3.3.31,
on�i
t in (M,v)-CP is the
on�i
t in its M -
ausality pro
ess. The additional
ausalitybetween events in these two disjoint sets, i.e. ≤ ∩ (Ef × Em),
omes from the fa
tminimal re
eiving events of M -
ausality pro
esses, w.r.t. ≤, must be dire
t su

essorsof the maximal event of (M,v)-�ushing pro
ess in order to respe
t the �rst-in-�rst-outproperty. Hen
e, this prede
essor relation ⋖ ∩ (Ef × Em) = Max≤(Ef) × Min≤(Em

?)is represented by double arrows in the �gure. It respe
ts well to the third item. Themarking fun
tion is similar to the one of M -
ausality pro
ess in De�nition 3.3.27 withattention at initial word v.Lemma 3.3.32. Let M be a non-empty alphabet and v be any �nite word over M . The
(M,v)-CP is a
oherent, non-redundant and �nitely-bran
hing labeled event stru
ture forthe (M,v)-FF. 49

Chapter 3. Modeling
on
urrent systems by labeled event stru
turesProof. Let C be any
on�guration of (M,v)-CP = (E,≤,#,L,M). C has exa
tly Mextension events whi
h are sending extension events of C ∩ Em in M -CP, and they areformally represented by the dire
t su

essor set of the only sending event em
! where

{em
! } = Max≤(C ∩ E!). These extension events are distinguishably labeled by sendinga
tions in !M (1) be
ause LM-CP|⋖(e!m), as a
onsequen
e L|⋖(e!m), is a bije
tion byDe�nition 3.3.27.First, if Ef ⊆ C, the Ef -su�x of (M,v)-CP is the M -FF w.r.t. isomorphism be
ausefor all
on�gurations X ⊆ Em in this su�x, denoted by Ex = (M,v)-CP|E\Ef\#(Ef) =

(M,v)-CP|Em , one has that
MEx(X) =M(Ef ∪X)

= (ΠW
?M (LW(σ?)))

−1(v.ΠW
!M (LW(σ!)))

= (ΠW
?M (LW(σf

? .σx
?)))−1(v.ΠW

!M (LW(σ!)))

= ((ΠW
?M (LW(σf

?))).(ΠW
?M (LW(σx

?))))−1(v.ΠW
!M (LW(σx

!)))

= (v.ΠW
?M (LW(σx

?)))−1(v.ΠW
!M (LW(σx

!)))

= (ΠW
?M (LW(σx

?)))−1(ΠW
!M (LW(σx

!)))is the same formula as in de�nition of M -
ausality pro
ess, where σ?, σ! = σx
! , σf

? , and σx
?are respe
tively linearisations of (C ∩E?), (C ∩E!) = (X ∩E!), E

f , and X ∩E?. Thanksto Lemma 3.3.28, C has re
eiving extension labeled by ?m ∈ !M if and only if m is the�rst letter ofM(C) =MEx(C \Ef), that means X = (C \Ef) has a re
eiving extensionevent labeled by ?m in the Ef -su�x Ex.Se
ond, if Ef 6⊆ C, let ef
? be the maximal event w.r.t. ≤ of Ef , and xf

? is the uniquedire
t su

essor of ef
? . Sin
e all re
eiving events are either
ausal or in
on�i
t, we have

C∩E? = ≥(ef
?), xf

? ∈ Ef\C, and xf
? ∈ E?. Re
eiving event xf

? is thus the unique re
eivingextension event of C; and markingM(C) = (ΠW
?M (LW(σ?)))

−1(v.ΠW
!M (LW(σ!))) de�nedin De�nition 3.3.31 has a pre�x (ΠW

?M (LW(σ?)))
−1(v) where σ? is the linearisation of

≥(ef
?) w.r.t. ≤. By De�nition 3.3.30, the �rst letter of this pre�x, and of M(C) as a
onsequen
e, is Π?M (xf

?) (2).Now let e be any extension event of C, i.e. C ⊢ e. Sin
e there is no
on
urren
ybetween sending events, as well as re
eiving events, if σ!, σ?, σ
′
! and σ′

? are respe
tivelylinearisations of (C ∩E!), (C ∩ E?), ((C ∪ {e}) ∩E!) and ((C ∪ {e}) ∩E!), then we havethat σ′
! = σ!.e and σ′

? = σ? if e ∈ E!, or σ′
! = σ! and σ′

? = σ?.e otherwise, i.e. e ∈ E?.Therefore, we
an dedu
e from the de�nition of the marking fun
tion that
M(C ∪ {e}) =

{
M(C).Π!M (L(e)) if e ∈ E!

(Π!M (L(e)))−1M(C) if e ∈ E?
(3)Hen
e (M,v)-CP is
oherent due to (1), (2), and (3). Moreover, M(∅) = v byde�nition, the indu
ed labeled transition system LTS

(M,v)-CP is the (M,v)-FF de�nedin De�nition 3.3.22.Finally, sin
e the M -
ausality pro
ess is the Ef -pre�x of the (M,v)-
ausality pro
ess.It follows from the non-redundan
y and �nitely-bran
hing properties of M -
ausality pro-
ess whi
h are proved in Lemma 3.3.29, that (M,v)-
ausality pro
ess is non-redundantand �nitely-bran
hing too thanks to Corollary 3.1.17.Bounded FIFO
hannelsIn pra
ti
e, FIFO
hannels are usually �nite-state systems due to the fa
t that
hannels
annot
ontain more than b messages for some given number b. Intuitively, when the50

3.3. Modeling
on
urrent systems
hannel is full, i.e.
ontains b messages, all sending a
tion is enabled only after somere
eiving one. Bounded FIFO
hannels are formally de�ned as follows:De�nition 3.3.33. Let b be any positive number, M be a non-empty alphabet, and vbe a word over M whose size is not greater than b. The FIFO
hannel over M whi
his initialized by v and is bounded by b, denoted by (M,v, b)-BF, is the restri
tion of the
(M,v)-FF to the state set M [0,b].The a
tion set of (M,v, b)-BF is still (!M ∪ ?M) like the one of (M,v)-FF, however,its semanti
s are slightly di�erent. Sin
e (M,v, b)-BF is a restri
tion of (M,v)-FF on itsstates, every �ring sequen
e σ of (M,v, b)-BF is also a �ring sequen
e of (M,v)-FF. Sothat, if one
an model the (M,v, b)-BF by a
alled (M,v, b)-
ausality pro
ess (M,v, b)-CPwhi
h is based on (M,v)-
ausality pro
ess (M,v)-CP, then a
on�guration in (M,v)-CPmust
orrespond to a
on�guration in (M,v, b)-CP. In fa
t, the key idea is intuitively thatone needs to add some
ausality to (M,v)-CP in order to avoid all
on�gurations whosemarking is not in the range M [0,b]. Let us
onsider an example where M = {a, b, c}, v =
ba and the bound-parameter b = 3. Figure 3.13 illustrates a pre�x of the
orresponding
(M,v)-CP in whi
h there is no
on�i
t. Re
all that, sin
e there is no
on�i
t, this pre�xis similar to
ausality pro
esses for FIFO
hannels where the message set
ontains onlyone message.

!c

!a

!a

!c

!b

b

a

c

a

a

c

b

?b

?a

?c

?a

?a

?c

?b

e!
3

e!
n

e!
n+1

e!
n+2

e!
n+3

e?
1

e?
2

e?
3

e?
n

e?
n+1

e?
n+2

e?
n+3

1

2

3

n

n + 2

n + 3

Figure 3.13: An example illustrates a (M,v) FIFO
hannel's
ontent together with
orresponding events in the (M,v)-CP where M = {a, b, c} and v = 3. The double arrowis an additional
ausality that
omes from a bounded
onstraint: b = 3.One
an �nd in this example many
on�gurations C, and as a
onsequen
e, many�ring sequen
es σ of both (M,v)-FF and (M,v, b)-BF. As usual, su
h a �ring sequen
e
σ
omes from a linearisation of some
on�guration C. The graphi
al representation ofthe
hannel's whole
ontent, i.e. without removing message due to re
eiving events,i.e. re
eiving a
tions in σ, is drawn in the middle of Figure 3.13 (with gray
olor). Allmessages inserted due to the exe
ution σ are represented in top-down order to respe
t51

Chapter 3. Modeling
on
urrent systems by labeled event stru
turesthe
ausality of sending messages. Two messages b and a are found at the top be
auseof the initial value v = ab, any other message m is the origin of a sending event e! and are
eiving one e? satisfying m = Π!M (e!) = Π?M (e?). For instan
e, e3
! and e3

?
on
ern the�rst message c in the
hannel. Su
h events e! and e? are related the one to the other bythe bije
tions B! and B?, de�ned in De�nition 3.3.25, of (M,v)-CP. Moreover,
onsiderthe
hannel'
ontent as a word in whi
h messages has distinguishable indi
es in N. Event
e! and e? are then asso
iated to the index of the message m in this word. This index
ould be de�ned in another way as below.De�nition 3.3.34. Given a (M,v)-CP = (E,≤,#,L,M), the depth fun
tion D : E →
N is de�ned by:

D(e) =

{
|v|+ |≥(e) ∩E!| if e ∈ E!

|≥(e) ∩E?| if e ∈ E?As shown in Figure 3.13, for all k > 0, D(e!
k) = D(e?

k) = k. The D fun
tion is
omputed from the
ausality as stated in De�nition 3.3.34. Moreover, one may use
D together with the
on�i
t relation to determine the bije
tions B! and B? on (M,v)-
ausality pro
esses.Lemma 3.3.35. Given a (M,v)-CP = (E,≤,#,L,M), two events e! ∈ E! and e? ∈
(E? \E

f) are related by the bije
tion B!, as well as B?, if and only if e! # e? and D(e!) =
D(e?).Proof. By the same manner as in the proof of Lemma 3.3.32, for the left-to-right impli
a-tion, if e? = B!(e!) then ≥(e?) = ≥(e!)∪B!(≥(e!))∪Ef . Hen
e, ≥(e?)∩E? = B!(≥(e!))∪
Ef , and
onsequently, D(e?) = |B!(≥(e!))∪Ef | = |≥(e!)|+|E

f | = |≥(e!)∩E!|+v = D(e!).For the right-to-left impli
ation, thanks to Proposition 3.3.26, e! # e? implies thatthe sending dire
t prede
essor B?(e?) of e? is in
ausal with e!. Moreover, for all sendingsu

essors f! ∈ E! of e!, i.e. e! < f!, it follows from (≥(f!)) ⊇ (≥(e!) ∪ {f!}) ⊃ (≥(e!))that D(f!) > D(e!) by de�nition of the fun
tion D. In a same manner for prede
essors
f! ∈ E! of e!, one obtains D(f!) < D(e!). Therefore, D(e?) = D(e!) implies that B?(e?) is
e!, i.e. B?(e?) = e!, and of
ourse, B!(e!) = e?.On
e again, look at Figure 3.13, the marking of a
on�guration C intuitively
orre-sponds to a window on the
hannel's
ontent. Su
h a window is limited by the indi
esof maximal events, w.r.t. the
ausality, in C. For example, if C = {e!

3, . . . , e
!
n+2} ∪

{e?
1, . . . e

?
n−1}, its maximal events are e!

n+2 ∈ E! and e?
n−1 ∈ E?, the marking of C thus
onsists of messages with indexes from n to n + 2, that is graphi
ally grouped by thedouble-frame in Figure 3.13, i.e. M(C) = ΠW

!M(e!
n.e!

n+1.e
!
n+2) = aac.Aiming at de�ning labeled event stru
tures for bounded FIFO
hannels based on

(M,v)-CP, for instan
e b = 3, we need somehow a
onstraint in order to disable theextension event e!
n+3 of
on�guration C be
ause |M(C)| = b. However, e!

n+3 is hopefullyan extension event of the
on�guration (C∪{e?
n}) for respe
ting the fa
t that the bounded
hannel
an a

ept a new sending a
tion just after some re
eiving one. In order to doso, we add a new
ausality from e?

n to e!
n+3, and by generally applying this to all pairs ofa sending event e! ∈ E! and a re
eiving e? ∈ E? where D(e!) = D(e?) + b, one
an obtainlabeled event stru
tures for (M,v, b)-bounded FIFO
hannels, based on (M,v)-
ausalitypro
esses.De�nition 3.3.36 ((M,v, b)-
ausality pro
ess). Let b be any positive number, M bea non-empty alphabet, and v be a word over M whose size is not greater than b. Let52

3.3. Modeling
on
urrent systems
(M,v)-CP = (E,≤,#,L,M) be the (M,v)-
ausality pro
ess. The (M,v, b)-
ausalitypro
ess is the tuple (M,v, b)-CP = (E, (≤ ∪≤b),#,L,M) where

≤b = {〈e, f〉 ∈ ((E × E) \#) /D(f) ≥ D(e) + b}Lemma 3.3.37. (M,v, b)-CP is a
oherent labeled event stru
ture for
(M,v, b)-BF.Proof. Let us denote ≤′ = ≤∪≤b, we �rst prove that ≤′ is a partial-order. By de�nitionof fun
tion D, and as a
onsequen
e of Proposition 3.3.26, we have e ≤ f implies that
D(f) is greater than or equal to D(e). Let e, f be any two events in E. If e ≤ f then,for all f ′ ∈ E, f ≤ f ′ implies e ≤ f ′ be
ause (E,≤) is a poset; and f ≤b f ′ implies
e ≤b f ′ be
ause D(f ′) ≥ D(f) + b ≥ D(e) + b (1). If e ≤b f , i.e. D(f) ≥ D(e) + b, wealso have that, for all f ′ ∈ E, f ≤ f ′ implies e ≤b f ′; and f ≤b f ′ implies e ≤b f ′ (2)be
ause D(f ′) ≥ D(f). From (1) and (2), e ≤′ f and f ≤′ f ′ implies e ≤′ f ′. Hen
e, ≤′is transitive. Moreover, sin
e for all e, f ∈ E, D(e) < D(f) implies e 6= f , so if e ≤′ fand f ≤′ e then it is due to e ≤ f and f ≤ e. As a
onsequen
e, e = f be
ause ≤ is apartial order. Therefore, ≤′ is antisymmetri
, and
onsequently, is a partial order on E.By the third item of De�nition 3.3.25, for all e! ∈ E!, sin
e e! ⋖B!(e!), two sets #(e!)and #(B!(e!))
oin
ide (3). When two events e, f ∈ E are in
on�i
t, we have either
e#B!(f) if f ∈ E!, or e#B?(f) if f ∈ E?. Therefore, for every event f ′ ∈ E su
hthat f ≤b f ′, f ′ must be in
ausality with either f or B!(f) or B?(f) if exists. Dueto the
on�i
t-inheritan
e of (M,v)-CP, we have e#f ′. The
on�i
t inheritan
e thus ispreserved in (M,v, b)-CP (4).From (3), (4), and noti
e that the
on�i
t relation is the same in (M,v)-CP and
(M,v, b)-CP, (M,v, b)-CP is a labeled event stru
ture. And moreover, C(M,v,b)-CP =
C(M,v)-CP\C

′ where C′ is the set of
on�gurations C ∈ C(M,v)-CP whi
h are not downward-
losed w.r.t. ≤′. Sin
e sending events are pairwise
on
urrent or in
on�i
t, and so dore
eiving events, we have (≤′ \ ≤) = {〈e!, e?〉 ∈ ((E × E) \ #) /L(e!) ∈ !M,L(e?) ∈
?M and D(e!) ≥ D(e?) + b}, as intuitively mentioned above.Therefore, for any C ∈ C(M,v)-CP, C is not downward-
losed w.r.t. ≤′ if and onlyif, denoted by e! the maximal event w.r.t. ≤ of C ∩ E!, {e? ∈ (C ∩ E?) /D(e?) + b =
D(e!)} = ∅; this is equivalent to D(e!) > D(f?) + b, where f? is the maximal event w.r.t.
≤ of C ∩ E?. Thanks to Lemma 3.3.35, we have |M(C)| > b by de�nition of a markingfun
tion. Hen
e, in words, C(M,v,b)-CP
ontains all
on�guration C in C(M,v)-CP whosesize is less than or equal to b, i.e. b ≥ |M(C)| or simplyM(C) ∈M [0,b].

(M,v, b)-CP is thus
oherent and is a labeled event stru
ture of the bounded FIFO
hannel (M,v, b)-BF.Lemma 3.3.38. (M,v, b)-CP is a deterministi
, �nitely-bran
hing and non-redundantlabeled event stru
ture.Proof. By De�nition 3.3.36, (M,v, b)-CP di�ers from (M,v)-CP only on additional
ausal-ity ≤b. Hen
e, (M,v, b)-CP inherits all deterministi
, �nitely-bran
hing and non-redund-ant properties of (M,v)-CP whi
h are proved by Lemma 3.3.32.Figure 3.14 illustrates a
ausality pro
ess for bounded FIFO
hannel where M is asingleton. In this
ase, there is no di�eren
e between messages whi
h implies the
on�i
trelation over events. (M,v, b)-bounded FIFO
hannel is bisimilar with b-bounded
ounterwhi
h is initialized by |v|. The simulation relation (RS ,RΣ)
ould be formally de�nedas follows: 53

Chapter 3. Modeling
on
urrent systems by labeled event stru
tures
?m !m

?m !m

?m !m

?m !m

Figure 3.14: The (M,v, b)-
ausality pro
ess where M = {m}, v = m, and b = 2.
• RS : M∗ → N su
h that ∀w ∈M∗,RS(w) = |w|, and
• RΣ = {〈!m,+〉, 〈?m,−〉}.Therefore, the ({m}, v, b)-
ausality pro
ess, for some given word v ∈ {m}∗ su
hthat |v| ≤ b, is a deterministi
, non-redundant, �nitely-bran
hing, and
oherent for b-bounded
ounter initialized by |v| (see De�nition 3.3.12). Noti
e that in this labeledevent stru
ture, there is no
on�i
t but all in
rement events are pairwise in
ausality,and so do de
rement events.3.3.4 Syn
hronized Produ
ts of Labeled Event Stru
turesMost of systems
an be
onsidered as
on
urrent systems whi
h are
omposed of di�erent
omponents. These
omponent systems
an a
t in parallel and intera
t with ea
h other.Intera
tion between
omponents as well as simple
omponent's a
tions are thus repre-sented by a syn
hronization of the global system whi
h, for example,
ould be modeledby syn
hronization ve
tors as explained in Se
tion 2.4.2.The unfolding te
hnique [M
M95a℄ was �rstly applied to one-safe Petri nets, andthen to syn
hronized produ
ts of transition systems [ER99℄,
ommuni
ating �nite-statema
hines [LI05℄, or high-level Petri nets [KK03℄. The goal is to �nd
ompa
t stru
-tures modeling
on
urrent behaviors of su
h systems (systems' model). However, these
omplex models may be seen as syn
hronized produ
t of standard systems, for example,pla
es of Petri nets, FIFO
hannels,
ounters. Therefore, we hopefully aim at givinga general unfolding te
hnique whi
h
omputes
on
urrent stru
tures for syn
hronizedprodu
ts from the ones of their
omponents based on labeled event stru
tures.De�nition 3.3.39 (Produ
t of event stru
tures). Let Ei = (E1,≤1,#1), . . . , En =

(En,≤n,#n), be n event stru
tures, for some given number n ∈ N. A produ
t of
E1, . . . ,En is any quadruple (E,≤,#,V), where:1. ≤ is a partial order on E,2. V is a fun
tion from E to ⊗ε(E1, E2, . . . , En) \ {〈ε, ε, . . . , ε〉},3. for all e, e′ ∈ E, e ⋖ e′ implies that there exists i ∈ {1, 2, . . . , n} su
h that V(e)↓i

⋖iV(e′)↓i,4. for all e, e′ ∈ E, e#e′ i� there exists f ≤ e, f ′ ≤ e′ su
h that f 6= f ′ and for some
i ∈ {1, 2, . . . , n}, we have either V(f)↓i #i V(f ′)↓i or V(f)↓i = V(f ′)↓i 6= ε,54

3.3. Modeling
on
urrent systems5. not self-
on�i
t : for all e ∈ E, e# e, and6.
omponentially downward-
losed : for all e ∈ E and for all i ∈ {1, . . . , n}, V(≥(e))↓i
\{ε} is a downward-
losed set w.r.t. (Ei,≤i).Intuitively, the fun
tion V tells us how
omponent events are syn
hronized togetherto obtain a global event. Although the
ausal relation ≤ and this fun
tion V are in-dependently de�ned, the
onstraint stated in the third item of De�nition 3.3.39 simplymeans that
ausality ≤ must be a
onsequen
e of some
ausalities in its
omponent eventstru
tures. However, there is no way to de�ne ≤ from V and
omponent
ausalities ≤i,

i ∈ {1, 2, . . . , n}. Be
ause, for instan
e, there may exist two events that are related to asame ve
tor v as seen in the example in the next sub-se
tion.But,
on�i
t relation in a
omponent, for instan
e #i, gives rise to the
on�i
t relation
in the produ
t. Moreover, sin
e all
on�gurations in an event stru
ture are set ofevents, two di�erent events whi
h
orrespond to a same event in a
ertain
omponentevent stru
ture must be in
on�i
t, or in other words, they
annot both o

ur. As a
onsequen
e, a global event
annot be in
on�i
t with itself due to the not-self
on�i
tproperty.The
omponentially downward-
losed property in De�nition 3.3.39 may be the mostinteresting one, and is the key idea for
onstru
ting syn
hronized produ
t of labeledevent stru
tures (see Se
tion 5.3). Intuitively, every global event e
orresponds to n
omponent event sets V(≥(e))↓i, i ∈ {1, 2, . . . , n}. Although of the downward-
losureof e w.r.t. ≤, its event sets V(≥(e))↓i must be downward-
losed too, w.r.t. ≤i. As a
onsequen
e, for every
on�guration C in the produ
t, its restri
tion on any
omponent
i, i.e. V(C)↓i, is a
on�guration in Ei.Lemma 3.3.40. Let (E,≤,#,V) be a produ
t of n event stru
tures E1,E2, . . . ,En.
E = (E,≤,#) is an event stru
ture.Proof. # is irre�exive due to the non-self
on�i
t property of De�nition 3.3.39, andmoreover, the
on�i
t-inheritan
e is guaranteed by de�nition of
on�i
t relation #.Moreover, for all events e, e′ ∈ E satisfying e < e′, if ε 6∈ {V(e)↓i,V(e′)↓i} for some
i ∈ {1, 2, . . . , n}, then V(e)↓i 6≥i V(e′)↓i (1). Now, re
all that it follows from the �nitaryproperty of
omponent event stru
tures Ei (see De�nition 3.1.1) that every
omponentevent in Ei has �nitely many prede
essors. As a
onsequen
e, a global event e ∈ E hasalso a �nite number of dire
t prede
essors. Be
ause otherwise, i.e. ⋗(e) is in�nite, sin
ethe number of
omponents n is �nite, there exists two dire
t prede
essors f, f ′ ∈ ⋗(e)and an index i ∈ {1, 2, . . . , n} su
h that V(f)↓i = V(f ′)↓i. Hen
e f#f ′ due to the forthitem in De�nition 3.3.39, and it
ontradi
ts the �fth item that means e is not in
on�i
twith itself. Therefore, ⋗(e) is �nite for all e ∈ E (2).Now, suppose that there exists a global event e ∈ E of whi
h lo
al
on�guration
≥(e) is in�nite. It follows from (2) that there is an in�nite sequen
e e = e1 ⋗ e2 ⋗ . . .where ek ∈ ≥(e) for all k ∈ N. Sin
e n is �nite, thanks to (1) and the third item ofDe�nition 3.3.39, this in�nite sequen
e
ontains another in�nite sequen
e ek1 , ek2 , . . . ,where V(ek1)↓i >i V(ek2)↓i >i . . ., for some index i. This
ontradi
ts the �nitary propertyof the event stru
ture Ei that requires the �niteness of ≥i(ek1).Therefore, (E,≤,#) satis�es the �nitary property, i.e. ≥(e) is �nite for all e ∈ E,and is thus an event stru
ture. 55

Chapter 3. Modeling
on
urrent systems by labeled event stru
turesGraphi
al representation of a produ
t of event stru
turesExample 3.3.41. Let Ee = (Ee,≤e,#e) and Ef = (Ef ,≤f ,#f) be two event stru
-tures obtained from k-bounded pro
esses for 2-BC
0 and 1-BC

0 (see De�nition 3.3.13 andLemma 3.3.21). Let e1 be any event in Min≤e(Ee) and f1 be any event in Min≤f
(Ef);and e2, f2 are respe
tively its dire
t su

essors. Let us de�ne:

• P = {p1, p2, p3, p4, p5};
• ≤ = {〈p1, p2〉, 〈p3, p5〉, 〈p4, p5〉} ∪ IP ;
• V : P → (⊗ε(Ee, Ef) \ {〈ε, ε〉}) where� V(p1) = 〈e1, f1〉,� V(p2) = 〈e2, f2〉,� V(p3) = 〈e1, ε〉,� V(p4) = 〈ε, f1〉,� V(p5) = 〈e2, f2〉; and
• # = ({p1, p2} × {p3, p4, p5}) ∪ ({p3, p4, p5} × {p1, p2}).The quadruple (P,≤,#,V) is thus a produ
t of Ee and Ef by De�nition 3.3.39.

+
e4

−
e5

+
e6

+
e1

−
e2

+
e3

p1

p2 p5

−
f1

+
f2

−
f3

p3 p4

+
e4

−
e5

+
e6

+

−

+
e3

−

+

−
f3

p1

p2

p3 p4

p5

e1 f1

e2 f2

(b)

(a)

Figure 3.15: Two graphi
al representations of a produ
t of event stru
turesFigure 3.15 illustrates the produ
t (P,≤,#,V) in Example 3.3.41, as well as its
omponent event stru
tures Ee,Ef by two manners. With the �rst one, Figure 3.15.a, theevent stru
ture (P,≤,#) is represented in the middle while the fun
tion V is illustratedby dashed ar
s whi
h tell us the relation between a global event and its related
omponent56

3.3. Modeling
on
urrent systemsevents. However, in this work, we prefer the se
ond one parti
ularly for produ
t of morethan two
omponents, Figure 3.15.b, where global events are represented by boxes whi
hgroup its
orresponding
omponent events.It is worth noti
ing that the fun
tion V is not inje
tive, for instan
e V(p2) = V(p5),so that the
ausality ≤
an not be de�ned solely based on V. And there is a partial-order on produ
ts of the same
omponent event stru
tures, like the pre�x-order on eventstru
tures (see De�nition 3.1.12 on page 25). Su
h a produ
t (E,<,#,V) is a pre�x ofanother one (E′, <′,#′,V′) if (E,≤,#) is a pre�x of (E′,≤′,#′) w.r.t. some bije
tion Band for all e ∈ E, V(e) = V′(B).Lemma 3.3.42. Let E = (E,≤,#) be the event stru
ture of a produ
t (E,≤,#,V)of n given event stru
tures E1,E2, . . . ,En. For all
on�gurations C of E and for all
i ∈ {1, 2, . . . , n}, we have V(C)↓i \{ε} is a
on�guration of Ei, i.e. (V(C)↓i \{ε}) ∈ CEi

.Proof. Re
all that V(C)↓i =
⋃

e∈C

(V(≥(e))↓i).Sin
e, for all e ∈ E, (V(≥(e))↓i) \ {ε} is downward-
losed w.r.t. (Ei,≤i) by Def-inition 3.3.39, (V(C) ↓i) \ {ε} is thus downward-
losed w.r.t. (Ei,≤i). Suppose that
V(C)↓i is not
on�i
t-free w.r.t. #i for some index i. Hen
e, there exists two
omponentevents ei, fi ∈ V(C)↓i su
h that ei #i fi, and
onsequently, there are two
orrespondingevent e, f ∈ C satisfying V(e)↓i = ei and V(f)↓i = fi. It follows from the irre�exiv-ity of #i that ei 6= fi. Hen
e e should not be equal to f . The fa
t that e#f and
e, f ∈ C,
ontradi
ts the
on�i
t-freeness of the
on�guration C. Therefore, we
an
on
lude that V(C)↓i is
on�i
t-free w.r.t. #i, and is thus a
on�guration in Ei for everyindex i ∈ {1, 2, . . . , n}.Remark: For all di�erent events e, f in a
on�guration C, for all index i ∈ {1, 2, . . . , n},one has either ε ∈ {V(e)↓i,V(f)↓i} or V(e)↓i 6= V(f)↓i. Although this is not stated inLemma 3.3.42, its proof is similar to the one of Lemma 3.3.42.Notation 3.3.43. Given n sets E1, E2, . . . , En. Let Li,Mi, i ∈ {1, 2, . . . , n} be 2n fun
-tions satisfying Dom(Li) = Ei and Dom(Mi) = P(Ei), for all i ∈ {1, 2, . . . , n}. Let Vbe any fun
tion whose
o-domain is ⊗ε(E1, E2, . . . , En). We denote:

• LV the fun
tion from Dom(V) to ⊗ε(Codom(L1),Codom(L2), . . . ,Codom(Ln)) su
hthat, for all e ∈ Dom(V) and i ∈ {1, 2, . . . , n}, LV(e) ↓i = ε if V(e) ↓i= ε, and
LV(e)↓i = Li(V(e)↓i) otherwise,

• MV the fun
tion from P(Dom(V)) to ⊗(Codom(M1),Codom(M2), . . . ,
Codom(Mn)) su
h that, for all C ∈ P(Dom(V)), MV(C) = M1(V(C)↓i \{ε}) ×
M2(V(C)↓2 \{ε}) × . . . ×Mn(V(C)↓n \{ε}).De�nition 3.3.44 (Syn
hronized produ
t of labeled event stru
tures). Given n la-beled event stru
tures E1 = (E1,≤1,#1,L1,M1), E2 = (E2,≤2,#2,L2,M2), . . . ,En =

(En,≤n,#n,Ln,Mn). Let Σ be any subset of ⊗ε(Codom(L1),Codom(L2), . . . ,
Codom(Ln)). Let (E,≤,#,V) be the maximal produ
t, w.r.t. isomorphism, of n eventstru
tures (E1,≤1,#1), (E2,≤2,#2), . . . , (En,≤n,#n) su
h that

• syn
hronization: for all e ∈ E,LV(e) ∈ Σ, and
• no-dupli
ation: for all e, f ∈ E, if (>(e)) = (>(f)) and V(e) = V(f) then e = f .The syn
hronized produ
t of labeled event stru
tures E1,E2, . . . ,En w.r.t. Σ is the tuple

SP = (E,≤,#,LV,MV). 57

Chapter 3. Modeling
on
urrent systems by labeled event stru
turesThe event stru
ture of SP
ontains only events satisfying the syn
hronization
on-straint. Suppose that the maximal produ
t without dupli
ation of (E1,≤1,#1), (E2,≤2

,#2), . . . , (En,≤n,#n) is (E′,≤′,#′,V′), the event stru
ture ESP = (E,≤,#) is thus themaximal pre�x of (E′,≤′,#′) satisfying this
onstraint. Formally, ESP = (E′,≤′,#′)|Ewhere E = E′ \ ≤({e ∈ E′ /LV(e) 6∈ Σ}).However, the no-dupli
ation property does not imply the no-redundan
y in the syn-
hronized produ
t SP. For instan
e, in the Example 3.3.41 above, due to the maxi-mality of SP, E must
ontain not only p1 but also another event p′1 where (>(p′1)) =
(>(p1)) = ∅ and V(p′1) = 〈e4, f1〉 while V(p1) = 〈e1, f1〉. It is obvious that p1#p′1 byDe�nition 3.3.39, but in the 2-bounded pro
ess for 2-BC

0, Le(e1) = Le(e4) = + and
Me({e1}) =Me({e2}) = 1 so that LV(p1) = LV(p′1) andMV({p1}) =MV({p′1}). Thissatis�es the redundan
y property stated in De�nition 3.2.14. Se
tion 6.2.2 will give moredetails on ways to redu
e this redundan
y,
alled auto-redundan
y [KK03℄, whi
h
omesfrom syn
hronized produ
ts of
on
urrent labeled event stru
tures.Lemma 3.3.45. The syn
hronized produ
t of labeled event stru
tures is a labeled eventstru
ture and it is �nitely-bran
hing if its
omponent labeled event stru
tures are all�nitely-bran
hing.Proof. Let SP = (E,≤,#,LV,MV) be the syn
hronized produ
t of n labeled eventstru
tures E1 = (E1,≤1,#1,L1,M1),E2 = (E2,≤2,#2,L2,M2), . . ., En = (En,≤n

,#n,Ln,Mn). Sin
e ESP = (E,≤,#) is an event stru
ture, SP is obviously a labeledevent stru
ture by de�nition.Let C be any
on�guration in ESP and X be its set of extension events, i.e. X =
{e ∈ E /C ⊢ e}. For all x ∈ X, be
ause C ∪ {x} is downward-
losed w.r.t. (E,≤),
x must be a dire
t su

essor of some event e ∈ C or x ∈ Min≤(E). In the �rst
ase,due to the third property of De�nition 3.3.39, e has at most ∏

i:V(e)↓i 6=ε

|⋖i(V(e)↓i)| dire
tsu

essors whi
h is �nite be
ause
omponent event stru
tures are �nitely-bran
hing andthere is no dupli
ation in SP. In the se
ond
ase, we have that for all i ∈ {1, 2, . . . , n},
V(x)↓i ∈ Min≤i

(Ei), on
e again, the number of extension events x is �nite. Therefore Xis �nite, and
onsequently, SP is �nitely-bran
hing.Theorem 3.3.46. Given a number n ∈ N and n
oherent labeled event stru
tures E1 =
(E1,≤1,#1,L1,M1),E2 = (E2,≤2,#2,L2,M2), . . . ,En = (En,≤n,#n,Ln,Mn). Let Σbe any subset of ⊗ε(Codom(L1),Codom(L1), . . . ,Codom(L1)), and SP = (E,≤,#,L,M)be the syn
hronized produ
t of E1,E2, . . . ,En w.r.t. the syn
hronization Σ. We have that:

• SP is
oherent, and
• if E1,E2, . . . ,En are respe
tively labeled event stru
tures for some n labeled transi-tion systems LTS1,LTS2, . . . ,LTSn, then SP is the labeled event stru
ture for thesyn
hronized produ
t of these labeled transition systems w.r.t. Σ.Proof. We will prove the two items of this theorem the order that they are stated.
• For the
oheren
e of SP, let C,C ′ be any two
on�gurations in SP. Let Ci and C ′

irespe
tively denote the sets V(C)↓i \{ε} and V(C)↓i \{ε}, for i ∈ {1, 2, . . . , n}.Thanks to Lemma 3.3.42, Ci and C ′
i are both
on�gurations in Ei.First, if M(C) = M(C ′) then Mi(Ci) = Mi(C

′
i) by Notation 3.3.43 and byDe�nition 3.3.44 whi
h means that M = MV. Let e be any extension eventof C, i.e. C ⊢ e, and
onsequently, for every index i, Ci ⊢i V(e)↓i. It is also a58

3.3. Modeling
on
urrent systems
onsequen
e of Lemma 3.3.42. Noti
e that V(e)↓i may be equal to ε. It follows fromthe
oheren
e of
omponent Ei, more pre
isely the se
ond item in De�nition 3.2.11,that if ei 6= ε then there exists an extension event e′i of C ′
i satisfyingM(C ′

i∪{e
′
i}) =

M(C ∪ V(e) ↓i) and Li(e
′
i) = Li(V(e) ↓i). Therefore, due to the maximality ofthe syn
hronized produ
t SP, there must exists an extension event e′ ∈ E of C ′,i.e. C ′ ⊢ e′ su
h that V(e′) = 〈e′1, e

′
2, . . . , e

′
n〉. We have that M(C ′ ∪ e′) ↓i =

Mi(C
′ ∪ {e′i}) =Mi(C ∪ {ei}) = M(C ∪ e)↓i if V(e)↓i 6= ε, and M(C ′ ∪ e′)↓i =

Mi(C
′) =Mi(C) =M(C ∪e)↓i otherwise. Hen
e,M(C ′∪{e′}) =M(C∪{e}) inboth
ase. Moreover, L(e) is obviously equal to L(e′). The
oheren
e of SP, morepre
isely the se
ond item in De�nition 3.2.11, is thus proved whenM(C) =M(C ′).Se
ond, if M(C) ∩M(C ′) 6= ∅. By the same reasoning as above, for ea
h label

a ∈ Σ, the set of extension events e of C satisfying L(e) = a gives rise to the set ofextension events e′ of C ′ satisfying L(e′) = a. Due to the
oheren
e of
omponentlabeled event stru
tures and the maximality of syn
hronized produ
t SP, by takingthe union of all marking sets, one obtains that
⋃

e:C⊢e,L(e)=a

M(C ∪ e) ⊆
⋃

e′:C′⊢e′,L(e′)=a

M(C ′ ∪ e′)and reversely,
⋃

e:C⊢e,L(e)=a

M(C ∪ e) ⊇
⋃

e′:C′⊢e′,L(e′)=a

M(C ′ ∪ e′)These two marking set are thus equal, so that SP is
oherent by the �rst item inDe�nition 3.2.11.
• Let us denote s1, s2, . . . , sn respe
tively the initial states of LTS1,LTS2, . . . ,LTSn,and LTSΣ the syn
hronized produ
t of these labeled event stru
tures w.r.t. Σ. ByDe�nition 3.3.44, we have that for all e ∈ E,L(e) ∈ Σ. Moreover, it follows fromthe de�nition of fun
tion markingM that 〈s1, s2, . . . , sn〉 ∈ M(∅). In other words,
M(∅)
ontains the initial state of LTSΣ. Hen
e, in order to prove the se
ondproperty of this theorem, one only needs to show that the extension relation in
E
orresponds to the transition relation → of LTSΣ. That means s

a
−→ s′ is atransition in LTSΣ i� there exist a
on�guration C ∈ CE and an extension e of

C su
h that s ∈ M(C), s′ ∈ M(C ∪ {e}) and L(e) = a (1). It follows from the
oheren
y of E as well as of its
omponents that C ⊢ e for some event e where
L(e) = a, then for all i, let Ci = V(C)↓i \{ε}, we have that:

⋃

e′:C⊢e′,L(e′)=a

M(C ∪ e′) =
⊗

i








⋃

e′:C⊢e′,L(e′)=a

M(C ∪ e′)



↓i





=
⊗

i




⋃

e′i:Ci⊢e′i,Li(e′i)=a↓i

Mi(Ci ∪ {e
′
i} \ {ε})





=
⊗

i




⋃

si:si∈M(Ci)




⋃

s′i:〈si,a↓i,s
′
i〉 ∈→i

s′i









=
⋃

s∈M(C)




⋃

s′:〈s,a,s′〉 ∈→

s′



 59

Chapter 3. Modeling
on
urrent systems by labeled event stru
turesTherefore, the right-to-left impli
ation of (1) is obvious. By de�nition, transi-tion relation in a syn
hronized produ
t of labeled transition systems is based onthe syn
hronisation Σ and the transition relations of its
omponents (see De�-nition 2.4.12). It follows from the maximality of E (De�nition 3.3.44) that theleft-to-right impli
ation of (1) is also true. Hen
e, E is a labeled event stru
turefor LTSΣ, or in other words, LTSΣ is an indu
ed labeled transition systems of E.

60

Chapter 4Trun
ation for well-preorderedlabeled event stru
tures
Contents4.1 Well-preordered systems . 624.1.1 Adapting preordered
ompatibility to labeled transitions 624.1.2 Well-preordered labeled transition systems 634.1.3 From forward analysis to ba
kward analysis in well-preorderedtransition systems . 664.2 Trun
ation of well-preordered labeled event stru
tures . . . 684.2.1 Well-preordered labeled event stru
tures 694.2.2 Trun
ation te
hniques . 734.2.3 Well-preorders on
on�gurations 774.3 Partial-order veri�
ation for well-preordered labeled eventstru
tures . 784.3.1 Lo
al
utting
ontexts . 784.3.2 Coverability and quasi-liveness 814.3.3 Termination and boundedness 83A labeled event stru
ture is in�nite as soon as the underlying system has an in�niteexe
ution. Thus, we need property-preserving trun
ation te
hniques in order to de
ideveri�
ation problems using only a �nite pre�x of an event stru
ture. Well-stru
turedtransition systems were introdu
ed in [Fin91, AJ93, AJ94, A�J00℄ as an abstra
t gener-alization of Petri nets satisfying the same monoto
ity property, and hen
e enjoying ni
ede
idability properties. It turns out that many
lasses of in�nite-state systems are well-stru
tured [FS01℄. The appli
ation to labeled event stru
tures of this result is detailedin Se
tion 4.1.In Se
tion 4.2, we will show that the well-known trun
ation te
hniques [M
M95a,ERV96, CGP01, DJN04℄ for safe Petri nets are also su

essful for well-preordered labeledevent stru
tures. Hen
e, one
an verify di�erent problems on in�nite systems as explainedin Se
tion 4.3. 61

Chapter 4. Trun
ation for well-preordered labeled event stru
tures4.1 Well-preordered systemsA preordered system intuitively
onsists of a (in�nite) system as well as a preorder 4 onthe system's state spa
e and a
ompatibility property on the system's transition relation.Its formal de�nition
ould be found in [FS01℄. In fa
t, this de�nition is the same as ourDe�nition 4.1.5 when one does not deal with a
tions/labels as remarked in Se
tion 2.4.Figure 4.1 illustrates a
ompatibility whi
h tells that if v is a rea
hable from a state s,i.e. s։v, then from any state s′ satisfying s 4 s′, one
an obtain a state v′ (may bepossibly s′), i.e. s′։v′, su
h that v 4 v′. We
an say that the preorder 4 is preservedby the transition relation.
s s′

v v′

4

4

∀

∃Figure 4.1: CompatibilityRemark: One
an see in other works the word quasi-order that is also
ommon for pre-orders. In this work, we use the same terminology as in [HST07℄ so that we prefer theword preorder instead of quasi-order, and as a
onsequen
e, prefer well-preordered tran-sition systems, and further well-preordered labeled event stru
tures (
f. De�nitions Def-inition 4.1.5 and De�nition 4.2.1) to well-stru
tured ones whi
h are more standard and�rstly given in [Fin87℄. The reason is that we would like to avoid the
onfusion be-tween the "well-stru
tured" property over states by means of
ompatibility and thestru
ture over events determined by
ausality and
on�i
t relations in labeled eventstru
tures (see Se
tion 4.2.1).Example 4.1.1. Sin
e "less than or equal to" ≤ is a preorder over natural numbers N,
ounters (see Se
tion 3.3.2) are preordered systems in whi
h there are only in
rementand de
rement a
tions.4.1.1 Adapting preordered
ompatibility to labeled transitionsOur presentation of preordered systems di�ers from the standard (non-labeled) one aswe need to take
are of labels. However, our de�nition is su�
iently general so thatall results from standard preordered systems may be found in a same way with a littletuning. Before giving this formal de�nition in Se
tion 4.1.2, let us take an example to
larify its intuitive idea.An example: Lossy FIFO
hannelsNowadays, lossy FIFO
hannels [AJ94℄ are widely used for modeling
ommuni
atingsystems and verifying
ommuni
ating proto
ols. They di�ers from the FIFO
hannels(see De�nition 3.3.22 on page 43) on the possibility of loosing messages:
hannel's
ontentwhi
h is a �nite word may loose some letter at any moment and be
ome a subword (seeDe�nition 2.2.1 on page 12) of the old one.62

4.1. Well-preordered systemsDe�nition 4.1.2 (v-initialized lossy FIFO
hannel over M). Let M be a non-emptyalphabet and v be any �nite word over M . The v-initialized lossy FIFO
hannel over
M is the labeled transition system (M,v)-LF = (M∗,Σ,→, v) where

• the a
tion set Σ is {τ} ∪ !M ∪ ?M , and
• the transition relation

→ = {〈w, τ,w′〉 /m ∈M,w,w′ ∈M∗ and w′ 4 w}

∪ {〈w, !m,w.m〉 /m ∈M,w ∈M∗}

∪ {〈m.w, ?m,w〉 /m ∈M,w ∈M∗}where 4 is the subword order over M∗.De�nition 4.1.2 is the same as De�nition 3.3.22 ex
ept for a
tion τ ,
alled a lossya
tion, as well as its related transitions→ ∩ (M∗×{τ}×M∗). Let s, s′ ∈M∗ be any twostates of (M,v)-LF satisfying s 4 s′, we have s′։s
τ∗ . Hen
e, all rea
hable states from

s are also rea
hable states from s′. Lossy FIFO
hannels form obviously a preorderedsystem.Internal a
tions ΣτOne
an say that the lossy a
tion τ gives lossy FIFO
hannels its preordered
ompat-ibility, and moreover this fa
t
an be found in many other preordered systems. In thefollowing de�nition of preordered labeled transition systems till the end, we assume thatea
h set of a
tions Σ is partitioned into a set Στ of internal a
tions and a set Σγ ofnormal a
tions. This introdu
tion of internal a
tions Στ , on the one hand, is to ta
klethe problem when generalizing preordered
ompatibility for transitions with label bymeans of a
tions, and on the other hand, allows to
learly des
ribe the
hara
teristi
s ofpreordered labeled transition systems in the point of view of preordered properties.Moreover, it is worth noti
ing that one
an somehow eliminate internal a
tions Στwhile modeling preordered systems by labeled transition systems. For example, by
on-sidering ea
h sending a
tion !m (ea
h re
eiving a
tion ?m) of a lossy FIFO
hannel asa
omposed a
tion in whi
h the
hannel �rstly loses some messages, then exe
utes thesending a
tion !m (the re
eiving a
tion ?m respe
tively), and �nally loses some othermessages; one
an obtain another model for lossy FIFO
hannel without loss of generality,as the following:De�nition 4.1.3 (v-initialized lossy FIFO
hannel over M without Στ). Let M be anon-empty alphabet and v be any �nite word over M . The v-initialized lossy FIFO
hannel over M without Στ is a labeled transition system (M,v)-LF = (M∗,Σ,→, v)where
• the a
tion set Σ is {!m /m ∈M} ∪ {?m /m ∈M}, and
• the transition relation → is {〈w, !m,w′〉 ∈M∗× !M ×M∗ /∃v ∈M∗ : v 4 w,w′ 4

v.m} ∪ {〈w, ?m,w′〉 ∈ M∗ × !M ×M∗ /∃v ∈ M∗ : m.v 4 w,w′ 4 v} where 4 isthe subword order over M∗.4.1.2 Well-preordered labeled transition systemsRe
all that ε is the "do nothing" a
tion that is parti
ularly used in syn
hronized produ
tsof labeled transition systems. ε is also the empty �ring sequen
e for all labeled transitionsystems, and, in whi
h s
ε
−→ s for every state s. In the following de�nition and afterwards,we assume that the internal a
tion set Στ does not
ontain ε, i.e. ε 6∈ Στ . 63

Chapter 4. Trun
ation for well-preordered labeled event stru
turesDe�nition 4.1.4 (Compatibilities). Let LTS = (S,Σ, s0,→) be a labeled transitionsystem and 4 be a preorder on S. We say that 4 is
ompatible (resp. transitively
ompatible, re�exively
ompatible) with the transition relation → if for every transition
s

a
−→ v and s 4 s′ there exists v 4 v′ su
h that s′։v′

σ for some σ ∈ Σ∗ satisfying:
•
ompatibility : σ ∈ (Στ)∗ if a ∈ Στ and σ ∈ (Στ)∗.a.(Στ)∗ otherwise, or
• transitive
ompatibility : σ ∈ (Στ)+ if a ∈ Στ and σ ∈ (Στ)∗.a.(Στ)∗ otherwise, or
• re�exive
ompatibility : σ ∈ ({ε} ∪ Στ) if a ∈ Στ and σ = a otherwise.One
an say that 4 is also
ompatible with the transitive
losure։ of the transitionrelation → as a
onsequen
e of De�nition 4.1.4. That means if s։v

σ and s 4 s′ thenthere exists v′ ∈ S and σ′ ∈ Σ∗ su
h that s′։v′
σ′ (proof by indu
tion in the length of σ).And σ′ must not be shorter than σ only in the
ase of transitive
ompatibility. Moreover,the re�exive
ompatibility indu
es that the longest subwords of σ and σ′ whi
h
ontainonly normal a
tions Σγ are the same.A preorder 4 is stri
tly
ompatible with → if both 4 and ≺ are
ompatible with →(re
all that s ≺ s′ is de�ned by s 4 s′ 64 s). Of
ourse, this stri
tness notion may be
ombined with transitive and re�exive
ompatibilities.Remark: De�nition 4.1.4 as well as the de�nition of stri
t
ompatibility
oin
ide withthe de�nitions for systems without labeled a
tions of Finkel et al. given in [FS01℄ when

Σ = Στ is a singleton. Moreover, their only de�nition for labeled transition system
orresponds to our re�exive
ompatibility when there is no internal a
tion, i.e. Στ = ∅.In this
ase, we say that 4 is strongly
ompatible with transition relation→. Lossy FIFO
hannels in De�nition 4.1.3 are examples of this
ompatibility.A
lass of in�nite systems with de
idability resultsAlthough there is
ompatibility between preorder 4 on states and transition relation →,de
idability results for su
h in�nite systems must rely on the existen
e of a well-preorderproperty of 4 (see De�nition 2.3.1 on page 13).De�nition 4.1.5 (Well-preordered labeled transition systems). A well-preordered labeledtransition system (LTS,4)
onsists of a labeled transition system LTS = (S,Σ, s0,→)and a preorder 4 on S satisfying:
• well-preorder : 4 is well-preorder or
onverse well-preorder on S, and
•
ompatibility : 4 is
ompatible with →.Example 4.1.6. Sin
e the "less than or equal to" order ≤ is well-founded on N, and isthus well-preordered, as a
onsequen
e of Example 4.1.1,
ounters are well-preorderedlabeled transition systems. One
an also say that lossy FIFO
hannels (De�nition 4.1.2)are well-preordered labeled transition systems. Be
ause, the subword order over M iswell-founded and well-preordered for all �nite alphabet M (
f. Higman's lemma).In [FS01℄, Finkel et al. have given a
lassi�
ation of well-known systems into familyof well-stru
tured transition systems as well as its de
idable problems whi
h depends onthe type of
ompatibility. Noti
e that their downward well-stru
ture transition systems
orrespond to our well-preordered labeled transition systems in whi
h the preorder onstates is
onverse well-preorder (see De�nition 2.3.1).Our de�nition of well-preorder labeled transition systems is enough general so that allde
idability results in [FS01℄ are still valid. The goal of the next se
tions is not to provethese results again but to essentially show how to e�
iently verify de
idable problemson a partial-order stru
ture, more pre
isely, on labeled event stru
tures.64

4.1. Well-preordered systemsSyn
hronized produ
ts of well-preordered labeled transition systemsDe�nition 4.1.7 (Produ
t preorder). Let 41,42, . . . ,4n be n preorders on n sets
X1,X2, . . . ,Xn respe
tively. The produ
t preorder of these n preorders is a binary re-lation, denoted by 4⊗, on the n-dimension spa
e ⊗(X1,X2, . . . ,Xn), and is de�ned by:for all x, x′ ∈ ⊗(X1,X2, . . . ,Xn), x 4⊗ x′ i� xi 4i x′

i for every 1 ≤ i ≤ n.Re
all that xi = x↓i is the
omponent restri
tion onto i of x. We also write 4⊗ =
〈41,42, . . . ,4n〉 and naturally mean that 4i is the
omponent restri
tion onto i of 4⊗.The produ
t preorder is also a preorder like its name, and moreover, the well-preorderedproperty of its
omponent, if exists, is preserved.Lemma 4.1.8. The produ
t preorder 4⊗ of n preorders 41,42, . . . ,4n, is a preorderand is well-preordered (
onverse well-preordered) if 4i is well-preordered (
onverse well-preordered resp.) for all 1 ≤ i ≤ n.Proof. By De�nition 4.1.7, 4⊗ is re�exive and transitive binary relation, and is thusa preorder. We will prove that 4⊗ is well-preordered on X by indu
tion on n where
X = ⊗(X1,X2, . . . ,Xn). When n = 1, it is straightforward. Suppose that it is truefor some given k, i.e. the produ
t preorder 4′

k of k well-preorders 41,42, . . . ,4k isa well-preorder on X. Let x0, x1, . . ., be any in�nite sequen
e. Thanks to Erdös andRado's lemma, it says that this sequen
e
ontains an in�nite in
reasing subsequen
e
xi0 4′

k xi1 4′
k . . ., due to the well-preorder 4′

k. Further, it follows from the well-preorder
4k+1 and this se
ond in�nite sequen
e that there exist two indi
es l < m satisfying
xil 4k+1 xim . Hen
e, one obtains both xil 4′

k xim and xil 4k+1 xim , and
onsequently,
xil 4′

k+1 xim where 4′
k+1 is the produ
t preorder of k+1 well-preorders 41,42, . . . ,4k+1.In other words, the indu
tion hypothesis is also true for k + 1. One
an
on
lude that

4⊗ is a well-preorder for any �nite number n.The set of internal a
tions Στ previously introdu
ed, not only gives the
ompatibilityof preordered systems but also separates internal transitions and syn
hronized ones ofsyn
hronized produ
ts of labeled transition systems. We assume (1) that every syn
hro-nization
onstraint Σ⊗ impli
itly
ontains the set Στ
⊗ of syn
hronization ve
tors, de�nedas follows:

Στ
⊗ = {〈τ1, ε, . . . , ε〉 / τ1 ∈ Στ

1} ∪ . . .

∪ {〈ε, . . . , ε, τi, ε, . . . , ε〉 / τi ∈ Στ
i } ∪ . . .

∪ {〈ε, . . . , ε, τn〉 / τn ∈ Στ
n}and (2) that no internal a
tion τi ∈ Στ

i may appear in a syn
hronization ve
tor of Σ⊗\Σ
τ
⊗,i.e. for all i ∈ {1, 2, . . . , n}: (Σ⊗ \ Στ

⊗)↓i ∩Στ
i = ∅. Naturally, Στ

⊗ is a subset of lo
ala
tions of any syn
hronized produ
t w.r.t. Σ⊗.De�nition 4.1.9. The syn
hronized produ
t of n preordered labeled transitions (LTS1,
41), (LTS2,42), . . . , (LTSn,4n) w.r.t. some syn
hronization
onstraint Σ⊗ ∈ ⊗ε(Σ1,Σ2,
. . . Σn) is the syn
hronized produ
t LTS⊗ of LTS1,LTS2, . . . ,LTSn w.r.t. Σ⊗ equippedwith the produ
t preorder 4⊗ = ⊗(41,42, . . . ,4n); and is denoted by (LTS⊗,4⊗).The following lemma shows that all
ompatibility notions de�ned above for pre-ordered labeled transition systems are preserved under syn
hronized produ
t.Lemma 4.1.10. Let Cond denote any
ompatibility
ondition among {(non-stri
t), stri
t}
× {(standard), transitive, re�exive}. Any syn
hronized produ
t of preordered labeled tran-sition systems with
ompatibility Cond also has
ompatibility Cond. 65

Chapter 4. Trun
ation for well-preordered labeled event stru
turesProof. Consider n preordered labeled transition systems (LTS1,41), (LTS2,42), . . . ,
(LTSn,4n) where LTSi = (Si,Σi, s

0
i ,→i); and assume that ea
h LTSi has
ompatibility

Cond. We show that (LTS⊗,4⊗) has
ompatibility Cond, where LTS⊗ is the syn
hro-nized produ
t of LTS1,LTS2, . . . ,LTSn w.r.t. a given syn
hronization
onstraint Σ⊗.Let s
v
−→⊗ s′ be any transition in LTS⊗, let t be any state su
h that s 4⊗ t. There aretwo
ases, depending on whether the a
tion v ∈ Σ⊗
ontains an internal a
tion:1. v ∈ Στ

⊗, that means vj ∈ Στ
j for some 1 ≤ j ≤ n and vi = ε for all i 6= j. It followsfrom
ompatibility of (LTSj,4j) that there exists a path πj = tj

v1

−→j u2 v2

−→j

u3 . . .
vk

−→j uk+1 where uk+1 <j s′j and for all i ∈ {1, 2, . . . , k}, vi ∈ Στ
j (1). Thispath may be extended to the syn
hronized produ
t LTS⊗ as π = t

v1

−→⊗ t2
v2

−→⊗

t3 . . .
vk

−→⊗ tk+1 where vh = 〈ε, . . . , ε, vi, ε, . . . , ε〉, thi = uh and thi = ti for all i 6= j.Observe that s′ 4 tk+1 be
ause s′i = si 4 ti for all i 6= j.2. v ∈ Σγ
⊗, that means vi ∈ {ε} ∪ Σγ

i for all 1 ≤ i ≤ n. We may assume withoutloss of generality that there exists 1 ≤ m ≤ n su
h that vi ∈ Σγ
i for all i ≤ m and

vi = ε for all m < i. From
ompatibility of (LTSi,4i) with i ≤ m, we obtain thatthere exists m paths πi = ti։iu
iσi vi−→i u′i։it

′
i

σ′i with t′i <i s′i and σi, σ′i ∈ (Στ
i)

∗.Remark that u
v
−→⊗ u′ where ui = ui and u′

i = u′i for all i ≤ m, and ui = u′
i = tiotherwise. As in the previous
ase, we may extend ea
h sub-path ti

σi

−→i ui and
u′

i

σ′i

−−→i t′i to the syn
hronized produ
t, and their
on
atenations yields a path
π = t

σ⊗
−−→⊗ u

v
−→⊗ u′

σ′
⊗
−−→⊗ t′ where σ⊗, σ′

⊗ ∈ (Στ
⊗)∗, t′i = t′i for all 1 ≤ i ≤ m and

t′i = ti otherwise. Observe that t′ <⊗ s′ sin
e s′i = si 4⊗ ti for all i > m.Thus we obtain that there exists t′ < s′ and σ ∈ (Σ⊗)∗ su
h that t։⊗ t′
σ . Moreover,a routine
he
k shows that in both
ases, the
onstru
ted path t։⊗ t′

σ satis�es Cond'srequirements (for stri
t
ompatibility, the
omponent path(s) should be
arefully
hosenso as to ensure stri
tness).A dire
t
onsequen
e of Lemma 4.1.8 and Lemma 4.1.10 is the following:Lemma 4.1.11. Syn
hronized produ
t (LTS⊗,4⊗) of n well-preordered labeled transi-tion systems (LTS1,41), (LTS2,42), . . . , (LTSn,4n) is a well-preordered labeled transi-tion system if 41,42, . . . ,4n are either all well-preorders or all
onverse well-preorders.4.1.3 From forward analysis to ba
kward analysis in well-preorderedtransition systemsIn this se
tion, we show how to embed, in our forward partial-order analysis approa
hlately detailed (see Se
tion 4.3), standard ba
kward analysis te
hniques (
alled set satu-ration methods in [FS01℄) for well-preordered transition systems. This idea is based onduality in the
ategory of (labeled) transition systems.De�nition 4.1.12. The dual of a given labeled transition system LTS = (S,Σ, s0,→LTS)is the labeled transition system DT S = (S,Σ, s0,→DT S) su
h that 〈s, a, s′〉 ∈ →DT S i�
〈s′, a, s〉 ∈ →LTS.1We use supers
ript indexing in addition to avoid
onfusing it with the
omponent proje
tion (xi =
x↓i).66

4.1. Well-preordered systemsThe dual of a lossy FIFO
hannel LTS in De�nition 4.1.2 is a labeled transitionsystem DT S modeling a well-known insertion-error FIFO
hannel in whi
h a
tions areall renaming su
h that !m be
omes ?m and
onversely. The internal a
tion τ allows toinsert message into FIFO's
ontent at any moment. More interestingly, sin
e (LTS,4)is a well-preordered labeled transition system, (DT S,<) is too. However, 4 is well-preordered while < is
onverse well-preordered, and vi
e versa.Noti
e that initial states of dual systems are not important for the rea
hability/
ov-ering problem in whi
h one only needs to know if from a state s, some state v is rea
hableor not. By duality, s ։LTS v if and only if v ։DT S s. Intuitively, with ba
kward anal-ysis te
hnique, one �rstly
omputes the set of states, denoted by pre∗(v) from whi
h we
an rea
h v, and then test if pre∗(v)
ontains s. With forward analysis, one
omputesthe set post∗(s) of rea
hable states from s and then veri�es if it
ontains v. Figure 4.2illustrates these two approa
hes.
։LTS

։DT S

s v

pre∗
LTS

(v) post∗
LTS

(s)

Figure 4.2: Forward and ba
kward analysis for rea
habilityWe now need a few additional notations in this se
tion. Consider any labeled tran-sition system LTS = (S,Σ, s0,→LTS). The one-step rea
hability relation is the binaryrelation RLTS on S de�ned by sRLTS s′ i� s
a
−→LTS s′ for some a
tion a ∈ Σ. By Def-inition 4.1.12, we have thus RDT S = RLTS where RDT S is the one-step rea
habilityrelation of the dual labeled transition system DT S of LTS.We will use the following ba
kward/forward (rea
hability) set transformers: for anysubset X ⊆ S, we de�ne postLTS(X) = RLTS(X), preLTS(X) = RLTS(X), post∗

LTS
(X) =

R∗
LTS

(X), and pre∗
LTS

(X) = R∗
LTS

(X). Observe that the rea
hability set post∗
LTS

of LTSde�ned in Se
tion 2.4.1 is equal to post∗
LTS

(s0). For any label a ∈ Σ and subset X ⊆ S,we de�ne preLTS(a,X) = {s ∈ S /∃s′ ∈ X, s
a
−→LTS s′}. Remark that we have, for every

X ⊆ S, preLTS(X) =
⋃

a∈Σ preLTS(a,X).Ba
kward analysis for well-preordered systems is performed by a
lassi
al �x-point
omputation of pre∗(4(X)) in whi
h one applies an upward
losure w.r.t. 4 at ea
hstep. It requires a so
alled �nite pred-basis
ondition [ACJT00, FS01℄.De�nition 4.1.13 (Finite pred-basis). Given a preordered labeled transition system
(LTS,4) with LTS = (S,Σ, s0,→LTS). A �nite pred-basis for (LTS,4) is any fun
tion
pb from Σ× S to Pf (S) satisfying:

•
⋃

a∈Σ pb(a, s) is �nite for all s ∈ S, and
• 4(pb(a, s)) = 4(preLTS(a,4({s})) for all a ∈ Σ and s ∈ S.Given any �nite pred-basis pb for (LTS,4), we de�ne the pb-reverse of (LTS,4, pb)as the labeled transition systemR(LTS,4, pb) = (S,Σ, s0,→R) where transition relation

→R is de�ned by s→R s′ i� s′ ∈ pb(a, s). 67

Chapter 4. Trun
ation for well-preordered labeled event stru
turesLemma 4.1.14. For any preordered labeled transition system (LTS,4) with and �nitepred-basis pb, R = R(LTS,4, pb) is �nitely-bran
hing, (R,<) has re�exive
ompatibility,and R satis�es
pre∗LTS(4({s})) = 4(post∗R({s}))for every state s.Proof. Let R shortly denote R(LTS,4, pb). Re
all that R is �nitely-bran
hing sin
e⋃

a∈Σ pb(a, s) is �nite for every state s. Consider any transition s
a
−→R s′ and let t 4 s.One obtains that

4(pb(a, s)) = 4(preLTS(a,4({s})))

⊆ 4(preLTS(a,4({t})))

= 4(pb(a, t))Sin
e s′ ∈ pb(a, s), we get that s′ < t′ for some t′ ∈ pb(a, t). Observe that t
a
−→R t′ andhen
e (R,<) has re�exive
ompatibility.Consider any state s, let us prove that pre∗

LTS
(4({s})) = 4(post∗R({s})). We �rstprove in
lusion ⊆ and assume that π = s

a1−→LTS s2 . . . sk
ak−→LTS sk+1 is a path in

LTS su
h that sk+1 < s. Let tk+1 = s. Observe that sk ∈ preLTS(ak,4({tk+1})) ⊆
4(pb(ak, tk+1)). Sin pb is a �nite pred-basis for (LTS,4), we get that tk 4 sk for some
tk ∈ pb(ak, tk+1) and hen
e tk+1

ak−→R tk. By iterating this
onstru
tion along the path π(from sk+1 to s1) we get that there exists a path s = tk+1
ak−→R tk

ak−1
−−−→R tk−1 . . . t2

a1−→R

t1 in R with ti 4 si, and in parti
ular with t1 4 s1. Therefore s1 ∈ 4(post∗R({s})) whi
h
on
ludes the proof of this in
lusion.Let us now prove in
lusion⊇ and assume that s = tk+1
ak−→R tk

ak−1
−−−→R tk−1 . . . t2

a1−→R

t1 is a path in R and let s1 4 t1. For every 1 ≤ i ≤ k, we get that ti ∈ pb(ai, ti+1) ⊆

4(preLTS(ai,4({ti+1}))) and hen
e there exist ui, u
′
i su
h that ti < ui

ai−→LTS u′
i < ti+1.We obtain from the
ompatibility of (LTS,4) that there exists s2 < t2, . . . , sk+1 < tk+1su
h that s1։LTS

∗
s2։LTS s3
∗

. . . sk։LTS sk+1
∗ . Therefore s1 ∈ pre∗

LTS
(4({s})) sin
e

sk+1 < tk+1 = s.We impli
itly assumed that the partition of Σ into internal a
tions Στ and nor-mal a
tions Σγ is the same in R(LTS,4, pb) as in LTS. It is
lear from the proof ofLemma 4.1.14 that re�exive
ompatibility of (R(LTS,4, pb),<) does not depend on thispartition (e.g. we may as well
hoose that there is no internal a
tion in R).4.2 Trun
ation of well-preordered labeled eventstru
turesThe intuition behind well-stru
ture/well-preorder is that any state may be weakly simu-lated by any greater state, and thus we may forget about smaller states when performingrea
hability analysis. The well-preordering
ondition between states guarantees termi-nation of the analysis [FS01℄. We show in this se
tion how to extend these ideas to theveri�
ation of well-preordered labeled transition systems.Noti
e that Finkel et al.
all tree-saturation methods for well-preordered system, theveri�
ation methods representing all possible exe
utions inside a �nite tree-like stru
ture(parti
ularly the �nite rea
hability tree). Sin
e we model well-preordered systems bylabeled event stru
tures, it is hoped that these methods bene�t of the partial-orderadvantage of event stru
tures.68

4.2. Trun
ation of well-preordered labeled event stru
tures4.2.1 Well-preordered labeled event stru
turesWe lift the well-preorder notions de�ned in the previous se
tion from labeled transitionsystems to labeled event stru
tures. Given a labeled event stru
ture E = (E,≤,#,L,M),
E gives rise to a labeled transition system LTS = (CE,Codom(L), ∅,⊢L) where for all
C,C ′ ∈ CE, a ∈ Codom(L), C

a
−→LTS C ′ i� there exists e ∈ E so that C ⊢ e,C ′ = C ∪{e}and L(e) = a. The transitive
losure
L = ։LTS of transition relation ⊢L may be alsode�ned from the extension set relation
 of E. It is worth noti
ing that the markingfun
tionM is not taken into a

ount in LTS.Let 4C be any preorder on CE that is
ompatible with the labeled event stru
ture Eas de�ned in De�nition 4.1.4. Intuitively, C ⊢ e where C ∈ CE, e ∈ E implies that every
on�guration C ′ satisfying C 4C C ′
ould be extended by an event set X ⊆ E, andthe preorder 4C is preserved, i.e. (C ∪ {e}) 4C (C ∪X). Moreover, with an additional
ondition based on the labeling fun
tion L, the de�nition of well-preordered labeled eventstru
tures
oin
ides with the one for labeled transition systems (De�nition 4.1.5).De�nition 4.2.1. Let E = (E,≤,#,L,M) be a labeled event stru
ture and 4C beany preorder on CE. We say that (E,4C) is (well-)preordered labeled event stru
ture i�

((CE,Codom(L), ∅,⊢L),4C) is a (well-)preordered labeled transition system.Noti
e that the
odomain of labeling fun
tion L may
ontains also some subset of in-ternal a
tions Στ . So that (E,4C)
an have di�erent
ompatibilities Cond ∈ {(non-stri
t),stri
t} × {(standard), transitive, re�exive, strong} based on this Στ as in De�nition 4.1.5.Preordered labeled transition systems vs preordered labeled event stru
tureLet us re
all the idea of using labeled event stru
tures for modeling
on
urrent systems.One just gives a partial-order stru
ture, here is a labeled event stru
ture, that possiblyrepresents all behaviors of some system. The system
ould be modeled in another wayby a well-known labeled transition system. These two models are related the one to theother by the means of indu
ed labeled transitions systems of labeled event stru
tures inwhi
h one asso
iates
on�gurations to systems' states. Therefore, while working withpreordered labeled event stru
tures, among many binary relations on
on�guration set,we fo
us only on the one whi
h is dedu
ed from a given preorder on the system's statespa
e. In the following, for every labeled event stru
ture E = (E,≤,#,L,M), we denote
S the base set of the
odomain of marking fun
tion M, i.e. S =

⋃
C∈CE

M(C), like inDe�nition 3.2.1 on page 27.De�nition 4.2.2 (Marking preorder). Let E = (E,≤,#,L,M) be a labeled event stru
-ture and 4 be a preorder on S. The marking preorder of E w.r.t. 4, denoted by 4M,is a binary relation on CE de�ned by: for all C,C ′ ∈ CE, C 4M C ′ i� for all s ∈M(C),there exists s′ ∈M(C ′) su
h that s 4 s′.In a parti
ular
ase where E is deterministi
, that means Codom(M)
ontains onlysingletons of P(S), one
an simply use 4 in the pla
e of 4M without risk of
onfusion.Noti
e that, C is stri
tly less than C ′ w.r.t. 4M i� C 4M C ′ and their markings
ontainat least two elements whi
h are stri
tly ordered by 4. Formally, C ≺M C ′ i� C 4M C ′and ∃s ∈M(C), s′ ∈M(C ′) : s ≺ s′.Lemma 4.2.3. The marking preorder 4M is a preorder on CE if 4 is a preorder on S.Proof. The re�exivity and transitivity of 4M is obvious from De�nition 4.2.2. 69

Chapter 4. Trun
ation for well-preordered labeled event stru
turesLemma 4.2.4. Let E = (E,≤,#,L,M) be a labeled event stru
ture and 4 be a preorderon S. If1. for all s, s′ ∈ S, s 4 s′ implies ∃C,C ∈ CE : C 4M C ′ and 〈s, s′〉 ∈ (M(C) ×
M(C ′)),2. for all C,C ′ ∈ CE, (M(C)×M(C ′)) ∩4 6= ∅ implies C 4M C ′, and3. E is
oherent;then (E,4M) is a preordered labeled event stru
ture i� (LTS

E,4) is a preordered labeledtransition system, and they have a same type of
ompatibility.Proof. Re
all that Σ is the
odomain of labeling fun
tion L. One
an write a indu
edlabeled transition system of E as LTS
E = (S,Σ, s0,→

LTS
E) for some s0 ∈M(∅), and thelabeled transition system based on the extension relation previously de�ned as LTS⊢ =

(CE,Σ, ∅,⊢L). We will prove that the right-to-left impli
ation, that means (LTS
E,4) ispreordered if (E,4M) is preordered, is a
onsequen
e of the �rst item. And reversely,the left-to-right impli
ation is a
onsequen
e of the se
ond and third items.

(⇒): (E,4M) is a preorder labeled event stru
ture. Let s
a
−→

LTS
E v be any transitionin LTS

E and assume that s 4 s′ for some given s′ ∈ S. Due to the de�nition of indu
edlabeled transition system (De�nition 3.2.4), there must exist
on�gurations C ∈ CEand one of its extension event e ∈ E, i.e. C ⊢ e su
h that L(e) = a, s ∈ M(C) and
v ∈ M(C ∪ {e}). The �rst
ondition yields the existen
e of a
on�guration C ′ ∈ CEsatisfying C 4M C ′. Be
ause 4M is
ompatible with ⊢L, we have C ′։LTS⊢

(C ′ ∪X)
σfor some given extension set X ⊂ E of C ′, and σ = LW(lX) ∈ Σ∗ where lX ∈ E∗ is alinearisation of X w.r.t. ≤. And (C ∪ {e}) 4M (C ′ ∪X) is also a
onsequen
e of the
ompatibility of 4M. By de�nition of 4M (De�nition 4.2.2), sin
e v ∈ M(C ∪ {e}),there exists v′ ∈ M(C ′ ∪ X) satisfying v 4 v′ and s′։

LTS
E v′

σ due to Lemma 3.2.12.Therefore 4 is
ompatible with →
LTS

E .
(⇐): (LTS

E,4) is a labeled transition system. Suppose that C
L(e)
−−→LTS⊢

(C ∪ {e})and C 4M C ′ for some given
on�guration C,C ′ ∈ CE and extension event e ∈ E of C.By de�nition of 4M (De�nition 4.2.2), one
an
hoose any two states s, s′ ∈ S whi
hare respe
tively in
luded in C and C ′ so that s 4 s′. Let v be any state inM(C ∪ {e}),it follows from the de�nition of an indu
ed labeled transition system (De�nition 3.2.4)that s
L(e)
−−→

LTS
E v. Moreover, due to the
ompatibility of 4 with →

LTS
E , there exists anexe
ution s′։

LTS
Ev′

σ for some given v′ ≺ v, and more pre
isely a path π = s′
b1−→

LTS
E

s1
b2−→

LTS
E s2 . . . sn−1

bn−→
LTS

E sn = v′ where σ = b1.b2 . . . bn ∈ M∗
E
and v 4 v′. Sin
e Eis
oherent, s′

b1−→
LTS

E s1 and s′ ∈ M(C ′) implies that there exists
on�guration C1 =
C ′ ∪ e1 for a given extension event e1 ∈ E of C ′ su
h that L(e1) = b1 and s1 ∈ C1. Byiterating this
onstru
tion along the path π we get that C ′ ⊢ (C ′∪{e1}) ⊢ (C ′∪{e1, e2}) ⊢
. . . (C ′ ∪X) where X = {e1, e2, . . . , en}, σ = LW(e1.e2 . . . en), and sn = v′ ∈M(C ∪X).One thus
an write it as C ′։LTS⊢

(C ′ ∪X)
σ and 〈s′, v′〉 ∈ (M(C ′)×M(C ′∪X). Thanksto the third
ondition, be
ause 〈v, v′〉 ∈ (M(C ∪ {e})×M(C ∪X)) and v 4 v′, we have

(C ∪ {e}) 4M (C ∪X). Preorder 4M is thus
ompatible with ⊢L.Noti
e that
on
lusions above depend on neither the type of
ompatibility of (E,4M)nor the one of (LTS
E,4), this lemma's whole state is thus obvious.It is worth
onsidering here
ounter-examples of some impli
ation between
ompat-ibilities of a preordered labeled event stru
ture and of its indu
ed labeled transitionsystem, when we have not the three additional
onditions stated in Lemma 4.2.4. Fig-ure 4.3 illustrates two simple preordered labeled event stru
tures where
on�gurations70

4.2. Trun
ation of well-preordered labeled event stru
turesare stru
tured as a DAG w.r.t. the extension relation. Ea
h
on�guration C is repre-sented by the
ouple C : M(C). And there is no
on
urren
y in both labeled eventstru
tures, i.e. ‖ = ∅. For simpli
ity, we suppose that there is no internal a
tion, i.e.
Στ

E
= ∅, and we look only at standard
ompatibility.

∅:{z}
{e1}:{s, t}e1

{e1, e3}:{u, v}

e3

{e2}:{s′, t′}e2

{e2, e4}:{u′}

e4

{e2, e5}:{v′}e5

∅:{s′′}
{f1}:{s′, v}f1

{f1, f3}:{s}f3

{f2}:{v′}f2

a. (4,→
LTS

E) 6⇒ (4M,⊢L) b. (4M,⊢L) 6⇒ (4,→
LTS

E)

Figure 4.3: Counter examples of impli
ation between
ompatibilitiesFor the �rst labeled event stru
ture E = (E,≤,#,L,M) represented in Figure 4.3-awhere E = {e1, e2, e3, e4, e5} and CE = {∅, {e1}, {e2}, {e1, e3},
{e2, e4}, {e2, e5}}, we take the preorder 4 = IS ∪ {〈s, s

′〉, 〈t, t′〉, 〈u, u′〉, 〈v, v′〉}. It isobvious that the unique indu
ed labeled transition system LTS
E is a preordered onebe
ause the
ompatibility of 4 w.r.t. →

LTS
E is guaranteed mostly by e4, e5 and e3.Consider
on�gurations C = {e1} and C ′ = {e2} that
ould be ordered by 4M, wehave M(C) = {s, v} 4M {s′, u′} = M(C ′). However, the marking of
on�guration

C ∪ {e3} extended from C, i.e. {u, v}, is in
omparable with markings of
on�gurationsthat may be obtained from C ′ by the extension relation. More pre
isely, there are three
on�gurations C ∪ {e4} = {e2, e4}, C ′ ∪ {e5} = {e2, e5} and C ′ = {e2} itself of whi
hmarkings are respe
tively {u′}, {v′}, and {s′, t′}. This example shows the need of these
ond
ondition in Lemma 4.2.4 that avoids the
ase when, for instan
e, u 4 u′ butthere exists in
omparable markings {u, v} and {u′}. In other words, the
onstraint givenby this
ondition
omes from the fa
t that one
an not say anything on rea
hable statesin post∗
LTS

E ({u, v}) and post∗
LTS

E ({u′}).For the se
ond example illustrated in Figure 4.3-b, where E = {f1, f2, f3} and CE =
{∅, {f1}, {f2}, {f1, f3}}, let us assume that the preorder 4 satis�es 4 ∩ ({s, s′, s′′} ×
{v, v′}) = ∅, s ≺ s′ ≺ s′′ and v ≺ v′. By de�nition, 4M= ICE

∪ {〈{s}, {s′, v}〉} ∪
{〈{s}, {s′′}〉}. It is obvious that (E,4M) is preordered labeled event stru
ture sin
e theunique
on�guration {f1, f3} of whi
h marking is {s}, has no extension. However, 4is not
ompatible with →

LTS
E due to the fa
t that v

L(f3)
−−−→

LTS
E s while v ∈ M({f2})is not enabled by any a
tion in Σ = Codom(L). The �rst
ondition in Lemma 4.2.4may eliminate all su
h
ases where, for instan
e here, v 4 v′ but there is no
omparable
on�gurations w.r.t. 4M that
ontain respe
tively v and v′. With this
ondition, the
ompatibility of 4M in E implies the one of 4 in LTS

E as it is proved previously. Bythe way, we also point out that when working only on preorder labeled event stru
tures,one does not really need the
ompatibility in its indu
ed labeled transition system.Remark: In deterministi
 labeled event stru
tures, sin
e every marking is singleton of S,the �rst and se
ond
onditions in Lemma 4.2.4 are both guaranteed. 71

Chapter 4. Trun
ation for well-preordered labeled event stru
turesThe following lemma is a dire
t
onsequen
e of Lemma 4.2.4.Lemma 4.2.5. Let E = (E,≤,#,L,M) be a deterministi
 and
oherent labeled eventstru
ture and 4 be a preorder on S. (E,4M) is a (well-)preordered labeled event stru
turei� (LTS
E,4) is a (well-)preordered labeled transition system, and they have a same type of
ompatibility Cond ∈ {(non-stri
t), stri
t} × {(standard), transitive, re�exive, strong}.

{v, . . .}

C ∪ {e}

C

e a

{s, . . .}

{s, . . .}

C ′C ′ ∪ {e′} a
e′

{v, . . .} {s′, . . .}

C ′′ C ′′ ∪X
X

{v′, . . .}

∩ 6= ∅ 4M

∩
6=
∅

oheren
e 4
M

ompatiblity
Figure 4.4: Coheren
e vs
ompatibilityCoheren
e is a required
ondition for the two-way impli
ation stated in Lemma 4.2.5and it somehow looks like
ompatibility. However,
oheren
e and
ompatibility are quitedi�erent, as illustrated in Figure 4.4.Lemma 4.2.6. Let E = (E,≤,#,L,M) be a
oherent and deterministi
 labeled eventstru
tures. (E,IM) is a preordered labeled event stru
ture with strong
ompatibility where

IM = IS is the identity relation over S.Proof. The
oheren
e of E by De�nition 3.2.11 is exa
tly the strong
ompatibility ofidentity order IS with ⊢L.In Se
tion 4.3, one will see that
ompatibility of preordered labeled event stru
tures,whi
h may be nondeterministi
, is enough for trun
ating, and
onsequently, doing
ertainveri�
ations on their �nite pre�xes obtained. One does not need to see whether thereexists a
ompatibility in its indu
ed labeled transition systems.Produ
ts of preordered labeled event stru
turesDe�nition 4.2.7. Given a number n ∈ N. A syn
hronized produ
t of n preorderedlabeled event stru
tures (E1,4
C
1), (E2,4

C
2), . . . (En,4C

n) is any tuple (E⊗,4C
⊗) where

• E⊗ is a syn
hronized produ
t of E1,E2, . . . ,En w.r.t. some syn
hronization
on-straint Σ⊗, and
• 4C

⊗ is a binary order on CE⊗ de�ned by: C 4C
⊗ C ′ i� for all 1 ≤ i ≤ n, (V(C))↓i

4C
i (V(C ′))↓i where V is the syn
hronization fun
tion of E⊗.Re
all that the syn
hronization fun
tion V
ould map ea
h
on�guration C in thesyn
hronized produ
t E⊗ into a tuple 〈C1, C2, . . . , Cn〉, where Ci ∈ CEi

(see Lemma 3.3.42on page 57), and V is not inje
tive. The preorder property of 4C
⊗ is trivial and similarto the one of the produ
t preorder ⊗(4C

1 ,4C
2 , . . . ,4C

n) on ⊗ε(CE1 ,CE2 , . . . ,CEn
).72

4.2. Trun
ation of well-preordered labeled event stru
turesLemma 4.2.8. Let Cond denote any
ompatibility
ondition among {(non-stri
t), stri
t}
× {(standard), transitive, re�exive}. Any syn
hronized produ
t of preordered labeledevent stru
tures with
ompatibility Cond also has
ompatibility Cond.Proof. Let (E⊗,4C

⊗) denote some syn
hronized produ
t of n preordered labeled eventstru
tures (E1,4
C
1), (E2,4

C
2), . . . , (En,4C

n). Suppose that LTS⊢⊗

= (CE⊗ ,ΣE⊗ , s0
⊗,⊢⊗) and LTS⊢1 ,LTS⊢2 , . . . ,LTS⊢n

are respe
tively their labeled tran-sition systems based on the extension relation. We de�ne another labeled transitionsystem LTS⊗ = (S⊗,ΣE⊗ , s0
E⊗

,→⊗) as the syn
hronized produ
t of n labeled transitionsystem LTS⊢1 ,LTS⊢2 , . . . ,LTS⊢n
, its syn
hronized
onstraint is ΣE⊗

. We have then:1. by De�nition 4.2.7, for all C,C ′ ∈ CE⊗
, C 4C

⊗ C ′ i� 〈RS(C),RS(C ′)〉 ∈ ⊗(4C
1 ,4C

2

, . . . ,4C
n) where RS(C) = 〈V(C)↓1,V(C)↓2, . . . ,V(C)↓n〉 for all C ∈ CE⊗

.2. (LTS⊗,⊗(4C
1 ,4C

2 , . . . ,4C
n)) is a preordered labeled transition system with
ompat-ibility Cond due to Lemma 4.1.10.3. LTS⊢⊗ and LTS⊗ are bisimilar w.r.t. (RS ,IΣE⊗

) (
f. De�nition 2.4.17) be
auseof the maximization in E⊗ by De�nition 3.3.44.Hen
e, (LTS⊢⊗ ,4C
⊗) as well as (E⊗,4C

⊗) is preordered with
ompatibility Cond.4.2.2 Trun
ation te
hniquesAlthough labeled event stru
tures preserve all system's behaviors, they unfortunatelymay be in�nite in general, as it may be "too deep" and/or "too wide". A well-preordering
ondition avoids the �rst possibility, and a bran
hing �niteness assumption eliminatesthe se
onds. Hen
e, it is hoped that one
an obtain some �nite parts of a labeled eventstru
ture to de
ide several veri�
ation problems.Our te
hnique is not far from the tree-saturation methods given in [Fin87, Fin91,FS01℄ where all system's possible exe
utions are represented in some way inside a �nitetree-like stru
ture. In this se
tion, we give the general idea of a trun
ation te
hnique,and the more
onvenient one when partial-order is taken into a

ount will be des
ribedin Se
tion 4.3.Cutting
ontextDe�nition 4.2.9. A
utting
ontext of a given labeled event stru
ture E is any tuple
(4C ,C) where:1. (E,4C) is a preordered labeled event stru
ture,2. for all C,C ′ ∈ CE, C ⊂ C ′ implies C 64C C ′,3. C ⊆ CE is a set of
on�gurations.We
all the se
ond property in De�nition 4.2.9 the in
lusion respe
t
ondition. In-tuitively, by using a preorder 4C, for instan
e 4C=4M, one may be interested in only
on�gurations whi
h are maximal w.r.t. 4C when doing some analysis su
h as
omputingrea
hable states of possible indu
ed labeled transition systems. However, noti
e that inpra
ti
e, a labeled event stru
ture E is
onstru
ted step by step by means of pre�xes sothat its
on�gurations as well as its events are added to E w.r.t. the in
lusion order ⊂(see Chapter 5). Every
on�guration
omes from its sub-
on�gurations w.r.t. the in-
lusion order. Suppose the opposite, 4C does not sti
k to the trun
ation idea des
ribedlater. For example, some
on�guration C ′ may be used for
utting another one C be-
ause C 4C C ′ while C is a subset of C ′. Therefore, the in
lusion respe
t
ondition isnaturally required. 73

Chapter 4. Trun
ation for well-preordered labeled event stru
turesWe introdu
e the set of
on�gurations C in De�nition 4.2.9 in order to make thisde�nition general. In this work, only two
ases of C where C is either CE or Cl
E
are dis-
ussed (see Se
tion 4.3). In our �rst approa
h to trun
ation te
hnique, let us temporarilyignore the importan
e of
on�guration set C and assume that it is the
on�guration set

CE. This assumption leads us to the standard trun
ation te
hnique on the
overabilitytree of an in�nite system [Fin91℄.De�nition 4.2.10 (Cuto�
on�guration). Let (4C ,C) be a
utting
ontext for a labeledevent stru
ture E. A
uto�
on�guration is any
on�guration Ccut ∈ C su
h that thereexists another
on�guration C ∈ C satisfying Ccut ≺
C C.We
all a
on�guration Cout ∈ CE an outer
on�guration if Cout is greater thansome
uto�
on�guration Ccut w.r.t. the in
lusion order ⊆. Su
h an outer
on�guration

Cout may be obtained by the extension relation from a
uto�
on�guration Ccut, i.e.
Ccut
 Cout. Hen
e, Cout is intuitively useless, from the point of view of veri�
ation, dueto the
ompatibility of preordered labeled event stru
tures (E,4C). More pre
isely, itfollows from De�nition 4.2.10 that Ccut is
uto� due to the existen
e of some
on�guration
C su
h that Ccut ≺

C C, and as a
onsequen
e, there exists another
on�guration C ′obtained from C, i.e. C
 C ′, satisfying Cout ≺
C C ′.Remark: If C = CE then every outer
on�guration is also a
uto�
on�guration. However,it does not hold in general when C ⊂ CE. Be
ause, for example, either Cout or the
orresponding
on�guration C ′ in the above reasoning may not be in C.It is worth noti
ing here that in other works on trun
ation te
hniques, one
an�nd only notions of
uto�
on�guration/event ([M
M95a℄) or of subsume node ([Fin87℄)whi
h all
oin
ide with our
uto� notion. Our notion of outer
on�guration on the onehand
lari�es the de�nition of trun
ation below, and on the other hand, distinguishesouter ("useless")
on�gurations with
uto� ones of whi
h some are required for verifying
ertain problem, for instan
e, system's boundedness.Notation 4.2.11. For a given labeled event stru
ture E and any
utting
ontext (4C ,C),we denote

• Co
E
the family of outer
on�gurations,

• Cc
E
the family of
uto�
on�gurations, and

• Cn
E
the family of
on�gurations whi
h are neither
uto� nor outer ones, i.e. Cn

E
=

CE \ (Co
E
∪ Cc

E
).De�nition 4.2.12 (Trun
ation). Let (4C ,C) be a
utting
ontext of a labeled eventstru
ture E. The trun
ation of E w.r.t. (4C ,C), denoted by T(E,4C ,C), is the union ofall non-outer
on�gurations, i.e. :

T(E,4C ,C) =
⋃

C∈(CE\C
o
E
)

CExample 4.2.13. Let us
onsider an example when E = (E,≤,#,L,M) is the labeledevent stru
tures for the 2-bounded
ounter initialized by 1, i.e. 2-BC
1. Figure 4.5illustrates E whi
h is obtained from 2-bounded pro
ess 2-BP (see Se
tion 3.3.2). Sin
e

E is deterministi
 and
oherent and post∗
2-BC

1 = Codom(M) = {0, 1, 2}, (E,IN) is awell-preordered labeled event stru
ture. Moreover, as proved in the next subse
tion,
(E,4C) is also well-preordered with stri
t
ompatibility where 4C is de�ned by: for all
C,C ′ ∈ CE, C 4C C ′ i�M(C) =M(C ′) and |C| ≥ |C ′|.74

4.2. Trun
ation of well-preordered labeled event stru
tures
−

e1
−

+

e2
+

−

e3
−

+

f1
+

−

f2
−

+

f3
+

C1 C2

C3

Figure 4.5: Trun
ation example of a labeled event stru
ture for 2-bounded
ounter ini-tialized by 1.One
an see that Cn
E

ontains only three
on�gurations ∅, {e1

−}, and {f1
+} whosemarkings are respe
tively 1, 0 and 2. All other
on�gurations
ould not have a markingout of the set {0, 1, 2} and be
ause its size is greater than 1, they are all
uto�
on�gu-rations if the
utting
ontext is (4C ,CE). For example, C1 = {e1

−, e2
+}, C2 = {f1

+, f2
−},and C3 = {e1

−, f1
+} are all
uto� ones due to the
on�guration ∅.It follows then from De�nition 4.2.12 that the trun
ation of E w.r.t. the
utting
ontext (4C ,CE) is the set T(E,4C ,CE) = {e1

−, e2
+, f1

+, f2
−}. Events whi
h are outside ofthis trun
ation are illustrated in Figure 4.5 by dashed line. The trun
ation, and morepre
isely the pre�x of E based on T(E,4C ,CE) is enough, for instan
e, for
omputing allpossible markings. Formally, let us simply denote the trun
ation T(E,4C ,CE) by T, andthe T-pre�x E|T by the tuple E′ = (T,≤′,#′,L′,M′), we obtain that

⋃

C∈CE

M(C) =
⋃

C∈CE:C⊆T

M(C)

=
⋃

C∈C
E′

M′(C)

= {0, 1, 2}Remark: By de�nition, C ⊆ T(E,4C ,C) for every
on�guration C ∈ Cn
E
. And all
uto�
on�gurations whi
h are minimal w.r.t. in
lusion are also subsets of the trun
ation.Although T(E,4C ,C) is the union of non-outer
on�gurations, it may
ontain some outer-
on�gurations. As shown in the example above, the trun
ation is an outer one itself.Trun
ation's propertiesBe
ause every
on�guration is a downward
losed set w.r.t.
ausality, a trun
ation isalso downward
losed set w.r.t.
ausality. When there is no risk of
onfusion, we also
all the pre�x of a labeled event stru
ture E based on its trun
ation T(E,4C ,C) for somegiven
utting
ontext (4C ,C), i.e. E|(E,4C ,C), its trun
ation.This trun
ation is determined somehow by the set of all minimal
uto�
on�gurationsw.r.t. the in
lusion order ⊆. In other words, the trun
ation is bounded by events whoselo
al
on�gurations are of
ourse outer ones, but more pre
isely, by some of them whi
hare minimal w.r.t. the
ausality. Formally, the set Ef = Min≤({e ∈ E />(e) ∈ Cc

E
}) is75

Chapter 4. Trun
ation for well-preordered labeled event stru
turesintuitively the outside-frontier of the T(E,4C ,C)-pre�x of E, and
T(E,4C ,C) = E \ ≤(Ef)It is due to a
onsequen
e of the fa
t that every
on�guration C ∈ CE
ontaining a su
-
essor of an event ef ∈ Ef must
ontain ef itself. Therefore, C is an outer
on�gurationbe
ause >(ef) ⊂ C and >(ef) ∈ Cc

E
. In example in Figure 4.5, we have Ef = {e3

−, f3
+}.Theorem 4.2.14 (Completeness). Let (4C ,C) be a
utting
ontext of a labeled eventstru
ture E = (E,≤,#,L,M). If 4C is
onverse well-founded and (E,4C) has stri
t
ompatibility then for all
on�gurations C ∈ CE, there exists a
on�guration C ′ ∈ Cn

Esu
h that C 4C C ′.Proof. We will prove this theorem by
ontradi
tion. Suppose that there exists a
on�g-uration C ∈ CE su
h that for all C ′ ∈ Cn
E
, C 64C C ′ (*). It follows the re�exivity of 4Cthat C 6∈ Cn

E
, and as a
onsequen
e, there are two
ases:

• C is a
uto�
on�guration, i.e. C ∈ Cc
E
. By de�nition, it is due to another
on�guration C1 ∈ C ⊂ CE satisfying C ≺C C1.

• C is an outer
on�guration, i.e. C ∈ Co
E
. On
e again, there must exist a
uto�
on�guration Ccut and thus another
on�guration C ′ su
h that: Ccut ⊂ C,Ccut ≺

C

C ′. Thanks to the stri
t
ompatibility of (E,4C), there exists a
on�guration
C1 ∈ CE whi
h may be obtained from C ′, i.e. C ′
 C1, and satis�es that C ≺C C1.In both
ases, one
an
on
lude that there exists C1 ∈ CE satisfying C ≺ C1. It followsfrom the hypothesis (*) that C1 6∈ Cn

E
. By repeating this reasoning, we obtain an in�nitesequen
e of
on�gurations whi
h is an in
reasing sequen
e w.r.t. 4C , that means C ≺C

C1 ≺
C C2, . . . where Ci ∈ CE for all i ∈ N. This
ontradi
ts to the
onverse well-foundedness of 4C. Therefore, hypothesis (*) thus results in
ontradi
tions.The "respe
t in
lusion" of
utting
ontexts is not only a natural property in pra
ti
ebut also gives rise to the
onverse well-foundedness of the order 4C. And it is thus a key inthe proof of Theorem 4.2.14. This theorem is somehow
alled "trun
ation
ompleteness"theorem, for instan
e, for rea
hability based veri�
ation (see Se
tion 4.3). However, su
ha veri�
ation is de
idable if the
orresponding trun
ation is �nite.Theorem 4.2.15 (Finiteness). Let (4C ,C) be a
utting
ontext of a �nitely-bran
hinglabeled event stru
ture E = (E,≤,#,L,M). If 4C is
onverse well-preordered and Cl

E
isa subset of C, then the trun
ation T(E,4C ,C) is �nite.Proof. We �rst prove that for every event e ∈ E, if its lo
al
on�guration ≥(e) is anouter
on�guration then e 6∈ T(E,4C ,C) (*). Suppose that it is not true for some even

e. Sin
e ≥(e) is an outer
on�guration, there exists a
on�guration Ccut ∈ Cc
E
su
h that

Ccut ⊂ (≥(e)). As a
onsequen
e, for all
on�guration C ∈ CE satisfying e ∈ C, Cmust be an outer
on�guration due to Ccut, more pre
isely be
ause Ccut ⊂ (≥(e)) ⊆ C.In other words, every non-outer
on�guration
an not
ontain e. It follows from thede�nition of the trun
ation (De�nition 4.2.12) that e 6∈ T(E,4C ,C).Now, suppose that the trun
ation T(E,4C ,C) is in�nite. Let us
onsider the DAG
(V,E′) where V = T(E,4C ,C) and E′ is de�ned by: for all e, e′ ∈ V, 〈e, e′〉 ∈ E′ i�
e ⋖ e′. Sin
e E is �nitely-bran
hing, (V,E′) is �nitely-bran
hing too. As a
onsequen
eof König's lemma, there exists an in�nite path e1 ⋖ e2 ⋖ . . . in T(E,4C ,C). Due tothe
onverse well-preorder 4C , there exists indi
es k > i su
h that (≥(ek)) 4C (≥(ei)).Thanks to the in
lusion respe
t
ondition of
utting
ontexts, it follows from (≥(ei)) ⊂76

4.2. Trun
ation of well-preordered labeled event stru
tures
(≥(ek)) that (≥(ei)) 64

C (≥(ek)). We have thus (≥(ek)) ≺
C (≥(ei)). Therefore, ≥(ek) is a
uto�
on�guration be
ause both
on�gurations ≥(ei) and ≥(ek) are elements of Cl

E
⊆ C.Hen
e, for every index l > k, the lo
al
on�guration ≥(el) is an outer
on�guration.The fa
t that el belongs to the trun
ation T(E,4C ,C)
ontradi
ts (*). One
an �nally
on
lude that T(E,4C ,C) is �nite.The family of
on�gurations C of a
utting
ontext (4C ,C) is introdu
ed for a general
utting
ontext. We have not found the pre
ise
ondition on C for the �niteness ofthe
orresponding trun
ation stated in Theorem 4.2.15. However, our
ondition that

CE ⊇ Cl
E
is enough for partial-ordered veri�
ations detailed in Se
tion 4.3 in whi
h thelo
al
utting
ontext is based on the family of lo
al
on�gurations Cl

E
. We also hopethat a good
hoi
e of C
an help tuning our veri�
ation algorithms detailed in the next
hapters.4.2.3 Well-preorders on
on�gurationsAll di�erent variants of trun
ating te
hniques may be generalized by ours. The preorderon
on�gurations is determined by a pair of orders (4M,E) where 4M and E are bothorders on
on�gurations, and

• 4M is based on the marking fun
tion,
• E is based on the in
lusion order or/and the labeling fun
tion.The order E, and more pre
isely its stri
t order ⊳,
alled adequate order, mustbe a stri
t partial-order on CE re�ning/extending the in
lusion order ⊂, i.e. C ⊂ C ′implies C ⊳ C ′. This property
orresponds to the in
lusion respe
t
ondition on
utting
ontexts. Moreover, this pair of orders (4M,E) must be preserved by �nite extensions.This means that for every pair of
on�gurations C 4M C ′, and for every extension set Xof C, i.e. C
 X, there exists an extension set X ′ of C ′ su
h that (C∪X) 4M (C ′∪X ′),and if C E C ′ then (C ∪X) E (C ′ ∪X ′). It intuitively
oin
ides with our de�nition of
ompatibility of 4M with extension relation
, and will be proved in the rest of thissub-se
tion. One
an �nd in the literature the following orders:Marking orders

• 4M = ICodom(M) for �nite systems [M
M95a℄ whi
h is the most widely usedfor unfolding te
hnique on safe Petri nets.
• 4M = ≈Codom(M) where
on�gurations' markings may be partitioned into �-nite
lasses and ≈Codom(M) is the
orresponding equivalen
e relation [KK03℄.For example, this is used for symmetri
 Petri nets [CGP01℄ or Signal Transi-tion Graphs [SY96℄.
• 4M is a well-preorder on states of well-stru
tured transition systems [Fin87℄.Adequate orders
• E = ⊆ for �nite re
overy trees [Fin87, FS01℄.
• E based on
on�gurations' sizes, C E C ′ i� |C| ≥ |C ′|, for unfolding of Petrinets [M
M95a℄.
• E based on lexi
ographi
 order over Σ∗ or Foata normal form of
on�gura-tions [ERV96℄.In this work, we fo
us only on well-preorders 4C that are based on some markingpreorders 4M (see De�nition 4.2.2) and some adequate orders E given above. Intuitively,77

Chapter 4. Trun
ation for well-preordered labeled event stru
tures
4M gives rise to the
ompatibility of
utting
ontext while E guarantees the foundednessof 4C , and as a
onsequen
e the de
idability of some veri�
ation problems.Notation 4.2.16. Let E be a labeled event stru
ture and 4M,E are respe
tively a markingorder and an adequate order for E. We denote 4C= (4M ⋓ D) the binary relation on CEthat is de�ned as: denoted by (4M ⋓ D) where

• C 4C C ′ i� 〈C,C ′〉 ∈ (4M ∩D),
• C ≺C C ′ i� C 4C C ′ and C ⊲ C ′.The adequate order based on lexi
ographi
 order de�ned below has been �rst givenby Esparza and is widely used in nowadays unfolding te
hniques for Petri nets. One
an�nd its de�nition as well as the original idea of how to improve unfolding te
hniquesin [ERV96℄. Brie�y, the purpose of giving or re�ning adequate orders is to obtain smalltrun
ations.De�nition 4.2.17. Given a labeled event stru
ture E = (E,≤,#,L,M) and a totalorder ≪ on Σ. The lexi
ographi
 labeling order on CE, denoted by El, is de�ned by: forall C,C ′ ∈ CE, C El C ′ if either:
• |C| < |C ′|, or
• |C| = |C ′| and the linearisation w.r.t. ≪ of labels of events in C is lexi
ographi
allysmaller than or equal to the one of C ′.4.3 Partial-order veri�
ation for well-preordered labeledevent stru
turesBased on the general
utting
ontext de�ned in the previous se
tion, we are going toshow di�erent trun
ation te
hniques. Ea
h trun
ation te
hnique is dedi
ated to a kindof information in labeled event stru
tures that one wants to preserve by means of trun-
ations and its
orresponding pre�xes. Then, by analyzing these pre�xes, one
an verifyvarious problems on systems whi
h are modeled by labeled event stru
tures, su
h astermination and boundedness. There are two types of
utting
ontexts (4C ,C) whi
hare widely used. It depends on the
hoi
e of the
on�guration set C whi
h is either thewhole set of
on�gurations CE or the set of lo
al
on�gurations Cl

E
.The �rst one, i.e. C = CE, is
alled a global
utting
ontext,
an result to a
ompa
ttrun
ation but
ontradi
ts to the partial-order
onstru
tion of labeled event stru
tures(see Chapter 5). Be
ause, in pra
ti
e, one must
ompute and examine all
on�gura-tions and their markings in order to de
ide the trun
ation and whether the
onstru
tingalgorithm may terminate.The se
ond one, i.e. C = Cl

E
, may be integrated in the algorithm that
onstru
tslabeled event stru
tures. It keeps up the partial-order idea and almost does not slowdown the running time of the algorithm in pra
ti
e (see Chapter 6 for details). Inthis se
tion, we only
onsider this kind of
utting
ontext,
alled lo
al
utting
ontext,however, all statements as well as their proofs are also true for the global
utting
ontext.4.3.1 Lo
al
utting
ontextsLet us �rstly give some new notions about events that are derived from the ones about
on�gurations.78

4.3. Partial-order veri�
ation for well-preordered labeled event stru
turesDe�nition 4.3.1. Let E = (E,≤,#,L,M) be a labeled event stru
ture and (4C ,Cl
E
)be a lo
al
utting
ontext of E. An event e ∈ E is

• a
uto� event if ≥(e) is a
uto�
on�guration,
• an outer event if ≥(e) is an outer
on�guration.Sin
e
uto�
on�gurations are determined by Cl

E
, the se
ond item of De�nition 4.3.1
an be stated in another way, event eout is an outer event e if it is a su

essor of some
uto� event ecut, i.e. ecut < eout. By the same manner as in Notation 4.2.11, we alsodenote the set of
uto� events, the set of outer events by Ec, Eo respe
tively; and theset of events whi
h are neither
uto� nor outer by En, i.e. En = (E \Ec) \ Eo.Lemma 4.3.2. Given a lo
al
utting
ontext (4C ,Cl

E
) of a labeled event stru
ture E. Wehave

T(E,4C ,Cl
E) = En ∪Min≤(Ec).Proof. In the same manner as the proof of Theorem 4.2.15, we obtain that for all e ∈ Eo,

e 6∈ T(E,4C ,Cl
E
). It follows dire
tly from the de�nition of outer events that for all e ∈ En,

(≥(e) ∩ Eo) = ∅. And moreover, a
uto� event ecut ∈ Ec is an outer event i� it is asu

essor of some other
uto� event, or in other words, i� it is not minimal w.r.t.
ausalityover the set of
uto� ones, i.e. ecut 6∈ Min≤(Ec). Therefore, by de�nition of the trun
ation(De�nition 4.2.12), T(E,4C ,Cl
E
) =

⋃
C∈(CE\C

o
E
) C = (≥(En)) ∪ (≥(Min≤(Ec))) = En ∪

Min≤(Ec).
−

e1
−

−

e2
−

−

e3
−

+

e1
+

+

e2
+

+

e3
+

Ccut C ′
cut

(a) Lo
al: (4C ,Cl
E
)

−

e1
−

−

e2
−

−

e3
−

+

e1
+

+

e2
+

+

e3
+

Ccut

(b) Global: (4C ,CE)

Figure 4.6: Lo
al vs global
utting
ontextsExample 4.3.3. Let us denote E = (E,≤,#,L,M) the labeled event stru
ture for 2-bounded
ounter initialized by 1, i.e. 2-BC
1, whi
h is isomorphi
 to ({a}, a, 2)-CP forbounded FIFO
hannels (see De�nition 3.3.13 on page 38). And let us take the same well-preorder 4C as in Example 4.2.13, that is C 4C C ′ if M(C) =M(C ′) and |C| ≥ |C ′|.Figure 4.6-a and Figure 4.6-b illustrate E and its trun
ations with respe
tively the lo
al
utting
ontext (4C ,Cl

E
) and the global one (4C ,CE).As shown in Figure 4.6-a, events e2

− and e2
+ are
uto� events due to e1

− and e+1. Andmore over, these two events form the minimal set w.r.t.
ausality of
uto� events, i.e.
Min≤(Ec

E
) = {e2

−, e2
+}, hen
e give the intuitive frontier/bound of the trun
ation. How-ever, in Figure 4.6-b, e2

− and e2
+ are both "outer events" be
ause its lo
al
on�gurationsare outer ones due to
on�guration Ccut = {e1

−, e1
+} whi
h is not lo
al. One
an say79

Chapter 4. Trun
ation for well-preordered labeled event stru
turesthat the trun
ation with global
utting
ontext, in this example is {e1
−, e1

+} is smallerthan the one with lo
al
utting
ontext, {e1
−, e1

+, e2
−, e2

+}, while they preserve the sameinformation on rea
hability/marking set, i.e.
⋃

C∈CE:C⊆T(E,4C ,Cl
E
)

M(C) = {0, 1, 2} =
⋃

C∈CE:C⊆T(E,4C ,CE)

M(C)Lemma 4.3.4. Let (E,4M) be a preordered labeled event stru
ture where 4M is a mark-ing preorder. Let E be the adequate preorder based on
on�guration size, i.e. C E C ′ i�
|C| ≤ |C ′|. If (E,4M) has re�exive
ompatibility then (E,4M ⋓ D) is also a preorderedlabeled event stru
ture with stri
t and re�exive
ompatibility.Proof. Let us denote 4C = (4M ⋓ D). The re�exivity and transitivity of 4C are trivialso that 4C is a preorder on CE. Let C,C ′ be two
on�gurations in CE and assume that
C 4C C ′. Sin
e (E,4M) is a preordered labeled event stru
ture, by De�nition 4.2.1, forevery extension set X of C, there exists an extension set X ′ of C ′ su
h that (C ∪X) 4M

(C ′ ∪X ′). It follows from the re�exive
ompatibility that |X ′| = |X|. Be
ause C 4C C ′,we have |C| ≥ |C ′| and thus |C ∪X| = |C|+ |X| = |C|+ |X ′| ≥ |C ′|+ |X ′| = |C ′ ∪X ′|(re
all that a
on�guration and its extension set are disjoint sets). Therefore (C∪X) 4C

(C ′ ∪ X ′) by de�nition and (E,4C) is preordered with re�exive
ompatibility be
ause
|X| = |X ′|. Moreover the stri
t
ompatibility follows dire
tly from the de�nition of
(4M ⋓ D) whi
h says that C ≺C C ′ i� C 4M C ′ and C ⊲ C ′.In the proof above, there are no
onstraint on labels of events and extension events.However, with a little modi�
ation, one
an also say that the preorder based on thelexi
ographi
 order preserves strong
ompatibility, i.e. when there is no event labeled byan internal a
tion in Στ .Lemma 4.3.5. Given a preordered labeled event stru
ture (E,4M) where 4M is a mark-ing preorder, if (E,4M) has strong
ompatibility then (4M ⋓Dl,E) 2 is also a preorderedlabeled event stru
ture with stri
t and strong
ompatibility.Proof. By the same manner as in the proof of Lemma 4.3.4, this lemma is a
onsequen
ethat
omes from a property of the lexi
ographi
 order 4l
orresponding to El, i.e. CElC

′if L(C) 4l L(C ′). In fa
t, for all multisets A,B,C over Σ = Codom(L), we have that
A 4l B implies (A ⊕ C) 4l (B ⊕ C) where the operator ⊕ represents the union ofmultisets.The lexi
ography-based order El re�nes the size-based order E, that means for all
on�gurations C,C ′ ∈ CE, C El C ′ implies C E C ′. And they both re�ne the in
lusionorder ⊆. Hen
e, (4M ⋓ D,C) and (4M ⋓ Dl,C) are
utting
ontexts for any family
C ⊆ CE if the
ompatibility is satis�ed. Moreover, if the
orresponding trun
ations are�nite, one
an easily �nd out that T(E,4M⋓Dl,C) is generally smaller and never greaterthan T(E,4M ⋓D,C), as the word "re�ne" means. Esparza et al. have given an examplein [ERV96℄ showing that the trun
ation, obtained by using E is exponential while theone that uses El is linear w.r.t. the size of the original system.Lemma 4.3.6. Given a preorder labeled event stru
ture (E,4M). If E is �nitely-bran
hing then 4C= (4M ⋓⊇) is a
onverse well-foundeded.2El is lexi
ographi
 labeling order (see De�nition 4.2.17 on page 78).80

4.3. Partial-order veri�
ation for well-preordered labeled event stru
turesProof. As a
onsequen
e of König's lemma, the �nitely-bran
hing property implies thatthere is no in�nite sequen
e of
on�guration C1 ⊃ C2 ⊃ Hen
e there is no in�nitein
reasing sequen
e of
on�gurations w.r.t. the order 4C= (4M ⋓⊇).Remark: If E is �nitely-bran
hing and 4M is a
onverse well-preorder then (4M ⋓ D) aswell as (4M ⋓ Dl) is a
onverse well-preorder.4.3.2 Coverability and quasi-livenessDe�nition 4.3.7 (Coverability). Given a labeled transition system LTS = (S,Σ, s0,→)and a preorder 4 on its state spa
e S, the
overability problem is to de
ide whether astate s is
overed by some rea
hable state s′, i.e. s 4 s′ and s0։s′
σ for some σ ∈ Σ∗.This problem may be solved by the
omputation of the downward
losure w.r.t. 4 of

post∗
LTS

. While using labeled event stru
tures (E,4M) for modeling systems by means ofindu
ed labeled transition systems (LTS
E,4), one needs, and this is enough, to
omputethe downward
losure w.r.t. 4 ofM(CE) =

⋃
C∈CE

M(C). Be
ause, by De�nition 3.2.4,
M(CE) = post∗

LTS
E .Notation 4.3.8. Let T be the trun
ation of a preordered labeled event stru
ture (E,4C)w.r.t. some
utting
ontext (4C ,C). We denote CT the family of
on�gurations in

T(E,4C ,C), i.e. CT = {C ∈ CE /C ⊆ T(E,4C ,C)}.In this subse
tion, we will show that the
overability problem is de
idable if there isa re�exive/strong
ompatibility by using either (4M ⋓ D) or (4M ⋓ Dl). As stated byLemma 4.3.4 and Lemma 4.3.5, both (4M ⋓ D,CE) and (4M ⋓ Dl,CE) are lo
al
utting
ontexts.Lemma 4.3.9. For any �nitely-bran
hing and preordered labeled event stru
ture (E,4M)with re�exive (strong)
ompatibility, let E be the size-based adequate order (the lexi
ogra-phy-based adequate order, resp.) and T(E, (4M ⋓D),Cl
E
) be the
orresponding lo
al trun-
ation. Then we have:

<(M(CT)) = <(post∗
LTS

E)Proof. By de�nition of indu
ed labeled transition systems (De�nition 3.2.4), we haveto simply prove that <(M(CT)) = <(M(CE)). Sin
e CT ⊆ CE, it su�
es to showthat M(CE) ⊆ (<(M(CT))). It follows from Lemma 4.3.6 that the order (4M ⋓ D)is
onverse well-founded. Let C be any
on�guration in CE, by Theorem 4.2.14, thereexists a
on�guration C ′ ∈ Cn
E
⊆ CT su
h that C ≺C C ′ where 4C = (4M ⋓ D), andso C 4M C ′. It follows from the de�nition of marking preorders (De�nition 4.2.2)that M(C) ⊆ (<(M(C ′))). Therefore, by a same manner as for strong
ompati-bility with lexi
ography-based adequate order, one
an
on
lude that (<(M(CT))) =

(<(M(CE))) = (<(post∗
LTS

E)).The downward
losure set for
overability may be rewritten in another way as
(
< (M(CT))

)
=

(
<

(
M(Max4M(CT))

))

=


<




⋃

C∈Max
4M(CT)

M(C)





 81

Chapter 4. Trun
ation for well-preordered labeled event stru
turesIn words, one takes the set of maximal
on�gurations, w.r.t. the marking preorder
4M, in the trun
ation; then one
omputes the union of their markings and �nally one
omputes its downward
losures.The
orre
tness of this lemma is based on the one of Theorem 4.2.14 so that the stri
t
ompatibility of the
utting
ontext's order (4M ⋓ D), as well as the stri
t
omparisonin de�nition of
uto�
on�gurations (see De�nition 4.2.10) is very important for the
ompleteness of the trun
ation while verifying
overability. One
an �nd a
ounter-example in [ERV96℄. For example, if we repla
e the
ondition Ccut ≺

C C by Ccut 4C C,for some preordered labeled even stru
ture, (C ∪Ccut) is an outer
on�guration and thetrun
ation may have no
on�guration C ′ whi
h
overs (C ∪ Ccut), i.e. (C ∪Ccut) 64
C C ′and (C ∪ Ccut) 64

M C ′.Remark: Our
overing problem
orresponds to the sub-
overing one in [FS01, HST07℄ byduality. The sub-
overing problem is de
idable for re�exive and downward well-preorderlabeled event stru
tures (LTS,4) by means of
omputing upward
losure of post∗
LTS

.The downward
ompatibility tells that from a smaller state, one
an do the same thing asfrom a greater one w.r.t. 4. In this work, we give no downward notion for
ompatibility.However, su
h systems
orresponds to our well-preordered labeled transition systems
(LTS,<) where the
onverse preorder < is
onverse well-preordered.Lemma 4.1.14
ombined with Lemma 4.3.9 allows us to redu
e ba
kward analysisto forward analysis: to
ompute pre∗

LTS
E (4({s})) in a well-preordered labeled transition

(LTS
E,4) and �nite pred-basis pb, it is su�
ient to build the �nite trun
ation of the
orresponding well-preordered labeled event stru
ture (E,4M).Lemma 4.3.10. Let (E,4M) be any preordered labeled event stru
ture with re�exive(strong)
ompatibility and E be the size-based adequate order (the lexi
ography-based ad-equate order, resp.). If E is �nitely-bran
hing then T(E, (4M ⋓ D),Cl

E
) is �nite.Proof. Thanks to Lemma 4.3.6, the preorder (4M ⋓ D) is a
onverse well-founded. Andas a sequen
e of Theorem 4.2.15, the trun
ation is �nite.As seen in Chapter 5, one
an obtain the pre�x based on the lo
al
utting
ontext

(E, (4M ⋓ D),Cl
E
) by a partial-order
onstru
tion. Although the
overing problem isde
idable on (E,4M) due to the �niteness of the trun
ation, one need
ompute more orless all markings as well as possible
on�gurations (generally not lo
al ones) in the pre�x.This
omputation after the
onstru
tion does not suit with partial-order veri�
ation.De�nition 4.3.11 (Quasi-liveness). Let LTS = (S,Σ, s0,→) be a labeled transitionsystem. An a
tion a ∈ Σ is quasi-live if there is an exe
ution of LTS in whi
h a is �red.In the
ontext of labeled event stru
tures, the quasi-liveness of a redu
es to theexisten
e of an event labeled by a. Unlike the
overing problem, the quasi-liveness wouldbe veri�ed in
on
urrent with partial-order trun
ation's
onstru
tion, and fortunately,without
omputing
on�gurations that are possibly not lo
al.Theorem 4.3.12. Let (E,4M) be any �nitely-bran
hing and preordered labeled eventstru
ture with re�exive (strong)
ompatibility and E be the size-based adequate order (thelexi
ography-based adequate order, resp.). For any global a
tion a ∈ Σ, a is quasi-live in

LTS
E i� a labels an event in T(E, (4M ⋓ D),Cl

E
).Proof. Let us denote by E = (E,≤,#,L,M) the labeled event stru
ture. By de�nition ofindu
ed labeled transition systems (De�nition 3.2.4 on page 28), it su�
es to prove that82

4.3. Partial-order veri�
ation for well-preordered labeled event stru
tures
L(T(E, (4M⋓D),Cl

E
)) = Σ (*) (re
all that Σ = Codom(L)). Sin
e T(E, (4M⋓D),Cl

E
) ⊆

E, the left-side in
lusion of (*) is obvious. For the right-side in
lusion, suppose that
e be any event e ∈ E. Thanks to Theorem 4.2.14, for the
on�guration >(e), thereexists another
on�guration C ∈ Cn

E
su
h that 〈>(e), C〉 ∈ (4M ⋓ D). Sin
e a is notan internal a
tion, i.e. a 6∈ Στ , be
ause of the re�exive
ompatibility of (E,4C) where

4C = (4M ⋓ D), we have C ⊢ e′ for some extension event e′ satisfying L(e′) = L(e).Moreover, it follows from the downward
losed property of the
on�guration (C ∪ {e′})that >(e′) ⊆ C, and as a
onsequen
e >(e′) does not
ontain
uto� events. Thanks toLemma 4.3.2, e′ ∈ T(E, (4M ⋓ D),Cl
E
). The right-side in
lusion of (*) is proved.4.3.3 Termination and boundednessDe�nition 4.3.13 (Termination). Given a labeled transition system LTS, we say that

LTS terminates if LTS has no in�nite exe
ution.Suppose that we has already a labeled event stru
ture E for LTS. Then LTS ter-minates if E is �nite. Or reversely, LTS does not terminate if E has no bound on its
on�gurations' sizes. In order to resolve the termination problem, we use the
utting
ontext based on 4C = (<M⋓⊇). The intuitive idea is that if a
on�guration Ccut is
utdue to another
on�guration C, the
ompatibility of 4C implies the existen
e of in�nitesequen
e of
on�gurations Ccut, C
′
cut, C

′′
cut, . . . in CE. An important thing here is thatthis sequen
e is in
reasing while
omparing elements' sizes. The reasoning that
an befound in following proofs, bases on both C and Ccut (1); and the fa
t that Ccut may beobtained from C (2). The �rst point really di�ers from the reasoning for
overability andliveness problems in whi
h Ccut is somehow useless. And due to the se
ond point, onehas that C ⊆ C ′ so that the adequate order ⊆ is naturally
onvenient for the terminationproblem.Lemma 4.3.14. Given a preordered labeled event stru
ture (E,4M) where 4M is amarking preorder, (E, (<M ⋓⊇)) is also a preordered labeled event stru
ture.Proof. Let us denote 4C = (<M⋓⊇). The re�exivity and transitivity of 4C are trivial sothat 4C is a preorder on CE. The
ompatibility of preorder 4C is dire
tly inherited fromthe in
lusion order. Let C,C ′ be two
on�gurations in CE and assume that C 4C C ′.Let X be any extension set of C, i.e. C
 X. Sin
e C ⊇ C ′, we have thus C ′ ⊆

(C ∪ X). Hen
e, X ′ = (C \ C ′) ∪ X is simply an extension set of C ′ whi
h guarantiesthe
ompatibility of 4C be
ause C ′ ∪X ′ = C ∪X.As seen in the previous proof, (E, (<M ⋓ ⊇)) may not have the stri
t
ompatibilityneeded in Theorem 4.2.14 so that the
orresponding lo
al trun
ation is not
omplete inview of
overability. However, this trun
ation preserves enough information for termi-nating problem. And the veri�
ation is de
idable due to its �niteness.Theorem 4.3.15. Let (E,4M) be any well-preordered labeled event stru
ture. If E is�nitely-bran
hing then T(E, (<M⋓ ⊇),Cl
E
) is �nite.Proof. Suppose that the trun
ation T(E, (<M⋓ ⊇),Cl

E
) is in�nite. Thanks to König'slemma, it follows from the �nitely-bran
hing property of E that the trun
ation T
ontainsan in�nite sequen
e of events e1 ⋖ e2 ⋖ As a
onsequen
e, (≥(e)) ⊂ (≥(ej)) for all

i < j. Moreover, sin
e 4M is well-preordered, by de�nition, there exist two indi
es i < jsu
h that (≥(ei)) 4M (≥(ej)). We obtain that the lo
al
on�guration ≥(ej) is a
uto�one, and ej is a
uto� event due to ei, or more pre
isely, due to the lo
al
on�guration83

Chapter 4. Trun
ation for well-preordered labeled event stru
tures
≥(ei). Hen
e, ej+1 is an outer event by de�nition. The fa
t that T(E, (<M⋓ ⊇),Cl

E
)
ontains ej+1
ontradi
ts to Lemma 4.3.2. Therefore, the trun
ation is �nite.In
overing-based veri�
ation,
uto� events as well as
uto�
on�gurations are some-how useless (see Theorem 4.2.14). However, for termination, it is the opposite. Theexisten
e of
uto� events in the trun
ation is enough for de
iding whether the
orre-sponding system terminates if there is transitive
ompatibility.Theorem 4.3.16 (Termination). For any well-preordered �nitely-bran
hing labeled eventstru
ture (E,4M) with transitive
ompatibility, LTS

E terminates i� T(E,<M ⋓ ⊇,Cl
E
)
ontains no
uto� event.Proof. Let us denote the labeled event stru
ture by E = (E,≤,#,L,M), and the lo
altrun
ation simply by T. Thanks to Theorem 4.3.15, T is �nite. Re
all that T = En ∪

Min≤(Ec), the trun
ation
ontains a
uto� event i� there exists a
uto� event in E.(⇐) Assume that T
ontains no
uto� event. This implies that there is no outer eventand by de�nition, E = T. The event set E is also �nite. We dedu
e from Lemma 3.2.12that every exe
ution in LTS
E whi
h
orresponds to linearisation w.r.t.
ausality of some
on�guration has length at most |E|. Therefore, LTS

E terminates.(⇒) Assume that T
ontains a
uto� event ecut. There exists another event su
hthat e < ecut and (≥(e)) 4M (≥(ecut)). Due to the transitive
ompatibility of (E,4M),let X = ((≥(ecut)) \ (≥(e))), sin
e X is an extension set of ≥(e) there exists anotherextension set X ′ of ≥(ecut) su
h that (≥(e) ∪ X) = (≥(ecut)) 4M ((≥(ecut)) ∪ X ′)and |X ′| ≥ |X| > 0. By iterating this reasoning, we obtain an in�nite sequen
e of
on�gurations C 4M (C ∪X) 4M (C ∪X ∪X ′) 4M . . . so that there is no bound fortheir size. The indu
ed labeled transition system LTS
E must have an in�nite exe
utiondue to Lemma 3.2.12.De�nition 4.3.17 (Boundedness). A labeled transition system LTS is bounded if it hasa �nite rea
hability set, i.e. post∗

LTS
is �nite.In order to de
ide boundedness, we use the same lo
al
utting
ontext as in termina-tion, i.e. based on (<M⋓ ⊇), but we need the notion of marking-stri
t
uto� events.De�nition 4.3.18 (Marking-stri
t
uto� event). Given a preordered labeled event stru
-ture (E,4M) and its lo
al
utting
ontext (<M⋓ ⊇,Cl

E
). A marking-stri
t
uto� eventis any event ecut su
h thatM(≥(ecut)) ≻

MM(≥(e)) and ecut < e for some event e.It is worth noti
ing that, in pra
ti
e, ecut may be a marking-stri
t
uto� event dueto the empty
on�guration ∅ ∈ Cl. We simply say that it is due to the parti
ular event ε.Observe that any marking-stri
t
uto� event is also a
uto� event. The idea of verifyingboundedness is
losed to the one of termination. Their
orresponding trun
ations is thesame sin
e we use a lo
al
utting
ontext ((<M ⋓ ⊇,Cl
E
). However, the de
idability ofboundedness veri�
ation depends on a stri
t
ompatibility of marking preorder 4M, notthe stri
t
ompatibility of the
utting preorder (<M ⋓⊇).Theorem 4.3.19 (Boundedness). Given (E,4M) be any well-preordered labeled eventstru
ture with transitive and stri
t
ompatibility, and 4M is a partial-order. If E is
oherent and �nitely-bran
hing then its indu
ed labeled transition system LTS

E is boundedi� T(E,<M ⋓ ⊇,Cl
E
)
ontains no marking-stri
t
uto� event andM(CT) is �nite.84

4.3. Partial-order veri�
ation for well-preordered labeled event stru
turesProof. Let us denote the labeled event stru
ture by E = (E,≤,#,L,M) and its lo-
al trun
ation simply by T. By de�nition of indu
ed labeled event stru
tures (De�ni-tion 3.2.4), we have post∗
LTS

E = M(CE). Hen
e, the theorem
ould be rewritten as:
M(CE) is �nite (1) i� T
ontains no marking-stri
t
uto� event andM(CT) is �nite (2).We are going to �rst show that "not (2) implies not (1)" and se
ond "(2) implies (1)".Therefore, one
an thus
on
lude the theorem.

• Sin
e T ⊆ E and CT ⊆ CE, the marking setM(CE) whi
h in
ludesM(CT) must bein�nite ifM(CT) is in�nite. Now, suppose that T
ontains a marking-stri
t
uto�event ecut due to another event e, that means e < e′ andM(e) ≺MM(ecut). Dueto the stri
t and transitive
ompatibility of (E,4M), by the same manner as inthe proof of Theorem 4.3.16, there must exists an in�nite sequen
e of
on�guration
C1 ≺

M C2 ≺
M C3 ≺

M . . . in CE where C1 = ≥(e) and C2 = ≥(ecut). And theirmarkings are all belongs toM(CE) so thatM(CE) is in�nite.
• We will prove that M(CE) ⊆ M(CT) if there is no marking-stri
t
uto� event in

T. As a
onsequen
e, M(CE) is �nite due to the �niteness of M(CT). Let Co
Tdenote the set of
on�gurations of whi
h marking does not belong toM(CT), i.e.

Co
T

= {C ∈ CE / (M(C) \M(CT)) 6= ∅}. Suppose that Co
T
is not empty. Sin
e E is�nitely-bran
hing, the size-based order E on CE is founded so that one
an
hoosea minimal
on�guration C ∈ Co

T
w.r.t. E. It obviously follows from de�nition that

C must
ontain an outer event, and thus as a
onsequen
e, a
uto� event ecut dueto another event e. Without lost of generality, suppose that ecut is minimal w.r.t.
ausality ≤ in C, then ecut is also minimal w.r.t. ≤ over E be
ause C is downward
losed. As a
onsequen
e of Lemma 4.3.2, ecut belongs to the trun
ation T.Be
ause there is no marking-stri
t
uto� event in T as supposed, for
uto� event
ecut, we have thus ecut > e (
ausality), ≥(ecut) <M ≥(e) and ≥(ecut) 6≻

M ≥(e)(marking). Therefore ≥(ecut) = ≥(e) sin
e 4M is a partial order. Let X =
C \ (≥(ecut), as a sequen
e of the se
ond property of
oheren
e (De�nition 3.2.11)of E, it follows from the extension set X of ≥(ecut) that there exists an extension set
X ′ of
on�guration ≥(e) satisfying |X ′| = |X| andM(≥(ecut)∪X) =M(≥(e)∪X ′).The
on�guration C ′ = ≥(e) ∪ X ′ has the same marking as C, hen
e C ′ ∈ Co

T
.Moreover,

|C ′| = |≥(e)|+ |X ′| = |≥(e)|+ |X| < |≥(ecut)|+ |X| = |C|This fa
t
ontradi
t to the minimality of
hosen
on�guration C. Therefore, Co
Tmust be empty so thatM(CE) is �nite.Remark: Abdulla et al. have given an unfolding algorithm for symboli
 veri�
ation ofunbounded Petri nets in [AIN00℄. They adapt an algorithm des
ribed in [ACJT96℄ forba
kward rea
hability analysis. This te
hnique is more or less the dual of the ours.One
an also �nd another work on boundedness of Petri nets whi
h based on forwardanalysis in [DJN04℄. In both
ases, their algorithms operate on
onstraints that ea
h
on�guration may represent an (in�nite) upward
losed set of Petri nets' markings 3.3A marking in Petri nets is a bit di�erent to our marking for nondeterministi
 labeled event stru
tures(see De�nition 2.5.1 on page 20). 85

Chapter 5Compositional unfolding te
hniques
Contents5.1 Unfolding algorithm . 885.2 Causality pro
esses' unfolding 925.2.1 k-
ausality pro
esses . 935.2.2 M -
ausality pro
esses . 965.2.3 Generalization . 1035.3 Syn
hronized produ
ts' unfolding 1095.3.1 Fun
tion ConfigVectorSet_i . 1115.3.2 Fun
tion ConfigVectorSet . 1145.3.3 Fun
tions InitSP and ExtendSP 1175.4 Trun
ating . 1225.4.1 Algorithmi

uto� events . 1235.4.2 Complete pre�xes . 125Our goal in this
hapter is to give algorithms,
alled unfolding algorithms, for buildinglabeled event stru
tures using a method similar to Petri net unfolding. The �rst Petrinet unfolding algorithm was given by M
Millan [M
M95a℄. This algorithm intuitivelyenlarges some pre�x of a labeled o

urren
e net (see Se
tion 2.5 on page 19) by iterativelyadding events to it. A new event is
omputed from existing
onditions in the pre�x thatpossibly enable this event. This idea was later applied to syn
hronized produ
ts oftransition systems [ERV96℄. In the result: for adding events,
omponent states
ouldbe analyzed without fo
using global states of the syn
hronized produ
t. In our
ase, weadapt this te
hnique to syn
hronized produ
ts of label event stru
tures. One
onstru
tsnot only pre�xes of a syn
hronized produ
t but also
orresponding
omponent pre�xestogether.We present the general algorithm in Se
tion 5.1. Intuitively, every event is
reatedand inserted into the being
onstru
ted pre�x when all its dire
t prede
essors are alreadythere. Then, we detail our unfolding algorithm into two parti
ular
ases: for
omponentlabeled event stru
tures and for syn
hronized produ
ts of labeled event stru
tures.First, in ea
h standard labeled event stru
ture de�ned in Se
tion 3.3, an event and itsdire
t prede
essors as well as its dire
t su

essors form somehow a motif. For example, inthe k-
ausality pro
ess, every in
rement event has k in
rement dire
t su

essors and onede
rement one. As a
onsequen
e, based on the de�nition of a labeled event stru
ture,87

Chapter 5. Compositional unfolding te
hniquesone
an write a
orresponding algorithm to
onstru
t it, more pre
isely, to
onstru
t itspre�xes. Se
tion 5.2 will give algorithms, for instan
e, building
ausality pro
esses for
ounters and FIFO
hannels.Se
ond, in a syn
hronized produ
t of labeled event stru
tures, a global event is noth-ing but a syn
hronization of
omponent events. The unfolding algorithm, in the onehand, su

essively extends a pre�x of the syn
hronized produ
t, and in the other hand,uses asso
iated unfolding algorithms for
omponents in order to a

ordingly extend its
omponent pre�xes. This algorithm will be detailed in Se
tion 5.3. Moreover, one
an
onsider a syn
hronized produ
t of labeled event stru
tures as a
omponent of anotherlarger one. As a
onsequen
e, one
an obtain a global unfolding algorithm for a
om-plex system whi
h is hierar
hi
ally modeled by means of labeled event stru
tures. Our
ontribution is not only a generalization of the unfolding method in [ER99℄ to parallel
omposition of labeled event stru
tures, but also gives an algorithm whi
h is
apable ofexploiting
on
urren
y in
omponents as well as among them.In Se
tion 5.4, we will explain how to integrate trun
ating
riterion into an unfoldingalgorithm in order to only
onstru
t �nite trun
ations whi
h are
omplete for
ertainveri�
ation problems given in Chapter 4.5.1 Unfolding algorithmAiming at building a labeled event stru
ture (E,≤,#,L,M), the unfolding algorithmalways maintains a pre�x of E, w.r.t. isomorphism, and tries to extend it until it isimpossible. This pre�x under
onstru
tion is presented by so
alled stru
ture variables
Ê = (Ê, ≤̂, #̂, L̂,M̂) that are the main variables in our algorithms. Extending the pre�x
Ê intuitively means that the unfolding algorithm
reates new events, adds them to Ê,and a

ordingly modi�es other stru
ture variables, e.g. ≤̂, #̂, L̂,M̂, so that the obtained
Ê is still a pre�x of E w.r.t. isomorphism.Remark: In this
hapter, for simpli
ity of proofs, when two labeled event stru
tures areisomorphi
 w.r.t. some bije
tion B, we assume that they have a same set of events.On this understanding, one does not need to take
are of bije
tion B without risk of
onfusion. Due to this assumption, one
an say that Ê is a pre�x of E and simply write
Ê = E| bE . That means Ê is a downward-
losed subset w.r.t. ≤ of E. And in this
ase,the
ausality ≤̂ and the
on�i
t relation #̂ are respe
tively restri
tions of ≤ and # ontothe event set Ê, i.e. ≤̂ = ≤| bE and #̂ = #| bE .To be pre
ise, noti
e that Ê
onstru
ted by our algorithm will not be a pre�x of E asin De�nition 3.1.12 but rather an isomorphi

opy of it. In this
hapter, we will nevertalk about this isomorphism though, and always think of Ê as a sub-event stru
ture of EAlgorithm 5.1 represents the pseudo-
ode of our general unfolding algorithm. Besidesstru
ture variable Ê representing the pre�x being
onstru
ted, this algorithm maintainsa variable PE,
alled possible extensions. PE
ontains a set of events in Ê from whi
hthe pre�x Ê may be extended.The algorithm starts by initializing the pre�x Ê as well as PE using fun
tion Init (line2). As the output of Init, Ê will be usually the pre�x of E
onsisting of its minimal events,i.e. Ê = E|Min≤(E). At the same time, PE will be the whole event set of Ê, i.e. PE = Ê.Then the algorithm pro
eeds by
onsidering events in PE in turn. For a
hosen event ein PE (line 4), it
alls the fun
tion Extend that is the
ore of our unfolding algorithm.This fun
tion takes e as well as values of stru
ture variable Ê and of possible extension88

5.1. Unfolding algorithmAlgorithm 5.1: Unfolding algorithm1 begin2 (Ê,PE) := Init()3 while PE 6= ∅ do4 take an event e in PE5 (Ê,PE) := Extend(Ê,PE, e)6 end while7 end
PE as input (line 6), and does the following:

• �nds whi
h dire
t su

essors e′ of e in E, i.e. e ⋖ e′, should be added to Ê: Su
hsu

essors e′ must satisfy that its prede
essors are not only in Ê, i.e. >(e′) ⊆ Ê,but have also been previously extended, >(e′) ∩ PE = ∅;
• adds su
h su

essors e′ to Ê and updates the labeled event stru
ture Ê a

ordingto these new events; e is removed from PE while its su

essors is inserted into PE;and
• returns the new pre�x Ê and the possible extension PE.The two
onditions stated in the �rst item are important. The �rst one ensures thatadding su

essor e′ does not break the downward-
losure w.r.t. the
ausality ≤ of theobtained pre�x. And the se
ond one avoids dupli
ation of e′ when, for instan
e, extendinganother dire
t prede
essor f of e′, i.e. f ⋖ e′ and f 6= e, by
alling Extend(f) afterwards.The unfolding algorithm repeats extending Ê by
alling fun
tion Extend as long as theset PE is not empty (line 3).Remark: The Algorithm 5.1 does not terminate if the labeled event stru
ture E being
onstru
ted is in�nite. In Se
tion 5.4, we will introdu
e trun
ating
riteria, and
onse-quently, terminating algorithms that
onstru
t only �nite pre�xes.Fun
tion Extend obviously depends on the labeled event stru
ture E that we wantto
onstru
t (see Se
tion 5.2 and Se
tion 5.3). However, it is possible to state general
orre
tness
riteria for the algorithm. We formulate them as the unfolding invariant(De�nition 5.1.1) and
orre
tness
riteria (De�nition 5.1.3). The unfolding invariant isguaranteed at any step in the unfolding algorithm in
luding the inputs of Extend as wellas the outputs of Init and Extend.De�nition 5.1.1 (Unfolding invariant). (Ê,PE) is
orre
t w.r.t. E if

I1. Ê is a pre�x of E, i.e. Ê = E| bE ,
I2. PE is a subset of Ê, and
I3. for all e ∈ E, ⋗(e) ⊆ (Ê \ PE) i� e ∈ Ê.The property I3 determines whi
h events should be in the pre�x Ê. Re
all that forall event e, >(e) is the downward-
losure of ⋗(e) w.r.t. the
ausality ≤. When Ê is apre�x of E, its event set Ê is a downward-
losed set w.r.t. the
ausality ≤ of E. Hen
e

⋗(e) ⊆ (Ê \ PE) means that dire
t prede
essors of e are already extended, and so do allprede
essors of e.Lemma 5.1.2. If (Ê,PE) is
orre
t w.r.t. E then 89

Chapter 5. Compositional unfolding te
hniques
• PE ⊆ Max≤(Ê), and
• for all e ∈ E, e 6∈ Ê and ⋗(e) ⊆ Ê implies that there exists e′ ∈ PE satisfying

e′ ⋖ e.Proof. We will prove the �rst property by
ontradi
tion. Let e be an event in PE andsuppose that e is not maximal in Ê w.r.t. the
ausality ≤. There exists another event
e′ ∈ Ê that is dire
t su

essor of e, i.e. e⋖ e′. We have that ⋗(e′)
ontains e 6∈ (Ê \PE).This is in
ontradi
tion with the unfolding invariant I3 in De�nition 5.1.1. Therefore,
PE ⊆ Max≤(Ê).The se
ond property is a dire
t
onsequen
e of the right-to-left unfolding invariant
I3 from De�nition 5.1.1.As stated in Lemma 5.1.2, the set of possible extensions, PE, is always a subset of Êthat
ontains only maximal events w.r.t. the
ausality. When extending from an event
e, some of its su

essors are added to Ê as well as to PE. Instru
tions of fun
tion Extendmust somehow reestablish the invariant I3. For example, e should be removed from PEbe
ause it is no longer maximal w.r.t. the
ausality. The se
ond item of Lemma 5.1.2says that an event e
an not be added to Ê while some of its prede
essors e′ is notextended yet. It is regardless of the
hoi
e of e as input of Extend (line 4) that the orderof extending events respe
ts to the
ausality.De�nition 5.1.3 (Extend's
orre
tness). We say that a fun
tion Extend is
orre
t w.r.t.a given labeled event stru
ture E if, for all (Ê,PE) that are
orre
t w.r.t. E (by De�-nition 5.1.1), and for all e ∈ PE, the return value (Ê′,PE′) = Extend(Ê,PE, e) satis�es:
C1. (Ê′,PE′) is
orre
t w.r.t. E,
C2. Ê ⊆ Ê′, and
C3. PE′ = (PE \ {e}) ∪ (Ê′ \ Ê).The property C1 requires that the unfolding invariant (De�nition 5.1.1) is preserved.When Extend is
orre
t, due to the property C2, it adds new events to the pre�x withoutremoving any existing event. The property C3 intuitively means that, while e is removedfrom the possible extension set PE, no new event is left out of PE.For k = 0, 1, . . ., let Êk = (Êk, ≤̂k, #̂k, L̂k,M̂k) and PEk denote respe
tively thevalues of the variables Ê and PE after k steps of the prin
ipal loop in Algorithm 5.1. Let

ek be the value of parameter e
hosen at the kth step of this loop. Then this unfoldingalgorithm satis�es following properties:Proposition 5.1.4. Given a labeled event stru
ture E = (E,≤,#,L,M), if the output
(Ê0,PE0) = Init() is
orre
t w.r.t. E (De�nition 5.1.1) and the fun
tion Extend is
orre
tw.r.t. E (De�nition 5.1.3), then1. Ê0, Ê1, . . . is an in
reasing sequen
e of pre�xes of E w.r.t. the in
lusion order onits event sets, i.e. Ê0 ⊆ Ê1 ⊆ . . .;2. the order of extending events respe
ts to the
ausality order, that means ej 6≤ ei forall j > i;3. for every extended event ek,

Êk \ Êk−1 =
{
f ∈ ⋖(ek) / ⋗(f) ⊆

(
(Êk−1 \ PEk−1) ∪ {ek}

)}
.Proof. We will prove these properties in the order in whi
h they are stated.90

5.1. Unfolding algorithm1. The �rst property is obtained by indu
tion on k. Be
ause, in the base
ase, theoutput (Ê0,PE0) of the fun
tion Init() is
orre
t w.r.t. E. Moreover, the
orre
tnessof Extend w.r.t. E is enough for indu
tive step. The in
reasing order on event sets
Ê0, Ê1, . . . is a dire
t
onsequen
e of the
orre
tness
ondition C2.2. Suppose that ei is extend before ej , i.e. j > i. It follows from the previous propertythat Ei−1 ⊆ Ej−1. Consequently, Ej−1
ontains not only ej but also ei. Thanks toLemma 5.1.2, ej is maximal w.r.t. the
ausality in Êj−1, and one thus reasons outthat ej 6< ei. Moreover, due to
ondition C3, Extend inserts only new events intothe possible extension PE. Then, ei 6∈ PEi, and moreover, ei 6∈ PEk for all k ≥ i.As a
onsequen
e, ei 6= ej . It follows from the partial order ≤ that ej 6≤ ei.3. Using C3 we get

Êk \ PEk = Êk \
(
(PEk−1 \ {ek}) ∪ (Êk \ Êk−1)

)

=
(
Êk−1 ∪ (Êk \ Êk−1)

)
\

(
(PEk−1 \ {ek}) ∪ (Êk \ Êk−1)

)

= Êk−1 \ (PEk−1 \ {ek})

= (Êk−1 \ PEk−1) ∪ {ek}be
ause ek ∈ PEk−1. Therefore, ex
ept dire
t su

essors of ek, an event f ∈ Esatis�es the left-hand side of the unfolding invariant I3 w.r.t. (Êk,PEk) i� fsatis�es it w.r.t. (Êk−1,PEk−1). Hen
e, the set (Êk \ Êk−1) of added events when
alling Extend(Êk−1,PEk−1, ek)
ontains only dire
t su

essors of ek, i.e. Êk \
Êk−1 ⊆ ⋖(ek). By
ombining on
e again with the unfolding invariant I3, oneobtains the third item of this Proposition.As seen in the proof of Proposition 5.1.4, for any run of the Algorithm 5.1, events inits extending sequen
e e1, e2, . . . are pairwise di�erent. In other words, the
orre
tnessof Extend, and more pre
isely, the property C3 stated in De�nition 5.1.3 ensures thatno event is extended twi
e. Moreover, one
an see that some implementation of theunfolding algorithm is exhaustive. The operations on variable PE may be implementedso that every inserted element is eventually out, for example using a queue. In su
h a
ase, events are taken (line 4) in a same order as they are inserted, and every event willbe eventually extended.It follows from the third property in Proposition 5.1.4 that an event f ∈ E is addedto the pre�x Ê when extending some of its dire
t prede
essor ek. If f has many dire
tprede
essors, then ek should be the prede
essor whi
h is extended last. Earlier on, Extend
ould not
reate f when extending another dire
t prede
essor of f than ek. Hen
e, the
orre
tness of Extend, more pre
isely, the unfolding invariant I3 in De�nition 5.1.1,prohibits the unfolding algorithm to
reate a repli
ation of some event.Remark: If an event f has no su

essors in E, i.e. ⋖(f) = ∅, then
alling Extend(Ê,PE, f)intuitively does nothing but removing f from PE. In this
ase, the input pre�x and theoutput pre�x of Extend is the same, i.e. Ê′ = Ê and Ê′ = Ê. Assume that f is addedwhen extending some of its dire
t prede
essor e, i.e. e ∈ ⋗(f). One
an write a fun
tion

Extend so that it does not insert f into PE when extending e. The unfolding invariant
I3 is still preserved, and in the algorithmi
 view, one takes advantage of not extending
f later. However, the
ondition C3 does not hold and should be
hanged a little bit.91

Chapter 5. Compositional unfolding te
hniquesWe prefer to keep the stri
t
ondition C3 as stated in De�nition 5.1.3 be
ause it is moregeneral and the output PE′ as well as Ê′ is pre
isely determined.5.2 Causality pro
esses' unfoldingAs shown in the previous se
tion, while
onstru
ting pre�xes of a labeled event stru
ture,the unfolding algorithm is
orre
t as stated in Proposition 5.1.4 if the fun
tion Extendis (De�nition 5.1.3). For example, algorithms for rea
hability trees and their
orre
tnessproofs are not far from the ones for k-
ausality pro
esses sin
e, in both
ases, eventshave only one dire
t prede
essor ex
epts those whi
h are minimal w.r.t.
ausality.In this se
tion, we present fun
tion Extend for k-
ausality pro
esses (Se
tion 3.3.2)and M -
ausality pro
esses (Se
tion 3.3.3). In a sense, the fun
tion Extend is nothing butan algorithmi

omputation of event's su

essor set in a given labeled event stru
ture
E. Ea
h event and its dire
t su

essors in E form a motif that may be derived from thede�nition of E (see Se
tion 3.3). In other words, if an labeled event stru
ture is obtainedby repeating a
ertain motif, one
an follow the s
hema des
ribed below and develop analgorithm for
onstru
ting the labeled event stru
ture.Remark:

• Re
all that the
ausality ≤ is the re�exive and transitive
losure of the prede
essorrelation ⋖. The
ausality relation
an be
omputed from the prede
essor one andvi
e versa. This is true also for their
orresponding restri
tions onto a given subset
Ê of E, i.e. ≤̂ = ≤| bE and ⋖̂ = ⋖| bE. Hen
e, our algorithms do not dire
tly workwith ≤̂ but
omputes only ⋖̂.

• In any
ausality pro
ess, the marking fun
tionM
ould be de�ned based on events'label, i.e. the labeling fun
tion L, and the marking of empty
on�guration M(∅)(see Se
tion 3.3 for details). Therefore, in our algorithms, we do not show expli
itinstru
tions for the marking fun
tionM.In order to shorten the presentation of the algorithms, we use a fun
tion Create(Ê,PE, P, l)(
f. in Algorithm 5.2). Fun
tion Create takes four arguments that are: the
onstru
tedpre�x Ê, the a
tual possible extension PE, an event set P ⊆ Ê, and a label l ∈ Codom(L).It intuitively
reates a new event e of whi
h label is l and the set of dire
t prede
essorsis P , i.e. ⋗(e) = P . We require that the events in P are pairwise
on
urrent. As shownin Algorithm 5.2, the fun
tion adds new event e not only to Ê (line 4) but also to thepossible extension PE (line 5). The modi�
ation of the labeling fun
tion L is done inline 6. Then it updates the prede
essor relation ⋖̂ so that e is a dire
t su

essor of allevents in P .The loop at lines 8-10 is responsible for updating the
on�i
t relation #̂. In fa
t,due to the
on�i
t-inheritan
e in (prime) event stru
tures by De�nition 3.1.1, for everyprede
essor p ∈ P = ⋗(e), e is
on�i
t with every event f whi
h is
on�i
t with p, i.e.
f ∈ #(p). This is done in line 9.The following whi
h is similar to the third
ondition of Extend's
orre
tness (De�ni-tion 5.1.3 on page 90) is straightforward.Lemma 5.2.1. Let (Ê′,PE′) denote the return value of some
alling
Create(Ê,PE, P, l). Then, we have PE′ = PE ∪ (Ê′ \ Ê).92

5.2. Causality pro
esses' unfoldingAlgorithm 5.2: Fun
tion Create1 fun
tion Create(Ê,PE, P, l)2 begin3
reate an event e4 Ê := Ê ∪ {e}5 PE := PE ∪ {e}6 L̂ := L̂ ∪ 〈e, l〉7 ⋖̂ := ⋖̂ ∪ (P × {e})8 for ea
h p ∈ P do9 #̂ := #̂ ∪ (#̂(p)× {e}) ∪ ({e} × #̂(p))10 end11 return (Ê,PE, e)12 end fun
tionIt is worth noti
ing that the value of stru
ture variable Ê returned by the fun
tion
Create (line 11) may not be a label event stru
ture. It may la
k some
on�i
ts
on
erning
e that do not
ome from
on�i
t-inheritan
e. They will be added in the fun
tion Extend(see Se
tion 5.2.2). However, the fun
tion Create is fully in
harge of the
ausality ≤̂ aswell as the labeling fun
tion L̂. The new event e and updated possible extension PE arereturned, together with Ê, by the fun
tion Create .5.2.1 k-
ausality pro
essesAlgorithm 5.3 represents our implementation of fun
tion Initk for the k-
ausality pro
ess
k-CP (see De�nition 3.3.9 on page 35). Re
all brie�y that, in k-CP, there are only twotype of events: de
rement events, labeled by '−', that have no su

essors; in
rementevents, labeled by '+', so ea
h of them has exa
tly one de
rement dire
t su

essor and kin
rement ones. There are k minimal events, w.r.t. the
ausality, that are all in
rementevents. Algorithm 5.3: Fun
tion Initk for the k-
ausality pro
ess k-CP1 fun
tion Initk()2 begin3 Ê := ∅; ⋖̂ := ∅; #̂ := ∅; L̂ := ∅4 PE := ∅5 for i := 1 to k do6 (Ê,PE, e+) := Create(Ê,PE, ∅,+)7 end for8 return (Ê,PE)9 end fun
tionOne �rst initializes the pre�x Ê being
onstru
ted to the one
ontaining no event, i.e.
Ê, ≤̂, #̂ and L̂ are all the empty set (line 3). The possible extension PE is empty too.Then, the loop at lines 5-7 su

essively
reates k in
rement events. The third argument's93

Chapter 5. Compositional unfolding te
hniquesvalue when
alling Create(Ê,PE, ∅,+) (line 6) is the empty set, i.e. P = ∅. So, returnevent e+ is minimal w.r.t. the
ausality Ê in Ê. Moreover, there is no modi�
ation
on
erning the
on�i
t relation #̂ ex
ept the assignment in line 3. Be
ause the loop atlines 8-10 of fun
tion Create in Algorithm 5.2 is not taken into a

ount when P is empty.Therefore, these k new events are pairwise
on
urrent.Noti
e that the fun
tion Initk uses the variable e+ as well as the variable PE just forgetting return value of
alling Create in line 6. The fun
tion Create inserts new eventsin both Ê and PE. Hen
e, it follows from the loop's invariant Ê = PE in fun
tion Initkthat the returned event set Ê is equal to the returned possible extension PE. In line 8,returning (Ê,PE) is the same as returning (Ê, Ê). The following is straightforward byDe�nitionDe�nition 3.3.9 on page 35 of k-
ausality pro
esses.Lemma 5.2.2. The output (Ê,PE) = Initk() of Algorithm 5.3 is
orre
t w.r.t. k-CP =

(E,≤,#,L,M), moreover Ê = k-CP|Min≤(E).Algorithm 5.4 illustrates the fun
tion Extendk for the k-
ausality pro
ess k-CP (seeDe�nition 3.3.9). It only expands the pre�x Ê from in
rement events, that means from
e where L(e) = + (line 4). In a same way as the fun
tion Initk, k in
rement events are
reated due to the loop at lines 5-7. In addition, a de
rement event is also
reated (line8). By
alling Create(Ê,PE, {e},+), these k + 1 new events are all su

essors of e, andmoreover, they have only e as a dire
t prede
essor.Algorithm 5.4: Fun
tion Extendk for the k-
ausality pro
ess k-CP1 fun
tion Extendk(Ê,PE, e)2 begin3 PE := PE \ {e}4 i f L(e) = + then5 for i := 1 to k do6 (Ê,PE, e+) := Create(Ê,PE, {e},+)7 end for8 (Ê,PE, e−) := Create(Ê,PE, {e},−)9 end if10 return (Ê,PE)11 end fun
tionNoti
e that in k-
ausality pro
ess, de
rement events have no su

essor. Therefore,when e is a de
rement event, i.e. L̂(e) = −, the test in line 4 fails and the fun
tion
Extendk only removes e from the possible extension PE (line 3). The updated pre�x Êand possible extension PE are �nally returned by the fun
tion Extendk (line 10).Lemma 5.2.3. For every k ∈ N and k > 0, the fun
tion Extendk in Algorithm 5.4 is
orre
t w.r.t. to the k-
ausality pro
ess k-CP.Proof. We will prove that Extendk satis�es all
orre
tness properties C1, C2 and C3stated in De�nition 5.1.3. Let (Ê′,PE′) = Extendk(Ê,PE, e) denote the return value forsome input (Ê,PE, e). We assume that (Ê,PE) is
orre
t w.r.t. k-CP and e ∈ PE. Thereare two
ases depending on the label of e.94

5.2. Causality pro
esses' unfolding
• e is a de
rement event: Only the instru
tions in line 3 and 10 in Algorithm 5.4are brought into e�e
t be
ause the test in line 4 fails. Hen
e, we have thus

PE′ = PE \ {e} while the pre�x Ê is un
hanged, i.e. Ê′ = Ê. Conditions C2and C3 are satis�ed. Consider now the
ondition C1 that
onsists of I1, I2, I3 inDe�nition 5.1.1. Be
ause Ê′ = Ê, Ê′ remains a pre�x of k-CP (I1). By removing
e from PE, PE′ is a subset of PE and is thus a subset of Ê′ = Ê (I2). Let S (S′)denote the set of events in k-CP whose dire
t prede
essors are all in (Ê \PE) (and
(Ê′ \ PE′) respe
tively). It is su�
ient to prove the invariant I3 that S′ = Ê′. Itfollows from Ê′ = Ê and PE′ = PE \ {e} that S′ di�ers from S only on events
e′ whose set of dire
t prede
essors
ontains e. However, by De�nition 3.3.7 andDe�nition 3.3.9 for k-CP, as e is labeled '−', it has no su

essor in k-CP. Hen
e,su
h an event e′ does not exist, and
onsequently, S′ = S. Sin
e (Ê,PE) is
orre
tw.r.t. k-CP as assumed, we have S = Ê and thus S′ = S = Ê = Ê′. The
ondition
I3 is satis�ed and one
an
on
lude that Extendk is
orre
t w.r.t. k-CP when e islabeled by '−'.

• otherwise, i.e. e is an in
rement event: the
ondition in line 4 in Algorithm 5.4is satis�ed. Let X+ denote the set of events that are
reated by
ount-
ontrolledloops of size k (lines 5-7) and e− the event
reated in line 8. We have thus Ê′ =
Ê ∪X+ ∪ {e−}. Lemma 5.1.2 gives us that PE ⊆ Max≤(Ê), hen
e, e ∈ PE impliesthat e has no su

essor in Ê. Therefore, k + 1 new events in (X+ ∪ {e−}) exa
tly
orrespond to k+1 su

essors of e in k-CP by De�nition 3.3.7 and De�nition 3.3.9.As a
onsequen
e, Ê′ is the pre�x of k-CP where the event set is Ê′ = Ê∪X∪{e−},i.e. Ê′ = k-CP| bE′ (invariant I1 in De�nition 5.1.1). Moreover, it follows from theinstru
tion in line 3 and Lemma 5.2.1 that PE′ = (PE \ {e}) ∪ X+ ∪ {e−}, and
onsequently, PE is the union of subsets of Ê′ so that PE′ ⊆ Ê′ (invariant I2).By the same manner as in the �rst
ase, let S and S′ denote respe
tively the sets
{e′ ∈ E / ⋗(e′) ⊆ (Ê \ PE)} and {e′ ∈ E / ⋗(e′) ⊆ (Ê′ \ PE′)}. We have S = Êbe
ause (Ê,PE) is
orre
t w.r.t. k-CP by De�nition 5.1.1. We will prove that
S′ = Ê′, and as a
onsequen
e, (Ê′,PE′) also satis�es the invariant I3. Noti
e thatevery event in k-CP has at most one dire
t prede
essor, and X ∪ {e−}
ontains alldire
t su

essors of e in k-CP. Therefore,

S′ =
{

e′ ∈ E / ⋗(e′) ⊆ (Ê′ \ PE′)
}

=
{

e′ ∈ E / ⋗(e′) ⊆
(
(Ê ∪X ∪ {e−}) \ (PE \ {e} ∪X ∪ {e−})

)}

=
{

e′ ∈ E / ⋗(e′) ⊆
(
(Ê \ PE) ∪ {e}

)}

=
{

e′ ∈ E / ⋗(e′) ⊆ (Ê \ PE)
}
∪

{
e′ ∈ E / ⋗(e′) = {e}

}

= Ê ∪ (X ∪ {e−})

= Ê′

(Ê′,PE′) satis�es all I1, I2, I3 and is thus
orre
t w.r.t. k-CP. The
ondition C1 ofDe�nition 5.1.3 is thus guaranteed. Moreover, both the
onditions C2 and C3 arepreviously obtained. One
an then
on
lude that Extendk is
orre
t w.r.t. k-CP.As we have said above, for
larity, marking fun
tions are not taken into a

ount in thisargument. Let us just say that both M̂ and M̂′
an be de�ned asM in De�nition 3.3.9,i.e. for all
on�gurations C, M̂(C) = M̂′(C) = |{e ∈ C /L(e) = +}| − |{e ∈ C /L(e) =
+}|. 95

Chapter 5. Compositional unfolding te
hniquesLemma 5.2.4. For every k ∈ N, the fun
tion Extendk in Algorithm 5.4 terminates andhas a time
omplexity of O(k).Proof. Sin
e Algorithm 5.4
ontains only a
ount-
ontrolled loop of size k (lines 5-7)and the
reating pro
ess in Algorithm 5.2 for ea
h event (line 6 or line 8) has a time
omplexity of O(1), the fun
tion Extendk in Algorithm 5.4 has a time
omplexity of O(k).Be
ause k is �nite, this fun
tion terminates.5.2.2 M-
ausality pro
essesFirst, re
all that, for a non-empty alphabet M , the M -
ausality pro
ess M -CP (
f.De�nition 3.3.27 on page 46) has only two type of events: sending events with labelsin !M and re
eiving events with labels in ?M . Ea
h sending event has one re
eivingdire
t su

essor and |M | sending ones that have pairwise di�erent labels. There are |M |minimal events, w.r.t. the
ausality, in M -CP and they also
orrespond one-to-one tomessages in M . All sending events (re
eiving events) are pairwise either in
ausal or in
on�i
t. Algorithm 5.5: Fun
tion InitM for the M -
ausality pro
ess M -CP1 fun
tion InitM()2 begin3 Ê := ∅; ⋖̂ := ∅; #̂ := ∅; L̂ := ∅4 PE := ∅5 for ea
h m ∈M do6 (Ê,PE, e!m) := Create(Ê,PE, ∅, !m)7 end for8 # := (Ê × Ê) \ I bE9 return (Ê, Ê)10 end fun
tionLet us explain how Algorithm 5.5 initializes the
onstru
tion of M -
ausality pro
ess'spre�xes. By the same manner as in Algorithm 5.3, it starts with a labeled event stru
turewithout events (line 3), then su

essively inserts |M | new events in the loop at lines 5-7. These events are all sending ones (line 6) and
orrespond to di�erent messages in
M . Moreover, sin
e the argument
orresponding to the prede
essor set, when
alling
Create in line 6, is empty, added events are all minimal w.r.t. the
ausality ≤̂. The
on�i
t relation #̂ is assigned in line 8 so that events in Ê are pairwise in
on�i
t.These |M | sending events
orrespond to minimal events w.r.t.
ausality in M -CP byDe�nition 3.3.27 on page 46. Therefore, we have that Ê = M -CP|Min≤(E) and its eventset Ê = Min≤(E) are �nally returned by the fun
tion InitM (lines 9). Lemma 5.2.5 isthus obvious by de�nition.Lemma 5.2.5. The output (Ê, Ê) = InitM of Algorithm 5.5 is
orre
t w.r.t. M -CP =

(E,≤,#,L,M), moreover Ê = k-CP|Min≤(E).Consider now Algorithm 5.6 of our fun
tion ExtendM for the M -
ausality pro
ess
M -CP = (E,≤,#,L,M). This fun
tion is divided into two parts depending on whetherthe input event e is a sending event or a re
eiving one. In both
ases, however, one always96

5.2. Causality pro
esses' unfoldingremoves e from the possible extension PE (line 4) in order to satisfy the
orre
tness
ondition C3 in De�nition 5.1.3 on page 90.The �rst
ase is when e is a sending event (lines 5-20). The algorithm gets themessage m ∈ M whi
h
orresponds to the label of e, i.e. L̂(e) = !m (line 6). Noti
ethat su

essors of e do not exist in the a
tual pre�x yet be
ause e is a maximal eventw.r.t. the
ausality ≤̂ when
alling ExtendM(Ê,PE, e). The loop at lines 8-11
reatesthen new sending events
orresponding to dire
t su

essors of e by
alling Create in line9. There are exa
tly |M | events
reated, one for ea
h message in M due to the "for ea
h"
riterion (line 8). The variable X de
lared in line 2 is initialized (line 7) and updatedinside the loop (line 10) so that X is the set of new sending su

essors of e. There aretwo kinds of
on�i
t
on
erning these sending su

essors: the �rst one
omes from edue to inheritan
e and is done in side the fun
tion Create (line 9) and the se
ond one isthe
on�i
t between these su

essors themselves. The set X is used just for modifying
on�i
t in order to respe
t to the se
ond kind (line 12).Algorithm 5.6: Fun
tion ExtendM for the M -
ausality pro
ess M -CP1 fun
tion ExtendM(Ê,PE, e)2 var X3 begin4 PE := PE \ {e}5 i f L̂(e) ∈ !M then6 let m ∈M s . t . L̂(e) = !m7 X := ∅8 for ea
h m′ ∈M do9 (Ê,PE, e!m′) := Create(Ê,PE, {e}, !m′)10 X := X ∪ {e!m′}11 end for12 #̂ := #̂ ∪ ((X ×X) \ IX)13 i f ⋗̂(e) = ∅ then14 (Ê,PE, e?m) := Create(Ê,PE, {e}, ?m)15 else16 take an event e!m′ ∈ ⋗̂(e)17 i f exists e?m′ ∈ (⋖̂(e!m′) \ PE) s . t . L̂(e?m′) ∈ ?M then18 (Ê,PE, e?m) := Create(Ê,PE, {e, e?m′}, ?m)19 end if20 end if21 else22 let e!m ∈ ⋗̂(e) s . t . L(e!m) ∈ !M23 for ea
h e!m′ ∈ (⋖̂(e!m) \ PE) s . t . L̂(e!m′) ∈ !M do24 let m′ ∈M s . t . L̂(e!m′) = !m′25 (Ê,PE, e?m′) := Create(Ê,PE, {e, e!m′}, ?m′)26 end for27 end if28 return (Ê,PE)29 end fun
tion 97

Chapter 5. Compositional unfolding te
hniquesNow, let us look how to determine whether the unique re
eiving su

essor of e denotedby e?m must be added to the pre�x. If e is a minimal event w.r.t. the
ausality, formally
⋗̂(e) = ∅, (lines 13-14) e?m is simply
reated and inserted into the a
tual pre�x be
auseit has only one prede
essor whi
h is e. Otherwise, i.e. when e is not minimal, (lines15-20) e must be a su

essor of some sending event e!m′ . The event e!m′ obtained at line16 is unique, and moreover it has a unique re
eiving su

essor denoted by e?m′ in M -CP,i.e. {e?m′} = {e′ ∈ ⋖(e!m′) /L(e′) ∈ ?M}. However, e?m′ may not be in the event set
Ê of the a
tual pre�x Ê. Therefore, e?m needs to be
reated if and only if Ê
ontainssu
h e?m and moreover e?m′ is already extended (not in PE). It follows from ⋖̂ = ⋖| bEthat one
an simply write ⋖̂(e) in the pla
e of ⋖(e) ∩ Ê. The test at line 17 formallyrepresents this
ondition. If it is true, then e?m is
reated by
alling Create (line 18) sothat e and e?m′ are its only two dire
t prede
essors. Noti
e that
on�i
t
on
erning e?m
omes only from e, and it is done in side the fun
tion Create.The se
ond
ase is when e is a re
eiving event (lines 21-27). We know that e exa
tlyone dire
t prede
essor whi
h is a sending event. The event e!m obtained at line 22 is thusunique. Moreover, e!m
orresponds to the send of the message that e is a re
eive, i.e.
L(e) = ?m and L(e!m) = !m. By de�nition of M -CP, the event e!m has |M | dire
t sendingsu

essors represented by the set {e!m′ ∈ ⋖(e!m) /L(e!m′) ∈ !M}. These su

essors arepairwise in
on�i
t. Moreover, they are already added to the a
tual pre�x Ê be
ause
e!m has been expanded before e. We formally write {e!m′ ∈ ⋖(e!m) /L(e!m′) ∈ !M} =
{e!m′ ∈ ⋖̂(e!m) /L(e!m′) ∈ !M} and denote it by S!.The event e on its turn has exa
tly M dire
t su

essors whi
h are all re
eiving onesand are represented by the set ⋖(e). For a given message m′ ∈ M (whi
h may be m),the
orresponding re
eiving event e?m′ ∈ ⋖(e) has two dire
t prede
essors whi
h are eand e!m′ ∈ S!. Therefore, e?m′
ould be added in the a
tual pre�x by ExtendM i� e!m′has been extended, i.e. e!m′ 6∈ PE. This
ondition is represented in the loop
ondition inline 23. Ea
h re
eiving su

essor e?m′
reated by the loop at lines 23-26, is at the sametime is a dire
t su

essor of e and a dire
t su

essor of the
orresponding e!m′ (line 25).On
e again, the
on�i
t relation
on
erning e?m, is inherited from either e or e!m. Andthis is done inside the fun
tion Create.As usual, in both
ases, the new pre�x Ê and the possible extension PE are returnedin the end of the fun
tion ExtendM (line 28).Lemma 5.2.6. For every given alphabet M whi
h is not empty, the fun
tion ExtendMin Algorithm 5.6 is
orre
t w.r.t. to the M -
ausality pro
ess M -CP = (E,≤,#,L,M).Proof. Let (Ê′,PE′) = Extendk(Ê,PE, e) denote the return value for some given input
(Ê,PE, e) whi
h satis�es that (Ê,PE) is
orre
t w.r.t. k-CP and e ∈ PE. Let us de�ne
E! = {e′ ∈ E /L(e′) ∈ !M} and E? = {e′ ∈ E /L(e′) ∈ ?M}. It follows from theproperties of the M -
ausality pro
ess (De�nition 3.3.25 on page 44 and De�nition 3.3.27on page 46) that(1) let ⋖k = (⋖ \ (E? × E?)), then ⋖k, E! and E? respe
tively
orrespond to theprede
essor relation, the set of in
rement events, and the set of de
rement eventsin |M |-
ausality pro
ess (see De�nition 3.3.7 on page 34 and De�nition 3.3.9 onpage 35), and Min≤(E) ⊂ E!;(2) let B? = ⋗ ∩ (E? × E!), then for all e?, f? ∈ E?, e? ⋖ f? i� B?(e?) ⋖ B?(f?);(3) let us denote by #m = {〈f, g〉 ∈ # />(f) #̂s >(g)} (and #m! = {〈f!, g!〉 ∈ (E! ×

E!) / f! 6= g! and >(f!) = >(g!)}) the relation of
on�i
t between events in E (and98

5.2. Causality pro
esses' unfoldingbetween sending events in E! respe
tively) whi
h does not
omes from inheritan
e,then #m = #m!;(4) for all e? ∈ E?, Π?M (L(e?)) = Π!M (L(B?(e?))); and(5) for all e! ∈ E!, L|S!
is a bije
tion between S! and !M where S! = ⋖(e!) ∩ E!.Sin
e Ê is a pre�x of M -CP, by de�nition, we have Ê is a subset of E and moreover,

⋖̂, #̂, L̂ are respe
tively the restri
tion of ⋖,#,L onto Ê. We are going to show that Ê′is also a pre�x of M -CP. There are two
ases depending on whether the argument event
e of
alling ExtendM is a sending event or is a re
eiving one.

• When e is a sending event, i.e. L̂(e) = !m for some message m ∈M , let us denote
e = e!m. Noti
e that e!m is maximal in Ê w.r.t. ≤̂ be
ause (Ê,PE) is
orre
t w.r.t.
M -CP (Lemma 5.1.2). Event e!m has |M | sending su

essors in Ê′

! due to the loopat lines 8-11. Let us denote the set of these sending su

essors by X!. Moreover,
e!m has at most one re
eiving su

essor in Ê′

? depending on whether the
onditionsat line 13 and line 17 are satis�ed or not. This re
eiving su

essor, if exists in Ê′, isthe event e?m obtained either in line 14 or in line 18. Moreover, it follows from (1)that, in E, we have |⋖(e!m) ∩ E!| = |M | and |⋖e!m ∩ E?| = 1. Hen
e, without lostof generality, we suppose that X! = ⋖(e!m) ∩ E! and {e?m} = ⋖(e!m) ∩ E?. Then,we will prove that ⋖̂
′
, #̂′, L̂′ are respe
tively the restri
tions of ⋖,#,L onto Ê′.If e!m is minimal w.r.t. (Ê, ≤̂), then a re
eiving su

essor e?m of e is
reated in line14. One skips all the rest of the algorithm and dire
tly returns �nal stru
ture Ê′and PE′ (line 28). Brie�y, due to the fun
tion Create in Algorithm 5.2, we obtainthat:� Ê′ = Ê ∪X! ∪ {e?m},� ⋖̂

′
= ⋖̂ ∪ ({e!m} × (X! ∪ {e?m}),Let X shortly denote the set of dire
t su

essors of e!m in E, i.e. X = ⋖(e!m) =

X! ∪ {e?m} = Ê′ \ Ê. We have,
⋖| bE′ = ⋖| bE ∪

(
⋖ ∩ (Ê ×X)

)
∪

(
⋖ ∩ (X × Ê′)

)

= ⋖̂ ∪
(
⋖ ∩ (Ê ×X)

)
∪

(
(⋖ ∩ (X × Ê)) ∪ (⋖ ∩ (X ×X))

)It follows from (1) that su

essors of sending event e!m are pairwise not in
ausal.Hen
e ⋖ ∩ (X × X) = ∅. Thanks to Lemma 5.1.2, e!m = e is maximal event in
Ê w.r.t. ≤̂ = ≤| bE . Su

essors of e!m may not have prede
essors in Ê, and as a
onsequen
e, ⋖ ∩ (X × Ê) = ∅. Therefore,

⋖| bE′ = ⋖̂ ∪
(
⋖ ∩ (Ê ×X)

)On
e again, due to (1), every sending event in X! ⊂ X has one dire
t prede
essorwhi
h is e!m. And sin
e e!m is minimal event w.r.t. ≤, it has no dire
t prede
essor.It follows from (2) that e?m has no re
eiving prede
essor in E?. In addition to (1),
e?m also has only one dire
t prede
essor in E! whi
h is e!m. Hen
e, for all e′ ∈ X,
⋗(e′) = {e!m}. Therefore, ⋖∩ (Ê×X) = {e!m}×X, and
onsequently, ⋖| bE′ = ⋖̂

′.In words, ⋖̂
′ is the restri
tion of ⋖ onto Ê′. 99

Chapter 5. Compositional unfolding te
hniquesNoti
e that when
alling Create at lines 9 and 14, instru
tions for
on�i
t relationinside the fun
tion Create
on
ern only
on�i
t that
omes from inheritan
e. Wehave then #̂′
m (de�ned by a same manner as #m in (3)) is the set #̂m∪ (X!×X!)\

IX!
. When proving #̂′ = #| bE′ , it is su�
ient to show that #̂′

m = #m| bE′ . Thanksto (3), we have #m = #m! and as a
onsequen
e #̂m = #m| bE = #m!| bE = #̂m!.We have:
#m| bE′ = #m!| bE′

= #m!| bE ∪
(
#m! ∩ (Ê′ ×X)

)
∪

(
#m! ∩ (X × Ê′)

)

= #̂m ∪
(
#m! ∩ (Ê′

! ×X!)
)
∪

(
#m! ∩ (X! × Ê′

!)
)

= #̂m ∪
(
#m! ∩ (Ê! ×X!)

)
∪

(
#m! ∩ (X! × Ê!)

)

∪ (#m! ∩ (X! ×X!))By de�nition, for all events f, g ∈ E!, f #m! g i� >(f) = >(g) and f 6= g.Moreover, sin
e e!m = e is maximal in Ê w.r.t. ≤, hen
e for all f ∈ Ê′
! , e!m ∈ >(f) if

f ∈ X! and e!m 6∈ >(f) if x ∈ Ê!. We obtain that #m!∩(E′×X!) = (E′×X!)∩#m! =
∅. Therefore,

#m| bE′ = #̂m ∪ (#m! ∩ (X! ×X!))

= #̂m ∪ ((X! ×X!) \ IX!
)

= #̂′
mThe
on�i
t relation #̂′ is thus the restri
tion of # onto Ê′.The event e!m and its dire
t re
eiving su

essor e?m are related to a same message

m obtained in line 6. It respe
ts to (4). Due to the "for ea
h"
riterion of the loopat lines 8-11, property (5) is guaranteed for sending event e!m. One
an verify that
L̂′ \ L̂ = L|(X!∪{e?m}), and as a
onsequen
e, the labeling fun
tion L̂′ is also therestri
tion of L onto Ê′. Therefore, Ê is a pre�x of M -CP.Now, if e = e!m is not minimal in Ê w.r.t. ≤̂. It follows from (1) that event e!m′(line 16) exists and is the unique event in ⋗(e!m). First, if the
ondition in line 17is true, one
reates event e?m due to line 18. Like previous
ase, we have� Ê′ = Ê ∪X! ∪ {e?m}, but� ⋖̂

′
= ⋖̂ ∪ ({e!m} × (X! ∪ {e?m}) ∪ {〈e?m′ , e?m〉},where e?m′ is the re
eiving su

essors of e!m′ . And the restri
tion of ⋖ onto Ê′ isstill equal to ⋖| bE ∪ (⋖ ∩ (Ê ×X)). It follows from (2) that e?m′ ⋖ e?m. Be
ause

B?(e!m′) = e!m′ , B?(e!m) = e!m, and e!m′ is the dire
t prede
essor of e!m, i.e.
e!m′ ⋖ e!m. By the same reasoning as above, one obtain that ⋖̂

′
= ⋖| bE′ . The proofwhi
h show that #̂′ = #| bE′ as well as L̂′ = L̂| bE′ is also the same. Therefore, Ê′ isthus a pre�x of M -CP. Se
ond, if the test in line 17 fails, no re
eiving su

essorof e!m is
reated. The �nal Ê′ is intuitively the pre�x of the one in previous
ase(where
ondition in line 17 is true). Hen
e, Ê′ is also a pre�x of M -CP.

• When e is a re
eiving event, i.e. L̂(e) = ?m for some message m ∈ M , let usdenote e = e?m. It follows from (1) that e?m 6∈ E! is not minimal in E. Moreover,it has one and only one sending prede
essor. The event e!m obtained in line 22 is100

5.2. Causality pro
esses' unfoldingunique and
orresponds to the same message m as its subs
ript means. On
e again,due to (1), beside e?m, e!m has |M | dire
t su

essors whi
h are sending events. Letus denote X! = ⋖(e!m). By the invariant I3 in De�nition 5.1.1 on page 89, e?m ∈ Êimplies that its prede
essor e!m may not be in PE. And every event e! ∈ X!, on itsturn, we have e! ∈ Ê be
ause ⋗(e!) = {e!m} ⊆ PE. Therefore, X! ⊆ Ê.We �rst suppose that X!∩PE = ∅. The loop at lines 23-26 then
reates a re
eivingevent e?m′ a

ording to ea
h event e!m′ ∈ X!. Ea
h pair e?m′ and e!m′ are relatedby its
ommon message m′ ∈M (line 24). Thanks to Lemma 5.1.2, e?m is maximalin Ê w.r.t. ≤. So that su
h a re
eiving event e?m′ may not be in Ê. It follows fromthe
all Create in line 25 that e?m′ has two dire
t prede
essors that are e!m′ ∈ E!and e?m ∈ E?. As a
onsequen
e, e?m′ is the unique sending dire
t su

essor of e!m′ .By de�nition of M -
ausality pro
ess, we have B?(e?m′) = e!m′ and B!(e!m′) = e?m′ .We will prove that ⋖̂
′
, #̂′, L̂′ are then restri
tions of ⋖,≤,L onto Ê′ respe
tively.Let X? = B?(X!) denote the set of new re
eiving events. It obviously follows fromthe loop at lines 23-26 that:� Ê′ = Ê ∪X?,� ⋖̂

′
= ⋖̂ ∪ ({e?m} ×X?) ∪ {〈B?(e?), e?〉 / e? ∈ X?}.By the same reasoning as in previous
ase, we obtain:

⋖| bE′ = ⋖̂ ∪ (⋖ ∩ (Ê ×X?))Let e? be any event in X?. Due to (1), e? has a dire
t prede
essor whi
h is asending event. By de�nition of B?, this prede
essor is e! = B?(e?) ∈ X!. Moreover,
e! has only one prede
essor whi
h is the sending event e!m be
ause e! ∈ X!. Hen
e,
⋗(e!) = {e!m}, and as a
onsequen
e of (2), we have ⋗(e?) ∩ E? = B?(⋗(e!)) =
B?(e!m) = {e?m}. Therefore, for all e? ∈ X?, ⋗(e?) = (⋗(e?)∩E!)∪ (⋗(e?)∩E?) =
{B?(e?)}∪{e?m}. We thus
on
lude that ⋖| bE′ = ⋖̂

′. Sin
e #̂′
m is the same as #̂m,it is also the restri
tion of # onto Ê′. As a
onsequen
e, #̂′ = #| bE′ . The labelingfun
tion L̂′, on its turns, is L| bE′ by simply
omparing L̂′ \ L̂ = L̂′|X?

with L|X?
.Therefore, Ê′ is a pre�x of M -CP.Now, if X! ∩ PE 6= ∅, denote then X ′

! = X! \ PE. Events in X ′
! satisfy the loop
ondition in line 23 while events in (X! \ X ′

!) do not. The �nal Ê′ is intuitivelya pre�x of the one previously obtained where X ′
! = X! (i.e. X! ∩ PE = ∅). Morepre
isely, these two pre�xes di�er, the one from the other, only on events in B?(X!\

X ′
!). Therefore, Ê′ is also a pre�x of M -CP in this
ase.

(Ê′,PE′) satis�es the
onditions C2 in De�nition 5.1.3 as well as the invariants I1, I2in De�nition 5.1.1 on page 89 be
ause Ê′ is always a pre�x of M -CP as previously proved.The
ondition C3 that says PE′ = (PE \ {e})∪ (Ê′ \ Ê), is thus dire
t from Lemma 5.2.1and the assignment in line 4. For proving the
orre
tness of the fun
tion ExtendM, it is�nally su�
ient to show that the invariant I3 is preserved in (Ê′,PE′).Noti
e that only e is taken from PE (line 4), so Ê′ \ PE′ = (Ê \ PE) ∪ {e}. Weneed to reestablish the invariant I3 by adding some su

essors e′ of e that ⋗(e′) ⊆
(Ê \PE)∪{e} (*). We have two
ases depending on whether e is a sending or a re
eivingevent.

• If L(e) = !m for some message m ∈M (lines 5-20) then e has |M | sending and dire
tsu

essors whi
h are represented by the set X!, i.e. X! = ⋖(e) ∩ E! as previously101

Chapter 5. Compositional unfolding te
hniquesdis
ussed. Moreover, for all e′ ∈ X!, e′ has only one dire
t prede
essor whi
h is e,and as a
onsequen
e, e′ satis�es (*). Then we should add these su

essors to Êand PE in order to reestablish the invariant I3. This is done by the loop at lines8-11. Apart from these send events, e has a su

essor e?m that is a re
eive of amessage m, L(e?m) = ?m. And, more pre
isely e?m = ⋖(e) ∩E?. If e is a minimalevent in Ê and thus in M -CP, i.e. e ∈ Minb≤(Ê) ⊆ Min≤(E), then it follows from(1) and (2) that e is the only prede
essor of e?m. Hen
e e?m satis�es (*) and shouldbe added to Ê and PE in order to guarantee I3. This is done in lines 14. If e isnot a minimal event then it has a prede
essor e!m′ that is a sending event. Event
e!m′ has a su

essor e?m′ that is a re
eiving event. In M -CP, e?m′ is a prede
essorof e?m due to (2) be
ause B?(e?m′) = e!m′ ⋖e = B?(e?m). The invariant I3 requiresthat we add e?m to Ê and PE i� e?m′ is already in Ê \ PE. This is done in line18. In brief, the invariant I3 is preserved for all su

essors of e in
luding both in
⋖(e) ∩ E! and in ⋖(e) ∩ E?.

• If L(e) = ?m for some message m ∈ M , then e has a dire
t prede
essor e!m ∈ Êwhere L(e!m) =!m. Be
ause e!m is not maximal in Ê w.r.t. ≤̂, PE does not
ontains
e!m. Due to the invariant I3, every dire
t su

essor of e!m whi
h is a sending event,and
onsequently, has only e!m as dire
t prede
essor, must be already in Ê. Or one
an say X! = ⋖(e!m) ∩ E! is a subset of Ê. Therefore, in M -CP, dire
t su

essorsof e are all sending events and
orrespond one-to-one to X! w.r.t. the bije
tion B?.Formally, X? = ⋖(e) ⊂ E? and X? = B?(X!). Ea
h event e? in X? has two dire
tprede
essors whi
h are e and the
orresponding event e! in X!, i.e. B?(e!) = e?.So e? satis�es (*) if e! is not in PE. In su
h a
ase, the invariant I3 requires that
e? must be added to Ê. The loops at lines 23-26
reates and adds event e? in theset B?(X! \ PE). Therefore, the invariant I3 is preserved in (Ê′,PE′) for all dire
tsu

essors of e.We
an �nally
on
lude that the fun
tion ExtendM in Algorithm 5.6 is
orre
t w.r.t.

M -
ausality pro
ess M -CP.As seen in the proof of Lemma 5.2.6, a di�
ult point to show is the
orre
tness ofadding re
eiving events. In general, ea
h re
eiving event e?m has two prede
essors: the�rst one is its
orresponding event e!m and the se
ond one is another re
eiving event e?m′ .The prede
essor relation between e?m′ and e?m intuitively
omes from the FIFO orderingof messages. Here, e?m′ and e?m respe
tively
orrespond to some two messages m′ and
m. And the message m′ is inserted into the FIFO
hannel just before the message m.The event e?m is
reated when
alling fun
tion ExtendM for either e!m or e?m′ . However,sin
e e!m and e?m′ are
on
urrent, one does not know whi
h event is extended the �rst.Thanks to the test in line 17 and the loop
riterion in line 23 of Algorithm 5.6, thereis no double
opy of e?m in the pre�xes of M -CP generated by Algorithm 5.1. Thisno-redundan
y property is formally stated as the se
ond property of Proposition 5.1.4.One will see lately in Se
tion 5.3 that the order of expanding e!m and e?m′ is generallydetermined by the pro
ess of unfolding a whole syn
hronized produ
t of labeled eventstru
tures in whi
h M -CP is simply one of its
omponents.Noti
e that
on�i
t in M -CP
omes from sending events. And like the markingfun
tionM, the
on�i
t relation # in M -CP may be
omputed based on the
ausality ≤102

5.2. Causality pro
esses' unfoldingand the labeling fun
tion L. Formally, as a
onsequen
e of Proposition 3.3.26, we have:
= (E × E) \ (≤ ∪≥) \ ‖

= (E × E) \ (≤ ∪≥) \

{〈e?, f!〉, 〈f!, e?〉 /L(e?) ∈ ?M,L(f!) ∈ !M and B?(e?) < f!}The bije
tion B? is de�ned in De�nition 3.3.25 on page 44, and may be
al
ulated fromthe
ausality ≤ and the labeling fun
tion L. Therefore, in Algorithm 5.6, there is noneed to verify
on�i
t for adding new events, for labeling them as well as for updating
ausality. Instru
tions
on
erning the
on�i
t relation #̂, for instan
e in line 12, arejust for
omputing #̂ itself. Therefore, one
an write a fun
tion Extend for M -
ausalitypro
esses that
omputes only the
ausality and the labeling fun
tion in addition to
reating events. The
on�i
t relation may be
omputed at need.Lemma 5.2.7. If one removes the instru
tions
omputing the
on�i
t relation in Algo-rithm 5.2 (lines 8-10), then the algorithm of fun
tion ExtendM for M -CP in Algorithm 5.6terminates and has a time
omplexity of O(|M |).Proof. In Algorithm 5.6, there are only loops whose bound does not ex
eed the numberor messages in M . Moreover, when
reating a new event by
alling Create, one has onlyto label it and assign the prede
essor relation a

ording to at most two other events.Therefore, the time
omplexity of the algorithm is thus O(|M |). Sin
e the alphabet M
ontains �nite messages, that means |M | is �nite, Algorithm 5.6 terminates.5.2.3 GeneralizationRe
all that,
ausality pro
esses de�ned in Se
tion 3.3 are similar, the one to the other.In this se
tion, we only give intuitive ideas of how to modify previous algorithms offun
tions InitM and ExtendM in order to have algorithms that are suitable for any given
M -
ausality pro
ess
orresponding to a FIFO
hannel. In a sense, our modi�
ations arejust adaptations of InitM as well as of ExtendM to the fa
t whether the FIFO
hannelinitially has some messages, or whether it is bounded. Even though we explain algorithmsfor FIFO
hannels, modi�
ations
on
erning algorithms for
ounters are also mentionedat ne
essary points.
(M,v)-
ausality pro
essesBy De�nition 3.3.31 on page 49, for a given alphabet M and a word v ∈M , the (M,v)
ausality pro
ess, denoted by (M,v)-CP, intuitively
onsists of the (M,v)-�ushing pro-
ess (De�nition 3.3.30 on page 48) and the M -
ausality pro
ess. Therefore, this fa
t
ondu
ts to a fun
tion InitMv di�ers from the fun
tion InitM in Algorithm 5.5 on page 96,only on whether there exists a re
eiving e? whi
h is a minimal event in (M,v)-CP. Inother words, e? exists if the FIFO
hannel
ontains some messages at the beginning, i.e.
|v| > 0. In this
ase, e? should be labeled a

ording to the �rst message m in the word v,i.e. L(e?) = ?m. We
an simply modify Algorithm 5.5 by adding instru
tions
on
erning
e? just after line 8 as follows:For the fun
tion ExtendMv, we are in need of two additional fun
tions: Dep and
NotConflict. First, the fun
tion Dep(e) takes an event e as argument and is exa
tly thedepth fun
tion in De�nition 3.3.34 on page 52. As explained in Se
tion 3.3.3, (M,v)-CPrepresents behaviors of the FIFO
hannel initialized by the word v ∈ M∗. And for any
on�guration C of (M,v)-CP, the whole
ontent of the FIFO
hannel without removing103

Chapter 5. Compositional unfolding te
hniquesi f |v| > 0 thenlet m be the f i r s t message in v

(Ê,PE, e?) := Create(Ê,PE, ∅, ?m)end ifmessages is some word w = M(C) over M . Moreover, every event e in C
orrespondsto one message in w, and as a
onsequen
e,
orresponds to the index of this message in
w. Su
h an index is the return value of Dep(e).By De�nition 3.3.31 on page 49, (M,v)-CP
onsists of a (M,v)-�ushing pro
ess anda M -
ausality pro
ess. Let us denote by Ef the set of |v| events of (M,v)-CP whi
h
orrespond to the �ushing pro
ess. One
an see that Ef
ontains only re
eiving events,i.e. Ef ⊂ E?, and the depth values of these events are pairwise di�erent and are all inthe range of {1, 2, . . . , |v|}. Moreover, for all event e ∈ (E \Ef), we have Dep(e) > |v|.Se
ond, the fun
tion NotConflict(e, d) takes an event e and a depth d as input. Itintuitively returns the set of events e′ whose depth is d and e′ is not in
on�i
t with e.And there is a
onstraint that NotConflict(e, d) returns only re
eiving messages if e is asending one, and vi
e versa. Formally,

NotConflict(e, d) =

{
{e? ∈ E? /Dep(e?) = d and e? # e} if e ∈ E!

{e! ∈ E! /Dep(e!) = d and e! # e} otherwise.As stated in Lemma 3.3.35, the bije
tion B! ∈ (E! × (E? \ Ef)) as well as B? = B−1
!between sending and re
eiving events in (M,v)-CP
an be determined by fun
tion Dep,the labeling fun
tion L and the
on�i
t relation #. However, for a general use of fun
tion

NotConflict, NotConflict may not return a singleton due to the variation of argument d.Let us
onsider some examples of
alling NotConflict. One
an �nd two of these examplesin Algorithm 5.7.
• For all sending event e! ∈ E!, NotConflict(e!,Dep(e!)) returns {B!(e!)}.
• For all sending event e! ∈ E!, NotConflict(e!,Dep(e!)− 1) returns� ∅ if |v| = 0 and Dep(e) = 1, or otherwise� Max≤(Ef) if Dep(e) = |v|+ 1, and {B!(e!)} if Dep(e) > |v|+ 1.
• For all re
eiving event e? ∈ E?, NotConflict(e?,Dep(e?)) returns� ∅ if e? ∈ Ef , i.e. Dep(e?) ≤ |v|, and� {B?(e?)} otherwise.
• For all re
eiving event e? ∈ E? su
h that Dep(e?) ≥ |v|,

NotConflict(e?,Dep(e?) + 1) returns� Min≤(E!) if Dep(e?) = |v|, i.e. e? is the maximal event in Ef , and� ⋖(B?(e?)) ∩E!, i.e. the set of sending su

essors of B?(e?), otherwise.Noti
e that when
alling NotConflict on a pre�x Ê = (Ê, ≤̂, #̂, L̂,M̂) of (M,v)-CP =
(E,≤,#,L,M), the return set may be not
omplete and may even be the emptyset. Be
ause Ê is only a subset of E. For instan
e with some re
eiving event e? ∈
Ê, if B?(e?) is maximal in the poset (Ê, ≤̂) then ⋖̂(B?(e?)) = ∅ and
onsequently,
NotConflict(e?,Dep(e?) + 1) = ∅.Now, let us give some details of Algorithm 5.7 and show that it is not far fromAlgorithm 5.6 be
ause M -CP is just a parti
ular
ase of (M,v)-CP where v = ε. The104

5.2. Causality pro
esses' unfoldingalgorithm is split into two parts
orresponding to the type of its input event e. In both
ase, one start by removing e from the possible extension PE (line 4).Algorithm 5.7: Fun
tion ExtendMv for (M,v)-CP1 fun
tion ExtendMv(Ê,PE, e)2 var Y3 begin4 PE := PE \ {e}5 i f L(e) ∈ !M then6 let m ∈M s . t . L̂(e) = !m7 for ea
h m′ ∈M do8 (Ê,PE, e!m′) := Create(Ê,PE, {e}, !m′)9 end for10 i f (|v| = 0) & (Dep(e) = 1) then11 (Ê,PE, e?m) := Create(Ê,PE, {e}, ?m)12 else if exists e?m′ ∈ (NotConflict(e,Dep(e)− 1) \ PE) then13 (Ê,PE, e?m) := Create(Ê,PE, {e, e?m′}, ?m)14 end if15 else16 i f Dep(e) < |v| then17 let m′ be the (Dep(e) + 1) message of v18 (Ê,PE, e?m′) := Create(Ê,PE, {e}, ?m′)19 else20 Y := NotConflict(e,Dep(e) + 1) \ PE21 for ea
h e!m′ in Y do22 (Ê,PE, e?m′) := Create(Ê,PE, {e, e!m′}, ?m′)23 end for24 end if25 end if26 return (Ê,PE)27 end fun
tionWhen extending a sending event (lines 5-14), one gets the message whi
h
orrespondsto the label of e and denotes it by m (line 6), i.e. L(e) = !m. A

ordingly, let us denote
e by e!m. The "for ea
h" loop at lines 7-9 in Algorithm 5.7 does the same thing as theone at lines 8-11 in Algorithm 5.6. This loop simply inserts |M | sending events whi
hare dire
t su

essors of e!m into the pre�x Ê. Noti
e that these sending events has onlyone dire
t prede
essor whi
h is e. Sin
e e is no more in PE, the insertion of su
h sendingevents respe
ts to the invariant I3 of ExtendMv's
orre
tness by De�nition 5.1.3. Now,look at whether a re
eiving su

essor, denoted by e?m of e!m has to be
reated (lines10-14). In the �rst
ase (lines 10-11) where v is the empty word, i.e. |v| = 0, and e!mis a minimal event w.r.t.
ausality, i.e. Dep(e!m) = |v| + 1 = 1, sending event e?m,whi
h has only e!m as a dire
t prede
essor, is inserted. This
orresponds to the
aseat lines 13-14 in Algorithm 5.6. In the se
ond
ase, sin
e v is not the empty word,the event e?m must be a dire
t su

essor of another re
eiving event e?m′ . As explainedpreviously, we have NotConflict(e!m,Dep(e!m) − 1) ⊆ {e?m′} (line 12). Noti
e that e?m′is either the maximal event w.r.t.
ausality in Ef (when e!m is a minimal one, i.e.105

Chapter 5. Compositional unfolding te
hniques
Dep(e!m) = |v| + 1) or the unique event in the set B?(⋗(e!m)). No matter what e?m′
orresponds to, event e?m is added (line 13) if and only if e?m′ is already extended.One
an see that NotConflict(e!m,Dep(e!m) − 1), when v = ε,
orresponds more or lessto the set ⋖̂(e!m′) in line 17 in Algorithm 5.6. And if e?m′ exists then an
ommondire
t su

essor of e and e?m′ should be added to the pre�x Ê in order to reestablish theinvariant I3.When extending a re
eiving event (lines 15-24), denoted by e?m, there are also two
ases. The �rst one whi
h does not exists in Algorithm 5.6, is when e?m ∈ Ef and e?mis not the maximal one w.r.t.
ausality in Êf (lines 16-18), i.e. Dep(e) < |v|. Onesimply
reates the unique su

essor of e?m. This su

essor is also an event in Ef and hasonly one dire
t prede
essor whi
h is e?m 6∈ PE. Hen
e, the invariant I3 is guaranteed.In the se
ond
ase, let us denote S! = NotConflict(e?m,Dep(e?m) + 1). If e?m is themaximal event w.r.t.
ausality in Ef then S! is thus the set of minimal sending events,i.e. S! = Min≤(E!). Otherwise, we have S! = ⋖(B?(e?m)) ∩ E!. In both sub-
ases,extending e?m requires that one
reates the re
eiving su

essor of ea
h event e!m′ in S!if e!m′ has been extended, i.e. e!m′ ∈ Y = (S! \ PE) (the loop's
ondition in line 21).Parti
ularly, if |v| = 0, the set Y is obvious the set ⋖̂(e!m) \ PE = ⋖̂(B!(e!m)) \ PE usedin the loop's
riterion in line 23 in Algorithm 5.6. Pre
ise instru
tions for adding thesesu

essors (line 22) is the same as in the loop at lines 23-26 in Algorithm 5.6.As usual, in both
ases, the new pre�x Ê and possible extension PE are returned (line26).
(M,v, b)-
ausality pro
essesThe (M,v, b)-CP de�ned in De�nition 3.3.36 on page 52 may also
onstru
ted by ourunfolding algorithm. One
an slightly modify the Algorithm 5.7 to have an algorithmof fun
tion Extend for (M,v, b)-CP. Be
ause, by de�nition, (M,v, b)-CP di�ers from
(M,v)-CP only on the
ausality whi
h
omes from the
onstraint of boundedness.

≤b = {〈e, f〉 ∈ ((E × E) \#) /Dep(f) ≥ Dep(e) + b}As illustrated in Figure 3.13 on page 51, this
ausality based on pairs of a sendingevent e! ∈ E! and a re
eiving event e? ∈ E? su
h that e! # e? and Dep(e!) = Dep(e?) + b.Intuitively, in order to guarantee the bound of b, e! must be a su

essor, and morepre
isely, a dire
t su

essor of e?, i.e. e? ⋖ e!. This fa
t means that one
an insert intothe FIFO
hannel a message indexed by Dep(e!) if and only if the message indexed by
Dep(e?) has been released. Be
ause, the bounded FIFO
hannel
an
ontains at most bmessages at a time. The di�eren
e between (M,v, b)-CP and (M,v)-CP may be depi
ted,in another way, by using its prede
essor relations.

⋖b = ⋖ \⋖
′

= {〈e?, e!〉 ∈ (E? × E!) / e! # e? and Dep(e!) = Dep(e?) + b}Here, ⋖ and ⋖′ are respe
tively the prede
essor relations of (M,v, b)-CP and its
orre-sponding (M,v)-CP (see De�nition 3.3.36 on page 52). We are going to show how to mod-ify Algorithm 5.5 as well as Algorithm 5.7 to have adapted algorithms for (M,v, b)-CP.Intuitively, for
reating any sending event e!, one needs to take
are of not only the dire
tsending prede
essor e′! of e!, i.e. e′! ⋖
′ e!, but also the
orresponding re
eiving event e?a

ording to ⋖b, i.e. e? ⋖b e!. The event e′! as well as the event e? may not exist for someevent e!. Modi�
ation in the fun
tion Extend for (M,v, b)-CP
on
erns only instru
tions106

5.2. Causality pro
esses' unfoldingfor adding sending events to the pre�x. And instru
tions for adding re
eiving events arethe same as the ones in Algorithm 5.7. Noti
e that we still use two fun
tions Dep and
NotConflict previously des
ribed.Remark: Given any (M,v, b)-CP, the bound parameter b must not be zero. Moreover,due to the boundedness, the initial word v
an not has a length greater than b, i.e.
|v| ≤ b.Consider now the fun
tion Init. One initializes the pre�x Ê by the same way as inthe fun
tion InitMv ex
ept for minimal sending messages w.r.t.
ausality. Be
ause forthe parti
ular
ase where the length of v is b, all sending events must be pre
eded by themaximal re
eiving event Ef 1 w.r.t. the
ausality ≤. Formally, if {e?} = Max≤(Ef) then
{e?}×Min≤(E!) ⊂ ⋖. As a
onsequen
e, the "for ea
h" loop at lines 5-7 in Algorithm 5.5must be en
losed by a test as in the following.i f |v| < b thenfor ea
h m ∈M do

(Ê,PE, e!m) := Create(Ê,PE, ∅, !m)end forend ifNoti
e that if |v| = b, the return pre�x Ê of Init()
ontains only the minimal event
f of Ef whi
h is a re
eiving one. It is done as the same manner as in fun
tion InitMv.The minimal sending event in Min≤(E!) will be added to the pre�x Ê when extending fafterward.Next, there are two modi�
ations on ExtendMv a

ording to the type of argumentevent e of fun
tion Extend. First, when e is a sending event, i.e. e ∈ E!, e has |M |sending su

essors and one re
eiving su

essor in (M,v, b)-CP whi
h are all dire
t ones.A su
h sending su

essors e!, on its turn, have two
ommon dire
t prede
essors whi
h are
e and, possibly, another re
eiving event e?. The �rst one is due to the usual total orderof messages in
hannel while the se
ond one is in order to guarantee the boundedness,i.e. e? ⋖b e!. Let us denote the set of dire
t sending su

essors of e by S!, we have:

• {e?} = NotConflict(e,Dep(e)− b + 1), and
• for all e! ∈ S!, ⋗(e!) = {e, e?}.Therefore, one must take
are of the existen
e of e?. If D(e) < b, and
onsequently

D(e!) ≤ b for all e! ∈ S!, then su
h e? does not exists in E, i.e. ⋗b(e!) = ∅ for all e! ∈ S!.In other words, every event e! ∈ S! has only one dire
t prede
essor whi
h is e, and shouldbe add to the pre�x Ê. Otherwise, i.e. E
ontains
orresponding event e?, the invariant
I3 in De�nition 5.1.1 for Extend's
orre
tness requires that e! ∈ S! is added i� e? is inthe pre�x Ê and has been extended, i.e. e? ∈ (Ê \ PE). The "for ea
h loop" at lines 7-9in Algorithm 5.7 whi
h generates these events S! should be modi�ed as follows:i f (Dep(e) < b) thenfor ea
h m′ ∈M do

(Ê,PE, e!m′) := Create(Ê,PE, {e}, !m′)end forelse if exists e? ∈ (NotConflict(e,Dep(e)− b + 1) \ PE) thenfor ea
h m′ ∈M do1In (M, v, b)-CP as well as in (M, v)-CP, Ef is the event sets of the
orresponding �ushing pro
ess.107

Chapter 5. Compositional unfolding te
hniques
(Ê,PE, e!m′) := Create(Ê,PE, {e, e?}, !m

′)end forend ifWhen no sending su

essors is
reated, it intuitively means that e is extended soonerthan e?. An eventual
alling Extend(e?) will take
are of
reating events in S!. Asdis
ussed above, the boundedness
onstraint has no in�uen
e on whether the dire
tre
eiving su

essor of e is added. Hen
e, instru
tions
on
erning this re
eiving event atlines 10-14 in Algorithm 5.7 remain un
hanged in our fun
tion Extend for (M,v, b)-CP.Se
ond, when e is a re
eiving event, its dire
t re
eiving su

essors are added to thepre�x ⋖̂ by the same manner as shown at lines 16-24 in Algorithm 5.7. In addition, let
X! denote the set ⋖b(e) ⊂ E!, we are in need of some new instru
tions for adding eventsin S! if possible. On
e again, every event in ⋖b(e) has two dire
t prede
essors whi
h are
e and another sending event e! in the set NotConflict(e,Dep(e)+b−1). Therefore, eventsin S! is
reated based on its se
ond dire
t prede
essors. These instru
tions are shownbelow and may be inserted, for instan
e, into Algorithm 5.7 just before line 16.for ea
h e! in (NotConflict(e,Dep(e) + b− 1) \ PE) dofor ea
h m′ ∈M do

(Ê,PE, e!m′) := Create(Ê,PE, {e, e!}, !m
′)end forend forEa
h event e! ∈ NotConflict(e,Dep(e) + b− 1) \ PE) gives rise to |M | new su

essorswhose labels are pairwise di�erent due to the inner loop. And be
ause e! ∈ (Ê \ PE)as a
onsequen
e of the outer loop's
riterion, the invariant I3 for Extend's
orre
tnessis respe
ted. In all
ases, new events added to the pre�x are also be inserted into thepossible extension PE. The fun
tion Extend �nally returns Ê and PE as usual.Estimation of time
omplexityThe
omplexity of fun
tion Extend for (M,v)-CP as well as (M,v, b)-CP depends on the
omplexity of the fun
tion Dep and espe
ially of the fun
tion NotConflict. One
an havea fun
tion Dep of time
omplexity O(1) by relating a depth value to ea
h event sin
eit is
reated. This manner does not in
rease the spa
e
omplexity of our algorithms.However, time
omplexity of NotConflict(e, d) is somehow in fun
tion of d and the depthof event e.Let us �rst
onsider only two parti
ular
ases of parameters e and d in Algorithm 5.7.First, e is a sending event in E! and d = Dep(e) − 1 (line 12). The
omputation of

NotConflict may be more or less instru
tions at lines 16-17 in Algorithm 5.6. Intuitively,one gets the dire
t prede
essor of e, denoted by e!, and then return the re
eiving dire
tsu

essor of e! if exists. It thus has time
omplexity O(1). Se
ond, e is a re
eiving eventin E? and d = Dep(e) + 1 (line 20). Fun
tion NotConflict returns a set of at most |M |sending events and its time
omplexity is proportional to O(|M |). This
omplexity
omesfrom the
orresponding instru
tions at lines 23-24 in Algorithm 5.6 while assuming thatsu

essor set as well as label of an event
an be returned in O(1) time. Therefore, one
anhave an implementation of Dep and NotConflict so that Algorithm 5.7 for (M,v)-CP hasa same time
omplexity as Algorithm 5.6 for M -CP, whi
h is O(|M |). Noti
e that thetime
omplexity here is of fun
tion ExtendMv and not of the global unfolding algorithm108

5.3. Syn
hronized produ
ts' unfolding(Algorithm 5.1) whi
h must also depends on |v|.Now,
onsider the algorithm of fun
tion Extend for (M,v, b)-CP. Its most expensivepart in terms of time
omplexity is intuitively the third modi�
ation des
ribed above.Sin
e e is a re
eiving event in E? and d = Dep(e)+b−1, fun
tion NotConflict
reates theset S! of sending events whi
h are in
ausal with the sending prede
essor e! of e. Noti
ethat in (M,v, b)-CP, events in
ausal with e!, i.e. ≤(e!), with the
ausality betweenthem forms an intuitive tree of whi
h the root is e!. Moreover, it follows from the fa
t
Dep(e!) = Dep(e) and ∀e′! ∈ S! : Dep(e′!) = Dep(e) + b − 1 that S! is the set of all nodeof distan
e (b − 1) from the root e!. Be
ause ea
h node of this tree may also have |M |su

essors, in the worst
ase, the size of S! is |M |b−1. Therefore, due to the unique nestedloop in the algorithm of fun
tion Extend for (M,v, b)-CP, this fun
tion Extend has time
omplexity of O(|M |.|M |b−1) = O(|M |b).5.3 Syn
hronized produ
ts' unfoldingOur idea of
onstru
ting syn
hronized produ
ts of labeled event stru
tures is similarto that of well-known unfolding algorithm in other works [M
M95a, ER99, KK03℄. Weassume that one does have algorithms for
onstru
ting labeled event stru
tures of the
omponents by means of fun
tion Extend des
ribed in Se
tion 5.2.Given n labeled event stru
tures E1 = (E1,≤1,#1,L1,M1), . . . ,En = (En,≤n,#n,Ln,Mn)and an a
tion set Σ ∈ ⊗ε(Codom(L1), . . . ,Codom(Ln)). The syn
hronized produ
t
ESP = (E,≤,#,L,M) of E1, . . . ,En w.r.t. Σ (De�nition 3.3.44 on page 57) is a partof the maximal produ
t of n event stru
tures (E1,≤1,#1), . . . , (En,≤n,#n) (De�ni-tion 3.3.39 on page 54) that satis�es the syn
hronization Σ, i.e.
onstru
ting events esatisfying LV(e) ∈ Σ. Re
all that both the labeling fun
tion L = LV and the markingfun
tionM =MV are well de�ned by those of
omponent labeled event stru
tures andthe fun
tion V (see Notation 3.3.43 on page 57). Therefore, in this se
tion, we are goingto show how to algorithmi
ally
onstru
t ESP in terms of produ
t of event stru
tures.In other words, our algorithms
ompute only pre�xes (Ê, ≤̂, #̂) of (E,≤,#) and the
orresponding ve
tors V̂ ⊆ V.Re
all that, by De�nition 3.3.44, every event e ∈ E
orresponds to an unique pair
〈C, v〉 where C = >(e) and v = V(e) ∈ ⊗ε(E1, E2, . . . , En). Given an Ê-pre�x of ESP, theunfolding algorithm intuitively �nds new pairs 〈C, v〉 that represent events whi
h may beadded to the pre�x. Sin
e v must satisfy the labeling
onstraint: 〈L1(v↓1), . . . ,Ln(v↓n
)〉 = L(e) ∈ Σ, one groups su
h pairs 〈C, v〉 into disjoint subsets based on di�erenta
tions a ∈ Σ, and sear
hes these subsets separately. The
omputation of a pair 〈C, v〉
orresponding to an a
tion a
onsists more or less of:1. Initializing C, may be by the empty set.2. Su

essively �nding v↓i = ei ∈ Ei for some ei satisfying Li(ei) = a↓i for all i su
hthat a↓i 6= ε.3. For every found v↓i 6= ε, su

essively enlarging C by adding events in E to C inorder to have that C is still a
on�guration in CESP

and v ↓i is an extension of
V(C)↓i in Ei.In our algorithm des
ribed later, the two fun
tions ConfigVectorSet and ConfigVectorSet_iare respe
tively dedi
ated to the se
ond and the third sub-pro
esses above. ConfigVectorSetsu

essively
alls ConfigVectorSet_i for all index i su
h that a↓i 6= ε. Both ConfigVectorSetand ConfigVectorSet_i may fail that means there is no pair 〈C, v〉
orresponding to thea
tion a. In the �rst
ase, it is be
ause, for instan
e, there is no event labeled by a↓i109

Chapter 5. Compositional unfolding te
hniquesin Ei; while in the se
ond
ase, it is be
ause there is no
on�guration C ′ ⊇ C in the
Ê-pre�x of E su
h that V(C ′)↓i ⊢i ei for previously obtained ei.By
alling ConfigVectorSet, the fun
tion InitSP as well as the fun
tion ExtendSP forsyn
hronized produ
ts has to initialize a
tion a as well as
on�guration C so that all andonly pairs 〈C, v〉
orresponding to new events e ∈ (E \ Ê) will be found. In the sameway as fun
tion Extend for
omponent labeled event stru
tures, it is due to the use ofthe possible extension PE and by limiting C to subsets of Ê \ PE.Before giving details on ConfigVectorSet_i as well as ConfigVectorSet, let us introdu
ethe notion of
on�g-ve
tor whi
h is the base type of these fun
tions' parameter.Notation 5.3.1. Given n ∈ N and n sets X1,X2, . . . ,Xn, for any x ∈ ⊗ε(X1,
X2, . . . ,Xn), we denote I(x) the set of indi
es i ∈ {1, 2, . . . , n} satisfying x↓i 6= ε.De�nition 5.3.2 (Con�g-ve
tor). Given a syn
hronized produ
t ESP of some n labeledevent stru
tures E1,E2, . . . ,En w.r.t. Σ. A
on�g-ve
tor of ESP is any triple 〈C, v, a〉where C ⊆ E, v ∈ ⊗ε(E1, E2, . . . , En), and a ∈ Σ su
h that:1. C is a
on�guration in CESP

,2. for all i ∈ {1, 2, . . . , n}, either v↓i = ε or Li(v↓i) = a↓i.3. for all i ∈ {1, 2, . . . , n}, if v↓i 6= ε then v↓i 6∈ V(C)↓i and v↓i is not in
on�i
t withany event in C, i.e. {v↓i}# s
i V(C)↓i.A
on�g-ve
tor 〈C, v, a〉 is partially
omplete for an index i if v↓i is an extension eventof V(C)↓i in Ei, i.e. V(C)↓i ⊢i v↓i.De�nition 5.3.3 (Complete
on�g-ve
tor). A
on�g-ve
tor 〈C, v, a〉 is
omplete if1. I(v) = I(a),2. 〈C, v, a〉 is partially
omplete for every index i ∈ I(v), and3. for every event e ∈ Max≤(C), there exists an index i su
h that V(e)↓i ⋖iv↓i.Let us take an example of a
on�g-ve
tor cv = 〈>(e),V(e),L(e)〉 where e is a givenevent in Ê. By de�nition, cv is
omplete. Let C be any
on�guration so that e isone of its extension event, i.e. C ⊢ e. One
an verify that the triple 〈C,V(e),L(e)〉 isalso a
on�g-ve
tor whi
h is partially
omplete for every index i ∈ I(V(e)) = I(L(e)).However, the third property of a
omplete
on�g-ve
tor in De�nition 5.3.3 may not hold.The reason is that C may
ontain some event e′ whi
h is
on
urrent with e. In otherwords, the this property requires somehow that C is equal to >(e).Re
all that, in the syn
hronized produ
t ESP, there may exist other events f alsosatisfying V(f) = V(e),
onsequently, L(f) = L(e), and 〈>(f),V(e),L(e)〉 is a
omplete
on�g-ve
tor. Therefore, for a same ve
tor v
orresponding to some label a, one
ouldhave many
omplete
on�g-ve
tors 〈C, v, a〉.Lemma 5.3.4. Given a syn
hronized produ
t E = (E,≤,#,L,M) of n labeled eventstru
tures E1 = (E1,≤1,#1,L1,M1), . . . ,En = (En,≤n,#n,Ln, Mn) w.r.t. some syn-
hronization
onstraint Σ. Let v be any ve
tor in ⊗ε(E1, . . . , En) satisfying that 〈L1(v↓1

), . . . ,Ln(v↓n)〉 = a for some given a ∈ Σ. Let CS be the set of
on�gurations C su
hthat 〈C, v, a〉 is a
omplete
on�g-ve
tor. Then
CS = {>(e) / e ∈ E and V(e) = v}Proof. Let C be any
on�guration in CS. Let e′ be any maximal event w.r.t. the
ausality in C, i.e. e′ ∈ Max≤(C). It follows from De�nition 5.3.2 that there exists anindex i ∈ {1, 2, . . . , n} satisfying V(C) ↓i⊢i v ↓i, we have V(e′) ↓i ⋖i v ↓i. Due to the110

5.3. Syn
hronized produ
ts' unfoldingmaximality w.r.t. isomorphism of E, by De�nition 3.3.44 of syn
hronized produ
ts oflabeled event stru
tures, there exists an event e ∈ E su
h that V(e) = v and e′ ⋖ e forall e′ ∈ Max≤(C). One
an simply write C = >(e) for some event e ∈ E.Conversely, it is straightforward from De�nition 5.3.2 and De�nition 5.3.3 that, forevery event e, if V(e) = v then 〈>(e), v, a〉 is a
omplete
on�g-ve
tor. This lemma isthus proved.Remark: The two fun
tions ConfigVectorSet_i and ConfigVectorSet in the next subse
-tions are re
ursive fun
tions. In order to
ompute
on�g-ve
tors of ESP, they have a

essto the being
onstru
ted pre�x ÊSP of the syn
hronized produ
t E as well as its
orre-sponding pre�xes Êi, i = {1, 2, . . . , n}, of all
omponent labeled event stru
tures Ei.However, these fun
tions do not modify or add anything to the pre�xes. This is done inthe fun
tion Extend.5.3.1 Fun
tion ConfigVectorSet_iThe fun
tion ConfigVectorSet_i(F, i, C, v, a) is given in Algorithm 5.8 and has 5 param-eters. The �rst parameter is a downward-
losed set of events in Ê while the se
ond oneis an index in I(a). The three last parameters form a
on�g-ve
tor, and there are twoadditional
onditions on the input of ConfigVectorSet_i:
• v↓i is some event in Êi, i.e. v↓i 6= ε, and as a
onsequen
e from De�nition 5.3.2,

v↓i= a↓i;
• C is a subset of F , i.e. C ⊆ F .The output of this fun
tion is the set of all
on�g-ve
tors 〈C ′, v, a〉 whi
h are partially
omplete for the index i, moreover, C is a subset of C ′, and C ′ is a subset of F at thesame time, i.e. C ⊆ C ′ ⊆ F .Let us explain intuitive ideas of Algorithm 5.8. The set Pi obtained at line 3 is the setof v↓i's dire
t prede
essors in
omponent Êi whi
h are not in
luded in V̂(C)↓i. If this set

Pi is empty (line 4), by de�nition, the
on�g-ve
tor 〈C, v, a〉 is already partially
ompletefor the index i, hen
e one just returns the singleton {〈C, v, a〉} (line 5). Otherwise (lines6-17), one needs to add events in F to C in order to satisfy the partial
ompletenessin the
omponent i. These added events, if exist,
orrespond 1-to-1 to the
omponentevents in Pi. The �nding pro
edure is re
ursive.The algorithm takes an event e′i in Pi (line 7). Intuitively, e′i is a missing prede
essorof v↓i so that 〈C, v, a〉 is still not partially
omplete for index i. The set X obtained inline 8 is the set of all events e′ in F whi
h is related to e′i and is not in
on�i
t with eventsin C. It worth to noti
e that by de�nition of syn
hronized produ
t of event stru
tures(De�nition 3.3.39 on page 54), e′
an not be in C and, as a
onsequen
e, (C ∩X) = ∅be
ause V̂(e′)↓i= e′i ∈ Pi and Pi ∩ V̂(C)↓i= ∅.If X is empty (line 9), there is no partially
omplete
on�g-ve
tor {C ′, v, a} where
C ′ ⊇ C. The fun
tion simply returns the empty set (line 10). Otherwise (lines 11-16), for ea
h event e′ ∈ X, one tries to sear
h partially
omplete
on�g-ve
tor from
〈C ∪ ≥̂(e′), v, a, i〉 by
alling ConfigVectorSet_i itself. Found
on�g-ve
tors are insertedinto the set CVS (line 14) whi
h will be �nally returned by the fun
tion ConfigVectorSet_i(line 16).Lemma 5.3.5. Let CVS be the return set of some
all
ConfigVectorSet_i(F, i, C, v, a). 111

Chapter 5. Compositional unfolding te
hniquesAlgorithm 5.8: Fun
tion ConfigVectorSet_i1 fun
tion ConfigVectorSet_i(F, i, C, v, a)2 begin3 Pi := ⋗̂i(v↓i) \ V̂(C)↓i4 i f Pi = ∅ then5 return {〈C, v, a〉}6 else7 take a
omponent event e′i in Pi8 X := {e′ ∈ F / V̂(e′)↓i= e′i and {e′} #̂s C}9 i f X = ∅ then10 return ∅11 else12 CVS := ∅13 for ea
h e′ ∈ X do14 CVS := CVS ∪ ConfigVectorSet_i(F, i, C ∪ ≥̂(e′), v, a)15 end for16 return CVS17 end if18 end if19 end fun
tion
• CVS
ontains only
on�g-ve
tors 〈C ′, v, a〉 whi
h are partially
omplete for the
om-ponent i; and
• the proje
tion of CVS on the �rst
omponent, i.e. CVS ↓1, is equal to the set

Min⊆{C
′ ∈ CbESP

/C ⊆ C ′ ⊆ F and V̂(C ′)↓i ⊢i v↓i}.Proof. As the invariant of ConfigVectorSet_i's input, we have C ⊆ F and 〈C, v, a〉 is a
on�g-ve
tor. Sin
e event v↓i has only �nite dire
t prede
essors in Êi, we will prove thislemma by indu
tion on the size k = |⋗̂i(v↓i) \ V̂(C)↓i |.
• The �rst property: When k = 0, due to lines 4-5 in Algorithm 5.8, we have CVS =
{〈C, v, a〉}, where 〈C, v, a〉 is a
on�g-ve
tor. It follows from De�nition 5.3.2 for
on�g-ve
tor 〈C, v, a〉 that v↓i 6∈ V̂(C)↓i and {v↓i} #̂s

i V̂(C)↓i. Hen
e, V̂(C)↓i ⊢i v↓ibe
ause ⋗̂i(v↓i) ⊆ V̂(C)↓i. As a
onsequen
e, 〈C, v, a〉 is partially
omplete for
omponent i by de�nition. Suppose that this property is
orre
t for some k ≥ 0 and
Pi = ⋗̂i(v↓i) \ V̂(C)↓i (line 3) has k + 1 events. There are two
ases depending onthe set X obtained in line 8. First, if X is empty, then CVS
ontains nothing, and
onsequently, this property is true. Se
ond, if X is not empty. For every event e′taken in the loop (line 13), by de�nition of X in line 8, we have that the downward-
losed set ≥̂(C ∪ {e′}) = C ∪ ≥̂(e′) is a
on�guration. And (C ∪ ≥̂(e′)) ⊆ Fbe
ause F also downward-
losed w.r.t. the
ausality ≤̂ and e′ ∈ F . Event e′
an not be in C be
ause V̂(e′) = e′i 6∈ V̂(C)↓i. Let us denote C ′′ = C ∪ ≥̂(e),
〈C ′, v, a〉 is thus a
on�g-ve
tor. On
e again, it follows from the de�nition of X that
(⋗̂i(v↓i)\ V̂(C ′′)↓i) = (⋗̂i(v↓i)\ V̂(C)↓i \e

′
i), and
onsequently, |(⋗̂i(v↓i)\ V̂(C ′′)↓i

)| = k+1−1 = k. By indu
tion hypothesis,
alling ConfigVectorSet_i(F, i, C ′′, v, a)returns only partially
omplete
on�g-ve
tor 〈C ′, v, a〉 for
omponent i. So do the�nal return set CVS in line 16. The �rst property is thus proved.112

5.3. Syn
hronized produ
ts' unfolding
• The se
ond property: Let CS denote the set {C ′ ∈ CbESP

/C ⊆ C ′ ⊆ F and V̂(C ′)↓i

⊢i v↓i}. When k = 0, i.e. ⋗̂i(v↓i) \ V̂(C)↓i= ∅, the return set CVS
ontains only
〈C, v, a〉 (line 5). Thanks to the �rst property, 〈C, v, a〉 is partially
omplete for
omponent i. By De�nition 5.3.2, we have V̂(C ′)↓i ⊢i v↓i. Hen
e, C is in
luded in
CS, moreover, C is the minimal
on�guration in CS w.r.t. the in
lusion order ⊆.Be
ause every
on�guration C ′ in CS satis�es C ′ ⊇ C by de�nition of CS. Thisproperty thus holds in the base
ase. Suppose that it holds for some number k,and we have |⋗̂i(v↓i) \ V̂(C)↓i | = k + 1.First, let C ′ be any
on�guration in the set Min⊆CS, we will prove that C ′ ∈ CVS↓1(1). Let e′i be the event in Êi obtained at line 7. It follows from V̂(C ′)↓i ⊢i v↓ithat e′i ∈ V̂(C ′) ↓i. Thanks to the exponentially downward
losure of C ′, thereexists an event e′ ∈ C ′ satisfying V̂(e′) = e′i. Noti
e that e′
an not be in Cbe
ause V̂(e′) = e′i 6∈ V̂(C)↓i. In addition, sin
e C ′ ⊆ F is also
on�guration, e′must be in the set X obtained at line 8. By the for-loop at lines 13-15, 〈C ′, v, a〉must be returned when
alling ConfigVectorSet_i(C ∪ ≥̂(e′), v, a, i) (line 16) andis thus in
luded in the �nal set CVS (line 18). Be
ause, in the one hand, C ′ ∈

Min⊆{C
′ ∈ CbESP

/C ⊆ C ′ ⊆ F and V̂(C ′) ↓i ⊢i v ↓i} and e′ ∈ C ′ implies that
C ′ ∈ Min⊆{C

′ ∈ CbESP

/ (C∪≥̂(e′)) ⊆ C ′ ⊆ F and V̂(C ′)↓i ⊢i v↓i}; and in the otherhand, the se
ond set is the return value of ConfigVectorSet_i(F, i, C ∪ ≥̂(e′), v, a)due to the indu
tion hypothesis (*) where |⋗̂i(v↓i) \ V̂(C ∪ ≥̂(e′))↓i | = |⋗̂i(v↓i
) \ V̂(C)↓i \{e

′
i}| = k + 1− 1 = k. Therefore (1) is true.Se
ond, let 〈C ′, v, a〉 be any
on�g-ve
tor in the return set CVS. We will provethat C ′ must be in the set CS and moreover, it is minimal w.r.t. in
lusion or-der (2). This
on�g-ve
tor must
ome from some
all ConfigVectorSet_i(F, i, C ∪

≥̂(e′), v, a, i) in line 14 for some event e′ obtained at lines 7-8. On
e again,thanks to indu
tion hypothesis (*), we must have C ′ ⊇ (C ∪ ≥̂(e′)) ⊃ C and
V̂(C ′) ↓i ⊢i v ↓i. Hen
e, C ′ is in CVS. Suppose that C ′ is not minimal w.r.t.in
lusion order, that means there exists another
on�guration C ′′ ∈ CS satisfy-ing C ′′ ⊂ C ′. Sin
e V̂(C ′′) ↓i ⊢i v ↓i there exists an event e′′ ∈ C ′′ su
h that
V̂(e′′) ↓i = V̂(e′) ↓i ∈ ⋗̂i(v ↓i). It follows from e′ ∈ C ′, e′′ ∈ C ′′ ⊂ C ′ and the
on�i
t-free of C ′ that e′ and e′′ must be the same event, i.e. e′ = e′′. As a
on-sequen
e, C ′′ ⊇ (C ∪ ≥̂(e′)). Therefore, C ′ is not minimal, w.r.t. in
lusion order,in the return set of ConfigVectorSet_i((C ∪ ≥̂(e′)) due to the existen
e of C ′′. It
ontradi
ts to the indu
tion hypothesis. Hen
e, C ′ is thus minimal
on�gurationin CVS, and (2) is true.From (1) and (2), the indu
tion hypothesis (*) holds for all �nite number k. Andthe lemma is thus proved by indu
tion.It is worth giving some details here on the minimality property w.r.t. the in
lusionorder ⊆ of
on�g-ve
tors returned by ConfigVectorSet_i. Let e be any event in the syn-
hronized produ
t, suppose that e has two dire
t prede
essors f, g, i.e. ⋗(e) = {f, g}.Thanks to Lemma 5.3.4, cv = 〈>(e),V(e),L(e)〉 is a
omplete
on�g-ve
tor. Let us de-note C = (>(e))\{f, g}. It is obvious that 〈C,V(e),L(e)〉, 〈C∪{f},V(e),L(e)〉 and 〈C∪

{g},V(e),L(e)〉 are
on�g-ve
tors. But they are not
omplete due to some
omponentindi
es. Assume that 〈C,V(e),L(e)〉 is not partially
omplete for some
omponent i but113

Chapter 5. Compositional unfolding te
hniques
〈C∪{f},V(e),L(e)〉 is. When
alling the fun
tion ConfigVectorSet_i(F, i, C,V(e),L(e)),for a given downward-
losed set F ⊇ (>(e)), the value 〈C ∪ {f},V(e),L(e)〉 is returned.Although cv is partially
omplete for index i, it is not returned. One
an see that(C ∪ {f}) ⊂ >(e), and it respe
ts to the se
ond property in Lemma 5.3.5. The mini-mality property on
on�gurations of returned
on�g-ve
tors intuitively means that oneadds only ne
essary event to C in order to
omplete the
on�g-ve
tor 〈C,V(e),L(e)〉 forindex i. The
on�g-ve
tor cv may be returned afterward, for instan
e, when one tries to
omplete 〈C ∪{f},V(e),L(e)〉 for another index j by
alling ConfigVectorSet_i(F, j, C ∪
{f},V(e),L(e)).Lemma 5.3.6. If F is �nite, then fun
tion ConfigVectorSet_i(F, i, C, v, a) in Algo-rithm 5.8 terminates.Proof. The re
ursive
all of ConfigVectorSet_i
an not be in�nite. Suppose the oppositethat means there exists an in�nite sequen
e of
on�gurations C1, C2, . . . where C1 = Cand ConfigVectorSet_i(F, i, Cj , v, a)
alls to ConfigVectorSet_i(F, i, Cj+1, v, a) for all j ≥

1. We have not only Cj ⊂ Cj+1 due to line 14 but also (⋗̂i(v ↓i) \ V̂(Cj)) ⊃ (⋗̂(v ↓i
) \ V̂(Cj+1)) for all j ≥ 1. The in�niteness of de
reasing sequen
e ⋗̂i(v ↓i) \ V̂(Cj)w.r.t. in
lusion order
ontradi
ts to the �niteness of prede
essor set of v ↓i in Êi byde�nition of event stru
tures (see De�nition 3.3.39 on page 54). Moreover, sin
e F is�nite too, for every
all of ConfigVectorSet_i, the set X obtained in line 8 is �nite. As a
onsequen
e, the loop at lines 15-17 is �nite. Therefore, the fun
tion ConfigVectorSet_iterminates.Remark: One
an
onsider the unfolding algorithm in [ER99℄ as the one for syn
hronizedprodu
t of labeled event trees, and the unfolding algorithm in [M
M95a℄ as the one forsyn
hronized produ
t of labeled event stru
tures modeling simple Petri net's pla
e. Inboth
ase, one still has some fun
tion like ours ConfigVectorSet_i. It is mu
h simplerthough be
ause every
omponent event has at most one prede
essor. As a
onsequen
e,there is no need to use the re
ursion shown in Algorithm 5.8.5.3.2 Fun
tion ConfigVectorSetAlgorithm 5.9 represents the fun
tion ConfigVectorSet(F,C, v, a) whi
h takes a downward-
losed set, w.r.t. the
ausality, of events F and a
on�g-ve
tor 〈C, v, a〉 as parameters.The
on�g-ve
tor 〈C, v, a〉 must (satisfy the invariant that it is) partially
omplete forall index i ∈ I(v). The fun
tion ConfigVectorSet(F,C, v, a) then
omputes and returnsall
omplete
on�g-ve
tors 〈D,w, a〉 su
h that

• w↓i = v↓i for all i ∈ I(v), and
• D is a subset of F , i.e. D ⊆ F .By De�nition 5.3.2, it follows from the partial
ompleteness of
on�g-ve
tors 〈D,w, a〉that w↓i is an extension event of D↓i for all i ∈ I(a). As a
onsequen
e, dire
t prede
es-sors of w↓i are in
luded in D↓i⊆ F ↓i. Therefore, aiming at
omputing su
h
omplete
on�g-ve
tors in a pre�x ÊSP of the syn
hronized produ
t, one requires that Êi
on-tains all events whose prede
essors are in F ↓i for all i. Formally, for all i, ei ∈ Êi if

>i(ei) = >̂i(ei) ⊆ F↓i. The following is straightforward.Lemma 5.3.7. Let 〈C, v, a〉 be a
omplete
on�g-ve
tor where C is a subset of a down-ward
losed set F w.r.t. the
ausality. If Êi ⊇ {ei ∈ Ei />i(ei) ⊆ F ↓i} for all i, then
v ∈ ⊗ε(Ê1, Ê2, . . . , Ên).114

5.3. Syn
hronized produ
ts' unfoldingIn Algorithm 5.9, in the base
ase where I(v) = I(a) (line 3), it follows from the
onstraint on parameters that the
on�g-ve
tor 〈C, v, a〉 is already
omplete. The fun
-tion simply returns the singleton {〈C, v, a〉} (line 4). In the general
ase (lines 5-18), byde�nition, I(v) must be a subset of I(a). The algorithm takes any index i in the di�erentset (I(a) \ I(v)) (line 6) and tries to partially
omplete the
on�g-ve
tor 〈C, v, a〉 for the
omponent i. Then, it tries to assign some
omponent event e′i in Êi to v↓i (line 11). Byde�nition of
on�g-ve
tors, v↓i should be labeled by a↓i. The set Xi obtained at line 7thus represents the set of su
h
omponent events e′i. Noti
e that, for every
omponentevent e′i ∈ Ei, if either e′i ∈ V̂(C) ↓i or e′i is in
on�i
t with some event in V̂(C) ↓i,exploiting su
h an event e′i does not give rise to any
omplete
on�g-ve
tor from C.Therefore, the restri
tion of Xi line 9, in the one hand, is an algorithmi
 amelioration,and in the other hand, is in order to guarantee the invariant that one always works with
on�g-ve
tors.The loop at lines 10-13 sear
hes all partially
omplete
on�g-ve
tors 〈C ′, v′, a〉 forthe index i by
alling ConfigVectorSet_i(F, i, C, v′, a). Due to assignments at lines 8 and11, ve
tors v and v′ are di�erent only on index i. More pre
isely, we have v↓i = ε while
v′↓i = e′i for some e′i ∈ Xi. All found
on�g-ve
tors 〈C ′, v′, a〉 are sto
ked in the set CVSi.Noti
e that if Xi is empty, the algorithm skips this loop, and CVSi is thus empty. As a
onsequen
e, in this
ase, the algorithm skips also the loop at lines 15-17 and return theempty set CVS (line 20). Otherwise, i.e. Xi 6= ∅, every
on�g-ve
tor 〈C ′, v′, a〉 is partially
omplete for all index in the set I(v′) = I(v) ∪ {i}. As a
onsequen
e, 〈C ′, v′, a〉 maybe used as parameter for the fun
tion ConfigVectorSet itself (line 16). Due to the loopat lines 15-17, the return set CVS (line 18) hopefully
ontains
omplete
on�g-ve
tors
〈D,w, a〉 where D ⊇ C and I(w) = I(a) ⊃ I(v).Algorithm 5.9: Fun
tion ConfigVectorSet1 fun
tion ConfigVectorSet(F,C, v, a)2 begin3 i f I(v) = I(a) then4 return {〈C, v, a〉}5 else6 take an index i in (I(a) \ I(v))7 Xi := {e′i ∈ (Êi \ V̂(C)↓i) / L̂i(e

′
i) = a↓i and {e′i} #̂s

i V(C)↓i}8 v′ := v9 CVSi := ∅10 for ea
h e′i ∈ Xi do11 v′↓i := e′i12 CVSi := CVSi ∪ ConfigVectorSet_i(F, i, C, v′, a)13 end for14 CVS := ∅15 for ea
h 〈C ′, v′, a〉 ∈ CVSi do16 CVS := CVS ∪ ConfigVectorSet(F,C ′, v′, a)17 end for18 return CVS19 end if20 end fun
tion 115

Chapter 5. Compositional unfolding te
hniquesLemma 5.3.8. Let F be any downward-
losed set, w.r.t. the
ausality. Let 〈C, v, a〉 beany
on�g-ve
tor su
h that:1. C is a subset of F , i.e. C ⊆ F ,2. 〈C, v, a〉 is partially
omplete for every index i ∈ I(v), and3. for every e ∈ Max≤(C), there exists an index i ∈ I(v) satisfying that 〈C \ {e}, v, a〉is not partially
omplete for index i.If Êi ⊇ {ei ∈ Ei />i(ei) ⊆ F↓i} for all i, then the return value of
ConfigVectorSet(F,C, v, a) is the set of
omplete
on�g-ve
tors 〈D,w, a〉 su
h that C ⊆
D ⊆ F and w↓i= v↓i for all i ∈ I(v).Proof. Let CVS denote the return value of ConfigVectorSet(F,C, v, a) and CS the set of
omplete
on�g-ve
tors 〈D,w, a〉 satisfying C ⊆ D ⊆ F and w↓i= v↓i for all i ∈ I(v).We will prove by indu
tion on the �nite size k of the set (I(a)\I(v)), i.e. k = |I(a)\I(v)|,that CVS = CS.

• We �rst prove that CVS ⊆ CS: In the base
ase, i.e. I(v) = I(a), due to the as-sumption that 〈C, v, a〉 is partially
omplete for all indi
es i ∈ I(v), 〈C, v, a〉 isthus
omplete by De�nition 5.3.3. And the return set CVS = {〈C, v, a〉} is of
ourse a subset of CVS. In the general
ase, by de�nition, 〈C, v′, a〉 (line 12) is a
on�g-ve
tor for all event e′i
hosen in the set Xi obtained in line 7. Thanks toLemma 5.3.5, the set CVSi obtained after the loop at lines 10-13 in Algorithm 5.9
ontains
on�g-ve
tors 〈C ′, v′, a′〉 whi
h satis�es C ⊆ C ′ ⊆ F , and at the sametime, is partially
omplete for not only for the indi
es in I(v) but also for the index
i obtained in line 6. Moreover, let e be any maximal event in C ′ w.r.t. the
ausal-ity, i.e. e ∈ Max≤(C ′) = Maxb≤(C ′). If e ∈ (C ′ \ C), then 〈C ′ \ {e}, v′, a〉 is notpartially
omplete for index i. Be
ause, suppose the opposite, 〈C ′, v′, a〉 is returnedby
alling ConfigVectorSet_i(F, i, C, v′, a) but C ′ is not the minimal
on�gurationof the set {C ′′ ∈ CESP

/C ⊆ C ′′ ⊆ F and V̂(C ′′) ↓i ⊢i v′ ↓i} due to the exis-ten
e of the
on�guration (C ′ \ {e}) ⊆ C ′. It
ontradi
ts to Lemme Lemma 5.3.5.Therefore, the
on�g-ve
tor 〈C ′, v, a〉 satisfy thus the three property stated bythis Lemma as the
ondition of ConfigVectorSet's input. So that, when
alling
ConfigVectorSet(F,C ′, v′, a) in line 16, sin
e (I(a) \ I(v′)) ⊂ (I(a) \ I(v)), by in-du
tion hypothesis, its return value is a subset of CS. And so does the �nal returnvalue of ConfigVectorSet(F,C, v, a) (line 18).

• We now prove that CS ⊆ CVS: Thanks to Lemma 5.3.7, for every
omplete
on�g-ve
tor 〈D,w, a〉, sin
e D ⊆ F , we have w ∈ ⊗ε(Ê1, Ê2, . . . , Ên). In the base
ase,i.e. I(v) = I(a), one has CVS = {〈C, v, a〉}. Suppose that there exists a
omplete
on�g-ve
tor 〈D,w, a〉 ∈ CS whi
h is not in
luded in CVS. By de�nition, oneobtains C ⊂ D ⊆ F and v = w. Let e be any event in Maxb≤(D\C) ⊆ Maxb≤(D). Itsfollows from the
on�i
t-freeness of
on�guration D that, for all i, V̂(e)↓i 6∈ V̂(C)↓i.Moreover, sin
e 〈C, v, a〉 is partially
omplete for all indi
es i ∈ I(v) = I(a), wehave V̂(C)↓i ⊢i v↓i, and
onsequently, ⋗̂i(v↓i) ⊆ V̂(C)↓i for all i ∈ I(v). Therefore,the third property in De�nition 5.3.3 does not hold for 〈D, v, a〉 be
ause, for all
i ∈ I(v), V̂(e) ↓i ⋖̂i v ↓i. It
ontradi
ts to the
ompleteness of 〈D, v, a〉. As a
onsequen
e, CS = {〈C, v, a〉} is thus a subset of CVS.In the general
ase, i.e. I(v) ⊂ I(a), let {D,w, a} be any
omplete
on�g-ve
torin CS. Let i be the value obtained at line 6 in Algorithm 5.9, and e′i = w ↓i.116

5.3. Syn
hronized produ
ts' unfoldingOne must have C ⊂ D be
ause if otherwise, 〈D,w, a〉 = 〈C,w, a〉
an not be
omplete. Sin
e 〈D,w, a〉 is a
on�g-ve
tor and C ⊆ D, one has then w ↓i 6∈

V̂(C) ↓i and {w ↓i}# s
i V̂(C) ↓i by De�nition 3.3.39 on page 54. It follows from

Li(w ↓i) = a ↓i (by De�nition 5.3.2) that w ↓i must be in the set Xi obtainedat line 7. As a
onsequen
e, in the loop at lines 10-13, there is a step where
v′ ↓i = w↓i and v′ ↓j = v ↓j for all j 6= i. Thanks to Lemma 5.3.5, when
alling
ConfigVectorSet_i(F, i, C, v′, a), it must return some
on�g-ve
tors. Thanks toLemma 5.3.5, among su
h return
on�g-ve
tors in CVSi, there exists 〈C ′, v′, a〉su
h that C ′ ⊆ D. Be
ause
on�guration D satis�es V̂(D)↓i ⊢i v′↓i. By the samereasoning as in the previous
ase, one
an verify that 〈C ′, v′, a〉 satis�es the input'svariant of the fun
tion ConfigVectorSet like 〈C, v, a〉. So that by the indu
tionhypothesis, the
omplete
on�g-ve
tor 〈D,w, a〉 must be found in the �nal set CVSdue to some
all ConfigVectorSet(F,C ′, v′, a) in line 16.One
an �nally
on
lude that CVS is equal to CS.The third property on
on�guration C as input of ConfigVectorSet is important. Asseen in the proof above, it
orresponds more or less to the third property in the de�nitionof
omplete
on�g-ve
tors (see De�nition 5.3.3 on page 110). Without su
h a property oninput
on�gurations C,
alling ConfigVectorSet(F,C, v, a) may return some
on�g-ve
tor

〈D,w, a〉 whi
h is partially
omplete for all indi
es i ∈ I(w) = I(a). However, 〈D,w, a〉is not
omplete, and as a
onsequen
e of Lemma 5.3.4 on page 110, it
orresponds tono event in the syn
hronized produ
t ESP. Aiming at
onstru
ting pre�xes of ESP, the
omputation of
on�g-ve
tor 〈D,w, a〉 is useless.Lemma 5.3.9. If Ê as well as Ê1, Ê2, . . . Ên is �nite, then the fun
tion ConfigVectorSetin Algorithm 5.9 terminates.Proof. Let (F,C, v, a) denote some input of ConfigVectorSet. We will prove this Lemmaby indu
tion on the size k of (I(a) \ I(v)) sin
e k
an not ex
eeds the number of
om-ponents, and is thus �nite. When k = 0, i.e. I(v) = I(a), one falls into the base
aseof the fun
tion ConfigVectorSet's re
ursion (lines 3-4). The fun
tion ConfigVectorSetjust terminates. Suppose that ConfigVectorSet terminates for all k smaller than somenumber m > 0. We will prove that it also terminates for k = m. For every value of
i obtained at line 6, the set Xi is �nite be
ause Êi is �nite. Thanks to Lemma 5.3.6,
ConfigVectorSet_i(F,C ′, v′, a, i) terminates be
ause F ⊆ Ê is �nite, and at the sametime, thanks to Lemma 5.3.5, its return set has a
ardinal smaller than or equal to theone of {C ′′ ∈ CbESP

/C ′′ ⊇ C}. As a
onsequen
e, the loop at lines 10-13 terminatesand the set CVSi obtained afterward is �nite. Consider now the loop at lines 15-17.Be
ause |I(a) \ I(v′)| = |I(a) \ I(v) \ {i}| = m − 1, by indu
tion hypothesis, the
allof ConfigVectorSet(C ′, v′, a) at line 16 terminates. This loop with �nite bound |CVSi|should terminates. As a
onsequen
e, the fun
tion ConfigVectorSet terminates.5.3.3 Fun
tions InitSP and ExtendSPIn this subse
tion, we assume that one has already n fun
tions Initi as well as n fun
tions
Extendi, i ∈ {1, 2, . . . , n}, for unfolding n
omponent labeled event stru
tures. In addi-tion to the pre�x ÊSP of ESP whi
h is being
onstru
ted, we always have n pre�xes of the
omponents. The fun
tion InitSP as well as ExtendSP should use these 2n fun
tions forexpanding
omponents pre�xes if ne
essary. Moreover,
omponent possible extensions
PEi, i ∈ {1, 2, . . . , n}
an be a

essed from InitSP and ExtendSP. 117

Chapter 5. Compositional unfolding te
hniquesAs stated by Lemma 5.3.4, in a syn
hronized produ
t of labeled event stru
tures,
omplete
on�g-ve
tors
orrespond to events. Formally, we say that 〈C, v, a〉
orrespondsto event e if C = >(e), v = V(e), and a = L(e). In addition, due to the maximalityand no-dupli
ation property in De�nition 3.3.44 on page 57, this
orresponden
e is abije
tion.By de�nition, a minimal event e, w.r.t. the
ausality, in the syn
hronized produ
tis a syn
hronization of minimal events in
omponent labeled event stru
tures. Formally,
e ∈ Min≤(ESP) i� >(e) = ∅ and V(e) ∈ ⊗ε(Min≤1(E1), . . . ,Min≤1(E1)). In order tobuilding the pre�x ESP|Min≤(E), fun
tion InitSP intuitively
omputes
omplete
on�g-ve
tors 〈∅, v, a〉 where v ∈ ⊗ε(Min≤1(E1), . . . ,Min≤n(E1)) and a = 〈L1(v↓1), . . . ,
Ln(v↓n)〉 is in
luded in syn
hronization
onstraint Σ.Algorithm 5.10: Fun
tion InitSP for syn
hronized produ
ts1 fun
tion InitSP()2
onstant vε = 〈ε, ε, . . . , ε〉3 begin4 Ê := ∅; ⋖̂ := ∅; V̂ := ∅5 for i := 1 to n do6 (Êi,PEi) := Initi()7 end for8 CVS := ∅9 for ea
h a in Σ do10 CVS := CVS ∪ ConfigVectorSet(∅, ∅, vε, a)11 end for12 for ea
h 〈C, v, a〉 ∈ CVS do13 e′ := Create(Ê,PE, ∅, a)14 V̂ := V̂ ∪ {〈e′, v〉}15 end for16 return (Ê, Ê)17 end fun
tionAlgorithm 5.10 represents the fun
tion InitSP. The syn
hronized pre�x is initializedwithout events (line 4). Component pre�xes are also initialized by
alling the
orre-sponding fun
tions Initi for all i ∈ {1, 2, . . . , n} due to the loop at lines 5-7. As seenin Se
tion 5.2, after this loop, ea
h
omponent pre�x Êi, i ∈ {1, 2, . . . , n},
ontains onlyminimal events w.r.t. its
ausality ≤̂i. Due to the loop at lines 9-11, the algorithm thus
omputes all
omplete
on�g-ve
tors 〈C, v, a〉 by
alling ConfigVectorSet(∅, ∅, vε, a) for alla
tions a in the syn
hronization
onstraint Σ. The
onstant vε de
lared in line 2 is justfor initializing the third parameter when
alling ConfigVectorSet. Sin
e the �rst param-eter F of ConfigVectorSet is the empty set, C is empty too. Ea
h
omplete
on�g-ve
tor
〈∅, v, a〉 in CVS intuitively
orresponds to an minimal event e′ w.r.t. the
ausality in theglobal labeled event stru
ture be
ause >(e′) = ∅. Fun
tion InitSP �nally
reates eventsa

ording to
on�g-ve
tors in CVS and a

ordingly updates fun
tion V̂. This is done bythe loop at lines 12-15. Re
all that the
on�i
t relation #̂ and the labeling fun
tion L̂may be
omputed from the ones of
omponent pre�xes, i.e. #̂i and L̂i, the prede
essorrelation ⋖̂ and the ve
tor V̂. In Algorithm 5.10, only instru
tions for ⋖̂ and V̂ are shown.The following is straightforward.118

5.3. Syn
hronized produ
ts' unfoldingLemma 5.3.10. If Initi() is
orre
t that means its return value (Êi,PEi) is
orre
t w.r.t.
Ei and Êi = Initi() = Ei|Min≤i

(Ei), then the return value (Ê, Ê) is
orre
t w.r.t. thesyn
hronized produ
t ESP, moreover, Ê = E|Min≤(E).Now, we
an go into details of the fun
tion ExtendSP. Re
all the prin
ipal me
hanismof Extend: one avoids adding two times a same event, and at the same time, does notomit any possible event. In order to do that:
• One adds only su

essors e′ of event e where e is the parameter of Extend. ByDe�nition 3.3.39, the
omplete
on�g-ve
tor 〈C, v,L(e′)〉
orresponding to e′ mustsatis�es that V(e)↓i ⋖i v↓i for some index i, and at the same time, C
ontains e.
• One adds only and all those events e′ whose prede
essors have been extended, i.e.

⋗(e′) ⊆ (Ê \ PE) where Ê is the event set of the a
tual pre�x, and PE ⊆ Ê is theset of events that have not been extended.Let us explain the instru
tions of ExtendSP given in Algorithm 5.11. As usual, whenextending event e, the algorithm �rst removes e from the possible extension PE (line 4).Then, it extends the
omponent events
orresponding to e by the loop at lines 5-9 ifne
essary. Let i be an index in I(V̂(e)), when the test V̂(e)↓i ∈ PEi (line 6) is false, itmay be due to extending another event e′ before e where e′
on
erns the same
omponentevent as e, i.e. V̂(e)↓i = V̂(e′)↓i. In this
ase, the algorithm does nothing so that Extendiis
alled with argument V(e)↓i at most one time. Otherwise, i.e. V(e)↓i ∈ PEi, it meansthat
omponent event V(e)↓i in Ei has not been extended. One must extend it by
alling
Extendi(Êi,PEi,V(e)↓i) (line 7). After this instru
tion, V(e)↓i is no more in PEi.Algorithm 5.11: Fun
tion ExtendSP for syn
hronized produ
ts1 fun
tion ExtendSP(Ê,PE, e)2
onstant vε = 〈ε, ε, . . . , ε〉3 begin4 PE := PE \ {e}5 for ea
h i ∈ I(V̂(e)) do6 i f V̂(e)↓i ∈ PEi then7 (Êi,PEi) := Extendi(Êi,PEi, V̂(e)↓i)8 end if9 end for10 CVSi := ∅11 for ea
h i ∈ I(V̂(e)) do12 v′ := vε13 for ea
h vi ∈ ⋖̂i(V̂(e)↓i) do14 v′↓i := vi15 for ea
h a ∈ {a ∈ Σ / a↓i = L̂i(vi)} do16 CVSi := CVSi ∪ ConfigVectorSet_i((Ê \ PE), i, ≥̂(e), v′, a)17 end for18 end19 end for20 CVS := ∅21 for ea
h 〈C ′, v′, a〉 ∈ CVSi do22 CVS := CVS ∪ ConfigVectorSet((Ê \ PE), C ′, v′, a)23 end for 119

Chapter 5. Compositional unfolding te
hniques24 for ea
h 〈C, v, a〉 ∈ CVS do25 e′ := Create(Ê,PE,Maxb≤(C), a)26 V̂ := V̂ ∪ {〈e′, v〉}27 end for28 return (Ê,PE)29 end fun
tionRemark: In our unfolding algorithm for a syn
hronized produ
t of labeled event stru
-tures, we only use Algorithm 5.1 for the global produ
t, and not for its
omponents. Thefun
tion ExtendSP of the global produ
t, on the one hand, is responsible for
onstru
tingpre�xes ÊSP of the syn
hronized produ
t, and on the other hand, takes
ontrol of howto develop pre�xes Êi, i ∈ {1, 2, . . . , n}, of the
omponents. The
hoi
e of extending
omponent events is no more random as seen at line 4 in Algorithm 5.1. In other words,a event ei in some
omponent Êi is extended by
alling Extendi only when a global event
e in the syn
hronized produ
t whi
h
on
erns ei, i.e. V(e)↓i= ei, is extended.The
omputing pro
ess of
omplete
on�g-ve
tors CVS whi
h
orrespond to dire
tsu

essors e′ of e is started by �nding partially
omplete
on�g-ve
tors 〈C ′, v′, a〉 forsome index i ∈ I(V(e)) (the nested loops at lines 11-19).

• Sin
e e′ is a dire
t su

essor of e, by the third property of De�nition 3.3.39, V(e′)↓imust be a dire
t su

essor of V(e)↓i in some
omponent labeled event stru
tures
Ei. Hen
e, one restri
ts index i on the set I(V(e)) (line 11).

• The
omponent event V(e)↓i may have many dire
t su

essors in Ei. For su
h adire
t su

essor vi (line 13), one initializes v′ so that it is di�erent from the
onstantve
tor vε (line 2) only on the index i due to instru
tions at lines 12 and 14. Allpartially
omplete
on�g-ve
tors obtained afterward must be based on the sameve
tor v′.
• One groups partially
omplete
on�g-ve
tors 〈C ′, v′, a〉 into di�erent sets whi
hbased on label a ∈ Σ. By De�nition 5.3.2, one has, of
ourse, a↓i = Li(V(v′)↓i=
Li(vi) where vi is an event in Ei obtained previously.

• The
alling ConfigVectorSet_i with the
on�guration parameter ≥(e) (line 16) guar-antees somehow that return
on�g-ve
tors 〈C ′, v′, a〉 satis�es C ′ ⊇ (>(e)). As a
onsequen
e, new event e′
orresponding to 〈C ′, v′, a〉 satis�es (>(e′)) ⊇ (≥(e))and is thus a dire
t su

essor of e.All partially
omplete
on�g-ve
tors in CVSi are thus used for
omputing
omplete
on�g-ve
tors by the loop at lines 21-23. One simply
all the fun
tion ConfigVectorSet(line 33). Noti
e that obtained
on�g-ve
tors in CVS may be di�erent on its ve
torsor its
orresponding a
tions. However, the
on�guration of su
h
on�g-ve
tors always
ontains e, and is thus a superset of ≥(e).Finally, as in the fun
tion Init, for every
omplete
on�g-ve
tor 〈C, v, a〉 in CVS, anew event e′ is
reated and inserted into the global pre�x by the loop at lines 24-27.Sin
e only events in Maxb≤(C) are dire
t prede
essor of e′. Maxb≤(C) is passed as theparameter value of ConfigVectorSet (line 25). The fun
tion V̂ is also modify for adaptingto new events (line 26). The set of new events is returned as usual (line 28). However,the set CVS as well as CVSi may be empty. In this
ase, the loop at lines 21-24 aswell as the one at lines 24-27 is algorithmi
ally skipped. And as a
onsequen
e, no newsu

essors of e is
reated and returned in the end of the
all Extend(e).Lemma 5.3.11. If Extendi is
orre
t w.r.t. Ei for all i ∈ {1, 2, . . . , n} then the fun
tion120

5.3. Syn
hronized produ
ts' unfolding
ExtendSP in Algorithm 5.11 is
orre
t w.r.t. the syn
hronized produ
t ESP = (E,≤
,#,L,M) of these n labeled event stru
tures E1,E2, . . . ,En w.r.t. Σ.Proof. Let us denote by Ê = (Ê, ≤̂, #̂, L̂,M′), Ê′ = (Ê′, ≤̂

′
, #̂′, L̂′,M̂′) respe
tively thevalues of stru
ture variables of the syn
hronized produ
ts just before and after
alling

ExtendSP(e) for some e ∈ ({ε}∪E′); and by the same manner, E′
i = (E′

i,≤
′
i,#

′
i,L

′
i,M

′
i),

E′′
i = (E′′

i ,≤′′
i ,#

′′
i ,L

′′
i ,M

′′
i) for the values of stru
ture variables of every
omponent

i ∈ {1, 2, . . . , n}.Let S be the set of su

essors e′ of e in ESP whose prede
essors has been alreadyextended, i.e. S = {e′ ∈ E /e⋖e′ and >(e′) ⊆ (Ê\PE′)}. Here PE′ = (PE\{e})∪(Ê′\Ê)due to line 4 and the
alls of Create in line 25. We will prove that there is a bije
tionbetween S and the �nal
on�g-ve
tors set CVS in the fun
tion ExtendSP (*).Due to the loop at lines 5-9 that tries to extend
omponent events ea
h time oneextends a global event, one
an easily prove by indu
tion that for all i, (Êi \ PEi) ⊇
(Ê \ PE)↓i just before instru
tions for
omputing CVS in the fun
tion Extend (line 10).As a
onsequen
e, for every event e′ ∈ E, if (>(e′)) ⊆ (E′ \ PE) then (>i(V(e′) ↓i
)) ⊆ (>(e′)↓i⊆ (E′ \ PE)↓i = (E′

i \ PEi). Moreover, due to the
orre
tness of Extendi,
(>i(V(e′) ↓i)) ⊆ (E′

i \ PEi) implies that event V(e′) ↓i must be already in the eventset E′
i of
omponent pre�x E′

i. Now, for ea
h su

essor e′ ∈ S, let us asso
iate it tothe
omplete
on�g-ve
tor 〈>(e′),V(e′),L(e′)〉. We have then (>(e′)) ⊆ (Ê \ PE′) and
V(e′) ∈ ⊗ε(E

′
1, E

′
2, . . . , E

′
n). In other words, event sets E′

1, E
′
2, . . . , E

′
n are su�
ient for
omputing the
omplete
on�g-ve
tors 〈>(e′),V(e′),L(e′)〉.Consider the nested loops at lines 11-19. Sin
e e′ is a su

essor of e, by de�nitionof syn
hronize produ
ts of event stru
tures (see De�nition 3.3.39), there exists an in-dex i su
h that V(e)↓i ⋖i V(e′)↓i. Moreover, the a
tion a = L(e′) ∈ Σ satis�es that

a↓i = Li(V(e′)↓i). Let v′ is the ve
tor satisfying v′↓i = V(e′)↓i and v′↓i = ε otherwise.Thanks to Lemma 5.3.5, after this nested loop, CVSi must
ontain some partially
om-plete
on�g-ve
tor 〈C ′, v′, a〉 for the index i due to the
all ConfigVectorSet_i(Ê \ (PE \
e),≥(e), v′, a) in line 16. Moreover, (≥(e)) ⊆ C ′ and C ′ ⊆ (>(e′)) due to its minimalityw.r.t. the in
lusion order. Therefore, it follows from Lemma 5.3.8 that CVS
ontains
〈>(e′),V(e′),L(e′)〉 (1) be
ause of the
all ConfigVectorSet

(Ê \ PE, C ′, v′, a) in line 33.Reversely, let 〈C, v, a〉 be any
omplete
on�g-ve
tor in CVS in the end of the loopat lines 21-23. On
e again, C is a supset of another
on�guration C ′ whi
h
ontains
e; and v is based on another ve
tor v′ whi
h satisfying that v′ ↓i = V(e) ↓i for someindex i. Thanks to Lemma 5.3.4, there exists an event e′ ∈ E su
h that V(e′) = v and
C = >(e′). Noti
e that C ⊆ (E′ \ (PE \{e})) be
ause the �rst parameter F when
alling
ConfigVectorSet as well as ConfigVectorSet_i is always equal to Ê \ (PE\{e}). Moreover,sin
e e is a maximal event w.r.t. the
ausality in Ê by Lemma 5.1.2 on page 89, e isalso a maximal one in C = >(e′). The event e is just a dire
t prede
essor of e′ and as a
onsequen
e, e′ must be in S (2). It follows from (1) and (2) that (*) is obvious. Thebije
tion, denoted by B, may be de�ned by B(e′) = 〈>(e′),V(e′),L(e′)〉.The for loop at lines 24-27 simply adds events in S to the Ê-pre�x of the syn
hronizedprodu
t. Be
ause e is maximal event in Ê, its su

essors do not exist in Ê. As a
onse-quen
e, adding these su

essors guaranties that �nal Ê′ is a pre�x of ESP. The unfoldinginvariant I3 in De�nition 5.1.1 on page 89 is a dire
t
onsequen
e of (*) while invariants
I1, I2 as well as
onditions C2, C3 of the Extend's
orre
tness are straightforward. Thefun
tion ExtendSP is thus
orre
t w.r.t. ESP.Lemma 5.3.12. The fun
tion ExtendSP terminates if Ê as well as Êi, i ∈ {1, 2, . . . , n},121

Chapter 5. Compositional unfolding te
hniquesis �nite.Proof. Thanks to Lemma 5.3.6 and Lemma 5.3.9, ConfigVectorSet_i and ConfigVectorSetterminates. The size of the set returned by ConfigVectorSet_i (Algorithm 5.8 on page 112)does not ex
eed the number of subsets of Ê, and is thus �nite. On its turn, the fun
tion
ConfigVectorSet (Algorithm 5.9 on page 115) has two �nite loops: the �rst one
alls to ter-minating fun
tion ConfigVectorSet_i and the se
ond one whi
h
alls to ConfigVectorSetitself. Sin
e the number n of
omponents is �nite, the depth of re
ursion is bounded by
n. Then, the fun
tion ExtendSP in Algorithm 5.11 terminates.In order to �nd new dire
t su

essors of an event in the a
tual pre�x Ê of a syn
hro-nized produ
t ESP, i.e. Ê = ESP| bE , the fun
tions ConfigVectorSet and ConfigVectorSet_iare the most important and slowest parts of unfolding algorithms. Although ESP issimply a syn
hronized produ
t of Petri nets' pla
es (or of
ounters), the
omplexity of
ConfigVectorSet as well as ExtendSP in the worst
ase is a NP-
omplete problem as statedin [ERV96, Hel99℄. The question of how to e�
iently
ompute su
h su

essors is stillopen. Some
on
rete ideas on Petri nets
an be found in [Kho03℄.In pra
ti
e, one aims only at a �nite pre�x of the syn
hronized produ
t ESP whi
h is
omplete for some veri�
ation problem. As seen in the next se
tion, the better
utting
ontext is, the more
ompa
t pre�xes one obtains. Be
ause the
omplexity in time and inspa
e of ExtendSP depends on the size of these pre�xes, a good
hoi
e of
utting
ontext
ould redu
es this
omplexity (see Chapter 6).5.4 Trun
atingOn
e we have a
orre
t fun
tion Extend for
onstru
ting pre�xes of a labeled eventstru
ture E, we wish to modify the unfolding algorithm given in Algorithm 5.1 on page 89to obtain some trun
ations of E. A
omputed trun
ation, if it exists and is �nite, willbe used to verify the
orresponding de
idable problem (see Chapter 4).As seen in previous se
tions, our unfolding algorithm as well as various fun
tions
Extend respe
t the idea of partial-order. Intuitively, one does not need to look at thewhole set of
on�gurations when
omputing new events and extending pre�xes. In or-der to integrate trun
ation te
hnique into the unfolding algorithm, we are parti
ularlyinterested in lo
al
utting
ontexts (E,4C ,Cl

E
) (see Se
tion 4.3.1). Moreover, re
all thatwell-preorders 4C over
on�gurations are restri
ted to the ones de�ned in Se
tion 4.2.3.Formally, that means 4C= (4M ⋓ D) where E is an adequate order over
on�gurations.Remark: Without the risk of
onfusion, we simply write e E e′ in the pla
e of (≥(e)) E

(≥(e′)) for all events e, e′ ∈ E. Therefore, E may be
onsidered as an order over theevent set E. And it is well-founded when E is �nitely-bran
hing.Re
all that, the trun
ation of E w.r.t. to a lo
al
utting
ontext (4C ,Cl
E
) is themaximal subset of events that
ontains no outer one (
f. De�nition 4.2.12 on page 74and Lemma 4.3.2 on page 79). Algorithm 5.12 represents our trun
ating algorithmwhi
h aims at
onstru
ting the the pre�x Ê of E based on the trun
ation T(E,4C ,Cl

E
),i.e. Ê = E|

T(E,4C ,Cl
E
). While trying to keep the being
onstru
ted pre�x Ê of E away fromouter events, one simply does not extend
uto� events.In Algorithm 5.12, we use a variable CE to sto
k
uto� events. This variable is, of
ourse, initialized by the empty set (line 2). The algorithm starts with the pre�x of Ebased on its minimal events w.r.t. the
ausality ≤ (line 3) as the same manner as inAlgorithm 5.1. However, the loop for enlarging the a
tual pre�x terminates if possibly122

5.4. Trun
atingAlgorithm 5.12: Trun
ating algorithm1 begin2 CE := ∅3 (Ê,PE) := Init()4 while (PE \ CE) 6= ∅ do5 take an event e in MinE(PE \ CE)6 i f isCutoff(e) then7 CE := CE ∪ {e}8 else9 (Ê,PE) := Init(Ê,PE, e)10 end if11 end while12 endextensible events in PE are all
uto� ones (line 4). For ea
h event e obtained at line 5,one must test whether e is
uto� event by
alling the fun
tion isCutoff. If e is a
uto�event, one simply inserts it into the set CE (line 7). Noti
e that, in this
ase, e alwaysbelongs to the set PE. If e is not a
uto� event, one extends e by
alling Extend by thesame manner as in Algorithm 5.1.If the prin
ipal loop terminates, in the end of trun
ating algorithm, we obtain an�nite pre�x of E. In the result, CE is equal to PE and is the set of minimal
uto�events w.r.t. the
ausality ≤. Moreover, the event set of the �nal pre�x is a supersetof the trun
ation T(E,4C ,Cl
E
). Let Ê denote the event set of the a
tual pre�x alongan exe
ution of the trun
ating algorithm, it is worth noti
ing some intuitive ideas inAlgorithm 5.12:

• In order to prevent adding outer events as well as its su

essors afterward,
uto�events should not be removed from PE. Be
ause
alling Extend(Ê,PE, e) returnssu

essors of e whose prede
essors are all in Ê\PE due to the
orre
tness of Extend.
• CE is always a subset of both PE and Min≤(Êc) where Êc is the set of
uto� eventin the Ê-pre�x of E w.r.t. 4C . They
onverge only when the loop terminates.
• The implementation of the fun
tion isCutoff is not far from the de�nition of
uto�events (see De�nition 4.2.10 on page 74 and De�nition 4.3.1 on page 79).

isCutoff(e) returns {
true if exists e′ ∈ (Ê \ CE) : (≥(e)) ≺C (≥(e′)
false otherwiseHowever,
omputation in isCutoff does not base on the whole labeled event stru
-ture E but only on one of its �nite pre�x, here is the Ê-pre�x.5.4.1 Algorithmi

uto� eventsConsider an exe
ution of Algorithm 5.12, let us simply
all CE the set of algorithmi

uto� events. Re
all that, as stated by Proposition 5.1.4 on page 90, one obtains anin
reasing sequen
e of pre�xes of E. By de�nition, every algorithmi

uto� event is a
uto� event in E. However, there may be some
uto� event in E whi
h is not dete
tedas an algorithmi

uto� event, and is eventually extended. This fa
t is the
ause of an�nal pre�x, if algorithm terminates, whi
h is bigger than the desired trun
ation. 123

Chapter 5. Compositional unfolding te
hniquesTherefore, the
hoi
e of extending some minimal event e w.r.t. the adequate order Ein (PE \CE) (line 5) is very important. First, it redu
es the risk of adding a
uto� eventto the a
tual pre�x without per
eiving it as an algorithmi

uto� event and insertingit into CE. Se
ond, for every pre�xe obtained along the exe
ution after extending e,
isCutoff(e) always returns the same value.Proposition 5.4.1. Let us denote by Êk = (Êk, ≤̂k, #̂k, L̂k,M̂k) and PEk respe
tivelythe value of stru
ture variables and PE after k steps, k = 0, 1, . . ., of the prin
ipal loopin Algorithm 5.12 (lines 4-11). Let ek, k = 1, 2, . . ., the value of variable e
hosen at the
kth step of this loop. Suppose that Extend is
orre
t w.r.t. E. Then isCutoff(ek) (line 6)returns true i� ek is a
uto� event in Ên for all n ≥ (k − 1).Proof. Thanks to Proposition 5.1.4 on page 90, sin
e Extend is
orre
t w.r.t. E, forevery k, Êk is a pre�x of E. And moreover, Ê0 ⊆ Ê1 ⊆ As a
onsequen
e, ek isa
uto� event in Êk−1, i.e. isCutoff(ek) returns true, implies that ek is a
uto� eventin En for all n ≥ (k − 1). Now, suppose that isCutoff(ek) = false but ek is a
uto�event in En for some n ≥ k (*). Without lost of generality, one
an assume that kis the minimal number satisfying (*). There exists thus another event e′ ∈ Ên su
hthat (≥(ek)) ≺

C (≥(e′)). Then, e′ ⊳ ek. Sin
e adequate order E re�nes the in
lusionorder ⊆, we have that e′′ ⊳ e′ ⊳ ek for all e′′ ∈ (>(e′)). Due to the
hoi
e of extendingminimal event w.r.t. E at line 5 in Algorithm 5.12, e′′ must be extended before ek forall e′′ ∈ (>(e′)). It follows from the
orre
tness of Extend that Êk−1
ontains e′. This
ontradi
ts to isCutoff(ek) = false and to (*). This proposition is thus proved.
p1

c

p5

c′

p6

p3

b

p2

a′

p4

a

•

•

• •

(a)
p1

c
e4

p5

c′
e5

p′6

p2

a′
e2

p6

p3

b
e3

p′2

a′
e′

p′′6

p4

a
e1

p′4

(b)
• • • •

Figure 5.1: (a) An one-safe Petri net and (b) its
orresponding labeled o

urren
e net.Example 5.4.2. Figure 5.1.a represents an one-safe Petri net (N,mi) whi
h has 6 pla
es,5 transition and mi(p) = 1 if p ∈ {p1, p2, p3, p4} and mi(p) = 0 otherwise. Its labeledo

urren
e net is also an one-safe Petri net (N′,m′i) and may be obtained by the well-known unfolding te
hnique [M
M95a℄. These two Petri nets are obviously bisimilar.Figure 5.1.b illustrates (N′,m′i). By
onsidering more or less only transitions of (N′,m′i),one intuitively obtained a equivalent labeled event stru
ture E whi
h is illustrated inFigure 5.2.a.124

5.4. Trun
ating
c
e4

c′
e5

a′
e2

b
e3

a′

e′

a
e1
ut
ut(a)

c
e4

c′
e5

a′
e2

b
e3

a
e1
ut(b)

Figure 5.2: (a) The labeled event stru
ture
orresponding to the labeled o

urren
e netin Figure 5.1.b, and (b) the �nal pre�x generated by Algorithm 5.12.Among 6 events in E, there are two
ouples of events whose lo
al
on�gurations are thesame. Intuitively, both ≥(e1) and ≥(e3) lead to the marking where only pla
es p1, p2, p4have a token; while both ≥(e5) = {e5, e5} and ≥(e′) = {e′, e3} lead to another markingwhere only pla
es p4, p6 has a token. Consider the lexi
ographi
 labeling order E basedon the total order ≪ over labels su
h that a ≪ a′ ≪ b ≪ c ≪ c′ (see De�nition 4.2.17on page 78. In this deterministi
 labeled event stru
ture E, e3 is a
uto� event w.r.t. thelo
al
utting
ontext (E,I ⋓ D,Cl
E
) due to e1, and e5 is a
uto� event due to e′.Sin
e the
hoi
e of expanding events in Algorithm 5.12 respe
ts E, e3 is determined asan algorithmi

uto� event and its su

essor e′ should not be added to the
onstru
tingpre�x. And as a
onsequen
e, e5 is neither an algorithmi

uto� event nor a
uto� eventin the �nal pre�x generated by the trun
ating algorithm. The �nal pre�x whi
h
onsistsof 5 events in E′ = {e1, e2, e3, e4, e5} is represented by Figure 5.2.b, while the trun
ation

T(E,I ⋓ D,Cl
E
) is the set {e1, e2, e3, e4} by de�nition.Remark: We use the notation of algorithmi

uto� event for distinguishing between anevent determined by Algorithm 5.12 and a
uto� event by De�nition 4.3.1 on page 79.However, both kinds of
uto�
onditions depend on the
utting
ontext (E,4M ⋓ D,Cl

E
).One
an dedu
e from Algorithm 5.12 a indu
tive de�nition of CE together with eventset Ê as follows:

• e′ ∈ Ê if (>̂(e′)) ∩ CE = ∅, and
• e′ ∈ CE if e′ ∈ Ê and e′ is a
uto� event w.r.t. (E′,4M ⋓ D,Cl

bE
) where Ê is the

Ê-pre�x of E.In this way, the sets Ê and CE are similar to the sets of feasible events and of stati

uto�events in [Kho03℄. The di�eren
e only
omes from the fa
t that we use a lo
al
utting
ontext (E,4M ⋓ D,Cl
E
) in the pla
e of the global one (E,4M ⋓ D,CE). In other words,an algorithmi

uto� event is due to some lo
al
on�guration while a stati

uto� eventis due to arbitrary
on�guration in Ê.5.4.2 Complete pre�xesTheorem 5.4.3 (Termination). Let (E,4C) be a
onverse well-preordered labeled eventstru
ture where E is �nitely-bran
hing. If Extend is
orre
t w.r.t. E and then Algo-rithm 5.12 terminates.Proof. Thanks to De�nition 5.1.3, stru
ture variables always give rise to some E′-pre�xof E where E′ is its a
tual event set. Sin
e Extend is
orre
t and E is �nitely-bran
hing,125

Chapter 5. Compositional unfolding te
hniquesAlgorithm 5.12 does not terminates only if it
alls the fun
tion Extend an in�nite numberof times. Parameters e of su
h
alls are pairwise di�erent due to the instru
tion at line9. Let us denote by ek, k = 1, 2, . . ., the parameter of the kth
alling of Extend. Bythe same reasoning as in the proof of Theorem 4.2.15 on page 76, sin
e E as well asits pre�xes is �nitely-bran
hing, the in�nite sequen
e e1, e2, . . . must
ontain an in�nitesubsequen
e ei1 , ei2 , . . . whi
h are in
ausal order where i1, i2, . . . is a in
reasing sequen
eof indi
es. It follows from the
onverse well-preorder 4C that there exits indi
es il and
im su
h that (≥(eim)) 4C (≥(eil)) and il < im. Moreover, sin
e eil is stri
tly smallerthan eim w.r.t. the
ausality, one has (≥(eim)) ≺C (≥(eil)). Event eim is thus a
uto�event and it
ontradi
ts to the fa
t that isCutoff(eim) returns false in the test at line 6.Therefore, Algorithm 5.12 must terminate.Theorem 5.4.4 (Termination). If Extend is
orre
t w.r.t. E and Algorithm 5.12 termi-nates then the trun
ation T(E,4C ,Cl

E
) is a subset of the �nal event set E′
omputed bythis trun
ating algorithm.Proof. Let En denote the set of events in E whi
h are neither a
uto� event nor an outerevent w.r.t. the
utting
ontext (E,4C ,Cl

E
). Thanks to Proposition 5.4.1, for every event

e ∈ (E′ ∩ En), isCutoff(e) returns true and e should be extended by
alling Extend(e)(line 10 in Algorithm 5.12). As a
onsequen
e of De�nition 5.1.3 on page 90, one
anprove by indu
tion on lo
al
on�gurations' size that En is a subset of E′. Let Ec denotethe set of
uto� events in E, and let e′ be any event in Min≤(Ec). Due to its minimalityw.r.t. the
ausality ≤, one has (>(e′)) ∩ Ec = ∅. Hen
e, (>(e′)) ⊆ En ⊆ E′. Event
e′ must be inserted into E′ while extending some prede
essor of e′. Therefore, En and
Min≤(Ec) are both subset of E′. This lemma is thus a
onsequen
e of Lemma 4.3.2 onpage 79 whi
h states that T(E,4C ,Cl

E
) = En ∪Min≤(Ec).The in
lusion order ⊆ is a parti
ular
ase of adequate order E in lo
al
utting
ontexts(see termination and boundedness problems in Se
tion 4.3.3). Sin
e the order of addingevents Algorithm 5.12 respe
ts the in
lusion order, an event is algorithmi

uto� eventif and only if it is a
uto� one. The following is straightforward.Corollary 5.4.5. When Extend is
orre
t w.r.t. E and Algorithm 5.12 terminates, itsgenerated pre�x is the T(E,4C ,Cl

E
)-pre�x of E if 4C in
ludes ⊇.The �nal pre�x obtained by the trun
ating algorithm sometimes is mu
h bigger, interms of number of events, than ne
essary. This problem may be redu
es by using abetter adequate order. Esparza has given in [ERV96℄ an example showing that one
anobtain a pre�x of polynomial size with a lexi
ography-based adequate order in the pla
eof a pre�x of exponential size with a sized-based adequate order. In our framework ofmodeling system by syn
hronized produ
ts of labeled event stru
tures in a hierar
hi
alway, the trun
ating te
hnique using
uto�
onditions may be applied only at the toplevel, i.e. the global labeled event stru
ture.However, ea
h veri�
ation problem dis
ussed in Se
tion 4.3 may have a more suitablealgorithm whi
h is derived from Algorithm 5.12. For example, when de
iding bounded-ness of a labeled event stru
ture E su
h an algorithm
an terminate if the �rst stri
tly
uto� event has been found. This on-the-�y algorithm, in the
ase where E is unbounded,generates in general a pre�x whi
h is more
ompa
t than the
orresponding trun
ation.Finally, it is worth noti
ing that when the adequate order is a total order overthe event set E, Algorithm 5.12 is deterministi
. Otherwise, the algorithm is non-deterministi
 and it is not
lear that every run of it returns the same pre�x. This126

5.4. Trun
atingphenomenon was stated for the
ase of Petri nets in [HKK02℄. It was shown there that,for any adequate order, all possible runs give the same pre�x. We
onje
ture that it isthe
ase also for our algorithm.

127

Chapter 6Experimental results
Contents6.1 Modeling and veri�
ation of heterogeneous systems 1296.1.1 Alternating Bit Proto
ol . 1296.1.2 Modeling the ABP as a syn
hronized produ
t 1306.1.3 Veri�
ation of
ounter's boundedness 1326.1.4 Veri�
ation of lossy FIFOs'
overability 1346.2 The tool Esu . 1376.2.1 Modeling Petri nets . 1396.2.2 Redundan
y redu
tion . 1416.3 Experiment results on Petri nets 1496.3.1 1-safe Petri nets . 1496.3.2 General bounded Petri nets . 1516.3.3 Unbounded Petri nets . 154We �rstly demonstrate how to model an heterogeneous system and use our te
hniquefor verifying some properties on this system. The Alternating Bit Proto
ol (ABP) istaken as the
ase study in Se
tion 6.1. Then, our model-
he
ker Esu is brie�y des
ribedin Se
tion 6.2. The auto-
on
urren
y problem of the unfolding te
hnique will be dis
ussedin this se
tion. We also detail our te
hnique for redu
ing redundan
y that is integratedin Esu in order to atta
k the auto-
on
urren
y problem. Finally, Se
tion 6.3 is dedi
atedto experimental results as well as a
omparison of Esu and other well-known tools.6.1 Modeling and veri�
ation of heterogeneous systems6.1.1 Alternating Bit Proto
olThe Alternating Bit Proto
ol (ABP) [BSW69℄ is a
onne
tion-less proto
ol for transfer-ring messages in one dire
tion between two entities. These entities,
alled the senderand the re
eiver, ex
hange messages by means of two FIFO
hannels. This proto
olguarantees the retransmission of lost or
orrupted messages by using a
knowledge bits.Intuitively, ea
h message from both the sender and the re
eiver
ontains a bit, i.e. avalue that is either 0 or 1. When the sender sends a message m, it sends it
ontinuously,until it re
eives an a
knowledgment bit from the re
eiver that is the same bit in m.When it happens, the sender starts transmitting the next message with the
omplement129

Chapter 6. Experimental resultsof this bit. At the re
eiver side, when it re
eives a message with bit 0, it starts sendingbit 0 as a
knowledgment, and keep doing so until it re
eives another message with bit 1.Then, it starts sending bit 1, and so on.In this example, we are not interested in the fa
t that the
hannels may
orruptmessages as well as the way that the sender and the re
eiver de
ide whether a messageis
orre
t. For simpli
ity, we assume that ex
hanged messages are the bits 0 and 1themselves. We will see further that ABP is tolerant to lost messages in
hannels.
A

B

a

b

S2R!0R2S?1

R2S?0S2R!1

R2S?0R2S?1

R2S!1S2R?1

S2R?0R2S!0

S2R?0S2R?1

Sender Re
eiver
0 1 1

1

FIFO
hannel S2R
FIFO
hannel R2SFigure 6.1: A model for the Alternating Bit Proto
olIn other works, the ABP is generally modeled by two �nite-state ma
hines, that
orrespond to the sender and the re
eiver,
ommuni
ating through two
hannels [AAB99℄.Figure 6.1 illustrates su
h a model in whi
h both the sender and the re
eiver have onlytwo states. As previously assumed, these
hannels, named S2R and R2S, are FIFO
hannels over M = {0, 1}. The sender, at the left side of Figure 6.1, may either insertmessages into the
hannel S2R or remove messages from the
hannel R2S. These a
tionsare graphi
ally represented by loops or
urved arrows over the sender's states A and B,or more pre
isely by the label of these loops and arrows. In addition, an ar

onne
tingtwo states intuitively means that the sender
hanges its state while a loop does not. Forexample, when the sender's state is A, it inserts only messages 0 into the
hannel S2Runtil it removes a message 0 from the
hannel R2S. In this
ase, the sender
hanges itsstate to B and starts inserting messages 1 into the
hannel S2R. In the same manner,the re
eiver is shown at the right side of Figure 6.1.6.1.2 Modeling the ABP as a syn
hronized produ
tThe �rst thing we have to do is to de
ompose the ABP into some simple
omponents.There are two reasons. First, we
an use standard labeled transition systems for model-ing these
omponents, and as a
onsequen
e, we obtain their
orresponding labeled eventstru
tures that are introdu
ed in Se
tion 3.3. The ABP may be modeled by both thesyn
hronized produ
t of these
omponent labeled transition systems and the syn
hro-nized produ
t of these labeled event stru
tures. Se
ond, by using unfolding algorithmsof Chapter 5, we
an iteratively
onstru
t su
h labeled event stru
tures, and moreover,the syn
hronized produ
t one inherits the
on
urren
y of its
omponents.In our example, the ABP
an be naturally
onsidered as a
omposition of four
om-ponents: a sender S, a re
eiver R, two FIFO
hannels S2R, R2S over {0, 1} for messagesfrom the sender to the re
eiver and for messages from the re
eiver to the sender respe
-tively. In addition, we assume that there is a
ounter in order to
ompute the numberof su

essfully transmitted messages.130

6.1. Modeling and veri�
ation of heterogeneous systems
A B

A2A B2B

A2B

B2A(a) a b

a2a b2b

a2b

b2a(b)
?0

?1

!1

!0(
) ?0

?1

!1

!0(d) 0

1

2

+ −

+ −

(e)Figure 6.2: Components modeling the ABP: (a) Sender S, (b) Re
eiver R, (
) Channel
S2R, (d) Channel R2S, (e) (Unbounded)
ounter.The sender, as well as the re
eiver,
an be simply modeled by a labeled transitionsystem with two states A,B, and four transitions that
orrespond to the fa
t of stayingon a same state: A2A, B2B; or
hanging from one state to the other state: A2B,
B2A. We suppose that, at the initial state, the sender is in state A, the re
eiver is instate a, the two FIFO
hannels are empty, and the
ounter is set to 0. Hen
e, these twoFIFO
hannels S2R and R2S may be represented by the ({0, 1}, ε)-FF labeled transitionsystem (see De�nition 3.3.22 on page 43), and the
ounter is formally de�ned by the 0-CTlabeled transition system (see De�nition 3.3.6 on page 34). Figure 6.2 illustrates these�ve
omponents.Sender Re
eiver FIFO S2R FIFO R2S Counter Ve
tor name

A2A ε !0 ε ε A2AS!0

A2A ε ε ?1 ε A2AR?1

A2B ε ε ?0 ε A2BR?0

B2B ε !1 ε ε B2BS!1

B2B ε ε ?0 ε B2BR?0

B2A ε ε ?1 ε B2AR?1

ε a2a ε !1 ε a2aR!1

ε a2a ?1 ε ε a2aS?1

ε a2b ?0 ε + a2bS?0+

ε b2b ε !0 ε b2bR!0

ε b2b ?0 ε ε b2bS?0

ε b2a ?1 ε + b2aS?1+Table 6.1: Syn
hronization
onstraint for the ABP with
ounter of su

essfully trans-mitted messages.The ABP is then modeled by a syn
hronized produ
t of these �ve labeled transitionsystems. Therefore, its set of states is S = {A,B}×{a, b}×{0, 1}∗×{0, 1}∗×N. Table 6.1shows all syn
hronization ve
tors, i.e. a
tions in Σ, of the syn
hronized produ
t. For131

Chapter 6. Experimental resultsexample, the �rst ve
tor A2AS!0 = 〈A2A, ε, !0, ε, ε〉 means that the a
tion A2A of thesender (Figure 6.2.a) must be syn
hronized with the sending a
tion !0 of the FIFO
hannel S2R (in Figure 6.2.
). This global a
tion intuitively
orresponds to the loopwith label S2R!0 over the state A of the sender in Figure 6.1. Noti
e that, sin
e the
ounter
omputes the number of su

essfully transmitted messages, its in
rement a
tion'+' should be syn
hronized with re
eiving a
tions of the
hannel S2R (?0 or ?1) that
hange the state of the re
eiver R (a2b or b2a).6.1.3 Veri�
ation of
ounter's boundednessWe investigate the question whether the number of su

essfully transmitted messages isbounded if the two
hannels are bounded. Suppose that these two FIFO
hannels arebounded by 2. The answer "no" means that by using the ABP, we
an transmit as manymessages as we want from the sender to the re
eiver.To exploit the
on
urren
y, we prefer to use labeled event stru
tures than labeledtransition systems in order to model
omponents of the ABP, and to verify the prop-erty above. The syn
hronized produ
t of these labeled event stru
tures w.r.t. thesyn
hronization ve
tors in Table 6.1 represents then all behaviors of the ABP. Hen
e,the syn
hronized produ
t is su�
ient for verifying this property. Here, we use the
({0, 1}, ε, 2)-
ausality pro
ess, denoted by EFF = ({0, 1}, ε, 2)-CP (see Se
tion 3.3.3),for both bounded
hannels S2R and R2S. Figure 6.3 graphi
ally shows EFF. Labeledevent trees introdu
ed in Se
tion 3.3.1 are
onvenient for the sender as well as for there
eiver, be
ause they have no
on
urren
y. Finally, one
an let any
ausality pro
essgiven in Se
tion 3.3.2 model the
ounter. Let ES ,ER,ECT respe
tively denote the labeledevent stru
tures for the sender, the re
eiver, and the
ounter.

!0

!0

!0 ?0 !1

?0 !1

!0 ?1 !1

!1

!0

!0 ?0 !1

?1 !1

!0 ?1 !1

Figure 6.3: The ({0, 1}, ε, 2)-
ausality pro
ess for the empty-initialized FIFO
hannelover {0, 1} that is bounded by 2, i.e. ({0, 1}, ε, 2)-BC.Noti
e that these
omponent labeled event stru
tures EFF,ES ,ER, and ECT are alldeterministi
 and
oherent. The identity relation "=" is
ompatible with EFF,ES ,ER dueto the �niteness of their marking sets, and moreover, with a re�exive and stri
t
ompati-bility. One
an verify that (ECT,≤) is also a well-preordered labeled event stru
ture withre�exive and stri
t
ompatibility where ≤ is the "less than or equal" relation over N. Let
E denote the syn
hronized produ
t of ES ,ER,EFF,EFF,ECT w.r.t. the syn
hronization
onstraint Σ shown in Table 6.1; and let 4 be the produ
t preorder ⊗(=,=,=,=,≤).Thanks to Lemma 4.1.8 on page 65, (E,4) is a well-preordered labeled event stru
turewith re�exive and stri
t
ompatibility. Here, there is no internal a
tion, i.e. Στ = ∅.132

6.1. Modeling and veri�
ation of heterogeneous systemsTherefore, we
an use the trun
ation te
hnique to answer the boundedness problem (asdes
ribed in Se
tion 4.3.3).Let us give some details on how the trun
ation algorithm (Algorithm 5.12 on page 123)works based on the lo
al
utting
ontext (< ⋓ ⊇,Cl). It is worth noti
ing that the ad-equate order is the subset order over (lo
al)
on�gurations, i.e. E = ⊆. One mayobtain the answer "yes" whi
h means that the ABP is unbounded without
ompletely
onstru
ting the trun
ation T(E,< ⋓ ⊆,Cl). In other word, any stri
t
ut-o� event isenough to
on
lude the unboundedness. Moreover, the verifying pro
ess
an qui
klyterminate while using depth-�rst-sear
h. That means, in the unfolding algorithm, whenan event e is extended before another event e′, the su

essors of e should be extendedbefore e′ too if these su

essors are not
ut-o� events. In order to do so, we simply imple-ment the possible extension PE (see Algorithm 5.12) as a sta
k based on the prin
iplelast-
ome-�rst-served.
A2AS!0

A2AS!0

A2AS!0

a2bS?0+

b2bS?0

A2BR?0

B2BS!1

B2BS!1 b2aS?1+

a2aS?1 a2aR!1

B2AR?1

b2bS?0 b2bR!0

b2bR!0

a2aR!1
e1 e2

e5 e6

e7 e10

e11

e12 e13

e14 e15

e3

e9

e16

e4

e8

Figure 6.4: Obtained pre�x for boundedness problem of the ABP initialized by s0 =
〈A, a, ε, ε, 0〉.Figure 6.4 illustrates the pre�x of E that is generated by our algorithm. Its eventset is thus a subset of the trun
ation T(E,< ⋓ ⊆,Cl). The lo
al
on�guration of event
e16 is the set ≥(e16) = {e1, e4, e6, e8, e11, e13, e15, e16}, and its marking is M(≥(e16)) =
〈A, a, ε, ε, 2〉. Event e16 is thus a marking-stri
t
uto� event due to the parti
ular event ε,or more pre
isely, due to the empty
on�guration ∅ ∈ Cl, be
auseM(∅) = 〈A, a, ε, ε, 0〉 ≺
〈A, a, ε, ε, 2〉 =M(≥(e16)) (see De�nition 4.3.18 on page 84). Thanks to Theorem 4.3.19,the ABP is unbounded. Hen
e one
an
on
lude that the
ounter
ounting su

essfullytransmitted messages is unbounded too be
ause the sender and the re
eiver have �nite133

Chapter 6. Experimental resultsstates and the two
hannels are bounded.6.1.4 Veri�
ation of lossy FIFOs'
overabilityNow, assume that the two
hannels S2R and R2S may loose messages. There aredi�erent formal models for these lossy
hannels, e.g. the v-initialized lossy FIFO
hannelsover {0, 1} with or without internal a
tions Στ (see De�nition 4.1.2 on page 63 andDe�nition 4.1.3 on page 63). However, for the simpli
ity of the demonstration, weprefer to de�ne lossy FIFO
hannels over {0, 1} as the labeled transition systems FL =
(M∗, !M ∪ ?M,→FL, ε) where M = {0, 1}, and

→FL = {〈w, !m,w′〉 /m ∈M,w,w′ ∈M∗ and w′ 4 w.m}

∪ {〈w′′.m.w, ?m,w′〉 /m ∈M,w,w′, w′′ ∈M∗ and w′ 4 w}In the de�nition above, 4 is the subword order over M∗ (see De�nition 2.2.1 on page 12).The labeled transition system FL intuitively means that the
hannel may loose messagesat the moment of sending or re
eiving a message. In other words, for example, a re
eivingoperation ?m from a word w′′.m.w
onsists of the loss of its pre�x w′′, the normalre
eiving a
tion ?m, and �nally another loss of messages in w. Moreover, one
ould �ndout that the subword order 4 is re�exively
ompatible with the transition relation →FL.Let us use the same labeled transition systems as in the previous se
tion for thesender, the re
eiver, and the
ounter, and denote them respe
tively by LTSS ,LTSR, and
CT. The lossy ABP, denoted by SP, is the syn
hronized produ
t of LTSS ,LTSR,FL,FL,CTw.r.t. the syn
hronization
onstraint ΣSP shown in Table 6.1. One
an easily verify thatthe produ
t preorder 4SP = ⊗(=,=,4,4,≤) is
ompatible with SP with a re�exive andstrong
ompatibility.In the alternating bit proto
ol, the sender
ontinues to transmit a new messageonly if the re
eiver has already re
eived the previous one and has replied by sendingan a
knowledgment. Assume that, in our simple model of the ABP, the old message
orresponds to some
onse
utive messages 0 in the
hannel S2R. The possibility oftransmitting a new message
orresponds thus to the fa
t that the sender's state is B. Inthis
ase, one may obviously dedu
e that, in the
hannel S2R, su
h
onse
utive messages
0 may not be pre
eded by some message 1. Hen
e, all states 〈B, s, 10, w, n〉 where
s ∈ {a, b}, w ∈M∗, n ∈ N, are not rea
hable in SP. For instan
e, the state 〈B, b, 10, ε, 0〉is not
overed in the well-preordered transition system (SP,4SP), i.e. 〈B, b, 10, ε, 0〉 6∈
<SP(post∗

SP
). In the view of ba
kward analysis, it is formulated as the following:

〈A, a, ε, ε, 0〉 6∈ pre∗SP(4SP(〈B, b, 10, ε, 0〉))We will verify this statement based on our forward analysis te
hnique dis
ussed in Se
-tion 4.1.3. Let us de�ne a fun
tion pb : (!M ∪ ?M) ×M∗ → Pf (M∗) su
h that, for all
m ∈M and w′ ∈M∗,

• pb(!m,w′.m) = {w′, w′.m},
• pb(!m,w′) = {w′} if w′ ∈ (M∗ \ (M∗.m)), and
• pb(?m,w′) = {m.w′}.The two �rst properties
orrespond to the sending a
tions !m in the lossy FIFO
hannel

FL above while the last one
orresponds to the re
eiving a
tions ?m where m ∈ M .One
an easily verify that pb is a �nite pred-basis for (FL,4) by De�nition 4.1.13. As a134

6.1. Modeling and veri�
ation of heterogeneous systems
onsequen
e, let us denote RFL = (M∗, !M∪?M,→RFL
, ε) the pb-reverse of (FL,4, pb).We obtain thus

→RFL
= {〈w′.m, !m,w′〉, 〈w′.m, !m,w′.m〉 /m ∈M,w′ ∈M∗}

∪ {〈w′, !m,w′〉 /m ∈M,w′ ∈ (M∗ \ (M∗.m))}

∪ {〈w′, ?m,m.w′〉 /m ∈M,w′ ∈M∗}

= {〈w′.m, !m,w′〉 /m ∈M,w′ ∈M∗}

∪ {〈w′, !m,w′〉 /m ∈M,w′ ∈M∗}

∪ {〈w′, ?m,m.w′〉 /m ∈M,w′ ∈M∗}Here, for the purpose of an easy understanding, we rename the a
tions in RFL byusing ?m ∈ ?M instead of !m ∈ !M and reversely. Then, RFL di�ers from the ε-initialized FIFO
hannel over M , i.e. (M,ε)-FF, only on the re
eption-error transitions
{〈w′, ?m,w′〉 /m ∈ M,w′ ∈ M∗}. These transitions intuitively
orrespond to sendinga
tions of messages that the
hannel loses afterward. Therefore, we asso
iate a simplelabeled event stru
ture that is derived from the {0, 1}-
ausality pro
ess {0, 1}-CP (seeDe�nition 3.3.27) in order to representing RFL. This labeled event stru
ture, denotedby ERFL

, is shown in Figure 6.5.a. The additional events illustrated by double frames
orrespond to re
eption-errors. They are not in
on�i
t with any other events. In ourexample, for simpli
ity, we restri
t re
eption-error events of a given label ?m ∈ ?M to bepairwise
ausal. While
onsidering RFL as a FIFO
hannel like system where its state isa word, messages are inserted at the beginning of the word by sending a
tions, and oneremoves messages at the end of the word by re
eiving a
tions.Let us denote by E!, E?, and E′
? respe
tively the sets of sending events, of (normal)re
eiving events and of re
eption-error events in ERFL

. These event sets are pairwisedisjoint. The marking fun
tionM is then de�ned like in the ({0, 1}, ε)-
ausality pro
ess(De�nition 3.3.27) that formally isM(C) = (ΠW
?M (LW(σ?)))

−1(ΠW
!M (LW(σ!))) where σ!and σ? are respe
tively the linearisations, w.r.t. the
onverse relation ≥ of the
ausality

≤, of (C ∩E!) and (C ∩E?) = (C \E! \E′
?). Re
all that re
eption-errors in RFL do not
hange the
ontent of the
hannel, the marking fun
tionM does not take re
eption-errorsevents E′

? into a

ount. More interestingly, events in E′
? give the strong
ompatibility inthe well-preordered labeled transition system (ER,<).Figure 6.5.b illustrates our labeled event stru
ture ER

FL′ for the pb-reverse of (FL
′,4

, pb) where FL
′ is the labeled transition system modeling the 10-initialized lossy FIFO
hannel over {0, 1}, i.e. FL

′ = (M∗, !M ∪ ?M, 10,→FL). Intuitively, ER
FL′
omes fromthe ({0, 1}, 01)-
ausality pro
ess (see De�nition 3.3.31 on page 49).For the sender LTSS , the re
eiver LTSR, and the
ounter CT, we simply de�ne three�nite pre-basis pbS, pbR, and pbCT respe
tively as follows:

• pbS(l, s) = {s′ / s′
l
−→S s} for all 〈l, s〉 ∈ {A2A,A2B,B2A,B2B} × {A,B},

• pbR(l, s) = {s′ / s′
l
−→R s} for all 〈l, s〉 ∈ {a2a, a2b, b2a, b2b} × {a, b}, and

• pbCT(l, n) = {n′ /n′ l
−→CT n} for all 〈l, n〉 ∈ {+,−} × (N \ {0}),

pbCT(+, 0) = {1}, and pbCT(−, 0) = {0}.It is worth noti
ing that LTSS ,LTSR,CT are all deterministi
 and their dual labeledtransition systems are themselves respe
tively (see De�nition 4.1.12 on page 66). The135

Chapter 6. Experimental results
!0

!0

!0 ?0 !1

?0 !1

!0 ?1 !1

!1

!0

!0 ?0 !1

?1 !1

!0 ?1 !1

?0?0?0
?1?1?1

!0

!0

!0 ?0 !1

?0 !1

!0 ?1 !1

?0

?1

!1

!0

!0 ?0 !1

?1 !1

!0 ?1 !1

?0
?0?0

?1
?1?1

(a)
(b)

Figure 6.5: Labeled event stru
tures modeling the pb-reverse RFL and RFL
′ of lossyFIFO
hannels FL and FL

′ over {0, 1} where: (a) FL is initially empty, and (b) theinitial state of FL
′ is 10.three �nite pre-basis above give rise to these (dual) labeled transition systems by meansof their pb-reverse. For example, the pb-reverse of (LTSS,=, pbS), denoted by RS , isintuitively the well-preordered transition labeled system (LTSS ,=) if one renames a
tionsin RS so that A2B be
omes B2A, and B2A be
omes A2B reversely. Therefore, one mayuse the preordered labeled event tree ES (ER) for representing the pb-reverse RS (RRresp.) (see Se
tion 3.3.1) and any k-
ausality pro
ess CP for representing the pb-reverse

RCT of (CT,≤, pbCT) (see Se
tion 3.3.2).Now, let us de�ne the �nite pre-basis pbSP of the lossy ABP SP su
h that, for all
l = 〈lS , lR, lS2R, lR2S , lCT〉 ∈ ΣSP, s = 〈sS , sR, sS2R, sR2S , sCT〉 ∈ SSP = {A,B}×{a, b}×
(!M ∪ ?M)× (!M ∪ ?M)× {+,−},

pbSP(l, s) = pbS(lS , sS)× pbR(lR, sR)× pb(lS2R, sS2R)×

pb(lR2S , sR2S)× pbCT(lCT, sCT)The pb-reverse RSP of (SP,4SP, pbSP) is �nally a syn
hronized produ
t of the pb-reverses RS , RR, RFL, RFL
′ , and RCT. Moreover, RSP is the indu
ed labeled transitionsystem of a syn
hronized produ
t ESP of ES , ER, ERFL

, ER
FL′ , and ECT. It is worthnoti
ing that, due to the
hange of a
tions' name dis
ussed above, the syn
hronized
onstraint Σ′

RSP
for RSP as well as for ESP that is shown in Table 6.2 slightly di�ersfrom the one for the syn
hronized produ
t SP given in Table 6.1.Thanks to Lemma 4.1.11 on page 66, both (RSP,<SP) and (ESP,<SP) are well-136

6.2. The tool EsuSender Re
eiver FIFO S2R FIFO R2S Counter Ve
tor name
A2A ε ?0 ε ε A2AS?0

A2A ε ε !1 ε A2AR!1

A2B ε ε !1 ε A2BR!1

B2B ε ?1 ε ε B2BS?1

B2B ε ε !0 ε B2BR!0

B2A ε ε !0 ε B2AR!0

ε a2a ε ?1 ε a2aR?1

ε a2a !1 ε ε a2aS!1

ε a2b !1 ε − a2bS!1−
ε b2b ε ?0 ε b2bR?0

ε b2b !0 ε ε b2bS!0

ε b2a !0 ε − b2aS!0−Table 6.2: Syn
hronization
onstraint of the syn
hronized produ
t RSP.preordered with re�exive
ompatibility. Noti
e that the initial state ofRSP is 〈B, b, 10, ε, 0〉.It follows thus from Lemma 4.1.14 that
pre∗SP(4SP({〈B, b, 10, ε, 0〉})) = 4SP(post∗RSP

({〈B, b, 10, ε, 0〉}))

= 4SP(post∗RSP
)Moreover, (ESP,<SP) is
onverse well-preordered labeled event stru
ture with re�exive(strong)
ompatibility, the sub-
overing question
an be answered by using our trun
ationte
hnique for sub-
overability problem (see Se
tion 4.3.2).By using the trun
ating algorithm (Algorithm 5.12 on page 123), we obtain thetrun
ation T = (ESP, (<SP ⋓ D),Cl

ESP
) that is illustrated in Figure 6.6.a. Boxes withdouble frame represent
uto� events, and among them, the ones with dashed frame arere
eption-errors. Experimental result gives 58 rea
hable states that are the marking of all
on�gurations in the trun
ation T. The table in Figure 6.6.b shows all maximal markingsw.r.t. the produ
t preorder <SP as well as
on�gurations in a

ordan
e. Therefore,thanks to Lemma 4.3.9 on page 81, one
an dedu
e that

pre∗SP(4SP({〈B, b, 10, ε, 0〉})) = 4SP(post∗RSP
)

= 4SP(M(CT))Hen
e,
(
4SP(post∗RSP

)
)
∩ {〈A, a,w,w′ , c〉 /w,w′ ∈M∗, c ∈ N}

= (4SP(〈A, a, 01, ε, 0〉)) ∪ (4SP(〈A, a, ε, 0, 0〉))and thus, 〈A, a, ε, ε, 0〉 6∈
(
4SP(post∗R

SP′
)
). It means that, in the lossy ABP SP, one
annever obtain states 〈B, b, 10, ε, n〉, for all n ∈ N, from the initial state 〈A, a, ε, ε, 0〉.6.2 The tool EsuIn order to test appli
ability of the results previously shown, we have developed a model-
he
ker named Esu [esu℄. This tool is implemented in Obje
tive Caml (O
aml) and137

Chapter 6. Experimental results
(a)

B2BR!0

B2BS?1

B2AR!0 b2aS!0− b2bR?0

b2bS!0

A2AS?0

A2AR!1

A2BR!1

A2AS?0 b2bR?0 a2aR?1

a2aS!1

a2bS!1−

A2AS?0

A2AR!1

A2BR!1 b2aS!0− b2bR?0

b2bS!0

B2BS?1

B2BR!0

B2AR!0

B2BS?1 a2aR?1 a2aR?1

a2aS!1

a2bS!1−

B2BS?1

B2BR!0

B2AR!0 a2aR?1

a2aS!1

a2bS!1−

A2AS?0

A2AR!1

A2BR!1

B2BS?1 a2aR?0

A2AS?0

A2AR!1

A2BR!1

B2BS?1

B2BR!0

B2AR!0

e1 e2

e3

e5

e7

e9

e10

e11

e6

e8

e4

(b)Con�guration C M(C)

{e1, e3, e4, e6} 〈A, a, 01, ε, 0〉
{e1, e3, e4, e5, e6, e7, e8, e9, e10} 〈A, a, ε, 0, 0〉

{e1, e3, e4} 〈A, b, 1, ε, 0〉
{e1, e3, e4, e5, e7, e9} 〈A, b, ε, 01, 0〉

{e1, e3, e4, e5, e6, e7, e8} 〈B, a, 0, ε, 0〉
{e1, e3, e4, e5, e6, e7, e8, e9, e10, e11} 〈B, a, ε, 10, 0〉

{} 〈B, b, 10, ε, 0〉
{e1, e3, e4, e5, e7} 〈B, b, ε, 1, 0〉Figure 6.6: Trun
ation for sub-
overability problem of ERSP

where M(∅) =
〈B, b, 10, ε, 0〉: (a) The trun
ation, (b) Maximal markings w.r.t. <SP.
138

6.2. The tool Esupermits the veri�
ation of termination, boundedness and quasi-liveness properties forthe
lass of (in�nite-state) well-stru
tured systems.Systems are modeled in Esu as syn
hronized produ
ts of (heterogeneous)
omponentsin a hierar
hi
al way: a
omponent itself
an be a syn
hronized produ
t of other
ompo-nents. The semanti
s of
omponents is given in terms of labeled event stru
tures. Esuhas three important modules dedi
ated to modeling systems, unfolding (syn
hronizedprodu
ts) and the trun
ation te
hnique respe
tively.Component labeled event stru
tures In fa
t, in the implementation of ourEsu tool,ea
h labeled event stru
ture is represented by an obje
t of a
lass in whi
h Extendis a method and stru
ture variables are instan
e variables (see Chapter 5). The
onstru
t of a syn
hronized produ
t
an be done on the �y, and of
ourse it isnot ne
essary to
onstru
t the
omponents
ompletely in advan
e but they
an be
onstru
ted on demand too.Several standard systems, e.g.
ounter, queue, are prede�ned in Esu by simplyde�ning
on
urrent labeled event stru
tures given in Se
tion 3.3 on page 32. Esufa
ilitates also extensions by new types of
omponents.Unfolding syn
hronized produ
t Due to the
onstru
tive de�nition of the unfolding,a syn
hronized produ
t
an be used as a
omponent in Esu. Hen
e, we asso
iatesyn
hronized produ
ts to a
lass derived from the base
lass for labeled event stru
-tures. In addition, this
lass has an instan
e variable for syn
hronisation ve
tors V(see Se
tion 3.3.4 on page 54). The well-known unfolding te
hnique, more pre
iselyfun
tion Extend for syn
hronization produ
ts [ER99℄, is implemented in this
lass(see Se
tion 5.3 on page 109). In order to extend a pre�x of a syn
hronized prod-u
t, the main part of this fun
tion Extend is
omputing new possible
ombinationsof events in
omponent labeled event stru
tures, and
onsequently, updating V.Trun
ation te
hnique This module
on
erns trun
ation te
hniques given in Chap-ter 4. In fa
t, Algorithm 5.12 on page 123 is implemented with lo
al
utting
ontexts in Se
tion 4.3 on page 78. Esu provides not only M
Millan's and Es-parza's te
hniques [M
M95a, ERV96℄ for bounded Petri nets but also our te
h-niques [HST07℄ for termination, boundedness and quasi-liveness of (in�nite) well-preordered systems (see Se
tion 4.3.3 on page 83).Esu has its own �le format in order to des
ribe input systems. Some details onthis format are given in the next se
tion. In addition, Esu also provides a
onverterthat allows transforming a standard net's �le [pep℄ to Esu's one. As a
ommand-lineprogram, Esu's options give users a versatility
ontrol of what veri�
ation problem tosolve, of what te
hnique to use, and also how the results are reported to users. Thanksto the Graphviz appli
ation [gra℄, Esu permits users to have a graphi
al representationof the generated pre�x.6.2.1 Modeling Petri netsSin
e all experimental results in Se
tion 6.3 are taken for Petri nets, let us detail on howPetri nets are modeled in Esu. As dis
ussed in Se
tion 2.5 and along with this work, weassume that a Petri net is generally a syn
hronized produ
t of n
ounters where n is thenumber of its pla
es. Within Esu, one
an asso
iate any labeled event stru
ture givenin Se
tion 3.3.2 to ea
h pla
e, and the syn
hronization
onstraint
orresponds to the setof the Petri net's transitions. 139

Chapter 6. Experimental resultsHowever, in some Petri nets, for instan
e, the one given in Example 5.4.2 on page 124,the pla
e p2 may not be represented by neither a
ounter nor a k-
ausality pro
ess.Be
ause this pla
e
on
erns the transition b that tests whether p2
ontains a token but�ring b does not
onsume any token on p2. Therefore, when modeling p2 (and also
p4) as a
ounter-like labeled transition system, we need a new a
tion in addition tothe in
rement and the de
rement ones. Formally, the pla
e p2 may be represented bythe labeled transition system P = (N, {+,−, o},→, 1) where → = {〈n,+, n + 1〉, 〈n +
1,−, n〉, 〈n + 1, o, n + 1〉 /n ∈ N}.6 // number of pla
es (
ounters)BP 1 1 // p1P1 1 // p2KP 1 1 // p3P1 1 // p4BP 1 0 // p5BP 1 0 // p65 // number of syn
hronized a
tionsN O - N N N // aN N - O N N // b- N - N + N //
- - N N N + // a'N - N N - + //
'Figure 6.7: An example of Esu's input �leIt is worth noti
ing that this Petri net is 1-safe. As a
onsequen
e, one
an asso
iatenot only some labeled event stru
ture of P but also any labeled event stru
ture of P1 =
P|{0,1} to the pla
e p2. One may realize that the a
tions +,−, o of P1 are pairwise notindependent. Therefore, we simply use the labeled event tree of P1 in order to representthe pla
e p2 as well as the pla
e p4. The Petri net in Example 5.4.2 on page 124 maybe given by the input �le shown in Figure 6.7. The number of pla
es, here 6, is givenin the �rst line and pla
es are separately des
ribed in the 6 following lines. Su
h a linestarts with a type of some prede�ned labeled event stru
ture in Esu, and additionalparameters
ome after this type. In this input �le,

• 'BP b v' stands for the b-bounded pro
esses initialized by v, i.e. (b, v)-BP (see Se
-tion 3.3.2);
• 'P1 v' stands for our labeled event stru
ture for a pla
e that is bounded by 1 andhas initially v token. Re
all that v is either 0 or 1, and 'P1 1'
orresponds to thelabeled event tree of P1 dis
ussed above;
• 'KP k v' stands for the (k, v)-
ausality pro
esses, i.e. (k, v)-CP (see Se
tion 3.3.2).Although these 6 pla
es are all 1-bounded, one may asso
iate di�erent types to a pla
eand obtain �nite pre�xes having the same size. But it is not true when working with Petrinets that are not 1-safe. Some examples and
omparisons will be shown in Se
tion 6.3.2.Moreover, a good
hoi
e for modeling pla
es sometimes avoids or redu
es the redundan
yin the generated pre�x of the syn
hronized produ
t. This phenomenon is detailed in thenext se
tion.140

6.2. The tool EsuThe last 6 lines in the input �le (Figure 6.7) give the number of the Petri net'stransitions and des
ription of these transitions themselves line by line. Ea
h transition,as usual, intuitively
onsists of
omponent a
tions. Noti
e here that the "do nothing"a
tion ε is represented by the
hara
ter N.6.2.2 Redundan
y redu
tionThe advantage of using
on
urrent labeled event stru
tures for
omponents when unfold-ing is that the syn
hronized produ
t not only exploits
on
urren
y between
omponentsbut also the intrinsi

on
urren
y inside ea
h
omponent. As
onsequen
e, the
onstru
t-ing pre�x is hopefully more
ompa
t. However, redundan
y in the syn
hronized produ
tmay
ome from
omponent events that are
on
urrent and have the same label at thesame time. In this
ase, the generated pre�x of the syn
hronized produ
t is usually mu
hbigger than ne
essary. This phenomenon is
alled the auto-
on
urren
y problem [KK03℄.Let us take an example in order to
larify this problem. Figure 6.8.a illustrates abounded Petri net that has three pla
es and three transitions. One
an simply representsits pla
es p1, p2, p3 by using bounded pro
esses as shown in Figure 6.8.b in the left-to-right order respe
tively. Hen
e, the Petri net is represented by the syn
hronized produ
t,denoted by ESP = (E,≤,#,L,M), of these bounded pro
esses w.r.t. to the syn
hro-nization
onstraint Σ = {a, b, c} where a = 〈−,+, ε〉, b = 〈ε,+,−〉, and c = 〈+,−, ε〉.Figure 6.8.
 gives a pre�x
ontaining only 10 events of the syn
hronized produ
t. Letus denote S = {s1, s2, s3, s4, s5, s
′
5, s6, s

′
6, s7, s8}, this pre�x is a

ordingly representedby ESP|S . Re
all that a global event in the syn
hronisation produ
t is nothing but asyn
hronization of
omponent events, hen
e, a global one may be illustrated by a
losed
urve that groups
omponent ones as illustrated in Figure 6.8.b. For instan
e, the
losed
urve labeled s2 means that V(s2) = 〈e1, f2, ε〉; while both global events s′5, s

′
6 have thesame syn
hronization ve
tor, i.e. V(s′5) = V(s′6), and is represented by the same
urve.The bounded pro
ess (2, 0)-BP
orresponding to the pla
e p2
onsists of two boundedpro
ess (1, 0)-BP (see De�nition 3.3.13 on page 38). Intuitively, one distinguishes tokenson p2 so that there are
on
urrent events of the same label in (2, 0)-BP. For example,

f2 is somehow a
opy of f1 and vi
e versa. When
omputing the syn
hronized produ
tby the unfolding te
hnique, f1 and f2 give rises to two di�erent global events labeled
a = 〈−,+, ε〉 that are respe
tively s1 and s2. However, s1 is in
on�i
t with s2 be
ausethey
orrespond to a same event e1 in the �rst
omponent (see De�nition 3.3.39 onpage 54). As a
onsequen
e, the empty
on�guration ∅ = (>(s1)) = (>(s2)) has twoextensions s1, s2, i.e. ∅ ⊢ s1 and ∅ ⊢ s2, that satisfy that L(s1) = L(s2) and s1#s2. Itmeans that the syn
hronized produ
t is redundant by De�nition 3.2.14 on page 32. On
eagain, s2 is a
opy of s1 so that the su

essors of s2 are just redundant dupli
ation of theones of s1. All
on�gurations
ontaining s2 as well as su

essors of s2 may be removedin the global labeled event stru
ture without loss of information up to isomorphism.Let us use the same notation of isomorphism in De�nition 3.2.7 on page 29 for
on�gurations and events. We say that two
on�gurations C and C ′ of a labeled eventstru
ture E are isomorphi
 and write C ≈ C ′ if the two pre�xes E|C and E|C′ areisomorphi
, i.e. E|C ≈ E|C′ . By a same manner, two events e, e′ are isomorphi
, denotedby e ≈ e′ if their lo
al
on�gurations are isomorphi
, i.e. ≥(e) ≈ ≥(e′). In the pre�x
ESP|S , we have 5 pairs of isomorphi
 events: s1 ≈ s2, s3 ≈ s4, s5 ≈ s6, s7 ≈ s8, and
s′5 ≈ s′6. As dis
ussed above, s2 may be intuitively removed from the pre�x ESP|S as wellas the whole labeled event stru
ture ESP and all
on�gurations are still preserved, dueto isomorphism, in E′

SP
= ESP|E\(≤(s2)). Formally, for all
on�gurations C of ESP, there141

Chapter 6. Experimental results
c

ba

• •

p1 p2 p3

+

−
e4

−

+
e3

+

−

+

−

−

+
g2

p1 p2 p3

g1e1
e2

f1

f3

f2

f4

s1

s2
s3

s4

s′5, s
′
6

s5

s6

(a) (b)

a
s1

c
s5

c

a
s2

c c

b
s3

c

b
s4

c
s8

s′5
s6 s′6

s7

(
)
Figure 6.8: Redundan
y illustration: (a) a bounded Petri net, (b) bounded pro
essesmodeling its three pla
es, and (
) a pre�x of the syn
hronized produ
t of these boundedpro
esses w.r.t. the Petri net's transitions.exits a
on�guration C ′ of E′

SP
su
h that C ≈ C ′. Therefore, in order to verify de
idableproblems given in Se
tion 4.3, one intuitively prefers the
ompa
t pre�x ESP|S′ where

S′ = {s1, s3, s5, s
′
5, s7} than the pre�x ESP|S .Moreover, the pre�x ESP|S′ still
ontains redundan
y be
ause of the extensions s5and s′5 of the
on�guration {s1, s3}. Re
all that the linearisations of events' labels in ESP
orrespond to �ring sequen
es of the indu
ed labeled transition system of ESP. Considernow the two
on�gurations {s1, s3, s5} and {s1, s3, s

′
5}. The �rst one give rise to labellinearisations LW({s1.s3.s5, s1.s5.s3, s3.s1.s5}) = {abc, acb, bac} while the se
ond one
orresponds only to label linearisations LW({s1.s3.s

′
5, s3.s1.s

′
5}) = {abc, bac}. Therefore,in order to redu
e redundan
y, one would rather keep s5 than s′5 be
ause one will loosethe label linearisation acb when removing s5. The pre�x ESP|{s1,s3,s5} is intuitively more
ompa
t than the one ESP|{s1,s3,s′5}

. These pre�xes di�er only on whether the
ausalitybetween events labeled a and c exists. We say that ESP|{s1,s3,s′5}
is a sub-linearisation of

ESP|{s1,s3,s5}.De�nition 6.2.1. Let E = (E,≤,#,L,M) and E′ = (E′,≤′,#′,L′,M′) be two labeledevent stru
tures. We say that E is a sub-linearisation of E′ and write E . E′ if E isisomorphi
 with some labeled event stru
ture (E′,≤′′,#′,L′,M′) where the relation ≤′′is an extension of the
ausality ≤′, i.e. (≤′) ⊆ (≤′′).A
on�guration C is a sub-linearisation of another one C ′, denoted by C . C ′, if the
C-pre�x E|C is a sub-linearisation of the C ′-pre�x E|C′ .Let us return to the idea of our te
hnique for redu
ing redundan
y. That is, givena labeled event stru
ture E = (E,≤,#,L,M), trying to remove some event as well as142

6.2. The tool Esuits su

essors while preserving label linearisations of E. Su
h an event r is
alled anuseless event w.r.t. E. Then, one may
ontinue by removing another useless event r′w.r.t. E|E\≤(r), and so on. The �nal labeled event stru
ture as well as all intermediateones, denoted by E′, must satisfy that, for all
on�gurations C ∈ CE, there exists a
on�guration C ′ ∈ CE′ su
h that C . C ′. The obtained labeled event stru
ture E′is mu
h more
ompa
t than E, and has possibly no redundan
y. In pra
ti
e, when Eis
onstru
ted using the unfolding te
hnique, su

essors of an useless r event may beavoided by not extending r.Noti
e that CE|E\≤(r)
= CE \ {C ∈ CE / r ∈ C}, hen
e an event r is useless if for all

C ∈ CE satisfying r ∈ C, there exists a
on�guration C ′ ∈ CE su
h that r 6∈ C ′ and
C . C ′. This
ondition is usually guaranteed by the existen
e of another event e ∈ Ethat is, for instan
e, isomorphi
 and in
on�i
t with r. In the pre�x ESP|S above, one
an take r = s1, e = s2 as an example. Formally,

CE = {C ∈ CE / e, r 6∈ C} ∪ {C ∈ CE / e ∈ C} ∪ {C ∈ CE / r ∈ C}It follows from the
on�i
t between e and r that they
an not be found in any given
on�guration. As a
onsequen
e, the three subsets above are pairwise disjoint. In order todetermine whether r is useless, one needs to verify if
on�gurations in {C ∈ CE / r ∈ C}are sub-linearisations of
on�gurations in {C ∈ CE / e ∈ C}. We will show that this
ondition is guaranteed in
oherent labeled event stru
tures and one does not have to
ompute the set of the
on�gurations
ontaining r as well as the ones
ontaining e thatare usually in�nite.However, when r is useless due to e, in general, e is also useless due to r. The di�
ultpoint here is to de�ne whi
h event to remove. In order to integrate our te
hnique forredu
ing redundan
y into the unfolding te
hnique, we naturally use the total order E inwhi
h events are inserted into or extended in the
onstru
ting pre�x. This order E isa linear extension of the
ausality ≤ and is useful to break the symmetry of the notion'useless'. Let us return ba
k to the example in Figure 6.8. Suppose that s2 is
omputedafter s1, i.e. s1 ⊳ s2, one
an simply noti
e that s2 is redundant and will not extend s2.And as a
onsequen
e, the obtained pre�x does not
ontain su

essors of s2. However,it is worth noti
ing that useless events
an not be independently removed. Be
ause, anaive solution su
h as removing both s2 and s3 due the existen
e of s1 and s4 satisfying,for instan
e s1 ⊳ s2 and s4 ⊳ s3, may result in losing some label linearisations. In su
h a
ase, the pre�x E|{s1,s4} as well as E|E\(≤({s2,s3}))
ontains no
on�guration C su
h thateither the
on�guration {s1, s3} or the
on�guration {s2, s4} is its sub-linearisation. Asa
onsequen
e, the label linearisations ab and ba that are �ring sequen
es of the indu
edlabeled transition system are not preserved. The reason for this '
ounter-example' isthat, after removing s2, in the pre�x E|E\(≤(s2)), s4 is useless due to s3 but not in thereverse sense. Therefore, as stated in the following de�nition, the determination of auseless event not only depends on another event e, but is also based on some E′-pre�x
ontaining e. As we will see later, this E′-pre�x is the
onstru
ting pre�x manipulatedby the unfolding algorithm and does not
ontain any other useless event.De�nition 6.2.2 (E-redundan
e). Let E = (E,≤,#,L,M) be a deterministi
 labeledevent stru
ture E = (E,≤,#,L,M), and let E be a linear extension of the
ausality ≤.Given a downward-
losed set of events E′ ⊆ E, let us denote E′ the E′-pre�x of E. Anevent r ∈ E is E-redundant w.r.t. E′ if there exists another event e ∈ E′ su
h that1. e ⊳ r,2. L(e) = L(r), 143

Chapter 6. Experimental results3. e#r,4. (>(e)) ⊆ (>(r)) ⊆ E′, and5. for all f ∈ (⊲(r) ∩ E′), f#e implies f#r.For simpli
ity, De�nition 6.2.2
on
erns only deterministi
 labeled event stru
turessu
h that their indu
ed labeled transition systems are also deterministi
 (see Lemma 3.2.5on page 29). For non-deterministi
 and well-preordered ones,
onditions for the markingfun
tionM are needed. This is a subje
t of future work.The advantages of applying E-redundan
e de�nition in pra
ti
e
ome from its sim-pli
ity. As mentioned above, sin
e E is the insertion order or extending order of eventsin the
onstru
ted pre�x, one has to look for r only on the part of the labeled eventstru
ture that has already been built, formally represented by the E′-pre�x. The se
ond
ondition is easy to verify while the third and the �fth
onditions take only the
on-�i
t relation into a

ount. So there is no need to
ompute global
on�gurations. Thisis in line with the partial-order idea of the unfolding te
hnique. The fourth
onditionof E-redundant event does not mean that e and r are isomorphi
. This restri
tion re-du
es somehow the number of useless events that may be de�ned as E-redundant inour te
hnique (see Se
tion 6.3.2). We restri
t to two parti
ular
ases that are when
(>(r)) = (>(e)) and when (>(r)) ⊃ (>(e)). These two disjoint
ases
ould be found inthe example in Figure 6.8. For instan
e, e = s1, r = s2 and (>(s1)) = (>(s2)) = ∅; or
e = s5, r = s′5 and (>(s5)) = {s1} ⊂ {s1, s3} = (>(s′5)).The main idea of E-redundant events is that they are useless. As in the trun
ationte
hnique (see Chapter 4), they form somehow a frontier between their su

essors and theother events,
alled non-E-redundant events. By keeping only non-E-redundant events,one obtains a
ompa
t pre�x that preserves needed information for veri�
ation and maybe formally de�ned as follows:De�nition 6.2.3. Let E = (E,≤,#,L,M) be a deterministi
 labeled event stru
tureand let E be a linear extension of the
ausality ≤. An E′-pre�x E′ of E, where E′ is adownward-
losed subset of E w.r.t. ≤, is
alled a pre�x without E-redundant event if

• for all e ∈ E′, e is not E-redundant w.r.t. E′, and
• for all e ∈ Min≤(E \E′), e is E-redundant w.r.t. E′.Lemma 6.2.4. Let E = (E,≤,#,L,M) be a deterministi
 labeled event stru
ture andlet E be a linear extension of the
ausality ≤. E has an unique pre�x without E-redundantevent.Proof. We �rst prove by
ontradi
tion the uniqueness of the pre�x without E-redundantevent. Suppose that there exists two di�erent pre�xes without E-redundant event E′and E′′. Let E′ and E′′ respe
tively denote their sets of events. Observe that E′ and

E′′ are downward
losed w.r.t. ≤, moreover, sin
e these sets are not the same, the set
X = (E′ \E′′)∪ (E′′ \E′) is not empty. Let r be the minimal event of X w.r.t. the totalorder E. Without loss of generality, assume that r ∈ E′, and
onsequently, r 6∈ E′′. Itfollows from the
hoi
e of minimal event r that (>(r)) is a subset of both E′ and E′′,and at the same time, (⊲(r)) ∩ E′ = (⊲(r)) ∩ E′′. Hen
e, r is E-redundant w.r.t. E′′be
ause r ∈ Min≤(E \ E′′), and more pre
isely, it is due to some event e ∈ (⊲(r) ∩E′′).Event r is therefore also E-redundant w.r.t. E′ be
ause e ∈ E′. This
ontradi
ts to thefa
t that r ∈ E′. Therefore, we have E′ = E′′ and the two pre�xes E′ and E′′ are thesame.Now, we will prove the existen
e of a pre�x of E without E-redundant event. Let P bethe set of E′-pre�xes of E, here E′ ⊆ E, satisfying that for all events e ∈ Min≤(E \E′):144

6.2. The tool Esu
• e is E-redundant w.r.t. the E′-pre�x of E 1, and
• for every E-redundant event f ∈ E′ w.r.t. the E′-pre�x of E, e ⊳ f .

P is not empty be
ause it
ontains, of
ourse, E. Noti
e that the set of all pre�xes of Eis partially ordered w.r.t. the in
lusion order over their event sets, and moreover, everytotally ordered subset of them admits a greatest lower bound. It is straightforward that
P is too. Let us de�ne a fun
tion F from P to the set of pre�xes of E as follows: forevery pre�x E′ ∈ P, let E′ denote its event set,

F(E′) =






E′ if E′
ontains no E -redundant event w.r.t. E′the (E′ \ (≤(f)))-pre�x of E′, where
f = MinE{r ∈ E′ / r is E -redundant w.r.t. E′}, otherwise.It dire
tly follows from the se
ond property of pre�xes in P and the
hoi
e of the minimal

E-redundant event f in the de�nition of F that F(E′) ∈ P for all E′ ∈ P, i.e. F : P→ P.Moreover, F(E′) is a pre�x of E′ and hen
e is always smaller than or equal to E′ w.r.t.the in
lusion order over event sets. Therefore, F has a �xed point. It means thatthere exists a pre�x E′ ∈ P satisfying F(E′) = E′. On
e again, by de�nition of F andthe set P, one
an dedu
e that this pre�x E′ is a pre�x without E-redundant eventby De�nition 6.2.3.Let NR(E,E) denote the event set of the pre�x without E-redundant event of E. Thisset is downward-
losed w.r.t. the
ausality order ≤. The NR(E,E)-pre�x of E may begenerated by an algorithm that is slightly di�erent from the unfolding one (Algorithm 5.1on page 89) as below.Algorithm 6.1: Unfolding algorithm with redundan
y redu
tion1 begin2 (Ê,PE) := Init()3 while PE 6= ∅ do4 take an event e in PE5 i f isRedundant(Ê,PE, e) then6 PE := PE \ {e}7 Ê := RemoveEvent(Ê, e)8 else9 (Ê,PE) := Extend(Ê,PE, e)10 end if11 end while12 endIn Algorithm 6.1, there are two additional fun
tions: isRedundant and RemoveEvent.The �rst one is an implementation of De�nition 6.2.2 while the se
ond one simply removesa E-redundant event e from both extension set PE and the
onstru
ted pre�x Ê. In thisway, E-redundant events are removed and will not be extended. As a
onsequen
e, thepre�x Ê at the end of the main loop (lines 3-11) is exa
tly the NR(E,E)-pre�x of E. Inthe implementation of this algorithm, we simply de�ne E as the extending order thatdepends on the
hoi
e of event in line 4. Hen
e, it is worth noti
ing that when
alling1This
orresponds to the se
ond item in De�nition 6.2.3. 145

Chapter 6. Experimental results
isRedundant(Ê,PE, e), e is the maximal event, w.r.t. E, in (Ê \ PE) ∪ {e}, and at thesame time, is the minimal event, w.r.t. E, in PE. So that, for the �fth property of
E-redundant event in De�nition 6.2.2, we have (⊲(e) ∩ E) = (Ê \ PE).Let us give some more details on the fun
tion isRedundant in Algorithm 6.2. The set
X in line 2
ontains all events satisfying the �rst and fourth properties in De�nition 6.2.2.The loop's
ondition at lines 4 restri
ts to events e′ in X that has a same label as e. Itrespe
ts the se
ond property. The third and the last ones are handled by the test inline 5. The fun
tion terminates and returns true whenever an event e′ satis�es this test.Otherwise, it �nally returns false (line 9).Algorithm 6.2: Fun
tion isRedundant determines whether e is E-redundant by De�ni-tion 6.2.2 where E is the order of extending events in the unfolding algorithm by default.1 fun
tion isRedundant(Ê,PE, e)2 begin3 X := {e′ ∈ (Ê \ PE) / (>̂(e)) ⊆ (>̂(e′))}4 for ea
h e′ ∈ {e′ ∈ X / L̂(e′) = L̂(e)} do5 i f e′ #̂ e and (#̂(e′) \ PE) ⊆ (#̂(e) \ PE) then6 return true7 end if8 end for9 return false10 endProposition 6.2.5. Let E = (E,≤,#,L,M) be a deterministi
,
oherent, and �nitely-bran
hing labeled event stru
ture and let E be a linear extension of the
ausality ≤.For every
on�guration C ∈ CE, there exists a
on�guration C ′ ∈ CE that
ontains no
E-redundant event, i.e. C ′ ⊆ NR(E,E), andM(C) =M(C ′).Proof. Let us de�ne an order EC on CE by: for all
on�guration C,C ′ ∈ CE, let land l′ be respe
tively the linearisations of C and C ′ w.r.t. the total order E, C EC

C ′ if l is lexi
ographi
ally smaller than or equal to l′ w.r.t. E. It follows from theimportant property of lexi
ographi
al orders that the well-foundedness and totality of Eare preserved. It means that EC is also a well-founded and total order over CE.Therefore, for every
on�guration C ∈ CE, the set {C ′ ∈ CE /M(C ′) = M(C)} iswell-founded and admits a minimal
on�guration w.r.t. EC. We will prove that theminimal
on�guration Cm w.r.t. EC of the set {C ′ ∈ C(E) /M(C ′) =M(C)}
ontainsno E-redundant event, so that Cm ⊆ NR(E,E).Let us prove this by
ontradi
tion, i.e. assume that Cm 6⊆ NR(E,E), and let r =
MinE(Cm\NR(E,E)). Be
ause E is a linear extension of the
ausality≤, for all e ∈ (>(r)),we have that e ⊳ r, and
onsequently, (>(r)) ⊆ NR(E,E). Hen
e r ∈ Min≤(E \NR(E,E))and we get from De�nition 6.2.3 that r is a E-redundant event w.r.t. the NR(E,E)-pre�x of E and to some event e ∈ NR(E,E). Let us denote C− = (⊲(r) ∩ Cm) and
C+ = (⊳(r) ∩ Cm). We have thus C− and C+ are disjoint and Cm = C− ∪ C+ ∪ {r}.Moreover, it holds that C− ⊆ NR(E,E).It follows from the de�nition of E-redundant event (De�nition 6.2.2) that:1. e ⊳ r,146

6.2. The tool Esu2. L(e) = L(r).3. e#r. That implies e 6∈ Cm and hen
e e 6∈ C−.4. (>(e)) ⊆ (>(r)), and
onsequently, (>(e)) ⊆ C−. Be
ause, on the one hand, ofthe downward-
losed property, w.r.t. the
ausality ≤, of Cm that (>(r)) ⊆ Cm,and on the other hand, of the linear extension E of ≤ that (>(r)) ⊆ (⊲(r)).5. for all f ∈ (⊲(r) ∩ NR(E,E)), f#e implies f#r. Observe that C− ⊆ (⊲(r) ∩
NR(E,E)). Sin
e (C−∪{r}) ⊆ Cm, we get that r is in
on�i
t with no event in C−.Therefore, e is in
on�i
t with no event f ∈ C−.By
ombining the last three properties above, one obtains that e is an extension eventof C−, i.e. C− ⊢ e. More pre
isely, (C− ∪{r}) . (C− ∪ {e}). Due to the restri
tion thatthe indu
ed labeled transition system is deterministi
, M(C− ∪ {r}) = M(C− ∪ {e}).Thanks to Lemma 3.2.10 on page 30, it follows from the
oheren
y of E that the twosu�xes of E based on the
on�gurations (C− ∪ {r}) and (C− ∪ {e}) give rise to thesame set of markings. In other words, there exists a
on�guration C ′

m ∈ CE su
h that
(C− ∪ {e}) ⊆ C ′

m andM(Cm) =M(C ′
m).Sin
e f ⊲r⊲e for all f ∈ C+, we have thus C ′

m ⊳CCm by de�nition. This
ontradi
tsto the minimality of Cm. Therefore, the assumption above is not true, and
onsequently
Cm
ontains no E-redundant event.A
onsequen
e of Proposition 6.2.5 is that the NR(E,E)-pre�x of E preserves informa-tion for verifying problems based on
overability (see Se
tion 4.3.2) on E. This te
hniquefor redu
ing redundan
y is well adapted to the trun
ating te
hnique (see Chapter 4) when
EC is a linear extension of the adequate order over
on�gurations. One only needs to
ompute the pre�x E|NR(E,E)) of E that
ontains no E-redundant event and trun
ate itafterward. The �nal pre�x preserves all markings of E. Intuitively, as shown in the proofof Theorem 4.2.14 as well as of Proposition 6.2.5, the key here is that marking of a
on-�guration C is preserved by another
on�guration C ′ ⊳CC whenever C
ontains a
uto�event or a E-redundant event. Thanks to the well-foundedness of EC and the adequateorder, it gives rise to a
on�guration in the pre�x that
ontains neither a E-redundantevent nor a
uto� event.Re
all that the adequate order used in de�nition of
ut-o� events for
es that su

es-sors of a
ut-o� event are also
ut-o� ones. Hen
e,
ut-o� events form an upward-
losedset w.r.t. the
ausality. We also aim at giving another de�nition of E-redundan
y basedon some improved order E satisfying the adequate property. In su
h a
ase, su

essorsof E-redundant events are also E-redundant events, and that may make our te
hniquefor redu
ing redundan
y more e�
ient. However, the existen
e of su
h a total order
E, said total adequate order, is still an open problem for trun
ating te
hnique as statedin [ERV96℄.It is worth noti
ing that our te
hnique for redu
ing redundan
y improves substan-tially the trun
ating te
hnique. Be
ause in many
ases, E-redundant events may notbe seen as
ut-o� events whatever adequate order is used (see Se
tion 4.2.3). However,they may be safely removed when
onsidering the
on�i
t relation in addition as in Def-inition 6.2.2. For example, as illustrated in Figure 6.8, two isomorphi
 events s1 and
s2
an not be
ut-o� events, but one of these events may be removed be
ause of the
E-redundan
y. Experimental results may be found in Se
tion 6.3.2.Let us return to De�nition 6.2.2. If one modi�es it so that an event r is E-redundantevent w.r.t. a
on�guration C ⊆ (⊲(r) ∩NR(E,E)) in the pla
e of another event e, then147

Chapter 6. Experimental resultsProposition 6.2.5 still holds. Noti
e that the lo
al
on�guration ≥(r) must be a sub-linearisation of su
h a
on�guration C (see De�nition 6.2.1) and r must be in
on�i
t withsome event in C. This idea
oin
ides with the one of trun
ating te
hnique used in Pep.In other words, like
utting
ontexts for
uto� events, E-redundant property of eventsmay based on the purely lo
al
utting
ontext or some arbitrary one (see Se
tion 4.2).However, in De�nition 6.2.2, we restri
t to a simple
ase where C = ((>(r)) ⊢ e) forsome event e satisfying L(e) = L(r) and e#r. This avoids to
ompute the
on�gurationsin E|⊲(r)∩NR(E,E)
when determining whether an event r is E-redundant, and respe
ts wellthe partial-order idea.Last but not least, there is a
hallenge to go further by giving some redundant
rite-rion based on the global
utting
ontext. That means a
on�guration is somehow uselessdue to another one so that we
an remove redundant events while keeping all
on�gu-rations by means of isomorphism or the sub-linearisation relation (De�nition 6.2.1). Asseen in the proof of Proposition 6.2.5, when a
on�guration C
ontains a E-redundantevent r w.r.t. another event e, the
on�guration (C− ∪ {r}) = (⊲(r) ∩ NR(E,E)) ∪ {r}is a sub-linearisation of the
on�guration (C− ∪ {e}). One may hope that C is a sub-linearisation of another
on�guration C ′ su
h that (C−∪{e}) ⊆ C ′ afterward. Formally,if C . D then for every
on�guration C ′ extended from C, i.e. C
 C ′, there exists a
on�guration D′ extended from D, i.e. D
 D′ su
h that C ′ . D′ (*). However, it is nottrue. The reason is that the sub-linearisation relation in De�nition 6.2.1 is not preservedin general w.r.t. the extension relation
 (see Se
tion 3.1.2).

−

+

+

−
f3

−
f2

+

−

+
g2

(1, 1)-BP (2, 1)-BP (1, 1)-BP

e1

e2

f1

f4

g1

s1

s2

s6, s7

s3

s4

s5

(a)
a

s1

b
s6

b
s2

a
s3

c
s5

c

b

s4

s7

(b)

Figure 6.9: Sub-linearisation relation over
on�gurations is not preserved by the exten-sion relation: (a) the three
omponents, and (b) a pre�x of the syn
hronized produ
tw.r.t. the syn
hronization Σ = {a, b, c} where a = 〈−,+, ε〉, b = 〈ε,−, ε〉, c = 〈ε,+,−〉.Figure 6.9 gives an
ounter-example of the statement (*) above as a
ase study forour future work. In the pre�x of the syn
hronization produ
t of the three
omponents
(1, 1)-BP, (2, 1)-BP, and (1, 1)-BP, the
on�guration C = {s2, s3} is a sub-linearisationof the
on�guration D = {s1, s2}, i.e. C . D. Be
ause there is no
ausality between s1and s2. Intuitively, the �rst
on�guration
orresponds only to the label linearisation bawhile the se
ond one
orresponds to both the label linearisations ab and ba. Considernow the
on�guration C ′ = {s2, s3, s4} that is extended from the
on�guration C, i.e.
C
 C ′. This
on�guration C ′ gives two label linearisations that are bac and cba.However, one
an not �nd any
on�guration that
ontains both s1 and s2, and gives atleast the same label linearisations as the
on�guration C ′ at the same time. Formally,there is no
on�guration D′ su
h that D
 D′, i.e. {s1, s2} ⊆ D′, and C ′ . D′.148

6.3. Experiment results on Petri netsThis
ounter-example intuitively shows the reason that the NR(E,E)-pre�x of E onlypreserves markings of E as stated in Proposition 6.2.5, and not its label linearisations, orin other words, not the �ring sequen
es of the indu
ed labeled transitions system LTS
Eof E. Suppose here that s1 ⊳ s2 ⊳ s3 ⊳ s4 ⊳ s5 ⊳ s6 ⊳ s7. When applying our te
hnique,the obtained pre�x will not
ontain the E-redundant event s3 due to the existen
e of s1.In other words, the label linearisation cba will not be generated from su
h a pre�x. Butthis is not a problem for veri�
ation of rea
hability-based properties.Our te
hnique for redu
ing redundan
y dis
ussed above is implemented in Esu andsome experimental results will be shown in Se
tion 6.3.2.6.3 Experiment results on Petri netsIn order to evaluate the bene�ts of our approa
h we have experimented Esu on somewell-known examples and
ompared with two tools for Petri nets: the Pep environmentwhi
h provides an unfolding tool for bounded Petri nets [GB96, pep℄, and Tina whi
hanalyzes arbitrary Petri nets using stru
tural analysis te
hniques and forward Karp-Miller rea
hability analysis [BRV04, tin℄. The exe
ution times in our experimental resultsare obtained on an Intel(R) Pentium(TM) 1.2GHz, with 1GB memory.6.3.1 1-safe Petri netsTable 6.3 shows our experimental results as well as the one obtained by using PEPtools [GB96, pep℄ on various one-safe Petri nets. These ben
hmark examples are
olle
tedby Corbett, M
Millan, Melzer, Merkel and Römer, and detailed des
ription
an be foundin [Kho03, Cor96, MR97℄. In the table, the
olumns S and T respe
tively refer to thenumber of pla
es and the number of transitions of the Petri nets; while the
olumns E and

Ecf represent the numbers of events and of
uto�-events of the trun
ation, respe
tively.The last
olumn named T(s) gives the exe
ution time in se
onds. When the trun
ationmay not be
omputed within 1 minute, we mark the exe
ution time by −.Table 6.3: Experimental results on one-safe Petri nets.Pep EsuProblem (size) S T E Ecf T(s) E Ecf T(s)Cy
li
 (3) 23 17 23 4 0.00 23 4 0.00Cy
li
 (6) 47 35 50 7 0.00 50 7 0.02Cy
li
 (9) 71 53 77 10 0.00 77 10 0.06Cy
li
 (12) 95 71 104 13 0.00 104 13 0.11DAC (6) 42 34 53 0 0.00 53 0 0.00DAC (9) 63 52 95 0 0.00 95 0 0.02DAC (12) 84 70 146 0 0.00 146 0 0.06DAC (15) 105 88 205 0 0.01 206 0 0.12DME (2) 135 98 122 4 0.01 122 4 0.15DME (3) 202 147 321 9 0.06 321 9 0.62DME (4) 269 196 652 16 0.18 652 16 2.17DME (5) 336 245 1145 25 0.51 � � �DP (6) 36 24 96 30 0.00 96 30 0.02DP (8) 48 32 176 56 0.01 176 56 0.05DP (10) 60 40 280 90 0.01 280 90 0.12DP (12) 72 48 408 132 0.02 408 132 0.22 149

Chapter 6. Experimental results Pep EsuProblem (size) S T E Ecf T(s) E Ecf T(s)DPD (4) 36 36 296 81 0.01 296 81 0.11DPD (5) 45 45 790 211 0.06 790 211 0.58DPD (6) 54 54 1892 499 0.34 1892 499 3.32DPD (7) 63 63 4314 1129 3.14 � � �DPFM (2) 7 5 5 2 0.00 5 2 0.00DPFM (5) 27 41 31 20 0.00 31 20 0.00DPFM (8) 87 321 209 162 0.00 209 162 0.06DPH (4) 39 46 336 117 0.01 533 207 0.25DPH (5) 48 67 1351 547 0.13 2949 1389 5.83DPH (6) 57 92 7231 3377 6.90 � � �Elevator (1) 63 99 157 59 0.00 157 59 0.07Elevator (2) 146 299 15 0 0.00 827 331 1.19Elevator (3) 327 783 3895 1629 1.21 3895 1629 36.79Furna
e (1) 27 37 326 189 0.21 394 235 0.09Furna
e (2) 40 65 3110 1989 1.21 4980 3331 7.83Furna
e (3) 53 99 20759 13826 28.19 � � �GasNQ (2) 71 85 164 45 0.01 169 46 0.08GasNQ (3) 143 223 1191 399 0.10 1301 437 3.29GasQ (1) 28 21 15 2 0.00 21 4 0.00GasQ (2) 78 97 164 53 0.00 173 54 0.08GasQ (3) 284 475 1262 486 0.10 1297 490 5.58GasQ (4) 1428 2705 9853 3986 15.05 � � �Hartstone (25) 127 77 102 1 0.00 102 1 0.07Hartstone (50) 252 152 202 1 0.01 202 1 0.42Hartstone (75) 377 227 302 1 0.04 302 1 1.36Hartstone (100) 502 302 402 1 0.08 402 1 3.09MMGT (1) 50 58 58 20 0.00 58 20 0.01MMGT (2) 86 114 643 259 0.03 1178 493 2.00Over (2) 33 32 35 8 0.00 41 10 0.01Over (3) 52 53 187 53 0.00 296 81 0.18Over (4) 71 74 807 243 0.05 1556 495 3.17Over (5) 90 95 3846 1288 1.89 � � �Ring (3) 39 33 47 11 0.00 47 11 0.01Ring (5) 65 55 166 36 0.00 167 37 0.08Ring (7) 91 77 403 79 0.02 403 79 0.32Ring (9) 117 99 795 137 0.08 795 137 1.31RW (6) 33 85 397 327 0.00 397 327 0.06RW (9) 48 181 4627 4106 0.02 4627 4106 2.24Sentest (25) 104 55 216 40 0.02 223 39 1.23Sentest (50) 179 80 241 40 0.02 248 39 1.23Sentest (75) 254 105 266 40 0.02 273 39 1.23Sentest (100) 329 130 291 40 0.03 298 39 2.15Sin
e these Petri nets are all one-safe, we model most of them by syn
hronizedprodu
ts of 1-bounded pro
esses. However,
ertain examples may not be presentedbased on bounded pro
esses, and we simply
hoose the appropriate labeled event treeas dis
ussed in Se
tion 6.2.1. The examples' name are shown in itali
 in Table 6.3. For150

6.3. Experiment results on Petri netsthis �rst implementation, our Esu tool has not mu
h amelioration yet, the
omputationtime is little slow when
omparing with Pep. Observe that Pep has integrated someadvan
ed te
hniques for the unfolding pro
ess, for instan
e, an improved stru
ture ofthe queue of possible extension as well as an optimized routine for generating possibleextensions in the unfolding algorithm. Hen
e, Pep
an a
hieve signi�
ant speed up.We use the Esparza and Römer's adequate order [ERV96℄ for determining the trun-
ation. In many
ases, Pep and Esu give trun
ations of the same size and the samenumber of
uto� events. However, it is worth noti
ing that the
utting
ontext used inPep di�ers from the lo
al
utting
ontext used in Esu. In Pep, a
ut-o� event is de�nedbased on a
on�guration that may not be a lo
al one. As a
onsequen
e, one
an �ndout more
ut-o� events and the generated pre�x is more
ompa
t. Experimental resultsindi
ates well this fa
t. For instan
e, Esu gives a trun
ation twi
e bigger than the oneobtained by Pep on example 'Over (3)', and explodes on example 'Over (4)'. We havealso observed that the version of Pep used in these experiments does not always produ
e
orre
t results, for example, in the
ase of 'Elevator (2)'.6.3.2 General bounded Petri netsWe have then tested Esu on some parameterized,
on
urrent and produ
tion systemsthat are modeled by Petri nets. Our
ase studies
onsist of
• Central Server Model (CSM) [MBC+95℄,
• Continuous Transportation (CTS) [MBC+95℄,
• Flexible Manufa
turing System (FMS) [CM97℄,
• Kanban [CM97℄,
• Mutual Ex
lusion
• Multi poll [MC99℄, and
• Mesh 2x2 [MBC+95℄.In Table 6.4, K de�nes the initial number of resour
es, i.e. number of tokens inparameterized pla
es of these Petri nets, representing the systems; E (resp. Ecf , N , M)denotes the number of events in the trun
ation (resp.
uto� events, nodes in Tina'srea
hability tree, markings
omputed by Tina), and a `�' means that the analysis didnot �nish within 10 minutes.As explained in Se
tion 6.2.2, when unfolding Petri nets whi
h are not one-safe, i.e.

K > 1, the trun
ation may
ontains many redundant events due to the auto-
on
urren
yproblem. This redundan
y does not have too mu
h in�uen
e on CSM and Multi Pollbe
ause tokens obtained by redundant events will be separately unfolded. In otherexamples, e.g. FMS, Kanban or Mesh 2x2, sin
e there are
ombinations of these tokensafterward, the size of
onstru
ted unfolding explodes very qui
kly.Thanks to the te
hnique for redu
ing redundan
y implemented in Esu, one
an ob-serve that trun
ations
omputed by Esu are smaller than or equal to the ones
omputedby Pep, w.r.t. the number of events E. This redundan
y is entirely eliminated on theMutual Ex
lusion and the Swimming Pool. However, redundan
y in the unfolding
annot be avoided in other
ases, e.g. Mesh and Kanban. It is worth noti
ing that the resultsin Table 6.4 are obtained while using the M
Millan trun
ation te
hnique. The Esparza,Römer and Vogler's one is more advantageous only on Mesh 2x2. By
ombining withour te
hnique for redu
ing redundan
y, for K = 2 in Mesh 2x2, Esu gives a trun
ation
ontaining 2481 events of whi
h 1280 events are
ut-o�, i.e. |E| = 2481, |Ecf | = 1280,after 4.58 se
onds. 151

Chapter6.E
xperimentalr

esults

Pep Tina EsuExample K E Ecf T(s) M N T(s) E Ecf T(s)CSM 2 75 23 0.00 76 208 0.00 29 9 0.00CSM 5 180 66 0.00 584 2264 0.00 64 20 0.02CSM 10 605 231 0.02 3564 16224 0.06 121 37 0.08CSM 40 8405 3321 5.33 183844 961684 12.13 456 132 5.61FMS 1 81 19 0.00 120 345 0.00 32 7 0.00FMS 2 26668 10204 84.35 3444 16311 0.06 585 124 0.54FMS 3 � � � 48590 297382 2.84 � � �Kanban 1 31 9 0.00 160 616 0.00 31 9 0.00Kanban 2 58824 22946 575.47 4600 28120 0.10 8827 2127 44.83Mutual Ex
lusion 5 120 100 0.00 3 4 0.00 4 2 0.00Mutual Ex
lusion 10 440 400 0.00 3 4 0.00 4 2 0.00Mutual Ex
lusion 40 6560 6400 0.10 3 4 0.00 4 2 0.00Mesh 2x2 1 48 16 0.00 1881 7776 0.02 48 16 0.01Mesh 2x2 2 � � � 200544 1325472 17.62 18968 11296 132.30Multi Poll 2 123 48 0.00 11328 75241 0.56 155 48 0.04Multi Poll 5 354 147 0.00 230664 1728412 30.06 191 48 0.10Multi Poll 10 1019 432 0.02 � � � 211 48 0.22Multi Poll 40 12359 5292 1.90 � � � 331 48 1.32Swimming Pool 2 388 168 0.00 21 36 0.00 12 2 0.00Swimming Pool 3 37593 18009 162.61 56 126 0.00 18 3 0.01Swimming Pool 5 � � � 252 756 0.00 30 5 0.02Swimming Pool 10 � � � 3003 12012 0.04 60 10 0.18Swimming Pool 40 � � � 1221759 6516048 189.96 240 40 96.38Table 6.4: Experimental results on some parameterized Petri nets. 152

6.3. Experiment results on Petri netsWithout the te
hnique for redu
ing redundan
y, the di�eren
e between the results ofPep, Tina and Esu
omes from the
hoi
e of modeling Petri nets' pla
es. Intuitively,when using Tina there is no
on
urren
e between tokens of a same pla
es, or in otherwords, a pla
e is represented by an event tree. While using Pep, ea
h pla
e
orrespondsmore or less to a K-bounded pro
ess. The unfolding of syn
hronized produ
ts of thesebounded pro
ess, in examples of parameterized Petri nets here, do not really make useof the
on
urren
y in bounded pro
esses, but reversely,
ommits the auto-
on
urren
yproblem. For instan
e, on the Mutual Ex
lusion
orresponding to a simple Petri net with4 transitions and 5 pla
es, Pep generates trun
ations that are approximately K2 timesbigger than ne
essary. Noti
e here that Esu uses 1-
ausality pro
esses, i.e. (1, v)-CPwhere v is the initial number of tokens, in order to model these parameterized Petri nets.
2-CP 1-CP M -CP like M -CP like (*)

K E Ecf T(s) E Ecf T(s) E Ecf T(s) E Ecf T(s)2 12 2 0.00 12 2 0.00 21 4 0.00 21 4 0.003 4136 2855 7.19 18 3 0.00 67 14 0.02 71 14 0.024 � � � 24 4 0.01 205 43 0.10 214 44 0.105 � � � 30 5 0.02 616 120 0.71 637 121 0.766 � � � 36 6 0.02 1872 324 5.90 1932 325 6.467 � � � 42 7 0.05 5858 892 61.34 6045 901 61.848 � � � 48 8 0.07 � � � � � �Table 6.5: Experimental results on the Swimming Pool with di�erent
hoi
es of
ompo-nents' labeled event stru
tures. Results in the last
olumns are obtained without usingour te
hnique for redu
ing redundan
y, i.e. the trun
ation may
ontain E-redundantevent(s).Let us give some details on how the
hoi
e of modeling a pla
e is related to theauto-
on
urren
y problem. Table 6.5 shows results on the Swimming Pool while pla
esare represented by the following labeled event stru
tures:
• 2-
ausality pro
esses (2-CP): ea
h in
rement event has two dire
t su

essors thatare in
rement ones and
on
urrent; de
rement events are pairwise
on
urrent (seeSe
tion 3.3.2).
• 1-
ausality pro
esses (2-CP): it di�ers from 2-CP only on the fa
t that all in
rementevents are pairwise
ausal.
• M -CP like: it is derived from the M -
ausality pro
ess for FIFO-
hannels wherethe alphabet M is a singleton (see Se
tion 3.3.3). We have not only that in
rementevents are pairwise
ausal but also that de
rement events are too.When modeling a pla
e like M -CP, there are few events that are
on
urrent andlabeled by the same label. These events
on
erns the de
rement a
tion that removesinitial tokens of su
h a pla
e. Hen
e, the unfolding have not mu
h useless events. By
omparing the 6 last
olumns in Table 6.5, one
an see that the results obtained with orwithout our te
hnique for redu
ing redundan
y do not really di�er. When using 2-CP,the
on
urren
y between de
rement events as well as between in
rement ones makes theunfolding explode qui
kly. Our te
hnique for redu
ing redundan
y does not work well inthis
ase.However, when using 1-CP, redundant events may be
ompletely avoided. The gen-erated trun
ation has 6 ∗K events where 6 is the number of transition in the Swimming153

Chapter 6. Experimental resultsPool and K is the number of tokens initially in parameterized pla
es. Although it isnot shown in Table 6.5, it is worth noti
ing that the trun
ation obtained while using
K-bounded pro
ess (K-BP in Se
tion 3.3.2) has the same size 6∗K. Moreover, this trun-
ation intuitively
onsists of K disjoint sub-stru
tures of whi
h ea
h is the trun
ationobtained on the Swimming Pool 1, i.e. K = 1.6.3.3 Unbounded Petri netsWe are motivated by a model-
he
ker for in�nite systems, but almost all ben
hmarkexamples of Petri net are unfortunately bounded. The few unbounded ones are notvery suitable due to some advan
ed type of transitions, e.g. Petri nets with inhibitorar
s or with transfer ar
s. Therefore, for experimental purpose, we've
reated a simpleunbounded Petri net whi
h represents a
on
urrent Produ
er/Consumer system with nindependent produ
tion lines and m ma
hines on ea
h line. This example is derivedfrom the one of M
Millan [M
M95a℄. Figure 6.10 illustrates the
orresponding Petri netwhere n = m = 3.

ts

• • •

ps

n lines

Figure 6.10: A
on
urrent Produ
er/Consumer Petri net with m = 3 and n = 3.Intuitively, this Petri net
onsists of an n×m matrix of pla
es, and another parti
ularpla
e ps for storing the �nal produ
t that is
ombined from the produ
ts in n lines. Ea
hpla
e among the n pla
es at the top of n
olumns (lines), has initially a token on itself.Transitions representing ma
hines allow to move a token either from a pla
e down to thepla
e just below it in the same
olumn, or from a pla
e at the bottom of a
olumn up tothe pla
e at the top of the same
olumn. And lastly, there is a transition ts whi
h allowsto, if every pla
es at the bottom of n
olumns has a token on it, add a new token on thepla
e ps, and move all tokens at the bottom pla
es of n
olumns to its top pla
es.The
lassi
al te
hnique for de
iding boundedness problem of Petri nets is to
omputea Karp-Miller graph. On the example above, the
orresponding graph
ontains manyuseless interleavings of a
tions from di�erent produ
tion lines. The size of this graphis thus exponential in the size of the example. As shown in Table 6.6, Tina gives154

6.3. Experiment results on Petri netsrea
hability trees that represents mn markings and have a size of O(mn). Noti
e that inthe last three
ases, veri�
ation using Tina
an not �nish within 10 minutes.Tina Esu
m×n T T(s) E Ecf T(s)
5×5 4636 0.02 25 5 0.00
7×5 21396 0.12 35 5 0.01

10×5 115911 1.22 50 5 0.02
5×7 125552 1.16 36 8 0.01
7×7 1094241 14.87 50 8 0.01

10×7 � � 71 8 0.02
5×10 � � 46 6 0.01
7×10 � � 66 6 0.02

10×10 � � 96 6 0.04Table 6.6: Experimental results on the Produ
er/Consumer.However, Esu resolves the boundedness problem on this Produ
er/Consumer systemwhile exploiting well its intrinsi

on
urren
y. The pre�x generated by Esu is intuitivelysmaller than or equal to the Petri net representing this system in whi
h there are exa
tly
|E| = (m− 1) ∗ n + 1 transitions.

155

Chapter 7Con
lusionsThe veri�
ation of in�nite-state
on
urrent systems presents two di�
ult
hallenges:�rst dedi
ated te
hniques (su
h as symboli
 model
he
king, abstra
tion or trun
ations)must be used to deal with the in�nite state spa
e, and then redu
tion te
hniques (su
h aspartial-order methods) must exploit the
on
urren
y in the models to �ght state-spa
eexplosion. In this thesis, we have shown how to
ombine the unfolding te
hnique, apartial-order method, with analysis te
hniques for well-stru
tured (in�nite-state) sys-tems.We have presented a general framework for partial-order modeling and analysis ofheterogeneous systems. In this approa
h, systems are modeled as labeled event stru
-tures [Win86℄. The modelization is no more on the system level (that does not
apture
on
urren
y), but rather on a behavioral, bran
hing and non-interleaving level [SNW96℄.In labeled event stru
tures, atomi

omputation steps of the
orresponding system arerepresented by events, and
on
urren
y as well as
ausality between su
h events, if ex-ists, are expli
itly des
ribed. Our labeled event stru
tures for standard systems su
h as
ounters and FIFO
hannels demonstrate that the
on
urren
y may be well
aptured inthis approa
h.A rea
tive system generally
onsists of several
omponents. Classi
 models su
h assyn
hronized produ
ts of labeled transition systems turn out not to be satisfa
tory when
omponents are
on
urrent systems. Our solution is modeling them by syn
hronizedprodu
ts of labeled event stru
tures. The main advantage is that we model not only the
on
urren
y between
omponents but also the intrinsi

on
urren
y inside ea
h of them.Moreover, it permits hierar
hi
al modeling of systems.On the one hand, at the behavior level, labeled event stru
tures preserve all infor-mation about systems in terms of Mazurkiewi
z's tra
e semanti
s [Maz86℄, and may bedire
tly used for reasoning about system's properties. On the other hand, sin
e there isno interleaving of
on
urrent events, their
ompa
t size admits e�
ient veri�
ation algo-rithms. The model-
he
king
on
erns �rst in algorithmi
ally
onstru
ting su
h labeledevent stru
tures. We have adapted the unfolding te
hnique [M
M95a℄, initially developedfor Petri nets, to labeled event stru
tures. Our algorithms are proved to be
orre
t when
onstru
ting
omponent labeled event stru
tures, su
h as
ounters and FIFO
hannels,and allow to e�
iently build their syn
hronized produ
ts.Most of veri�
ation problems for in�nite-state systems are unde
idable. Fortunately,the de
idability of interesting properties, for instan
e termination and boundedness,holds on a sub
lass of in�nite systems having some weak-simulations that are well-preorders. We have introdu
ed well-preordered labeled event stru
tures and shown thatde
idable results [FS01℄ may be obtained in this model. In other words, by giving157

Chapter 7. Con
lusionsa de�nition of a general
utting-
ontext, we have shown that well-preordered labeledevent stru
tures admit some �nite pre�xes that preserve rea
hability-based properties.Hen
e, su
h pre�xes may be algorithmi
ally
omputable, and more interestingly, theyare more
ompa
t than interleaving ones [Fin91℄ due to the partial-order approa
h. Wealso explain how to obtain standard ba
kward analysis results by using our forwardpartial-order analysis.Finally, a prototype implementation, the Esu tool, of our method has been devel-oped. Boundedness, termination, and state
overing problems may be
he
ked usingEsu. In addition, it has an advan
ed te
hnique allowing to redu
e the auto-
on
urren
yproblem that is well-known for Petri nets' unfolding. By using this te
hnique and thetrun
ation te
hnique together, one generally obtains a more
ompa
t pre�x, and it some-times produ
es an "optimal" pre�x with just enough events to preserve rea
hability-basedinformation. The �rst pra
ti
al evaluations are very en
ouraging.7.1 Future workThe work presented in this thesis
an be extended in several ways. We give here a nonexhaustive enumeration of possible obje
tives that, of
ourse, are not really disjoint.
• The �rst possible extensions should
on
ern the modelization. As dis
ussed in Se
-tion 3.3.2 on page 37 and shown in experimental results in Se
tion 6.3.2 on page 151,one needs to
hoose a value for the parameter k when modeling
ounters by
ausal-ity pro
esses. The unfolding algorithm then
reates k in
reasing events when itis ne
essary. This fa
t may give rise to harmful auto-
on
urren
y [KK01, KK03℄and is di�erent from the original idea of the unfolding te
hnique [M
M95a℄. Onepossible solution
onsists of not only improving our unfolding algorithm but alsoof making use of our 0-
ausality pro
ess. It
ertainly demands adapting the trun-
ation te
hnique for syn
hronized produ
ts of labeled event stru
tures so that itdoes not stri
tly rely on the �nitely-bran
hing property of the
omponents.Moreover, we also aim at giving appropriate labeled event stru
tures for standard
omponents other than
ounters and FIFO
hannels in order to apply our methodson a larger body of realisti
 heterogeneous systems.
• De�ning the semanti
s of given systems as labeled event stru
tures and/or design-ing dedi
ated unfolding algorithms for those systems is sometimes hard. It requiressome prior study on the system's
on
urren
y be
ause the independen
e betweenevents should be expli
itly given. In fa
t, it is not always possible nor desiredto have spe
i�
 algorithms. Although one may use our event trees
ontaining no
on
urren
y for any
omponent system, it is preferable to give a general algorithm
apable of determining independen
es between events while e�
iently
onstru
tingthe
orresponding labeled event stru
ture. Su
h an algorithm is given in [HST07℄allowing to
onstru
t a (
omponent) labeled event stru
ture from its indu
ed la-beled transition system. The
on�i
ts between events are
omputed on-the-�y by
omparing the markings of their interleavings if they exist. As a result, by applyingthis algorithm, one obtains
orresponding M -
ausality pro
esses from labeled tran-sition systems modeling FIFO
hannels over M . However, this algorithm requiresmodi�
ation in order to be appli
able to algorithmi

onstru
tion of syn
hronizedprodu
ts of labeled event stru
tures.158

7.1. Future work
• Almost all results in this thesis are stated for nondeterministi
 labeled event stru
-tures in whi
h a
on�guration
orresponds to some set of system's states. Althoughsymboli
 methods [BCM+92, BW94℄ are not dis
ussed in this work, we intend touse them in
onjun
tion with our methods. We also plan to
onsider a

elerationte
hniques [BW94, Sut00℄, as a tool for trun
ating (in�nite) labeled event stru
-tures, hen
e enfor
ing the termination of our algorithms while preserving rea
ha-bility properties.
• Finding abstra
tion algorithms is a good solution in order to build more
om-pa
t and
on
urrent event stru
tures. Stru
tural properties may be used to stati-
ally
ompute over-approximations of the rea
hability set of a Petri net as shownin [EM00℄, adapting su
h results to our framework may be possible. Another big
hallenge for us is to avoid abstra
tion algorithms that manipulate system's statesas standard abstra
tion te
hniques, but rather giving algorithms that
omputeappropriate over-approximations of system's
on
urren
y. In other words, su
h al-gorithms would abstra
t away
ausality and
on�i
t information that is irrelevantw.r.t. to a desired property.
• We plan to work on improvement of our unfolding algorithm, and in parti
ular,to deal with the auto-
on
urren
y problem on syn
hronized produ
ts of labeledevent stru
tures. Even though our �rst attempt is en
ouraging for rea
hability-based veri�
ations (see Se
tion 6.2.2 on page 141), it turns out not to be entirelysatisfa
tory sin
e the trun
ation does not preserve Mazurkiewi
z's tra
e semanti
s.

159

Bibliography[AAB99℄ P. A. Abdulla, A. Anni
hini, and A. Bouajjani. Symboli
 veri�
ation oflossy
hannel systems: Appli
ation to the bounded retransmission proto
ol.In Tools and Algorithms for Constru
tion and Analysis of Systems (TACAS),volume 1579 of LNCS, pages 208�222. Springer, 1999.[ABC94℄ A. Arnold, D. Bégay, and P. Crubillé. Constru
tion and analysis of transitionsystems with MEC. World S
ienti�
 Publishing, 1994.[A�J00℄ P. A. Abdulla, K. �er	ans, and B. Jonsson. Algorithmi
 analysis of programswith well quasi-ordered domains. Information and Computation, 160(1-2):109�127, 2000.[ACJT96℄ P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General de
idabilitytheorems for in�nite-state systems. In Symposium on Logi
 in ComputerS
ien
e (LICS), pages 313�321, 1996.[ACJT00℄ P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. Algorithmi
 analysisof programs with well quasi-ordered domains. Information and Computation,160(1-2):109�127, 2000.[AD94℄ R. Alur and D. L. Dill. A theory of timed automata. Theoreti
al ComputerS
ien
e, 126(2):183�235, 1994.[AIN00℄ P. A. Abdulla, S. P. Iyer, and A. Nylén. Unfoldings of unbounded Petrinets. In Computer Aided Veri�
ation (CAV), volume 1855 of LNCS, pages495�507. Springer, 2000.[AJ93℄ P. A. Abdulla and B. Jonsson. Verifying programs with unreliable
hannels.In Symposium on Logi
 in Computer S
ien
e (LICS), pages 160�170. IEEEComputer So
iety, 1993.[AJ94℄ P. A. Abdulla and B. Jonsson. Unde
idable veri�
ation problems for pro-grams with unreliable
hannels. In International Colloquium on Automata,Languages and Programming (ICALP), volume 820 of LNCS, pages 316�327.Springer, 1994.[AJ96℄ P. A. Abdulla and B. Jonsson. Verifying programs with unreliable
hannels.Information and Computation, 127(2):91�101, 1996.[AN82℄ A. Arnold and M. Nivat. Comportements de pro
essus. In Colloque AFCET"Les mathématiques de l'Informatique", pages 35�68, 1982.[Arn92℄ A. Arnold. Systèmes de transitions �nis et sémantique des pro
essus
ommu-ni
ants. Masson, 1992. 161

Bibliography[BBF+01℄ B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petru

i,P. M
Kenzie, and P. S
hnoebelen. Systems and Software Veri�
ation: model-
he
king te
hniques and tools. Springer, 2001.[BCK04℄ P. Baldan, A. Corradini, and B. König. Verifying �nite-state graph grammars:An unfolding-based approa
h. In International Conferen
e on Con
urren
yTheory, volume 3170 of LNCS, pages 83�98. Springer, 2004.[BCM+92℄ J. R. Bur
h, E. M. Clarke, K. L. M
Millan, D. L. Dill, and L. J. Hwang. Sym-boli
 model
he
king: 1020 states and beyond. Information and Computation,98(2):142�170, 1992.[BHFJ03℄ A. Benveniste, S. Haar, E. Fabre, and C. Jard. Distributed monitoring of
on
urrent and asyn
hronous systems. In International Conferen
e on Con-
urren
y Theory, volume 2761 of LNCS, pages 1�26. Springer, 2003.[BHK06℄ P. Baldan, S. Haar, and B. König. Distributed unfolding of Petri nets. InFoundations of Software S
ien
e and Computation Stru
tures (FoSSaCS),volume 3921 of LNCS, pages 126�141. Springer, 2006.[BHR06℄ P. Bouyer, S. Haddad, and P.-A. Reynier. Timed unfoldings for networksof timed automata. In Automated Te
hnology for Veri�
ation and Analysis(ATVA), volume 4218 of LNCS, pages 292�306. Springer, 2006.[BM99℄ A. Bouajjani and R. Mayr. Model
he
king lossy ve
tor addition systems.In Symposium on Theoreti
al Aspe
ts of Computer S
ien
e (STACS), volume1563 of LNCS, pages 323�333. Springer, 1999.[Bo
78℄ G. V. Bo
hmann. Finite state des
ription of
ommuni
ation proto
ols. Com-puter Networks (and ISDN Systems), 2:361�372, 1978.[BRV04℄ B. Berthomieu, P.O. Ribet, and F. Vernadat. The tool Tina �
onstru
tionof abstra
t state spa
es for Petri nets and time Petri nets. InternationalJournal of Produ
tion Resear
h, 42(14), 2004.[Bry86℄ R. E. Bryant. Graph-based algorithms for boolean fun
tion manipulation.IEEE Transa
tions on Computers, 35(8):677�691, 1986.[BSW69℄ K.A. Bartlett, R.A. S
antlebury, and P.T. Wilkinson. A note on reliable full-duplex transmission over half-duplex links. Communi
ations of the ACM,12(5):260�261, 1969.[BW94℄ B. Boigelot and P. Wolper. Symboli
 veri�
ation with periodi
 sets. In Com-puter Aided Veri�
ation (CAV), volume 818 of LNCS, pages 55�67. Springer,1994.[BZ83℄ D. Brand and P. Za�ropulo. On
ommuni
ating �nite-state ma
hines. Jour-nal of the ACM, 30(2):323�342, 1983.[CCJ06℄ F. Cassez, T. Chatain, and C. Jard. Symboli
 unfoldings for networks oftimed automata. In Automated Te
hnology for Veri�
ation and Analysis(ATVA), volume 4218 of LNCS, pages 307�321. Springer, 2006.162

Bibliography[CE81℄ E. M. Clark and E. A. Emerson. Design and synthesis of syn
hronizationskeletons using bran
hing-time temporal logi
. In Logi
 of Programs, volume131 of LNCS, pages 52�71. Springer, 1981.[CES86℄ E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automati
 veri�
ation of�nite-state
on
urrent systems using temporal logi
 spe
i�
ations. ACMTrans. Program. Lang. Syst., 8(2):244�263, 1986.[CF97℄ G. Cé
é and A. Finkel. Programs with quasi-stable
hannels are e�e
tivelyre
ognizable (extended abstra
t). In Computer Aided Veri�
ation (CAV),volume 1254 of LNCS, pages 304�315. Springer, 1997.[CGL94℄ E. M. Clarke, O. Grumberg, and D. E. Long. Model
he
king and abstra
tion.ACM Transa
tions on Programming Languages and Systems (TOPLAS),16(5):1512�1542, 1994.[CGP00℄ J.-M. Couvreur, S. Grivet, and D. Poitrenaud. Designing a LTL model-
he
ker based on unfolding graphs. In International Conferen
e on Appli
a-tions and Theory of Petri Nets (ICATPN), pages 123�145, 2000.[CGP01℄ J.-M. Couvreur, S. Grivet, and D. Poitrenaud. Unfolding of produ
ts of sym-metri
al Petri nets. In International Conferen
e on Appli
ations and Theoryof Petri Nets (ICATPN), volume 2075 of LNCS, pages 121�143. Springer,2001.[CJ99℄ H. Comon and Y. Jurski. Timed automata and the theory of real numbers.In International Conferen
e on Con
urren
y Theory, volume 1664 of LNCS,pages 242�257. Springer, 1999.[CJ04℄ T. Chatain and C. Jard. Symboli
 diagnosis of partially observable
on
ur-rent systems. In Formal Des
ription Te
hniques for Distributed Systems andCommuni
ation Proto
ols (FORTE), volume 3235 of LNCS, pages 326�342.Springer, 2004.[CJ06℄ T. Chatain and C. Jard. Complete �nite pre�xes of symboli
 unfoldings ofsafe time Petri nets. In International Conferen
e on Appli
ations and Theoryof Petri Nets (ICATPN), volume 4024 of LNCS, pages 125�145. Springer,2006.[CJEF96℄ E. M. Clarke, S. Jha, R. Enders, and T. Filkorn. Exploiting symmetry intemporal logi
 model
he
king. Formal Methods in System Design, 9(1/2):77�104, 1996.[CLM89℄ E. M. Clarke, D. E. Long, and K. L. M
Millan. Compositional model
he
k-ing. In Symposium on Logi
 in Computer S
ien
e (LICS), pages 353�362,1989.[CM97℄ G. Ciardo and A. S. Miner. Storage alternatives for large stru
tured statespa
es. In Computer Performan
e Evaluation, volume 1245 of LNCS, pages44�57. Springer, 1997.[Cor96℄ J.C. Corbett. Evaluating deadlo
k dete
tion methods for
on
urrent software.IEEE Transa
tions on Software Engineering, 22(3), 1996. 163

Bibliography[DJN04℄ J. Desel, G. Juhás, and C. Neumair. Finite unfoldings of unbounded Petrinets. In International Conferen
e on Appli
ations and Theory of Petri Nets(ICATPN), volume 3099 of LNCS, pages 157�174. Springer, 2004.[DJS99℄ C. Dufourd, P. Jan£ar, and Ph. S
hnoebelen. Boundedness of reset P/Tnets. In International Colloquium on Automata, Languages and Programming(ICALP), volume 1644 of LNCS, pages 301�310. Springer, 1999.[EC82℄ E. A. Emerson and E. M. Clark. Using bran
hing time temporal logi
 tosynthesize syn
hronization skeletons. S
ien
e of Computer Programming,2(3):241�266, 1982.[EFM99℄ J. Esparza, A. Finkel, and R. Mayr. On the veri�
ation of broad
ast proto-
ols. In Symposium on Logi
 in Computer S
ien
e (LICS), pages 352�359,1999.[EH00℄ J. Esparza and K. Heljanko. A new unfolding approa
h to LTL model
he
k-ing. In International Colloquium on Automata, Languages and Programming(ICALP), volume 1853 of LNCS, pages 475�486. Springer, 2000.[EH01℄ J. Esparza and K. Heljanko. Implementing LTL model
he
king with netunfoldings. In International SPIN Workshop, volume 2057 of LNCS, pages37�56. Springer, 2001.[EM00℄ J. Esparza and S. Melzer. Veri�
ation of safety properties using integerprogramming: Beyond the state equation. Formal Methods in System Design,16(2), 2000.[ER99℄ J. Esparza and S. Römer. An unfolding algorithm for syn
hronous produ
tsof transition systems. In International Conferen
e on Con
urren
y Theory,volume 1664 of LNCS, pages 2�20. Springer, 1999.[ERV96℄ J. Esparza, S. Römer, and W. Vogler. An improvement of M
Millan's un-folding algorithm. In Tools and Algorithms for Constru
tion and Analysis ofSystems (TACAS), volume 1055 of LNCS, pages 87�106. Springer, 1996.[ERV02℄ J. Esparza, S. Römer, and W. Vogler. An improvement of m
millan's unfold-ing algorithm. Formal Methods in System Design, 20(3):285�310, 2002.[ES96℄ E. A. Emerson and A. P. Sistla. Symmetry and model
he
king. FormalMethods in System Design, 9(1/2):105�131, 1996.[esu℄ Esu. http://www.labri.fr/~tran/esu/.[FGM+92℄ J. C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez, andJ. Sifakis. A toolbox for the veri�
ation of LOTOS programs. In Inter-national Conferen
e on Software Engineering (ICSE), pages 246�259, 1992.[Fin87℄ A. Finkel. A generalization of the pro
edure of Karp and Miller to wellstru
tured transition systems. In International Colloquium on Automata,Languages and Programming (ICALP), volume 267 of LNCS, pages 499�508.Springer, 1987.[Fin90℄ A. Finkel. Redu
tion and
overing of in�nite rea
hability trees. Informationand Computation, 89(2):144�179, 1990.164

http://www.labri.fr/~tran/esu/

Bibliography[Fin91℄ A. Finkel. The minimal
overability graph for Petri nets. In Appli
ations andTheory of Petri Nets, volume 674 of LNCS, pages 210�243. Springer, 1991.[Fin94℄ A. Finkel. De
idability of the termination problem for
ompletely spe
i�edproto
ols. Distributed Computing, 7(3):129�135, 1994.[FS00a℄ A. Finkel and G. Sutre. An algorithm
onstru
ting the semilinear Post*for 2-Dim Reset/Transfer VASS. In Mathemati
al Foundations of ComputerS
ien
e (MFCS), volume 1893 of LNCS, pages 353�362. Springer, 2000.[FS00b℄ A. Finkel and G. Sutre. De
idability of rea
hability problems for
lasses oftwo
ounters automata. In Symposium on Theoreti
al Aspe
ts of ComputerS
ien
e (STACS), volume 1770 of LNCS, pages 346�357. Springer, 2000.[FS01℄ A. Finkel and Ph. S
hnoebelen. Well-stru
tured transition systems every-where! Theoreti
al Computer S
ien
e, 256(1-2):63�92, 2001.[FS02℄ H. Fleis
hha
k and C. Stehno. Computing a �nite pre�x of a time Petrinet. In International Conferen
e on Appli
ations and Theory of Petri Nets(ICATPN), volume 2360 of LNCS, pages 163�181. Springer, 2002.[GB96℄ B. Grahlmann and E. Best. Pep - more than a Petri net tool. In Tools andAlgorithms for Constru
tion and Analysis of Systems (TACAS), volume 1055of LNCS, pages 397�401. Springer, 1996.[GHP92℄ P. Godefroid, G. J. Holzmann, and D. Pirottin. State-spa
e
a
hing revisited.In Computer Aided Veri�
ation (CAV), volume 663 of LNCS, pages 178�191.Springer, 1992.[God90℄ P. Godefroid. Using partial orders to improve automati
 veri�
ation methods.In Computer Aided Veri�
ation (CAV), pages 176�185, 1990.[gra℄ Graphviz - A graph visualization software. http://www.graphviz.org/.[GS97℄ S. Graf and H. Saïdi. Constru
tion of abstra
t state graphs with PVS. InComputer Aided Veri�
ation (CAV), volume 1254 of LNCS, pages 72�83.Springer, 1997.[GW91℄ P. Godefroid and P. Wolper. Using partial orders for the e�
ient veri�
ationof deadlo
k freedom and safety properties. In Computer Aided Veri�
ation(CAV), volume 575 of LNCS, pages 332�342. Springer, 1991.[Haa99℄ S. Haar. On o

urren
e net semanti
s of Petri nets. Resear
h Report 3718,INRIA Lorraine, 1999.[HCF+02℄ F. Herbreteau, F. Cassez, A. Finkel, O. Roux, and G. Sutre. Veri�
ation ofembedded rea
tive ��o systems. In Latin Ameri
an Theoreti
al INformati
s(LATIN), volume 2286 of LNCS, pages 400�414. Springer, 2002.[Hel99℄ K. Heljanko. Deadlo
k and rea
hability
he
king with �nite
omplete pre-�xes. Te
hni
al Report A56, Laboratory for Theoreti
al Computer S
ien
e,HUT, Espoo, Finland, 1999. 165

http://www.graphviz.org/

Bibliography[HKK02℄ K. Heljanko, V. Khomenko, and M. Koutny. Parallelization of the Petri netunfolding algorithm. In Tools and Algorithms for Constru
tion and Analysisof Systems (TACAS), volume 2280 of LNCS, pages 371�385. Springer, 2002.[HKT96℄ P. Hoogers, H. Kleijn, and P. Thiagarajan. An event stru
ture semanti
s forgeneral Petri nets. Theoreti
al Computer S
ien
e, 153(1-2):129�170, 1996.[Hol97℄ G. J. Holzmann. The model
he
ker Spin. IEEE Transa
tions on SoftwareEngineering, 23(5):279�295, 1997.[HST07℄ F. Herbreteau, G. Sutre, and T-Q. Tran. Unfolding
on
urrent well-stru
tured transition systems. In Tools and Algorithms for Constru
tionand Analysis of Systems (TACAS), volume 4424 of LNCS, pages 706�720.Springer, 2007.[Iba78℄ O. H. Ibarra. Reversal-bounded multi
ounter ma
hines and their de
isionproblems. Journal of the ACM, 25(1):116�133, 1978.[ISD+02℄ O. H. Ibarra, J. Su, Z. Dang, T. Bultan, and R. A. Kemmerer. Counter ma-
hines and veri�
ation problems. Theoreti
al Computer S
ien
e, 289(1):165�189, 2002.[JP93℄ B. Jonsson and J. Parrow. De
iding bisimulation equivalen
es for a
lassof non-�nite-state programs. Information and Computation, 107(2):272�302,1993.[Kho03℄ V. Khomenko. Model Che
king based on Pre�xes of Petri Net Unfoldings.PhD thesis, University of New
astle upon Tyne, 2003.[KK01℄ V. Khomenko and M. Koutny. Towards an e�
ient algorithm for unfoldingPetri nets. In International Conferen
e on Con
urren
y Theory, volume 2154of LNCS, pages 366�380. Springer, 2001.[KK03℄ V. Khomenko and M. Koutny. Bran
hing pro
esses of high-level Petri nets.In Tools and Algorithms for Constru
tion and Analysis of Systems (TACAS),volume 2619 of LNCS, pages 458�472. Springer, 2003.[KK05℄ B. König and V. Kozioura. Augur - a tool for the analysis of graph trans-formation systems. Bulletin of the EATCS, 87:126�137, 2005.[KKV03℄ V. Khomenko, M. Koutny, and W. Vogler. Canoni
al pre�xes of Petri netunfoldings. A
ta Informati
a, 40(2):95�118, 2003.[KKY04℄ V. Khomenko, M. Koutny, and A. Yakovlev. Logi
 synthesis for asyn
hronous
ir
uits based on Petri net unfoldings and in
remental SAT. In InternationalConferen
e on Appli
ation of Con
urren
y to System Design (ACSD), pages16�25. IEEE Computer So
iety, 2004.[KM69℄ R. M. Karp and R. E. Miller. Parallel program s
hemata. Journal of Com-puter and System S
ien
es, 3(2):147�195, 1969.[Kos82℄ S. R. Kosaraju. De
idability of rea
hability in ve
tor addition systems. InACM Symposium on Theory of Computing, pages 267�281, 1982.166

Bibliography[Lam78℄ L. Lamport. Time,
lo
ks, and the ordering of events in a distributed system.Communi
ations of the ACM, 21(7):558�565, 1978.[LB99℄ R. Langerak and E. Brinksma. A
omplete �nite pre�x for pro
ess algebra. InComputer Aided Veri�
ation (CAV), volume 1633 of LNCS, pages 184�195.Springer, 1999.[LI05℄ Y. Lei and S. P. Iyer. An approa
h to unfolding asyn
hronous
ommuni
a-tion proto
ols. In Formal Methods, volume 3582 of LNCS, pages 334�349.Springer, 2005.[LS02℄ D. Lugiez and Ph. S
hnoebelen. The regular viewpoint on PA-pro
esses.Theoreti
al Computer S
ien
e, 274(1-2):89�115, 2002.[May84℄ E. W. Mayr. An algorithm for the general Petri net rea
hability problem.SIAM Journal on Computing, 13(3):441�460, 1984.[Maz86℄ A. W. Mazurkiewi
z. Tra
e theory. In Advan
es in Petri Nets, volume 255of LNCS, pages 279�324. Springer, 1986.[MBC+95℄ M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Fran
es
hinis. Mod-elling with Generalized Sto
hasti
 Petri Nets. John Wiley & Sons Ltd (Im-port), 1995.[MC99℄ A. S. Miner and G. Ciardo. E�
ient rea
hability set generation and storageusing de
ision diagrams. In International Conferen
e on Appli
ations andTheory of Petri Nets (ICATPN), volume 1639 of LNCS, pages 6�25. Springer,1999.[M
M95a℄ K. L. M
Millan. A te
hnique of state spa
e sear
h based on unfolding. FormalMethods in System Design, 6(1):45�65, 1995.[M
M95b℄ K. L. M
Millan. Tra
e theoreti
 veri�
ation of asyn
hronous
ir
uits usingunfoldings. In Computer Aided Veri�
ation (CAV), volume 939 of LNCS,pages 180�195. Springer, 1995.[Mil71℄ R. Milner. An algebrai
 de�nition of simulation between programs. In Inter-national Joint Conferen
e on Arti�
ial Intelligen
e (IJCAI), pages 481�489,1971.[MR97℄ S. Melzer and S. Römer. Deadlo
k
he
king using net unfoldings. InComputer Aided Veri�
ation (CAV), volume 1254 of LNCS, pages 352�363.Springer, 1997.[MRE96℄ S. Melzer, S. Römer, and J. Esparza. Veri�
ation using Pep. In Alge-brai
 Methodology and Software Te
hnology (AMAST), volume 1101 of LNCS,pages 591�594. Springer, 1996.[NPW80℄ M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event stru
tures anddomains. Theoreti
al Computer S
ien
e, 13(1):85�108, 1980.[Pel94℄ D. Peled. Combining partial order redu
tions with on-the-�y model-
he
king.In Computer Aided Veri�
ation (CAV), volume 818 of LNCS, pages 377�390.Springer, 1994. 167

Bibliography[pep℄ Pep. http://theoreti
a.informatik.uni-oldenburg.de/~pep/.[Pet62℄ C. A. Petri. Kommunikation mit Automaten. PhD thesis, Univ. Bonn, 1962.S
hriften des Instituts für Instrumentelle Mathematik.[Pnu77℄ A. Pnueli. The temporal logi
 of programs. In Foundations of ComputerS
ien
e (FOCS), pages 46�57, 1977.[Pra86℄ V. R. Pratt. Modelling
on
urren
y with partial orders. International Journalof Parallel Programming, 15(1):33�71, 1986.[QS82℄ J. P. Queille and J. Sifakis. Spe
i�
ation and veri�
ation of
on
urrent sys-tems in CESAR. In Symposium on Programming, volume 137 of LNCS, pages337�351. Springer, 1982.[Rei85℄ W. Reisig. Petri nets with individual tokens. Theoreti
al Computer S
ien
e,41:185�213, 1985.[San04℄ D. Sangiorgi. Bisimulation: From the origins to today. In Symposium onLogi
 in Computer S
ien
e (LICS), pages 298�302, 2004.[San07℄ D. Sangiorgi. On the origins of bisimulation,
oindu
tion, and �xed points.Resear
h Report 24, University of Bologna, 2007.[SG90℄ G. Shurek and O. Grumberg. The modular framework of
omputer-aidedveri�
ation. In Computer Aided Veri�
ation (CAV), volume 531 of LNCS,pages 214�223. Springer, 1990.[SK04℄ C. S
hröter and V. Khomenko. Parallel LTL-X model
he
king of high-level Petri nets based on unfoldings. In Computer Aided Veri�
ation (CAV),volume 3114 of LNCS, pages 109�121. Springer, 2004.[SNW96℄ V. Sassone, M. Nielsen, and G. Winskel. Models for
on
urren
y: Towardsa
lassi�
ation. Theoreti
al Computer S
ien
e, 170(1-2):297�348, 1996.[SSE03℄ C. S
hröter, S. S
hwoon, and J. Esparza. The model-
he
king kit. In Inter-national Conferen
e on Appli
ations and Theory of Petri Nets (ICATPN),volume 2679 of LNCS, pages 463�472. Springer, 2003.[Sta89℄ E. W. Stark. Conne
tions between a
on
rete and an abstra
t model of
on-
urrent systems. In Mathemati
al Foundations of Programming Semanti
s,volume 442 of LNCS, pages 53�79. Springer, 1989.[Sut00℄ G. Sutre. Abstra
tion et a

élération de systèmes in�nis. PhD thesis, ENSde Ca
han, 2000.[SY96℄ A. Semenov and A. Yakovlev. Veri�
ation of asyn
hronous
ir
uits using timePetri net unfolding. In ACM/IEEE Design Automation Conferen
e, pages59�62, 1996.[tin℄ Tina. http://www.laas.fr/tina/.[Val89℄ A. Valmari. Stubborn sets for redu
ed state spa
e generation. In Appli
ationsand Theory of Petri Nets, volume 483 of LNCS, pages 491�515. Springer,1989.168

http://theoretica.informatik.uni-oldenburg.de/~pep/
http://www.laas.fr/tina/

Bibliography[Val90℄ A. Valmari. A stubborn atta
k on state explosion. In Computer Aided Veri-�
ation (CAV), volume 531 of LNCS, pages 156�165. Springer, 1990.[VSY98℄ W. Vogler, A. L. Semenov, and A. Yakovlev. Unfolding and �nite pre�x fornets with read ar
s. In International Conferen
e on Con
urren
y Theory,volume 1466 of LNCS, pages 501�516. Springer, 1998.[VW86℄ M. Y. Vardi and P. Wolper. An automata-theoreti
 approa
h to automati
program veri�
ation. In Symposium on Logi
 in Computer S
ien
e (LICS),pages 332�344, 1986.[WG93℄ P. Wolper and P. Godefroid. Partial-order methods for temporal veri�
ation.In International Conferen
e on Con
urren
y Theory, volume 715 of LNCS,pages 233�246. Springer, 1993.[Win82℄ G. Winskel. Event stru
ture semanti
s for CCS and related languages. In In-ternational Colloquium on Automata, Languages and Programming (ICALP),volume 140 of LNCS, pages 561�576. Springer, 1982.[Win86℄ G. Winskel. Event stru
tures. In Advan
es in Petri Nets, volume 255 ofLNCS, pages 325�392. Springer, 1986.

169

Indexa
tion, 14adequate order, 77, 122algorithmi

uto� event, 123alphabet, 12behavior, 18, 21bije
tion, 12, 25boundedness, 7, 84bounded, 84bran
hing, 21
ausal, 22
ausality, 22
ausality pro
ess
M -
ausality pro
ess, 46
k-
ausality pro
ess, 35
oherent, 30, 70, 84
ompatible, 64
ompatibility, 7, 62, 132
on
urrent, 22
on
urrent relation, 22
on
urrent system, 1
on�guration, 24lo
al
on�guration, 24
on�i
t, 22
on�i
t-inheritan
e, 22minimal
on�i
t, 45self-
on�i
t, 22
ounter, 34bounded
ounter, 38
overability
overability problem, 81
overingsub-
overing, 7, 82
uto�
uto�
on�guration, 74
uto� event, 122
utting
ontext, 73, 122lo
al
utting
ontext, 77DAG, 13deteministi

deterministi
 labeled event stru
ture,27, 33, 143deterministi
, 16nondeterministi
, 72downward
losure, 13duality, 7dual, 66, 135dupli
ation, 58, 89, 118, 141event stru
ture, 4, 27prime event stru
ture, 22extension, 24, 70, 89FIFO
hannel, 43�nitely-bran
hing, 24�ring sequen
e, 16global a
tion, 17, 82identity, 12indu
ed labeled transition system, 28, 69initial state, 15interleaving, 2internal a
tion, 63isomorphi
, 25label fun
tion, 27labeled event stru
ture, 27labeled event tree, 33labeled transition system, 14, 63letter-morphism, 43lexi
ographi
 labeling order, 78linear extension, 13linearisation, 13, 46, 78liveness, 3marking, 27marking preorder, 69message, 43noninterleaving, 2, 21partial order, 13partial-order 171

Indexpartial-order method, 157poset, 13possible extensions, 88power set, 11pred-basis, 67, 134prede
essordire
t prede
essor, 22pre�x, 25�nite pre�x, 5, 25, 72, 89, 122word, see subwordpreorder, 13preordered system, 62produ
t preorder, 65well-preorder, see well-preorderquasi-liveness, 7quasi-live, 82rea
hability, 3, 68rea
hability set, 16rea
hability-based property, 3rea
hable, see state, rea
hablerea
tive system, 1, 157re
eiving a
tion, 43redundant, 32
E-redundant, 143re�exive, 12re�exive and transitive
losure, 12relation, 11binary relation, 12
onverse relation, 11identity relation, see identityprede
essor relation, 23restri
tion, 11restri
tion
omponent restri
tion, 17, 55, 65relation, see relation,restri
tionsub-stru
ture, 24sending a
tion, 43simulation, 18singleton, 11, 27, 53state, 14
overed, see
overingrea
hable, 16stru
ture variables, 88subword, 12, 62subword order, 12, 63, 64su

essordire
t su

essor, 22

su�x, 25, 42symmetri
, 12syn
hronization
onstraint, 17, 58, 110syn
hronized produ
t of labeled event stru
-tures, 57, 73, 109syn
hronized produ
t of labeled transitionsystems, 6, 17, 54syn
hronization
onstraints, 17termination, 7, 83total order, 13, 126, 143transition, 15transitive, 12transitive
losure, 12trun
ation, 74, 76�nite pre�x, 76trun
ating algorithm, 122unfolding algorithm, 87, 88upward
losure, 13well-founded, 13, 64well-preorder, 13well-preordered labeled event stru
ture,62, 69well-preordered labeled transition sys-tem, 64

172

	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	1 Introduction
	1.1 Model checking
	1.2 Approaches to the state-space explosion: the unfolding technique
	1.3 Verification of infinite state systems
	1.4 Contributions
	1.5 Organization of the thesis

	2 Preliminaries
	2.1 Relations and functions
	2.2 Alphabet and words
	2.3 Orders
	2.4 Labeled transition systems
	2.4.1 Behaviors and properties
	2.4.2 Synchronized products of labeled transition systems
	2.4.3 Simulation

	2.5 Petri nets

	3 Modeling concurrent systems by labeled event structures
	3.1 Prime event structures
	3.1.1 Example and graphical representation
	3.1.2 Configurations and extensions
	3.1.3 Sub-structures
	3.1.4 Prime vs general event structures

	3.2 Labeled event structures
	3.2.1 Semantics of labeled event structures
	3.2.2 Properties of labeled event structures

	3.3 Modeling concurrent systems
	3.3.1 Labeled event trees
	3.3.2 Counters
	Parameter k in causality processes
	Bounded counters
	Counters initialized by positive values

	3.3.3 FIFO channels
	FIFO channels initialized with non-empty word
	Bounded FIFO channels

	3.3.4 Synchronized Products of Labeled Event Structures
	Graphical representation of a product of event structures

	4 Truncation for well-preordered labeled event structures
	4.1 Well-preordered systems
	4.1.1 Adapting preordered compatibility to labeled transitions
	An example: Lossy FIFO channels
	Internal actions Acti

	4.1.2 Well-preordered labeled transition systems
	A class of infinite systems with decidability results
	Synchronized products of well-preordered labeled transition systems

	4.1.3 From forward analysis to backward analysis in well-preordered transition systems

	4.2 Truncation of well-preordered labeled event structures
	4.2.1 Well-preordered labeled event structures
	Preordered labeled transition systems vs preordered labeled event structure
	Products of preordered labeled event structures

	4.2.2 Truncation techniques
	Cutting context
	Truncation's properties

	4.2.3 Well-preorders on configurations

	4.3 Partial-order verification for well-preordered labeled event structures
	4.3.1 Local cutting contexts
	4.3.2 Coverability and quasi-liveness
	4.3.3 Termination and boundedness

	5 Compositional unfolding techniques
	5.1 Unfolding algorithm
	5.2 Causality processes' unfolding
	5.2.1 k-causality processes
	5.2.2 M-causality processes
	5.2.3 Generalization
	(M, v)-causality processes
	(M, v, b)-causality processes
	Estimation of time complexity

	5.3 Synchronized products' unfolding
	5.3.1 Function ConfigVectorSet_i
	5.3.2 Function ConfigVectorSet
	5.3.3 Functions Initsp and ExtendSP

	5.4 Truncating
	5.4.1 Algorithmic cutoff events
	5.4.2 Complete prefixes

	6 Experimental results
	6.1 Modeling and verification of heterogeneous systems
	6.1.1 Alternating Bit Protocol
	6.1.2 Modeling the ABP as a synchronized product
	6.1.3 Verification of counter's boundedness
	6.1.4 Verification of lossy FIFOs' coverability

	6.2 The tool Esu
	6.2.1 Modeling Petri nets
	6.2.2 Redundancy reduction

	6.3 Experiment results on Petri nets
	6.3.1 1-safe Petri nets
	6.3.2 General bounded Petri nets
	6.3.3 Unbounded Petri nets

	7 Conclusions
	7.1 Future work

	Bibliography
	Index

