
N◦ d'ordre : 3808
THÈSEprésentée àL'UNIVERSITÉ BORDEAUX 1ÉCOLE DOCTORALE DEMATHÉMATIQUES ET INFORMATIQUEpar

Thế Quang Trầnpour obtenirLE GRADE DE DOCTEURSpéialité: INFORMATIQUEUnfolding Based Veri�ationof Conurrent In�nite-State Systems
Soutenue le 19 juin, 2009Après avis des rapporteurs :MM. Serge Haddad PR. ENS de CahanClaude Jard PR. ENS de Cahan/BretagneDevant le jury omposé de :MM. Bernard Berthomieu CR. CNRS/LAASBruno Courelle PR. Univ. Bordeaux 1Jean-Mihel Couvreur PR. Univ. d'OrléansSerge Haddad PR. ENS de CahanFrederi Herbreteau MC. ENSEIRBClaude Jard PR. ENS de Cahan/BretagneGrégoire Sutre CR. CNRS/LaBRIIgor Walukiewiz DR. CNRS/LaBRIDireteur de thèse Igor WalukiewizCo-enadrants Frédéri Herbreteau et Grégoire SutreLaboratoire LaBRI

Véri�ation des systèmes onurrents in�nis par tehnique de dépliagesRésumé: Nous proposons une tehnique de dépliage pour véri�er les systèmes on-urrents in�nis bien struturés. Certaines propriétés d'intérêt omme la bornitude, laouverture et la terminaison sont déidables grâe à la bonne struture de es sys-tèmes. D'autre part, le dépliage réduit e�aement l'explosion ombinatoire en ex-ploitant l'ordre partiel entre les événements des systèmes onurrents. Nous proposonsune modélisation par struture d'événements pour des systèmes bien struturés élémen-taires, tels les ompteurs et les �les de ommuniation. Le dépliage d'un réseau destrutures d'événements, étant une struture d'événements, nous proposons ensuite uneapprohe hiérarhique à la modélisation et à la véri�ation des systèmes, qui préserve labonne struture. En�n, nous proposons une tehnique d'élimination des événements re-dondants. La mise en ÷uvre de notre approhe dans l'outil ESU nous permet de onlureà son e�aité.Mots lés: algorithme de dépliage, ordre partiel, préordre, système in�ni, produit syn-hronizé, struture d'événements, pre�xe �ni, bornitude, terminaison, quasi-vivaité.

AknowledgmentsMy foremost gratitude goes to my diretor Igor Walukiewiz for his guidane. Despitehis rowded shedule, he always found some time to help me to overome problems.His help was really signi�ant to write this thesis. I wish to also thank my two �rstdiretors André Arnold and Jean-Mihel Couvreur although we had not muh time towork together.I am very grateful to my o-diretors Frédéri Herbreteau and Grégoire Sutre whoinitiated me to the researh, and then have onduted me throughout this thesis. Astheir �rst PhD student, we have shared an exellent experiene. They taught me a lotabout not only how omputers aid veri�ation but also how ompetent and heerfulsupervisors aid a student like me. It is not an overstatement to say that without theirpatiene and guidane this thesis would not exist.Many thanks to Bernard Berthomieu, Bruno Courelle, Jean-Mihel Couvreur, SergeHaddad, and Claude Jard for having kindly aepted to be members of the jury andreview the thesis. This important task is always time onsuming and deserve all mygratitude. I partiularly thank Bruno Courelle for having been my supervisor for sixmonths.Thanks to Anne Diky, Alain Gri�aut, and Olivier Ly for their friendship. I alsowould like to thank all the members of the Formal Methods group of LaBRI.A speial thanks has to be addressed to Mihel Mouyssinat. He has looked after meand always been there when I needed help. I wish to thank Antoine Blasos, anotherfrenh friend of mine that I appreiate very muh his friendship.Finally, I would like to swith to my mother tongue in the following page to thankmy family and my vietnamese friends.

i

Biết ơn

Tôi muốn dành đôi dòng ngắn ngủi viết bằng tiếng mẹ đẻ cho những người mà chính họ
đã tạo nên tôi với những kết quả đạt được trong nghiên cứu này.

Trước hết là với bố mẹ, những người đến giờ mới yên lòng vì đã lo xong cho con ăn
học tới nơi tới chốn. Con trai của bố mẹ chỉ biết làm nhẹ bớt lo toan đó bằng những
kết quả đẹp - cái mà bố mẹ luôn tự hào suốt quá trình học dài đằng đẵng của con. Cái
đạt được ngày hôm nay, một lần nữa, chính là quả chín đền đáp công ơn nuôi nấng con
ăn học.

Tiếp đến là với những người thân trong gia đình: anh Kỳ, chị Lê, anh Hà, chị Thảo,
Quân, Minh, và cả Thỏ con nữa. Mọi người đã gánh giúp em, giúp cậu, những việc mà
một người con trai lớn khi xa nhà không thể làm được. Hơn nữa, niềm tin của anh chị
và các cháu với em đã không cho phép em buông xuôi, và luôn là động lực để em có đi
có đến.

Mảnh đất Bordeaux cho rượu và con người làng Nho cho tình. Đếm năm tháng cứ
ngỡ là dài nhưng nhắm mắt nhớ lại thì thấy quá ngắn. Từ anh Khuê già cho nhà đón
ngày đầu, đến Đai fou cho nhà tù ngày cuối, biết bao người ở làng này, nếu không muốn
nói là tất cả, đã giúp tôi ăn-ở-vui-chơi, nói chung là sống, để mà học tốt. Nợ chẳng trả
đủ đành cười xoà nói lời cám ơn. Tôi cũng xin phép không kể hết tên chủ nợ vì quá dài.

Nếu coi bạn bè như chân tay thì mấy năm xa nhà cũng đủ làm tôi khác người (hy
vọng không giống ngợm). Hơn nữa, tính rẻ hai năm có thêm một đầu đã là quá hời: anh
Hoàng cong, Đức chích, Đại fou. Những cái đầu sẵn sàng chung vai mà không bao giờ
làm đau đầu tôi, quả là đáng quý. Đáng quý hơn nữa khi biết rằng làm nghiên cứu là
đã phải đau đầu.

Có những người đã gửi trái tim cho tôi lúc đang còn là nghiên cứu sinh, và tôi đã
dùng phí họ trả để hoàn thành nghiên cứu này. Tôi chỉ xin nêu tên người duy nhất muốn
được nêu tên, và cũng là người duy nhất, đến lúc viết những lời này, tôi vẫn giữ: Thuỷ.

Là giai chưa vợ, lời cuối cùng lại là vu vơ nhất, đó là dành cho vợ [tương lai của] tôi
- sức ép vô hình giục tôi hoàn thành sớm nghiên cứu này.

iii

Contents
List of Figures ixList of Tables xiList of Algorithms xiiGlossary xiii1 Introdution 11.1 Model heking . 21.2 Approahes to the state-spae explosion: the unfolding tehnique 41.3 Veri�ation of in�nite state systems . 51.4 Contributions . 61.5 Organization of the thesis . 82 Preliminaries 112.1 Relations and funtions . 112.2 Alphabet and words . 122.3 Orders . 132.4 Labeled transition systems . 142.4.1 Behaviors and properties . 162.4.2 Synhronized produts of labeled transition systems 162.4.3 Simulation . 182.5 Petri nets . 193 Modeling onurrent systems by labeled event strutures 213.1 Prime event strutures . 223.1.1 Example and graphial representation 233.1.2 Con�gurations and extensions . 233.1.3 Sub-strutures . 243.1.4 Prime vs general event strutures 273.2 Labeled event strutures . 273.2.1 Semantis of labeled event strutures 283.2.2 Properties of labeled event strutures 303.3 Modeling onurrent systems . 323.3.1 Labeled event trees . 323.3.2 Counters . 34Parameter k in ausality proesses 37Bounded ounters . 38Counters initialized by positive values 40v

Contents3.3.3 FIFO hannels . 43FIFO hannels initialized with non-empty word 48Bounded FIFO hannels . 503.3.4 Synhronized Produts of Labeled Event Strutures 54Graphial representation of a produt of event strutures 564 Trunation for well-preordered labeled event strutures 614.1 Well-preordered systems . 624.1.1 Adapting preordered ompatibility to labeled transitions 62An example: Lossy FIFO hannels 62Internal ations Στ . 634.1.2 Well-preordered labeled transition systems 63A lass of in�nite systems with deidability results 64Synhronized produts of well-preordered labeled transition systems 654.1.3 From forward analysis to bakward analysis in well-preorderedtransition systems . 664.2 Trunation of well-preordered labeled event strutures 684.2.1 Well-preordered labeled event strutures 69Preordered labeled transition systems vs preordered labeled eventstruture . 69Produts of preordered labeled event strutures 724.2.2 Trunation tehniques . 73Cutting ontext . 73Trunation's properties . 754.2.3 Well-preorders on on�gurations 774.3 Partial-order veri�ation for well-preordered labeled event strutures . . . 784.3.1 Loal utting ontexts . 784.3.2 Coverability and quasi-liveness . 814.3.3 Termination and boundedness . 835 Compositional unfolding tehniques 875.1 Unfolding algorithm . 885.2 Causality proesses' unfolding . 925.2.1 k-ausality proesses . 935.2.2 M -ausality proesses . 965.2.3 Generalization . 103
(M,v)-ausality proesses . 103
(M,v, b)-ausality proesses . 106Estimation of time omplexity . 1085.3 Synhronized produts' unfolding . 1095.3.1 Funtion ConfigVectorSet_i . 1115.3.2 Funtion ConfigVectorSet . 1145.3.3 Funtions InitSP and ExtendSP . 1175.4 Trunating . 1225.4.1 Algorithmi uto� events . 1235.4.2 Complete pre�xes . 125vi

Contents6 Experimental results 1296.1 Modeling and veri�ation of heterogeneous systems 1296.1.1 Alternating Bit Protool . 1296.1.2 Modeling the ABP as a synhronized produt 1306.1.3 Veri�ation of ounter's boundedness 1326.1.4 Veri�ation of lossy FIFOs' overability 1346.2 The tool Esu . 1376.2.1 Modeling Petri nets . 1396.2.2 Redundany redution . 1416.3 Experiment results on Petri nets . 1496.3.1 1-safe Petri nets . 1496.3.2 General bounded Petri nets . 1516.3.3 Unbounded Petri nets . 1547 Conlusions 1577.1 Future work . 158Bibliography 161Index 171

vii

List of Figures
2.1 A ounter . 152.2 A FIFO hannel . 152.3 A synhronized produt of three ounters. 172.4 Simulation relation. 182.5 A Petri net . 203.1 Graphial representation of prime event strutures 233.2 The {f1, f3}-su�x of E . 263.3 Examples of labeled event strutures . 283.4 Graphial representation of the indued labeled transition system 293.5 Coherene of labeled event strutures . 313.6 Tree with labeled events . 333.7 Examples of k-ausality proesses . 363.8 Graphial representation of k-bounded proesses 383.9 The 4-ountdown proess . 403.10 Example of (k, v)-ausality proesses . 413.11 M -ausality proesses where M = {a, b} 463.12 A (M,v)-ausality proess together with the orresponding (M,v)-�ushingproess . 493.13 An adaptation of (M,v)-ausality proess for bounded onstraint on FIFOhannels . 513.14 A (M,v, b)-ausality proess . 543.15 Two graphial representations of a produt of event strutures 564.1 Compatibility . 624.2 Forward and bakward analysis for reahability 674.3 Counter examples of impliation between ompatibilities 714.4 Coherene vs ompatibility . 724.5 Trunation example of a labeled event struture for 2-bounded ounterinitialized by 1. 754.6 Loal vs global utting ontexts . 795.1 Labeled ourrene net of an one-safe Petri net 1245.2 Algorithmi uto� events and the trunation 1256.1 A model for the Alternating Bit Protool 1306.2 Components modeling the ABP . 1316.3 The ({0, 1}, ε, 2)-ausality proess . 1326.4 Obtained pre�x for boundedness problem of the ABP 1336.5 Labeled event strutures modeling the pb-reverse of lossy FIFO hannels . 136ix

List of Figures6.6 Trunation for sub-overability problem of ERSP
. 1386.7 An example of Esu's input �le . 1406.8 Redundany illustration . 1426.9 Sub-linearisation relation over on�gurations is not preserved by the ex-tension relation . 1486.10 A onurrent Produer/Consumer Petri net 154

x

List of Tables
6.1 Synhronization onstraint for the ABP with ounter of suessfully trans-mitted messages. 1316.2 Synhronization onstraint of the synhronized produt RSP. 1376.3 Experimental results on one-safe Petri nets. 1496.4 Experimental results on some parameterized Petri nets. 1526.5 Experimental results on the Swimming Pool with di�erent hoies of om-ponents' labeled event strutures . 1536.6 Experimental results on the Produer/Consumer. 155

xi

List of Algorithms5.1 Unfolding algorithm . 895.2 Funtion Create . 935.3 Funtion Initk for the k-ausality proess k-CP 935.4 Funtion Extendk for the k-ausality proess k-CP 945.5 Funtion InitM for the M -ausality proess M -CP 965.6 Funtion ExtendM for the M -ausality proess M -CP 975.7 Funtion ExtendMv for (M,v)-CP . 1055.8 Funtion ConfigVectorSet_i . 1125.9 Funtion ConfigVectorSet . 1155.10 Funtion InitSP for synhronized produts 1185.11 Funtion ExtendSP for synhronized produts 1195.12 Trunating algorithm . 1236.1 Unfolding algorithm with redundany redution 1456.2 Funtion isRedundant determines whether e is E-redundant 146

xii

GlossaryBelow are the notations used in this thesis for important entities and onstrutions,together with the number of page in whih eah notation is de�ned or �rst appears.
∅ empty set, p. 20
× Cartesian produt, p. 11|X| ardinality of a set X, p. 11|w| length of a word w, p. 12
↓i omponent restrition, Notation 2.4.11, p. 16
{x /Φ} set of x suh that Φ, p. 11
≤ ausality relation, De�nition 3.1.1, p. 21
≥(X) downward losure of X w.r.t. ≤, p. 13
≤(X) upward losure of X w.r.t. ≤, p. 13
⋖ minimal relation of whih the transitive and re�exive losure is ≤, No-tation 2.3.6, p. 14
⋖(e) diret suessors of e, p. 22
⋗(e) diret predeessors of e, p. 22
on�it relation, De�nition 3.1.1, p. 21
‖ onurrent relation, Notation 3.1.2, p. 22
⊢ extension relation, De�nition 3.1.6, p. 23
C ⊢ e event e is an extension of on�guration C, p. 23
C X X is an extension set of on�guration C, p. 23
≈ isomorphi relation, De�nition 3.2.7, p. 29
→ transition relation, De�nition 2.4.1, p. 14
s

a
−→ s′ s′ is reahable from s by ation a, p. 14

4 well-preorder, De�nition 2.3.1, p. 12
4⊗ produt (well-)preorder, De�nition 4.1.7, p. 64
4C (well-)preorder on the on�guration set, p. 68
4M marking preorder, De�nition 4.2.2, p. 69
E adequate order, p. 77
El adequate order based on lexiography, De�nition 4.2.17, p. 78
A∗ �nite words over an alphabet A, p. 12
Aω in�nite words over an alphabet A, p. 12
B bijetion between two event sets, De�nition 3.1.13, p. 25
b-BC

v v-initialized bounded ounter, De�nition 3.3.12, p. 37
b-BP b-bounded proess, De�nition 3.3.13, p. 38 xiii

Glossary
CE on�gurations of E, Notation 3.1.5, p. 23
Cl

E
loal on�gurations of E, p. 23

Codom(F) odomain of a funtion F , p. 11
CT, v-CT ounter, v-initialized ounter, De�nition 3.3.6, p. 34
CP ausality proess, p. 34
k-CP k-ausality proess, De�nition 3.3.9, p. 35
(k, v)-CP (k, v)-ausality proess, De�nition 3.3.19, p. 40
M -CP M -ausality proess, De�nition 3.3.27, p. 46
(M,v)-CP (M,v)-ausality proess, De�nition 3.3.31, p. 49
D the depth funtion, De�nition 3.3.34, p. 51
Dom(F) domain of a funtion F , p. 11
E events, De�nition 3.1.1, p. 21
ε empty word, p. 12
E labeled event struture, De�nition 3.2.1, p. 27
E|F restrition of (labeled) event struture E onto event set F , De�ni-tion 3.1.10, p. 24
Ê pre�x under onstrution, p. 88
FF FIFO hannel, p. 42
(M,v)-FF v-initialized FIFO hannel over M , De�nition 3.3.22, p. 42
FL lossy FIFO hannel, p. 62
IX identity relation over X, p. 12
L label funtion, De�nition 3.2.1, p. 27
LET labeled event tree, De�nition 3.3.3, p. 32
LTS labeled transition system, De�nition 2.4.1, p. 14
LTS

E labeled transition system indued by E, De�nition 3.2.4, p. 28
LW funtion on words that is based on a label funtion L, p. 12
M FIFO hannel's messages, p. 42!M sending ations, Notation 3.3.23, p. 42?M reeiving ations, Notation 3.3.23, p. 42
Max≤(X) maximal elements of X w.r.t. ≤, p. 13
M marking funtion, De�nition 3.2.1, p. 27
Min≤(X) minimal elements of X w.r.t. ≤, p. 13
NR(E,E) the pre�x without E-redundant event of E, p. 143
post∗

LTS
reahability set of LTS, p. 16

P(X) power set of a set X, p. 11
pb �nite pred-basis, De�nition 4.1.13, p. 67
PE possible extensions, p. 88
Π!M , Π?M M -letter morphisms, De�nition 3.3.24, p. 43
6R or R omplement of a relation R, p. 11
R|X restrition of a relation R to X, Notation 2.1.1, p. 11
R∗ re�exive and transitive losure of a relation R, p. 12
R+ transitive losure of a relation R, p. 12
R−1 onverse relation of a relation R, p. 11xiv

Glossary
S set of states, De�nition 2.4.1, p. 14
s0 initial state, De�nition 2.4.1, p. 14
SP a synhronized produt of labeled transition systems, De�nition 2.4.12,p. 17
Σ set of ations, De�nition 2.4.1, p. 14
Στ internal ations, p. 63
T(E,4C ,C) the trunation of E w.r.t. the utting ontext (4C ,C), De�nition 4.2.12,p. 74
V funtion representing synhronization in synhronized produts of (la-beled) event strutures, De�nition 3.3.39, p. 54
(X,≤) partially ordered set, De�nition 2.3.2, p. 13
⊗(X1, . . . ,Xn) n-dimension spae, Notation 2.4.10, p. 16
(Ê, ≤̂, #̂, L̂,M̂) struture variables, p. 88

xv

Chapter 1Introdution
Contents1.1 Model heking . 21.2 Approahes to the state-spae explosion: the unfolding teh-nique . 41.3 Veri�ation of in�nite state systems 51.4 Contributions . 61.5 Organization of the thesis . 8Beause of the suess of embedded systems in automobiles, airplanes and othersafety ritial systems in our everyday life, we are likely to beome more dependent onthe proper funtioning of omputing devies. Bugs and errors may lead to dramationsequenes. Even when failure is not life-threatening, the onsequenes of having toreplae ritial ode or iruitry an be a substantial eonomi loss. This fat emphasizesthe neessity of on�dene in suh systems.At the same time, the advanes in omputer siene and espeially in hardware ledto an inrease of systems' omplexity, and onsequently, makes it hard to design thesesystems without defets. This situation is more alarming sine onurrent systems areustomarily used. In fat, a onurrent system is omposed of several omponents thatrun in parallel, possibly on di�erent loations, and ommuniate with eah other. Eahomponent an be viewed as a reative system that ontinuously interats with its en-vironment whih may be another omponent. Hene, the e�et of even very minorprogramming mistakes in a ertain omponent an ause major system failures. Testingis also of limited help in onurrent system's design sine it usually involves providingertain inputs and observing the orresponding outputs. Therefore, heking all of thepotential behaviors resulting from all interations between the di�erent onurrent om-ponents of the system using testing tehniques is rarely possible. Many errors an easilygo through the testing phase undeteted and show up only after a long period of oper-ation. Moreover, even if some bug is found during a partiular testing run, it may notour during the next runs, and loating onurreny related bugs is a di�ult task.Formal veri�ation has been proposed as a way to obtain guarantees on the orret-ness of safety ritial systems. Veri�ation means that a system desription onformsto its expeted properties. Therefore, all possible behaviors of the system have to beheked to determine if all of them are ompatible with the given property. In order tobe able to perform suh a veri�ation, one needs a formal modeling language in whih1

Chapter 1. Introdutionthe system an be desribed, a formal spei�ation language for the formulation of prop-erties, and a dedutive alulus or algorithm for the veri�ation proess. Hene, thereare roughly two approahes to formal veri�ation: logial inferene and model heking.The �rst one onsists of using a formal version of mathematial reasoning about thesystem, usually using theorem provers. Methods in this approah are more general butharder to use beause they are usually only partially automated. Although there hasbeen onsiderable researh on the use of theorem provers, these methods are time on-suming and often require a great deal of manual intervention. Only an experiened userwith ertain understanding of the system an perform a nontrivial proof, for instane, inwhih he has to �nd loop invariants or indutive hypotheses.On the ontrary, muh of the suess of model heking, �rstly developed in theearly 80's [CE81, QS82, EC82℄, is due to the fat that it performs a fully automativeri�ation. With model heking, all the user has to provide is a model of the system anda formulation of the property to be heked. The veri�ation tool will either terminatewith an answer indiating that the model satis�es the formula or show why the formulafails to hold in the model. These ounter-examples are partiularly helpful in loatingerrors in the model. If the model does not satisfy a given orretness spei�ation, this isoften onneted to a mistake in the real system. Nevertheless, as an over-approximationof the real system, the model is sometimes too oarse and does not satisfy some orretproperties, although the real system does. In suh a ase, the model of the system mustbe re�ned to get loser to the real system. Aiming at automati veri�ation methods,let us fous on model heking.1.1 Model hekingModel heking is a veri�ation tehnique that applies to a large lass of systems andonsists of three steps.Modeling systems by mathematial models. A mathematial model of the seman-tis of a system or of a program is a mathematial struture, in general, an algebra,onsisting of sets, funtions, graphs, and possibly logial prediates. Suh a modelis an idealized abstration that needs syntax to represent it diretly. Examples ofmodels often used are: (timed, hybrid) automata, Kripke strutures, �nite statemahines, (labeled) transition systems, Petri nets, proess algebra, (labeled) eventstrutures.Many powerful models have been introdued in order to inorporate some spei�aspets, i.e. data view (in heterogeneous systems), state view (in reative systems),or supporting the onept of hierarhial deomposition (in omplex onurrentsystems). Muh e�ort of the theory of onurreny has been devoted to the study ofsuitable models for onurrent reative systems, and to the formal understanding oftheir semantis. As eah system has an implementation in terms of a state mahine,it always has a state spae, and so does the orresponding model. Suh modelshave a ommon idea that they are based on atomi units of hange - transition,ations, events - whih are indivisible and allow the system to hange its state.The di�erene between the models for onurrent systems may be expressed w.r.t.three relevant parameters: behavior or system model, interleaving or noninterleav-ing model, and linear or branhing time model [SNW96℄. In other words, models foronurreny an be lassi�ed into the eight lasses of models obtained by varyingthese three parameters in all the possible ways.2

1.1. Model hekingRepresenting the property in a spei�ation language. Among spei�ation lan-guages, the �rst and probably the most suessful one is �rst-order logi. Almostall interesting properties of programs an be formulated in this language. How-ever, this lassial logi is not well-suited for speifying properties of onurrentomputations. Temporal logi, whih an assert how the behavior of the systemevolves over time, has proved to be suitable for this purpose. Beause temporallogis, suh as LTL, CTL, CTL∗ [Pnu77, CE81℄ an desribe the ordering of eventswithout introduing time expliitly.In general, properties of interest go under the ategory of ordered exeutions. Itrelates to veri�ation of event and state ordering. Properties suh as safety andliveness belong to this ategory. When a system has to be veri�ed, it often turns outthat the property we are interested in is simply expressible in terms of reahability.This thesis is dediated to reahability based problems.Model heking algorithm. One the model is built, one formally states the propertyto be heked by a logial formula, and uses an appropriate algorithm to verifyif the formula holds in the model. State spae exploration is one of the mostsuessful approahes partiularly when reahability-based properties have to beheked. It onsists in exploring a global state graph representing all behaviors ofthe model/system. This is done by reursively omputing all suessor states of allstates enountered during the exploration, starting from a given initial state, byexeuting all possible ations/transitions in eah state. If the state spae is �nite,it an be explored entirely.The �rst model hekers worked by onstruting the whole state spae prior toproperty heking, but modern tools are able to perform veri�ation on-the-�y asthe states are omputed.Veri�ation by state spae exploration has been studied by many researhers. Thesimpliity of the strategy lends itself to easy, and thus e�ient, implementations. More-over, the range of properties that state spae exploration tehniques an verify has beensubstantially broadened thanks to the development of model heking methods for vari-ous temporal logis [CES86, QS82, VW86℄. As many veri�ation tools have been devel-oped, for example Caesar, Spin (see [FGM+92, Hol97, BBF+01℄), the e�etiveness ofmodel heking, and partiularly the state spae exploration tehniques, for debuggingand proving orret systems is inreasingly beoming established. The number of suessstories about applying these tehniques to industrial-size systems keeps growing.However, model-heking su�ers from two main drawbaks. Firstly, even a relativelysmall system model an (and often does) yield a very large state spae. More preisely,owing to simple ombinatoris, the size of the state spae an be exponential in the sizeof the model being analyzed. This exponential growth is known as the state explosionproblem. Seondly, when the system under study has an in�nite state spae, suh asheterogeneous systems whose states onsist of unbounded values (integers, hannels inommuniation protools), lassial model heking no longer applies. Moreover, it doesnot allow to hek for some essential properties suh as the boundedness of the ommu-niation hannels of a protool (this is an important property when implementation isan objetive). 3

Chapter 1. Introdution1.2 Approahes to the state-spae explosion: the unfoldingtehniqueOne ategory of tehniques takling state-spae explosion are symboli methods [BCM+92℄that attempt to represent and manipulate sets of states impliitly with a help of spei�data strutures, rather than expliitly as enumerations of their omponents. The suessof these methods is primarily due to the use of binary deision diagrams (BDD) [Bry86℄,for representing sets and relations over Boolean variables symbolially, making it pos-sible to verify systems with a very large number of states (more than 10100 reahablestates). Beause of this and other tehnial advanes in symboli model hekers, it isnow possible to verify some reative systems of realisti industrial omplexity.Although symboli representations have greatly inreased the size of the systemsthat an be veri�ed, many realisti systems are still too large to be handled. Thus,it is important to �nd tehniques that an be used in onjuntion with the symbolimethods to extend the size of the systems that an be veri�ed. Suh tehniques are,for instane, ompositional reasoning [CLM89, SG90℄, abstration [CGL94, GS97℄, andsymmetry redution [CJEF96, ES96℄.A olletion of veri�ation tehniques attaking diretly the soures of state-spaeexplosion phenomenon on onurrent reative systems have demonstrated that exploringall interleavings of onurrent events is not a priori neessary for veri�ation. Indeed, in-terleavings orresponding to the same onurrent exeution ontain related information,e.g. the same reahable state. The intuition behind these tehnique is exploiting theindependene between onurrent exeuted events, or in other words, the partial orderover events. Hene, these tehniques are alled partial-order methods.Many partial-order methods are based on partial-order redutions �rst appeared inde-pendently in [Val89℄ and [God90, GW91℄, and were developed further in [Val90, GHP92,WG93, Pel94℄. The stubborn sets [Val89℄, the persistent sets [God90℄, and the amplesets [Pel94℄ di�er in the atual details, but ontain many similar ideas. Intuitively,rather than hoosing to work with diret representations of partial orders, the modelheking algorithms in these methods keep an interleaving representation of partial or-ders, but attempt to limit the expansion of eah partial-order omputation to just oneof its interleavings, instead of all of them. A property to be heked needs to be veri-�ed only on a redued part of the global state spae. Partial-order methods yield resultsidential to those of veri�ation methods based on lassial interleaving. Thus they makeit possible to perform the veri�ation more e�iently.Partial-order redutions desribed above are quite di�erent from the partial-ordermethod in our work, alled unfolding tehnique [MM95a℄. Unfolding tehnique is basedon the results of the theory of true onurreny to replae the lassial state/transi-tion models by partially ordered graphs. More preisely, using the unfolding theoryin [NPW80℄, the dynamis of a safe Petri net is aptured by the dynamis of an aylinet that lies in the ategory of ourrene nets. Ourrene nets as well as event strutures- a more abstrat representation - belong to so alled partial-order models of onurrenythat were disussed by many researhers in the 80's [Lam78, Maz86, Win86, Pra86℄. Un-folding algorithms intuitively onsist of omputing some behavioral models of the systemthat preserve Mazurkiewiz's trae semantis [Maz86℄, and the properties are hekeddiretly on these partial-order models. The veri�ation proess is generally done togetherwith the onstrution of the behavior models.Sine its introdution in [MM95a℄, the unfolding tehnique has attrated onsider-able attention and inspired a fairly large number of works.4

1.3. Veri�ation of in�nite state systems
• The algorithm for onstruting �nite pre�xes of the behavior model has beenfurther analyzed and improved [ERV96, KK01, CGP01, ERV02, KKV03℄, par-allelized [HKK02, SK04℄, and distributed [BHK06℄.
• The initial veri�ation tehnique, that only allowed to hek the reahability ofa state or the existene of a deadlok [MM95a, MR97℄, has been extended toalgorithms for (almost) arbitrary properties expressible in Linear Temporal Logi[CGP00, EH00, EH01℄.
• The unfolding tehnique, initially developed for systems modeled as safe Petri nets,has been extended to high-level Petri nets [KK03℄, symmetrial Petri nets [CGP01℄,unbounded Petri nets [AIN00℄, nets with read ars [VSY98℄, time Petri nets [FS02,CJ06℄, produts of transition systems [ER99℄, automata ommuniating throughqueues [LI05℄, networks of timed automata [BHR06, CCJ06℄, proess algebras[LB99℄, and graph grammars [BCK04℄.
• The unfolding tehnique has been implemented in several model hekers [SSE03,HKK02, KK05, GB96, MRE96℄ that allow, among others: onformane hek-ing [MM95b℄, analysis and synthesis of asynhronous iruits [KKY04℄, moni-toring and diagnosis of disrete event systems [BHFJ03, CJ04℄, and analysis ofasynhronous ommuniation protools [LI05℄.1.3 Veri�ation of in�nite state systemsThe veri�ation of in�nite-state systems is one of the most hallenging researh areasin formal and omputer-aided veri�ation. Being able to verify in�nite-state systems isinteresting not only due to the existene of omplex systems that omprise unboundedvariables, but also for several other reasons:
• Even though realizable, omputer systems are �nite in some sense, their size isoften muh larger than what an be handled by �nite-state methods. In�nite-statemodels are good abstrations of large �nite-state systems. Indeed, approximatinga large �nite domain by an unbounded one is usually more preise than imposingunrealistially small bounds on data values.
• In�nite-state systems are natural models of parameterized systems, when the rangeof parameter values is unbounded. It is often more omfortable to reason indepen-dently from any limit than to impose an arbitrary upper bound on the size of asystem.
• The solutions developed for analyzing in�nite-state systems are usually also appli-able to systems whose state spae is �nite but very large.In order to represent reative systems as well as to extend the properties that ouldbe heked, models for in�nite-state systems were introdued. Most of them are basedon a �nite-state automata extended with unbounded data [AJ93, EFM99℄: for instane,ommuniating �nite-state mahines [Bo78, BZ83℄ allow to model ommuniation pro-tools, and Petri nets [Pet62℄ an represent systems with ountably many resoures.Most of the time, model heking is undeidable for in�nite-state models sine they ansimulate Minsky mahines. 5

Chapter 1. IntrodutionHowever, for some lasses of in�nite-state systems, some problems remain deidable,suh as the reahability problem for Petri nets [Kos82, May84℄. This lead to many workson the identi�ation of deidable sublasses of in�nite-state models along with dedi-ated model-heking algorithms [Fin94, AJ96, CF97, HCF+02, Iba78, ISD+02, DJS99,EFM99, BM99, FS00b, FS00a, AD94, CJ99, LS02℄. Another hallenge is that mostsystems are heterogeneous: for instane heking the boundedness of ommuniationhannels may require to onsider the hannels themselves as well as the number of om-muniating proesses, hene proedures spei� to homogeneous systems do not apply.Fortunately, some of these tehniques [KM69, AJ96℄ were found not to rely on the lassof model, but rather on their strutural properties, leading to the lass of well-struturedtransition systems [Fin87, Fin90, A�J00, FS01℄. They form a sublass of in�nite-statemodels inluding Petri nets and some of their extensions, lossy ommuniating mahines,some proess algebras, et. The well-preorder ompatibility over states/transitions inwell-strutured transition systems gives rise to a nie feature: only a �nite pre�x of thesystem's behaviors needs to be onsidered for onluding on the (in)satisfation of severalproperties, partiularly boundedness or termination.1.4 ContributionsOur aim is the veri�ation of onurrent systems that manipulate variables on unboundeddomains, hene in�nite-state systems. In this thesis, we explore the bene�ts of ombiningthe e�ient veri�ation based on unfolding tehnique and deidability results on well-strutured transition systems.We provide a general framework for partial-order modeling of heterogeneous systems.We �rst show how labeled event strutures [NPW80, Win82℄ an be used for e�ientmodeling of ounters and FIFO hannels. Moreover, the ideas that we used for themodeling of these two data types an be applied in other ases: they show how a olletionof elements an be e�iently modeled, and how the order between these elements anbe taken into aount if needed. The modelization is thus no more on the system level,but on the behavioral level.The labeled event strutures as behavioral/branhing/partially-ordered models arestritly related to system/linear/interleaving models generally used in model-hekingsuh as labeled transition systems. We also give a strit orrespondene between thesetwo kinds of models by means of oherene property. However, the advantage of the �rstmodel, hene our hoie, in omparison with the seond one is that it an be diretly usedfor veri�ation. Moreover, beause of the partial-order inside, labeled event struturesare generally ompat, and this fat makes suh veri�ations more e�ient. It is worthnotiing that our labeled event strutures without restraint on their labeling funtionsmay be nondeterministi, i.e. a marking may orrespond to a potentially in�nite setof system's states. As a onsequene, they are general enough to be ombined withsymboli tehniques.The unfolding tehnique, initially developed for systems modeled as Petri nets[MM95a℄, requires a formalism having a notion of onurrent omponents; in partiular,the formalism should allow us to determine for eah ation of the system whih ompo-nents partiipate in the ation and whih ones remain idle. The most straightforwardapproah in order to apply the unfolding tehnique for onurrent systems is Arnoldand Nivat's synhronized produts of labeled transition systems [AN82, Arn92℄. Looselyspeaking, in this formalism, omponents are modeled as labeled transition systems andmay exeute joint ations by means of a very general synhronization mehanism. The6

1.4. Contributionsresult in [ER99℄ makes it lear that the unfolding tehnique is not tied to a partiularformalism, although its details may depend on the formalism to whih it is applied.However, this turns out not to be satisfatory: imagine that one models a ounter byan interleaving model suh as a labeled transition system, then if, say, three di�erentproesses want to inrease the ounter, their ations will get interleaved. As in priniplethose ations are independent, we lose a good deal of onurreny present in the originalsystem. Our solution is to model a onurrent system by synhronized produt of (het-erogeneous) omponents where the semantis of omponents is given in terms of labeledevent strutures. Hene, when applying the unfolding tehnique, one takes advantage ofthe intrinsi onurreny in eah omponent.Our synhronized produts of labeled event strutures provide more information thanPetri nets about the struture of the system. In partiular, we show that a Petri net maybe onsidered as the parallel omposition of its plaes viewed as ounters. Moreover, weshow that synhronized produts of (labeled) event strutures onform to event struturesemantis [Win82℄, and are thus (labeled) event strutures themselves. Hene, one easilyobtain a hierarhial modelization for omplex systems.Although labeled event strutures are ompat representations of systems, they arein general in�nite due to the existene of in�nite omputations. However, researh onveri�ation of �nite systems shows that properties an be heked using ertain �nitepre�xes, alled omplete pre�xes, of their state-spae. Of ourse, there is no hope tohave a notion of omplete pre�x for in�nite systems. There is hope though when suhsystems have a weak simulation relation that is a well-preorder over states. We showhow to adapt the results in [Fin87, FS01℄ to labeled event strutures. We fous onthe following four veri�ation problems: termination, boundedness, quasi-liveness andsub-overing , that an be fully deided with algorithms. In other words, veri�ationalgorithms have theoretial termination guarantee.We show a way to dedue a (well-)preorder over on�gurations of labeled event stru-tures from the one over system states. Notie that, sine a on�guration may orrespondto several states, these two preorders are quite di�erent. They oinide only for deter-ministi labeled event strutures. We give a notion of ompatibility of transitions/eventsw.r.t. these preorders. Therefore, one the relation between preorders are determined,one may swith orresponding ompatibilities bak and forth between system/behaviormodels. We also show preservation of (well-)preorders as well as ompatibilities underparallel omposition using synhronized produts.Based on the trunation riteria in the unfolding tehnique, we propose a generalde�nition of a utting-ontext for well-preordered labeled event strutures and show thatthey admit a �nite pre�x preserving one or more properties depending on the system'sstruture. Partiularly, we give appropriate utting-ontexts for the veri�ation problemsthat we fous on: termination, boundedness, quasi-liveness and sub-overing. Remarkthat these results annot be diretly obtained from previous tehniques on well-struturedsystems sine one needs to take into aount the partial-order between events. We larifythe di�erene between global and loal utting-ontexts. The former one is similar totehniques used in interleaving models [Fin91, FS01℄ while the other one respets the keyidea of the unfolding tehnique, and is thus more suitable to partial-order veri�ations.Although our tehnique is based on forward partial-order analysis, we show that standardbakward analysis tehniques (see e.g. [AJ96℄) ould be embedded. The intuitive ideaomes from the duality in the ategory of (labeled) transition systems.As we use behavior models for systems, the model heking algorithms onsist inonstruting suh models. In general, reahability-based properties may be heked7

Chapter 1. Introdutionon-the-�y. We present a generalization of the unfolding algorithm in [MM95a, ER99℄to parallel omposition of labeled event strutures. The idea is that, one iterativelytries to enlarge some pre�x by adding new possible events without looking at globalon�gurations/states. We detail our unfolding algorithm into two partiular ases: foromponent labeled event strutures and for synhronized produts of them. In the�rst ase, one a omponent is given by some labeled event struture, its events formsomehow onrete patterns. By analyzing suh patterns, one may obtain simple unfoldingalgorithms appropriate for the omponent. We propose algorithms for ounters andFIFO hannels and some of their variants. Other labeled event strutures for standardomponents may have dediated algorithms in the same manner. In the seond ase, theunfolding algorithm takes the notion of onurrent omponent given by synhronizationonstraints into aount. The proess of �nding events to be added must onsider theassoiated omponent pre�xes.It is worth notiing that, in unfolding algorithms for Petri nets or synhronizedproduts of interleaving models, adding events depends on omponent states. But, inour algorithm for synhronized produts of labeled event strutures, we synhronizeomponents' events. This task must be aompanied with an additional heking in orderto see if suh a synhronization satis�es the omponentially downward-losed property inthe synhronization produt. The advantage of our tehnique is that it allows the intrinsionurreny in omponents to be preserved. Moreover, we show that the labeled eventstruture for a omplex system may be algorithmially onstruted in a hierarhial way.It is not neessary to ompute omponent labeled event strutures prior to unfoldingsynhronized produts. Indeed, the synhronized produt's pre�x and its omponentpre�xes are onstruted together on-the-�y, and omponent ones are extended whenneeded.Finally, as a pratial ontribution, we have implemented a model heker, Esu, thatruns our algorithms. It has been written in OCaml. To our knowledge, Esu is the�rst tool that ombines the unfolding tehnique and deidable results on well-preorderedsystems. We also analyse the results obtained using Esu and some other well-establishedtools suh as Pep and Tina to ompare the bene�ts of di�erent methods. In addition, aheuristi tehnique is integrated in Esu to generate more ompat trunations. Althoughsuh trunations do not preserve behaviors of the system in terms of Mazurkiewiz'strae semantis, they are enough to hek reahability-based properties that we areinterested in. Experimental results show that this tehnique is promising sine, forertain benhmark examples, we obtain trunations of whih the size does not exeedthe number of the system's reahable states.1.5 Organization of the thesisThis thesis is organized as follows.Chapter 2 provides basi notions that will be used along the thesis. We also introduetwo well-known models: labeled transition systems and Petri nets, as well as theirsemantis.Chapter 3 presents labeled event strutures, based on prime event strutures, togetherwith their properties. We motivate the hoie of this model and brie�y ompareit to other types of event strutures. We de�ne a strit orrespondene betweenlabeled event strutures and labeled transition systems modeling the same system.8

1.5. Organization of the thesisThe major part of this hapter is dediated to modeling onurrent systems. La-beled event strutures for standard systems suh as ounters and FIFO hannelsare given. Their variants adapting to boundedness or di�erent initial values intu-itively demonstrate the ease of this modelization approah. We de�ne synhronizedproduts of labeled event strutures and show how to use it for modeling onur-rent systems as a hierarhial struture. In fat, a Petri net may be onsidered assome synhronized produt of its plaes, and eah plae, in its turn, is similar to aounter.Chapter 4 addresses the trunation tehnique to obtain omplete pre�xes of labeledevent strutures w.r.t. a given veri�ation problem. We �rst de�ne (well-)preorderand ompatibility on labeled event strutures that may be dedued from the oneon labeled transition systems. We show that well-preorder and ompatibility arepreserved in parallel omposition.Cutting-ontexts for interesting veri�ation problems suh as boundedness, ter-mination, quasi-liveness and sub-overing, are given. The deidability of theseproblems on well-preordered labeled event strutures are proved. We also study atehnique for adapting our forward analysis in order to obtain the same results assome bakward analysis.Chapter 5 desribes our general unfolding algorithm. We then detail it into two ases:for synhronized produts of labeled event strutures, and for their omponentsthat, of ourse, may be synhronized produts. Appropriate algorithms for oun-ters, FIFO hannels, and even arbitrary systems (that have no loal onurreny)are given. The orretness and termination of all these algorithms are proved.In addition, we show that trunation tehnique an be integrated into the unfoldingalgorithm. Hene, the veri�ation may be done together with the onstrution oflabeled event strutures.Chapter 6 illustrates a methodology for modeling of heterogeneous systems on theexample of the Alternating Bit Protool, and explains how to verify interestingproperties. Then, we brie�y desribe our model-heker Esu. Experimental resultson standard benhmark examples are given. We also ompare its results to the onesobtained by using well-established tools: Pep and Tina.Moreover, the well-known problem, alled auto-onurreny problem, of unfoldingtehniques for Petri nets is disussed. We show that its negative e�et may be wellredued by using our heuristi tehnique and as a onsequene, the obtained pre�xis more ompat but still preserves enough information for some reahability-basedproperties.Chapter 7 onludes the thesis and presents some perspetives of our work.
9

Chapter 2Preliminaries
Contents2.1 Relations and funtions . 112.2 Alphabet and words . 122.3 Orders . 132.4 Labeled transition systems . 142.4.1 Behaviors and properties . 162.4.2 Synhronized produts of labeled transition systems 162.4.3 Simulation . 182.5 Petri nets . 192.1 Relations and funtionsWe use standard notations on sets. The power set of a set X, written P(X), is the set ofall subsets of X, and X is alled the base set of P(X). Any subset F of P(X) is alleda family of sets over X. We denote Pf (X) the family whih ontains all �nite subsetsof X. A set of ardinal one, X = {x} for some element x, is alled a singleton. Wenotationally identify a singleton X by its only element x if there is no risk of onfusion.A relation R between two sets X and Y is a subset of the Cartesian produt X ×Y .Let X ′ be a subset of X, the (left-)restrition of R to X ′ is another relation R′ between
X ′ and Y de�ned by R′ = {(x, y) ∈ R /x ∈ X ′}.Notation 2.1.1. The restrition of R to X ′ is denoted by R|X′ .We denote xR y the fat that (x, y) ∈ R. The onverse relation of R, denoted byeither Ror R−1, is a relation between Y and X de�ned by {(y, x) ∈ Y × X /xR y}.The omplement of R is denoted either by 6R or R , i.e. 6R = R = (X × Y) \ R. Fora given x ∈ X, the set of all elements y ∈ Y satisfying xR y is denoted by R(x), andmoreover it indues naturally the same notation on subsets of X.Notation 2.1.2. For any subset X ′ ⊆ X, R(X ′) =

⋃
x∈X′(R(x)).A relation R between X and Y is single-valued if R pairs x ∈ X with at most one

y ∈ Y , i.e. for all x ∈ X, |R(x)| ≤ 1; and R is total for all x ∈ X, there exists y ∈ Y suhthat xR y. A funtion F from X to Y is any total and single-valued relation between11

Chapter 2. Preliminaries
X and Y . We write F : X → Y and all X,Y respetively the domain of F , denoted by
Dom(F), and the odomain of F , denoted by Codom(F).A funtion F : X → Y is bijetive if it is

• injetive: ∀x, x′ ∈ X,F(x) = F(x′)⇒ x = x′; and
• surjetive: ∀y ∈ Y,∃x ∈ X : F(x) = y.A bijetive funtion is also alled a bijetion or one-to-one funtion.A binary relation R on a set X is a relation between X and X, i.e. R ⊆ X × X.Binary relation R is
• re�exive (irre�exive) if xRx (not xRx, resp.) for all x ∈ X,
• transitive if for all x, y, z ∈ X, xR y and yR z imply xR z,
• symmetri (asymmetri) if for all x, y ∈ X, xR y implies yRx (yRx, resp.),
• antisymmetri if for all x, y ∈ X, xR y and yRx imply x = y.The identity relation over X is the set IX = {(x, x) /x ∈ X}. It is thus a re�exive,transitive, symmetri and antisymmetri binary relation. Given a subset X ′ ⊆ X, therestrition of R to X ′, denoted by R|X′ , is the set of all pairs (x, y) ∈ R for whih both

x and y are in X ′. Formally, R|X′ = R ∩ (X ′ ×X ′).The transitive losure of a binary relation R on X, denoted by R+, is the smallesttransitive relation on X whih ontains R. Relation R+ exists and is unique (as stated)for any binary relation R. The transitive losure R+ may be de�ned as follows: ∀x, y ∈
X, xR+y i� there exists a non-empty and �nite sequene of element x1, . . . , xn ∈ X suhthat x = x1, x1Rx2, . . . , xn−1Rxn, and xnR y (this ondition an be simply written as
x = x1Rx2 . . . RxnR y). The re�exive and transitive losure of a binary relation Ron X, denoted by R∗, is the binary relation IX ∪ R+. Notie that the (re�exive and)transitive losure of a (re�exive and) transitive relation R is R itself.2.2 Alphabet and wordsLet A be an alphabet, i.e. a �nite set of symbols, a �nite (in�nite) word w over A is any�nite (in�nite, resp.) sequene of symbols in A. We denote by A∗ (Aω) the set of all�nite (in�nite, resp.) words over A. The length of a word w is denoted by |w|, and wealso use ω to denote an in�nite length. And ε is the empty-word, whose length is equalto zero. Moreover, given any I ⊆ (N ∪ ω), we use notation AI to denote a subset ofwords based on words' length. Formally, AI is the set of all words in (A∗ ∪ Aω) whoselength is in I, i.e. AI = {w ∈ (A∗ ∪Aω) / |w| ∈ I}.For two words w ∈ A∗, w′ ∈ (A∗ ∪ Aω), we let w.w′ denote the onatenation of wand w′. A �nite word w ∈ A∗ is a pre�x of a word w′ ∈ (A∗ ∪Aω) if there exists anotherword w′′ ∈ (A∗ ∪Aω) satisfying w′ = w.w′′. Similarly, the word w′′ is then alled a su�xof w′, and we write w′′ = (w−1)w′.Let A,B be two alphabets, and L be a funtion L : A→ B. We de�ne the funtion
LW on words over A whih is based on L, LW : (A∗ ∪Aω)→ (B∗ ∪Bω), as follows:

• LW(ε) = ε, and
• LW(w.w′) = LW(w).LW(w′) for all w ∈ A∗, w′ ∈ (A∗ ∪Aω).De�nition 2.2.1 (Subword order). Let M be an alphabet. The subword order 4 over

M∗ is de�ned by: for all w = m1m2 . . . mn ∈ M∗, for all w′ ∈ M∗, w′ 4 w i� w′ =
mi1mi2 . . . mik for some k ≤ n and 1 ≤ i1 < i2 < . . . < ik ≤ n.For every word w ∈M∗, its pre�xes as well as its su�xes are partiular subwords of
w itself.12

2.3. Orders2.3 OrdersA preorder ≤ on a set X is any re�exive and transitive binary relation on X.De�nition 2.3.1 (Well-preorder). A preorder 4 on a set X is a well-preorder (onversewell-preorder) if every in�nite sequene x1, x2, . . . , xk, . . . of elements in X must ontainan inreasing (dereasing, resp.) pair xi 4 xj (xi < xj, resp.) where i < j.A partial order ≤ is an antisymmetri preorder. For example, one an dedue thatthe subword order over some �nite alphabet M de�ned in the previous sub-setion is apartial-order on M∗.De�nition 2.3.2 (poset). A partially ordered set (poset) is a pair (X,≤) where X is aset and ≤ is a partial order on X.Lemma 2.3.3. Let (X,≤) be a poset. For every subset Y of X, (Y,≤|Y) is a poset.Proof. By de�nition, ≤|Y is also a partial order on X as well as on Y ⊆ X beause there�exivity, transitivity and antisymmetry of ≤ are all preserved on ≤|Y .A total order E on X is a partial order suh that for all x, y ∈ X, we have either
xEy or y Ex. A strit partial order on X is any irre�exive and transitive (and thereforeantisymmetri) binary relation on X. Every partial order ≤ on X orresponds to oneand only one strit partial order on X, denoted by <, whih is de�ned as < = (≤\ IX).Given two binary relations R andR′ on a set X, we say that R re�nes R′ if whenever
xR′ y it also holds that xR y. In other words, R ontains R′, i.e. R′ ⊆ R. A linearextension of a partial order ≤ on X is any total order E on X whih re�nes the partialorder ≤.De�nition 2.3.4 (Linearisation). Let (X,≤) be a poset and Y be a subset of X. Alinearisation of Y w.r.t. ≤ is any sequene ontaining all elements y1, y2, y3, . . . , of Ysuh that y1 ⊳ y2, y2 ⊳ y3, . . ., for some linear extension E of ≤|Y .Remark: We sometimes represent a linearisation y1, y2, y3, . . . of Y by the orrespondingword w = y1.y2.y3 . . . ∈ (Y ∗ ∪ Y ω).Let (X,≤) be a poset and Y be a subset of X, then y ∈ Y is a minimal (maximal)element of Y w.r.t. ≤ if for all y′ ∈ Y , y′ ≤ y (y ≤ y′, respetively) implies y′ = y.And ≤ is well-founded (onverse well-founded) if every non-empty subset Y ⊆ X has aminimal element w.r.t. ≤.Minimal (maximal) elements of a subset Y need not exist (for example, when ≤ isnot well-founded) and there may be many minimal (maximal) elements. We denote theset of minimal (maximal) elements of a subset Y (w.r.t. ≤) by Min≤(Y) (Max≤(Y),respetively). If x, y ∈ Min≤(Y), x 6= y implies that neither x ≤ y nor y ≤ x.Sine ≤ is a binary relation between X and itself, given a subset Y ⊆ X, ≤(Y)ontains all x ∈ X satisfying: there exists y ∈ Y where y ≤ x. The set ≤(Y) is alledthe upward losure of Y ⊆ X w.r.t. the poset (X,≤). Similarly, we have the downwardlosure of Y , denoted by ≥(Y). A set Y is upward losed (downward losed) w.r.t. (X,≤)if it is equal to its upward losure (downward losure, resp.), i.e. Y = ≤(Y) (Y = ≥(Y),resp.).De�nition 2.3.5 (DAG). A direted ayli graph (DAG) is a pair (V,E) in whih:

• V is alled the set of verties, 13

Chapter 2. Preliminaries
• relation E ⊆ V × V is alled the set of direted edges, and
• E+ is irre�exive.We say that there exists a (direted) path from a vertex v to another vertex v′ if

v E+v′. The last property in De�nition 2.3.5 intuitively means that there is no (non-empty) direted path that starts and ends on a same vertex. Eah DAG gives rise to apartial order ≤ on its verties. Formally, if (V,E) is a DAG then (V, (E+ ∪ IV)) is aposet, where IV is the identity relation on V .Reversely, a poset (X,≤) is usually represented by and omputed from one of DAGs
(X,E) (there are many) whih orresponds to the poset, i.e. E+ = < = (≤ \ IX). Forthe sake of simpliity, the relation E would be as small as possible. If ≤(x) is �nite forall x ∈ X, ≤ gives rise to a unique minimal relation ⋖ so that ⋖

+ = <. Therefore, inthis thesis, we always hoose the minimal relation ⋖ for representing (X,≤) as well asgraphially illustrating it afterward.Notation 2.3.6. For a given poset (≤,X), we denote ⋖ the relation
⋂

R⊆(X×X) :R∗=≤

RLemma 2.3.7. If ≥(x) is �nite for all x ∈ X, then ⋖
∗ = ≤.Proof. Let S denote the set of all binary relation R on X satisfying R∗ = ≤. Due to thetransitive property of ≤, we have ≤∗ =≤, and onsequently, ≤ ∈ S. Therefore, ⋖ ⊆ ≤and ⋖

∗ ⊆ ≤. We only need to prove that ⋖
∗ ⊇ ≤, that means, for all x, y ∈ X, if x ≤ ythen x ⋖

∗ y (1) by indution on the size of ≥(y) beause it is �nite. In the base ase,when |≥(y)| = 1, we must have x = y and obviously x ⋖
∗ y. In general, if x = y then(1) is also true, otherwise, i.e. x < y, there are two sub-ases.First, if there does not exists any element z ∈ X suh that x < z and z < y (2),let R be any relation in S. Sine R∗ = ≤ ∋ 〈x, y〉, there exists a �nite sequene

x = x0Rx1R . . .Rxn = y where n ∈ N and x0, x1, . . . , xn are pairwise di�erent.Moreover, n is not equal to 0 beause x 6= y. If n = 1 then xR y. Otherwise, thereexists an index i suh that i ∈ {1, 2, . . . , n − 1} and x = x0R
+ xiR

+ xn = y. As aonsequene, x = x0 ≤ xi ≤ xn = y. It follows from x0 6= xi 6= xn that x < xi < y. Itontradits to (2). Therefore, we have xR y for all R ∈ S, and onsequently, x ⋖ y.Seond, if there exists z ∈ X suh that x < z < y. Assume that z is hosen sothat there is no other element z′ ∈ X satisfying z < z′ < y. Suh an element z mustexist beause otherwise, one thus obtains an in�nite sequene z′ < z′′ < . . . < y. Andit ontradits to the �niteness of the set ≥(y). As in the previous sub-ase, we have
z ⋖ y. Moreover, sine |≥(z)| is less than |≥(y)|, by the indution hypothesis (1), wehave x ⋖

∗ z, and onsequently, x ⋖
∗ y.Therefore, in both sub-ases, we have x ⋖

∗ y. This lemma is proved.2.4 Labeled transition systemsDe�nition 2.4.1. A labeled transition system is a quadruple LTS = (S,Σ,→, s0) where:
• S is a (potentially in�nite) set of states,
• Σ is a �nite set of ations,
• the labeled transition relation → is any subset of S × Σ× S, and14

2.4. Labeled transition systems
• s0 ∈ S is the initial state.Intuitively, one an evolve from a state s ∈ S to another state s′ ∈ S due to atransition whih is aomplished by an ation a ∈ Σ, i.e. 〈s, a, s′〉 ∈→. It is thusreasonable to write suh a transition as s

a
−→ s′. Formally, for any ation a ∈ Σ, a

−→ isa binary relation on S, de�ned as a
−→ = {(s, s′) ∈ S × S / 〈s, a, s′〉 ∈→}. We say thatation a is enabled from the state s and simply write s

a
−→ .Remark: The lassial model alled transition system an always be onsidered as labeledtransition system without labeling transitions by ations. A labeled transition system

(S,Σ,→LTS, s0) gives rise to a transition system (S,→TS, s0) where →TS⊆ S × S suhthat for all s, s′ ∈ S, s −→TS s′ i� there exists a ∈ Σ satisfying s
a
−→LTS s′.Example 2.4.2. The ounter initialized by 1 is the labeled transition system CT =

(N, {+,−},→, 1) where its labeled transition relation → is de�ned by {〈n,+, n + 1〉|n ∈
N} ∪ {〈n + 1,−, n〉|n ∈ N}.0 1 2 3+

−

+

−

+

−Figure 2.1: Graphial representation of the ounter in Example 2.4.2Figure 2.1 illustrates the ounter initialized by 1 in Example 2.4.2 (see Setion 3.3.2for formal de�nition of ounter's family and detailed expliations) by a direted graph.States are represented by irles and every transition 〈s, a, s′〉 ∈→ is represented by anarrow leading from s to s′ labeled by a. The double frame of the irle orresponding tostate 1 indiates that it is the initial state of the system.Example 2.4.3. A FIFO (First-In-First-Out) hannel in whih we an send messagesranging over M = {a, b} and reeive messages in its sending order, an be modeled by
FF = (S,Σ,→, s0) where:

• S = M∗: eah state is a �nite word over M ,
• Σ = {!a / a ∈ M} ∪ {?a / a ∈ M}: ation !a (?a) means sending (reeiving, resp.)message a into (from, resp.) the hannel,
• →= {〈w, !a,w.a〉 /w ∈M∗, a ∈M} ∪ {〈a.w, ?a,w〉 /w ∈M∗, a ∈M}

• s0 = a: there are initially a message a and a message b in the hannel.
a b

?a

?b

!a

!bFigure 2.2: The FIFO hannel in Example 2.4.3Remark: By sending ations, the environment inserts messages into the hannel, andonversely, it removes messages from the hannel by reeiving ations. Sending andreeiving intuitively mean ations of the environment and not the ones of the hannel.This naming is naturally onvenient while using hannels in modeling omplex systemsby synhronized produt (see Setion 3.3.4). 15

Chapter 2. Preliminaries2.4.1 Behaviors and propertiesDe�nition 2.4.4. Let LTS = (S,Σ, s0,→) be a labeled transition system. A �nite path(resp. in�nite path) in LTS is any �nite (resp. in�nite) sequene π = s1
a1−→ s′1, s2

a2−→

s′2, . . . , sk
ak−→ s′k, . . . of transitions suh that s′i−1 = si for every index i > 1 in thesequene.We shortly write π = s1

a1−→ s2
a2−→ . . . sk

ak−→ sk+1 . . ., and we say that π starts in
s1. The transition relation (→) is extended to its transitive losure (։).Notation 2.4.5. Given a word σ = a1.a2 . . . ak ∈ Σ∗, s1։sk+1

σ means that there is suha path π from s1 to sk+1.Let π = s1
a1−→ s2

a2−→ . . . sk
ak−→ sk+1 . . . be a path of a labeled transition system

LTS = (S,Σ, s0,→). π is alled an exeution if it starts in the initial state of LTS, i.e.
s1 = s0. The word a1.a2 . . . ak is alled a �ring sequene, and sk+1 is alled reahable byexeution π.The reahability set of a labeled transition system LTS, denoted by post∗

LTS
, is theset of all reahable states of LTS.De�nition 2.4.6. Let LTS = (S,Σ, s0,→) be a labeled transition system, and S′ ⊆ Sbe some subset ontaining the initial state s0. The restrition of LTS to S′, denoted by

LTS|S′ , is the labeled transition system LTS
′ = (S′,Σ,→′, s0) where →′ = → ∩ (S′ ×

Σ× S′).Given two labeled transition systems LTS and LTS
′, when their restritions on theirreahable states post∗

LTS
and post∗

LTS
′ are the same, i.e. LTS|post∗

LTS
= LTS

′|post∗
LTS′

, theyare intuitively interhangeable.De�nition 2.4.7. Let LTS = (S,Σ, s0,→) be a labeled transition system. LTS is:
• �nite (in�nite) if its set of states S is �nite (in�nite, respetively);
• deterministi if for all ation a ∈ Σ, a

−→ is single-valued funtion, i.e. s
a
−→ s′ and

s
a
−→ s′′ imply s′ = s′′; and

• �nitely-branhing if for all state s ∈ S, the set {s′ ∈ S /∃a ∈ Σ, s
a
−→ s′} is �nite.Beause the set of ations Σ in De�nition 2.4.1 is �nite, we have:Corollary 2.4.8. Deterministi labeled transition systems are �nitely-branhing.Proof. Obvious due to the �niteness of the ation set Σ in De�nition 2.4.1.Example 2.4.9. The ounter in Example 2.4.2 and FIFO hannel in Example 2.4.3 areboth �nite, deterministi and �nitely-branhing labeled transition systems.2.4.2 Synhronized produts of labeled transition systemsWe now present a omposition primitive that we use to build omplex systems frombasi omponents: the synhronized produt of labeled transition systems [ABC94℄. Ina synhronized produt, omponents must behave aording to so-alled synhronizationvetors.Notation 2.4.10. Given a number n ∈ N and n sets X1,X2, . . . ,Xn, we denote the n-dimension spae X1 × X2 × . . . × Xn by ⊗(X1,X2, . . . ,Xn). When ε 6∈ Xi for all i in

{1, 2, . . . , n}, we denote the n-dimension spae (X1∪{ε})× (X2∪{ε})× . . .× (Xn∪{ε})by ⊗ε(X1,X2, . . . ,Xn).16

2.4. Labeled transition systemsNotation 2.4.11 (Component restrition). Given n sets X1,X2, . . . ,Xn. For all tuple
x = 〈x1, x2, . . . , xn〉 ∈ ⊗(X1,X2, . . . ,Xn) and for all i ∈ {1, 2, . . . , n}, we all xi theomponent restrition onto i of x, and denote it by x ↓i. Therefore, the omponentrestrition onto i of a subset Y ⊆ X is the set {x↓i /x ∈ Y }, and is denoted by Y ↓i.Given n labeled transition systems LTS1,LTS2, . . . ,LTSn where LTSi = (Si,Σi,→i

, s0
i), i ∈ {1, 2, . . . , n}. A synhronization vetor is any n-tuple v in ⊗ε(Σ1,Σ2, . . . ,Σn),and a synhronization onstraint is any subset ΣSP ⊆ ⊗ε(Σ1,Σ2, . . . ,Σn) of synhro-nization vetors. Intuitively, a label a in a synhronization vetor means that the orre-sponding omponent must take a transition labeled by a, whereas an ε means that theomponent must not move. The synhronized produt is formally a labeled transitionsystem in whih the set of ations, alled global ations, are determined by synhroniza-tion onstraints.De�nition 2.4.12. Given n labeled transition systems LTSi = (Si,Σi,→i, s0

i) where
i ranges over {1, . . . , n} and a synhronization onstraint ΣSP ⊆ ⊗ε(Σ1,Σ2, . . . ,Σn).The synhronized produt of LTS1,LTS2, . . . ,LTSn with respet to ΣSP is the labeledtransition system SP = (SSP,ΣSP,→SP, s0

SP
) de�ned by:

• SSP = ⊗(S1, S2, . . . , Sn),
• for all s, s′ ∈ SSP, a ∈ ΣSP: s

a
−→SP s′ i�, for every i ∈ {1, . . . , n}, s↓i

a↓i
−−→ s′↓i(notie that s↓i

ε
−→ s′↓i simply means that s↓i = s′↓i), and

• s0
SP

= 〈s0
1, . . . , s

0
n〉.Example 2.4.13. Let CT1 = (N, {+,−},→, 0), CT2 = (N, {+,−},→, 1), and CT3 =

(N, {+,−},→, 1) be three ounters de�ned as in Example 2.4.2 with only di�erenein its initial states. Let ΣSP be the synhronization onstraint de�ned as: ΣSP =
{〈−,+,+〉, 〈+,−,+〉, 〈ε, ε,−〉}. The semantis of the synhronized produt of CT1,CT2,and CT3 with respet to ΣSP is illustrated in Figure 2.3 where +SP,+′

SP
,−SP are respe-tively abbreviations for global ations 〈−,+,+〉, 〈+,−,+〉, 〈ε, ε,−〉 .

〈1, 0, 0〉 〈0, 1, 1〉 〈1, 0, 2〉

〈0, 1, 0〉 〈1, 0, 1〉 〈0, 1, 2〉

+SP
+′

SP

+′
SP

+SP

−SP

−SP

−SP

−SP

Figure 2.3: A synhronized produt of three ounters.Remark: Synhronized produt of labeled transition systems is a labeled transition sys-tem. This synhronized produt an be a omponent labeled transition system of anothersynhronized produt. In other words, synhronized produts give us a way to hierar-hially model omplex systems.Lemma 2.4.14. Synhronized produt of labeled transition systems is �nite, determin-isti, �nitely-branhing if its omponents are all �nite, deterministi, �nitely-branhing,respetively. 17

Chapter 2. Preliminaries2.4.3 SimulationA labeled transition system is an abstrat model of some real system in whih one is onlyinterested in ertain ations or behaviors. Hene, a real system gives rise to many labeledtransition systems whih may be pairwise di�erent on the abstrat level. Among them, alabeled transition system an simulates another one, it means that every behavior of theseond one is also a behavior of the �rst one, alled an abstration. And both of themsimulate the real system. The term "simulation" is used as in "this program simulatesthe proess of people making deisions".The de�nition of labeled transition systems immediately suggests a notion of simula-tion: initial states must be mapped to initial states, and for every ation the �rst labeledtransition system an perform in a given state, it must be possible for the seond labeledtransition system to perform the orresponding ation, if any, from the orrespondingstate.De�nition 2.4.15 (Simulation). Let LTS1 = (S1,Σ1,→1, s
0
1) and LTS2 = (S2,Σ2,→2

, s0
2) be two labeled transition systems. A simulation relation from LTS1 to LTS2 is apair R = (RS ,RΣ) where RS ⊆ S1×S2 and RΣ ⊆ Σ1×Σ2 are two relations, suh that:
• s0

1RS s0
2, and

• for all 〈s1, a1, s
′
1〉 ∈→1, s2 ∈ S2, s1RS s2 implies that there exists a transition

〈s2, a2, s
′
2〉 ∈→2 satisfying s′1RS s′2 and a1RΣ a2.

s1 s2

s′1 s′2

RS

a1

RS

a2RΣ

∀

∃

LTS1 LTS2

Figure 2.4: Simulation relation.Figure 2.4 illustrates the intuitive idea of De�nition 2.4.15. It is worth notiing thatour de�nition of simulation onerns not only the states but also the ations of twolabeled transition systems. The standard de�nition of simulation/bisimulation [Mil71,JP93, San04, San07℄ is thus a partiular ase in whih two ation sets Σ1 and Σ2 are thesame and RΣ is the identity relation on Σ1. Our de�nition slightly di�ers from that of amorphism between labeled transition systems given by Sassone et al. [SNW96℄ in whih
RΣ is a partial funtion, i.e. Dom(RΣ) ⊆ Σ1, hene some ations of a labeled transitionsystem ould be simulated by the ε-ation of another labeled transition system, i.e. theother system does not move.Example 2.4.16. Consider the FIFO hannel in Example 2.4.3 FF = (M∗, {!a, !b, ?a, ?b},
→FF, a), where M = {a, b} and the synhronized produt of three ounters in Exam-ple 2.4.13 SP = (N3, {+,+′,−},→SP, 〈0, 1, 1〉). Let us de�ne:18

2.5. Petri nets
• RS = {〈v,w〉 ∈ N

3 ×M∗ suh that |w| = v3}, and
• RΣ = {〈+, !a〉, 〈+′, !b〉, 〈−, ?a〉, 〈−, ?b〉}.It is easy to see that (RS ,RΣ) is a simulation relation from SP to FF, and we say that FFsimulates SP. More preisely, a state 〈i, j, k〉 in SP is simulated by a word w = abab . . .where |w| = k.Now let us restrit the state set of FF to the set of words in whih the �rst message,if exists, is a and two onseutive messages are always di�erent, and alled it S′

FF
. Itmeans that S′

FF
= {ε, a, ab, aba, abab, . . .}. Let R′

S be the restrition of RS to the newdomain S′
FF

. Then (R′
S ,RΣ) is still a simulation relation from SP to the new labeledtransition system FF

′ and onversely, (R′−1
S ,R−1

Σ) is also a simulation relation from FF
′to SP.Remark:When a labeled transition LTS1 is simulated by another one LTS2 w.r.t. to somesimulation relation (RS ,RΣ), by De�nition 2.4.15, we also have that LTS1 is simulatedby LTS2 w.r.t. every relation (RS ,R′

Σ) satisfying R′
Σ ⊇ RΣ. And partiularly, one anhoose suh a relation R′

Σ so that it is the maximal one w.r.t. the inlusion order, i.e.
R′

Σ = Σ1 × Σ2.Suh a simulation relation (RS ,Σ1 × Σ2) intuitively indues to simulations betweentransition systems without labeling ations in whih one is interested in only systems'states. However, the smaller the relation RΣ is, the more information about orre-spondene between systems' ation that one an �gure out. This fat is also true forbisimulations de�ned as follow:De�nition 2.4.17 (Bisimulation). Two labeled transition systems LTS1 and LTS2 arebisimilar, or in bisimulation, if there exists a simulation relation (RS ,RΣ) from LTS1 to
LTS2 suh that (R−1

S ,R−1
Σ) is also a simulation relation from LTS2 to LTS1.Notation 2.4.18. We denote the fat that LTS1 and LTS2 are bisimilar by LTS1 ∼ LTS2.Example 2.4.19. Given the ounter in Example 2.4.2 CT = (N, {+,−},→CT, 1) and thesynhronized produt of the three ounters in Example 2.4.13 SP = (N3, {+SP,+′

SP
,−SP},

→SP, 〈0, 1, 1〉). These two labeled transition systems are in bisimulation w.r.t. the bisim-ulation relation (RS ,RΣ), where
• RS = {〈v, k〉 ∈ N

3 × N suh that k = v3}, and
• RΣ = {〈+SP,+〉, 〈+′

SP
,+〉, 〈−SP,−〉}.Intuitively, by grouping verties orresponding to states 〈0, 1, k〉 and 〈1, 0, k〉 for every

k ∈ N in the Figure 2.3, we diretly obtains the graph representing the ounter inFigure 2.1. The ations +SP, +′
SP

are idential and both orrespond to the same ation'+' in the ounter.2.5 Petri netsA net [NPW80, Rei85℄ is a triple (P, T,F) where P is a set of plaes, T is a set oftransitions, and F ⊆ (P × T) ∪ (T × P) is its �ow relation suh that P and T arepairwise disjoint. The preset (postset) of a node n ∈ P ∪ T , denoted by •n (resp. n•) isthe set of nodes {n′ ∈ P ∪ T / 〈n′, n〉 ∈ F} (resp. {n′ ∈ P ∪ T / 〈n, n′〉 ∈ F}).A multiset over a set X is a funtion µ : X → N. Notie that any subset of X maybe viewed as a multiset over X. We denote x ∈ µ if µ(x) ≥ 1, and for two multisets
µ, µ′ over X we write µ ≤ µ′ if µ(x) ≤ µ′(x),∀x ∈ X. The sum of two multisets µ and19

Chapter 2. Preliminaries
µ′ over X, denoted by µ + µ′, is given by (µ + µ′)(x) = µ(x) + µ′(x); and when µ′ ≤ µ,the di�erene, denoted by µ− µ′, is given by (µ− µ′)(x) = µ(x)− µ′(x).A marking of a net N = (P, T,F) is simply a multiset over P .De�nition 2.5.1 (Petri net). A Petri net is a quadruple (P, T,F ,m0) where N =
(P, T,F) is a net and m0 is a marking of N. m0 is alled the initial marking.Figure 2.5 illustrates a Petri net in whih we use the standard rules about drawingnets: plaes are represented as irles, transitions as solid bars, �ow relation F by ars,and markings are shown by plaing tokens within irles.

P = {p1, p2, p3}

T = {t1, t2}

F = {〈p1, t1〉, 〈t1, p2〉, 〈t1, p3〉}

∪ {〈p2, t2〉, 〈t2, p1〉, 〈t1, p3〉}

∪ {〈p3, t3〉}

m0 = {〈p1, 0〉, 〈p2, 1〉, 〈p3, 1〉}

•

•

p1 p2

p3
t1 t2

t3Figure 2.5: A Petri netThe semanti of a Petri net (P, T,F ,m0), is given by the one of its orrespondinglabeled transition system LTS = (S,Σ, s0,→) where S is the set of all possible markingof (P, T,F), Σ = T , s0 = m0 and for all marking m,m′ and transition t, we have m
t
−→ m′i� •t ≤ m and m′ = m − •t + t•. Intuitively, �ring a transition t from a marking m isremoving a token in every plae in •t and then adding a token to every plae in t•.More interestingly, a plae p initialized with k tokens may be seen as a partiu-lar Petri net ({p}, {t+, t−}, {〈p, t−〉, 〈t+, p〉}, {〈p, k〉}). This Petri net orresponds to aounter CT = (N, {+,−},→CT, k). An arbitrary Petri net, on its turn, orresponds to asynhronized produt of ounters. For instane, let us onsider the synhronized produt

SP of three ounters in Example 2.4.13 and the Petri net (P, T,F ,m0) in Figure 2.5,plaes in P are mapped to the omponent ounters of SP, and transitions in T aremapped to the synhronization onstraint {〈−,+,+〉, 〈+,−,+〉, 〈ε, ε,−〉} of SP.De�nition 2.5.2. A k-bounded Petri net is a Petri net (P, T,F ,m0) in whih everyreahable marking m must satisfy that m(p) ≤ k for all p ∈ P .A partiular ase of parameter k in De�nition 2.5.2 is when k = 1. In this ase,suh a Petri net is alled 1-safe or a safe Petri net. A Petri net is used to desribe awide range of systems. In [MM95a℄, MMillan has proposed a veri�ation tehniqueon Petri nets whih is based on the onept of net unfolding [NPW80℄. The unfoldingof a Petri net is a net with simpler struture, alled (labeled) ourrene net. However,for tehnial reasons, algorithms for onstruting labeled ourrene nets of a Petri net
(P, T,F ,m0) requires two following restritions:

• there is no transition with empty preset, i.e. for all t ∈ T , •t 6= ∅, and
• the synhronization is �nite, i.e. for every transition t ∈ T , •t and t• are �nite sets.It is reommended to have a look at [Sta89, MM95a, ERV96℄ for more details.20

Chapter 3Modeling onurrent systems bylabeled event strutures
Contents3.1 Prime event strutures . 223.1.1 Example and graphial representation 233.1.2 Con�gurations and extensions 233.1.3 Sub-strutures . 243.1.4 Prime vs general event strutures 273.2 Labeled event strutures . 273.2.1 Semantis of labeled event strutures 283.2.2 Properties of labeled event strutures 303.3 Modeling onurrent systems 323.3.1 Labeled event trees . 323.3.2 Counters . 343.3.3 FIFO hannels . 433.3.4 Synhronized Produts of Labeled Event Strutures 54Event strutures [NPW80, Win82℄, abstrat away from the yli struture of theproess and onsider only events, assumed to be the atomi omputational steps, andthe ause/e�et relationships between them. Thus, we an lassify event struturesas behavioral, branhing and noninterleaving models. In Setion 3.1, we introdue primeevent strutures as well as assoiated lassial notations. A brief omparison with generalevent strutures is also given in this setion.In order to model a system's behavior, we are rather interested in labeled eventstrutures. It allows us to represent states and di�erent operations of a system bymeans of labeling funtions. As a onsequene, one will �nd in Setion 3.2 some stritorrespondene between suh labeled event strutures and labeled transition systemswhih model a same system. The advantage of the �rst model, in omparison with theseond one, is that it an be diretly used for veri�ation (see Chapter 4). And moreover,beause of the partial-order inside, labeled event strutures are generally ompat, andthis fat makes veri�ations more e�ient.Conurrent labeled event strutures for well-known systems, suh as ounters andFIFO hannels, will be given in Setion 3.3. They provide a set of examples of how21

Chapter 3. Modeling onurrent systems by labeled event struturesto exploit independene between a system's ations. This independene brings forththe onurreny of labeled event strutures afterward. Then, we also de�ne a lass ofsynhronized produts of labeled event strutures that onforms to the synhronizationidea on produts of labeled transition systems given in Chapter 2. Suh a synhronizedprodut of labeled event strutures inherits well the onurreny of its omponents.3.1 Prime event struturesDe�nition 3.1.1 (Prime Event Struture). A prime event struture is a triple E = (E,≤
,#) where E is a set of events, ≤ ⊆ E×E is a partial order on E, the ausality relation,and # ⊆ E × E is a symmetri, irre�exive relation, the on�it relation, satisfying:

• �nitary : ∀e ∈ E, ≥(e) is �nite, and
• on�it-inheritane: ∀e, e′, e′′ ∈ E, e#e′ and e′ ≤ e′′ implies that e#e′′.Intuitively, events (stritly speaking event ourrenes) in a prime event strutureare ordered w.r.t. the ausality relation. This partial order means that an event mustbe preeded by, or our after, some other one; and moreover, by only a �nite number ofevents. It is worth notiing that this property of �nitary in De�nition 3.1.1 is fundamentalfrom a omputational point of view. The reason for this is that we assume that only�nitely many events an our in a �nite amount of time. And therefore, only eventswith �nitely many auses an our.Hene, a prime event struture is simply a poset (E,≤) equipped with a on�itrelation # whih means that two events, for example e and e′, an not both our. Andnaturally, events afterward are thus in on�it as the on�it-inheritane property states.Notie that an event an not be in on�it with itself due to the irre�exivity ofon�it relation. This ondition is sometimes alled onsistent [Win82℄ or non-self-on�it property in similar onurrent strutures, e.g. ourrene nets [MM95a℄. Twoevents are onurrent if they are neither ausal nor in on�it. This onurrent relationis thus a symmetri and irre�exive binary relation on E.Notation 3.1.2. We denote ‖ the onurrent relation ((E × E) \ (≤ ∪ ≥)) \#.We extend the relations of on�it and of onurreny to subsets of E, and respe-tively denote by #s, ‖s , as follows:
• X#sY i� # ∩ (X × Y) 6= ∅, and
• X ‖s Y i� (X × Y) ⊆‖.In words, two subsets X,Y are on�it if there exists a pair of event x ∈ X and

y ∈ Y whih are in on�it; and these subsets are onurrent if all suh pairs of eventsare onurrent. Given an event e, reall that e an stand for the singleton {e}, hene
e ‖s X means that e is onurrent with every event in X. An event set X ⊆ E is alledonurrent if e ‖s (X \ e) for all events e ∈ X.Thanks to Lemma 2.3.7, it follows from the �nitary property that the binary relation
⋖ orresponding to the poset (E,≤) (see Notation 2.3.6 on page 14) satis�es that ⋖∗ = ≤.Moreover, sine ⋖ is the intersetion of all binary relations whose transitive losures areequal to ≤, ⋖ is the minimal one w.r.t. the inlusion order.As in graph theory, for two di�erent events e, f ∈ E, if e < f then we say that e isa predeessor of f , and reversely, that f is a suessor of e. More preisely, e is a diretpredeessor of f and f is a diret suessor of e if there does not exists another event
g suh that e < g and g < f . As shown in the proof of Lemma 2.3.7, the relation ⋖22

3.1. Prime event struturesformally represents this diret predeessor/suessor relation, i.e. e ⋖ f . Hene, the setof diret predeessors (suessors) of an event e is the set ⋗(e) (⋖(e) respetively). Inthis work, we brie�y all ⋖ the predeessor relation.3.1.1 Example and graphial representationExample 3.1.3. The prime event struture E = (E,≤,#) where:
• E = {e1, e2, e3, e4, e5, e6},
• ≤= IE ∪ ({e2} × {e3, e4, e5, e6}) ∪ ({e4} × {e5, e6}), and
• # = ∅,has no on�it. Its events are pairwise in ausal or onurrent.(a)

e1 e2

e3 e4

e5 e6

(b)
f2

f4 f5

f8 f9

f1 f3

f6 f7

Figure 3.1: Graphial representation of prime event struturesFigure 3.1.a illustrates the prime event struture in Example 3.1.3. We adopt thestandard rules about drawing ourrene nets. Events are drawn with boxes, and ausalrelation is the the transitive re�exive losure of the relation depited by the orientedars. In other words, boxes and ars in this �gure orrespond to verties and edges of aDAG (E, ⋖) whih give rise to the poset (E,≤).For the purpose of adapting other works on the unfolding tehnique, ausal eventsare in top-down diretion w.r.t. ausal relation.The on�it relation is represented by ar drawn like: f2 f3, as we an seein another example of prime event struture E′ = (E′,≤′,#′) whih is shown in Fig-ure 3.1.b. It is worth notiing that our graphial representation depits only a sub-set #′′ of the on�it relation #. For larity, this relation #′′ should be as small aspossible, however, in addition of the on�it-inheritane, #′′ is enough for omputing
#. Formally, #′′ = {〈e, f〉 ∈ #′ />(e)#′s >(f)}. In this example, it follows from
#′′ = {〈f2, f3〉, 〈f3, f2〉, 〈f5, f7〉, 〈f7, f5〉} that the on�it relation #′ is given by:

#′ =
(
≤′(f2)×≤

′(f3)
)
∪

(
≤′(f3)×≤

′(f2)
)

∪
(
≤′(f5)×≤

′(f7)
)
∪

(
≤′(f7)×≤

′(f5)
)

= ({f2, f4} × {f3, f5, f6, f7, f8, f9}) ∪ ({f3, f5, f6, f7, f8, f9} × {f2, f4})

∪ ({f5, f8, f9} × {f7}) ∪ ({f7} × {f5, f8, f9})3.1.2 Con�gurations and extensionsA subset of E is alled on�it free if it does not ontain events that are in on�it. 23

Chapter 3. Modeling onurrent systems by labeled event struturesDe�nition 3.1.4 (Con�guration). Let E = (E,≤,#) be an prime event struture. Aon�guration of E is any �nite subset C of E suh that C is downward losed w.r.t.
(E,≤) and on�it free.For all event e ∈ E, the downward-losed set ≥(e) is a on�it free set due to theon�it-inheritane and irre�exivity of the on�it relation in De�nition 3.1.1. Hene,
≥(e), �nite by de�nition, is also a on�guration and is alled the loal on�guration of
e.Notation 3.1.5. Let E = (E,≤,#) be an prime event struture. We denote by CE and
Cl

E
respetively the set of on�gurations and the set of loal on�gurations of E.De�nition 3.1.6 (Extension). Let C be a on�guration of a prime event struture

E = (E,≤,#). An event e ∈ E is an extension of C, denoted by, C ⊢ e if e 6∈ C and
C ∪ {e} is a on�guration of E.The extension of a on�guration by events diretly gives rise to a notion of extensionby a set of events. We all a subset X ⊆ E an extension set of on�guration C, andwrite C X, if X and C are disjoint and C ∪X is also a on�guration.Remark that our set extension on prime event strutures slightly di�ers from theextension notion ′ on loal event strutures [HKT96℄ in whih an extension set X mustbe a onurrent set, and it dedues that X = Min(E,≤)(X). The triple (E,CE,′) is thusa loal event struture.Lemma 3.1.7. Given a on�guration C of a prime event struture E = (E,≤,#). Forall non-empty extension set X ⊆ E of C we have:1. ∃e ∈ X suh that C ⊢ e and (C ∪ e) (X \ e), and2. if X is �nite, then ∃f ∈ X suh that C (X \ f) and ((C ∪X) \ f) ⊢ f .Proof. First item: Let g be any event in X. Due to the �nitary property of E inDe�nition 3.1.1, ≥(g) is �nite, and so does ≥(g) \ C. There exists a minimal event e of
(≥(g) \ C) w.r.t. (E,≤). Hene C ∪ e is downward losed w.r.t. (E,≤). Sine C ∪X ison�it free, and (C ∪ e) ⊆ (C ∪X), C ∪ e is thus a on�guration. We have C ⊢ e and
(C ∪ e) (X \ e) by de�nition.The seond item an be proved by the same manner as the �rst one while hoosing
f as a maximal event w.r.t. (E,≤) of the �nite set X.Corollary 3.1.8. For every extension set X of a on�guration C, i.e. C X, forevery linearisation e1, e2, e3, . . . of X w.r.t. (E,≤) we have C ⊢ e1, (C ∪{e1}) ⊢ e2, (C ∪
{e1, e2}) ⊢ e3, . . .The deidability of some veri�ation problems on prime event strutures (see laterin Setion 4.2) requires that prime event strutures satisfy the following property.De�nition 3.1.9. A prime event struture E = (E,≤,#) is �nitely-branhing if everyon�guration C ∈ CE has a �nite number of extension events, i.e. {e ∈ E /C ⊢ e} is�nite.3.1.3 Sub-struturesDe�nition 3.1.10. Let E = (E,≤,#) be a prime event struture, F ⊆ E be a set ofevents. The restrition of E onto F , denoted by E|F , is the triple (F,≤|F ,#|F) where
≤|F ,#|F are respetively the restritions of ≤,# onto (F × F).24

3.1. Prime event struturesLemma 3.1.11. E|F is a prime event struture for every subset F ⊆ E.Proof. (F,≤|F) is a poset by Lemma 2.3.3 on page 13, let us denote ≤|F by ≤′. Thesymmetry and irre�exivity are preserved in binary relation #|F . Moreover, ≥′(f) ⊆ ≥(f)is �nite for all event f ∈ F , and on�it-inheritane is also guaranteed with ≤|F and
#|F . E|F is thus a prime event struture.De�nition 3.1.12 (Pre�xes). Let E = (E,≤,#) be a prime event struture. Given adownward-losed set F ⊆ E w.r.t. the ausality ≤, the restrition of E onto F , i.e. E|F ,is alled the F -pre�x of E.In pratie, one only works on some �nite pre�x E|F of E, i.e. F is �nite (seeChapter 5). The pre�x E|F gives not only a downward-losed set of events but also theausality and the on�it relation between these events. The notion of sub-strutures,as a onsequene, the notion of pre�x, ould be generalized to event strutures of whihevent sets may be disjoint. It bases on so alled isomorphism whih is de�ned as follows:De�nition 3.1.13 (Isomorphism). We say that two event strutures (E,≤,#) and
(E′,≤′,#′) are isomorphi if there exists a bijetion B between E and E′ suh that, forall events e, f ∈ E,

• e ≤ f i� B(e) ≤ B(f), and
• e#f i� B(e)#′B(f).Then, an event struture E′ is also alled a pre�x of another one E = (E,≤,#), w.r.t.isomorphism, if E′ is isomorphi with some pre�x E|F of E. In this ase, we say that E′is smaller than or equal to E w.r.t. isomorphism. It intuitively de�nes a partial-order onthe set of all event strutures, alled the pre�x-order. In this poset, the event struturewithout event, i.e. (∅, ∅, ∅), is the minimal one.Another partiular kind of sub-strutures onerning E is its su�x . A su�x is basedon some on�guration C ∈ CE. Reall that C is intuitively a set of events, ertainlydownward-losed and on�it-free, whih an our together. One is interested in eventsthat an our afterward, or together with events in C. The set of suh events is theset ((E \ C) \#(C)) whih may be determined in another way by the union set of allextension sets of C in E.De�nition 3.1.14 (Su�xes). Given a on�guration C of a prime event struture E =

(E,≤,#), the restrition of E onto ((E \ C) \#(C)) is alled the C-su�x of E.As detailed in Setion 3.3, when aiming at modeling a system by ertain event stru-ture E, eah on�guration C in E orresponds somehow to a system's state. The C-su�xof E intuitively models another system that is di�erent from the �rst one only on itsinitial state. Therefore, in a theoretial view, su�xes of an event strutures allow us tomodel a family of systems. As a diret onsequene of Lemma 3.1.11, su�xes as well aspre�xes of a prime event struture are prime event strutures.Example 3.1.15. Figure 3.2 depits the {f1, f3}-su�x of the prime event struture E =
(E,≤,#) shown in Figure 3.1.b. The event set of this su�x is omputed as follows:

E′ = ((E \ {f1, f3}) \#({f1, f3}))

= ((E \ {f1, f3}) \ {f2, f4})

= {f5, f6, f7, f8, f9} 25

Chapter 3. Modeling onurrent systems by labeled event strutures
f2

f4 f5

f8 f9

f1 f3

f6 f7

Figure 3.2: The {f1, f3}-su�x of E given in Figure 3.1.b.Lemma 3.1.16. Let E = (E,≤,#) be a prime event struture, and C be a on�gurationin E. X is an extension set of C, i.e. C X, i� X is a on�guration in the C-su�x of
E.Proof. Let S denote the event set of the C-su�x of E, i.e. S = (E \ C) \ #(C). Byde�nition of event set, X ∩ #(C) = ∅, and onsequently, X is thus a subset of S.(⇒) Sine (C ∪ X) is downward losed w.r.t. (E,≤), X is downward losed w.r.t.

(E \C,≤|(E\C)). Moreover, it follows from the on�it-freeness of (C ∪X) that Xis also on�it-free w.r.t. both # and #|S . Therefore, X is a on�guration in E|S .(⇐) It follows from X∩ #(C) = ∅ that (C∪X) is thus a on�it-free set w.r.t. #. Let ebe any event in≥(C∪X), thanks to the on�it-freeness of (C∪X), e is not in #(C),and onsequently, e is either in C or in S. Notie that ≥(C∪X) = ≥(C)∪≥(X), if
e ∈ S then e must be in ≥(X)∩S. Sine X is downward-losed w.r.t. ≤|S , we have
e ∈ (≥(X) ∩ S) = ≥|S(X) = X. Hene, we always obtain either e ∈ ≥(C) = C or
e ∈ X. As a onsequene, ≥(C ∪X) = (C ∪X) that means (C ∪X) is downward-losed w.r.t. the ausality ≤. Therefore, X is an extension set of C.Corollary 3.1.17. Let C be a on�guration of a prime event struture E = (E,≤,#).

• if E is �nitely-branhing then the C-su�x of E is �nitely-branhing; and
• if every event in E is not in on�it with C, i.e. #(C) = ∅, and the C-su�x of Eis �nitely-branhing then E is �nitely-branhing.Proof. Let S denote the event set of the C-su�x of E, i.e. S = (E \C) \#(C). Thanksto Lemma 3.1.16, every on�guration X in the C-pre�x gives rise to a on�guration

(C ∪X) in E. The left-to-right impliation is obvious.For the right-to-left impliation, let C ′ be any on�guration in E and let X = C ′ \C.Sine #(C) = ∅, S and C are disjoint sets and E = C ∪ S. The event set X, maybeempty, is thus an extension set of C and is a on�guration in the C-su�x E|S due toLemma 3.1.16. An extension of C ′ in E must be either an event in C or, otherwise, anextension of C ∪X. One again, thanks to Lemma 3.1.16, in the seond ase, suh anextension orresponds to another extension of X in E|S . Sine C is �nite and X has�nitely many extensions in E|S , C ′ has a �nite number of extensions in E too. Therefore,
E is �nitely-branhing.26

3.2. Labeled event strutures3.1.4 Prime vs general event struturesPrime event struture is a sublass of event struture [NPW80, Win82℄ whih is generallyde�ned by a ouple (E,C) where E is a set of events, C is a family of sets over event sets
E, or set of on�gurations. There is an equivalene between this de�nition of prime eventstrutures and De�nition 3.1.1. However, we are interested in the seond one beause,for many standard systems, the on�it and ausality relations may be naturally de�ned.Then these relations serve to ompute on�gurations, and not onversely.Moreover, aiming at onstruting event struture for systems, we have no onern inevent strutures not belonging to this sublass. That means event strutures whih donot satisfying the following properties of prime event strutures:

• full : every event is assoiated to at least one on�guration, and
• ausality relation is global : order between two events, if exists, is not varied inaordane with some on�guration whih ontains these events.From now on, we will say event strutures for short, always meaning prime eventstrutures.3.2 Labeled event struturesDe�nition 3.2.1 (Labeled event strutures). A labeled event struture is a tuple E =

(E,≤,#,L,M) where (E,≤,#) is an event struture, and
• L, alled label funtion, is a funtion from event set E to some alphabet Σ, and
• M, alled marking funtion, is a funtion from on�guration set CE to the powerset of some (maybe in�nite) set S.Reall that the o-domain is part of the de�nition of a funtion. Although the sets

Σ and S are not expliitly given in the tuple (E,≤,#,L,M) representing a labeledevent struture, we always denote Σ the o-domain of L, i.e. Σ = Codom(L), and S thebase set of the o-domain of M, i.e. P(S) = Codom(M). These sets Σ, S are alledrespetively the set of ations and the set of states.A labeled event struture E = (E,≤,#,L,M) is simply an event struture (E,≤,#)equipped with two additional labeling funtions in order to model the behavior of asystem. Hene, all notations and de�nitions on its event struture (E,≤,#) previouslyde�ned in Setion 3.1, suh as on�guration, extension, pre�x and su�x, are generalizedfor the labeled event struture itself. Labeling funtions for a sub-struture E′ based onsubset event E′ are thus its left-restritions to E′, i.e. L|E′ andM|C′ where C′ = CE′ isthe on�guration set of E′.De�nition 3.2.2. A labeled event struture E = (E,≤,#,L,M) is deterministi if theo-domain of the marking funtionM ontains only singletons of the set of states S, i.e.
Codom(M) = {{s} / s ∈ S}.Remark: For deterministi labeled event strutures, marking funtionsM may be simplyde�ned as a funtion from on�guration set CE to the set of states S, and its o-domainis then extended to the power set P(S). 27

Chapter 3. Modeling onurrent systems by labeled event strutures3.2.1 Semantis of labeled event struturesLabeled event struture is used for modeling behaviors of a system. Intuitively, the labelfuntion L tells whih events are ourrenes of whih system's ation, while the markingfuntionM assoiate a on�guration to some states of the system.
−

e1

+
e2

−
e3

+
e4

−
e5

+
e6

−SP

e1

+′
SP

e2

−SP

e3

+SP

e4

−SP

e5

+′
SP

e6

MCT MSP

1← ∅ → 〈0, 1, 1〉
0← {e1} → 〈0, 1, 0〉
2← {e2} → 〈1, 0, 2〉
1← {e1, e2} → 〈1, 0, 1〉
1← {e2, e3} → 〈1, 0, 1〉
3← {e2, e4} → 〈0, 1, 3〉
0← {e1, e2, e3} → 〈1, 0, 0〉
2← {e1, e2, e4} → 〈0, 1, 2〉
2← {e2, e3, e4} → 〈0, 1, 2〉
2← {e2, e4, e5} → 〈0, 1, 2〉
4← {e2, e4, e6} → 〈1, 0, 4〉
1← {e1, e2, e3, e4} → 〈0, 1, 1〉
1← {e1, e2, e4, e5} → 〈0, 1, 1〉
3← {e1, e2, e4, e6} → 〈1, 0, 3〉
1← {e2, e3, e4, e5} → 〈0, 1, 1〉
3← {e2, e3, e4, e6} → 〈1, 0, 3〉
0← {e1, e2, e3, e4, e5} → 〈0, 1, 0〉
2← {e1, e2, e3, e4, e6} → 〈1, 0, 2〉
2← {e2, e3, e4, e5, e6} → 〈1, 0, 2〉
1←{e1, e2, e3, e4, e5, e6}→ 〈1, 0, 1〉

CE

Figure 3.3: Examples of labeled event struturesExample 3.2.3. Let's onsider the event struture (E,≤,#) depited in Figure 3.1.b.We an have two di�erent labeled event strutures whih are deterministi and are re-spetively de�ned by two pairs of labeling funtions (LCT,MCT) and (LSP,CTSP) where:
• LCT : E → {+,−}, MCT : CE→ N, and
• LSP : E → {+SP,+′

SP
,−}, MSP : CE→ N

3.These labeled event strutures are illustrated in Figure 3.3.Labeled event strutures are graphially represented like event strutures (see Se-tion 3.1.1). In addition, the label of an event is shown inside the box orresponding tothe event. In Figure 3.3, the marking funtion MCT, as well as MSP, is individuallyde�ned for eah element (on�guration) in its domain CE.De�nition 3.2.4. Let E = (E,≤,#,L,M) be a labeled event struture. A labeledtransition system indued by E, denoted by LTS
E, is de�ned as follows:

• the set of states is the base set S of o-domain of the marking funtionM,
• the set of ations is the o-domain Σ of the label funtion L,
• the transition relation → satisfying that for all s, s′ ∈ S, a ∈ Σ, s

a
−→ s′ i� thereexists a on�guration C ∈ CE and an event e ∈ E suh that C ⊢ e, s ∈M(C), a =

L(e) and s′ ∈M(C ∪ {e}).28

3.2. Labeled event strutures
• the initial state s0 ∈M(∅).Remark: Due to the last item in De�nition 3.2.4, a labeled event struture does notindue an unique labeled transition system.Moreover, sine a on�guration orresponds to a set of states, indued labeled tran-sition systems are generally not deterministi. Although of the determinism of a labeledevent struture (De�nition 3.2.2), its indued labeled transition systems are determinis-ti only if, from every on�guration C, all extensions whose labels are the same, give asame marking. The following lemma is straightforward.Lemma 3.2.5. Let E = (E,≤,#,L,M) be a deterministi labeled event struture. Iffor every on�guration C ∈ CE and for all extensions e, f of C, L(e) = L(f) implies

M(C ∪ e) = M(C ∪ f); then E has one and only one deterministi indued labeledtransition system.Example 3.2.6. The labeled transition system indued by the labeled event struture
(E,≤,#,LCT,MCT) in Example 3.2.3 is (N, {+,−},→CT, 1) where

→CT = {〈0,+, 1〉, 〈1,+, 2〉, 〈2,+, 3〉, 〈3, +, 4〉}

∪ {〈1,−, 0〉, 〈2,−, 1〉, 〈3,−, 2〉, 〈4,−, 3〉}0 1 2 3 4+

−

+

−

+

−

+

−Figure 3.4: Graphial representation of the indued labeled transition system in Exam-ple 3.2.6. Notie that it is similar to the one in Figure 2.1 on page 15. But here, thereare only 5 reahable states.We have now an intuitive relation between labeled event strutures and labeled tran-sition systems - a lassi model: on�gurations orrespond to states, events orrespondto ations, extension ⊢ and set extension respetively orrespond to transition relation
→ and exeution relation ։. In Example 3.2.6, both �ring sequenes +− and −+are represented by on�guration {e1, e2} in whih there is no interleaving due to the theonurrene between these (ourrene) events. Therefore, due to the independene be-tween ations or onurrene between events, labeled event strutures give us somehowa way of ompatly representing possible �ring sequenes of a system.De�nition 3.2.7. Two labeled event strutures E = (E,≤,#,L,M) and E′ = (E′,≤′,
#′,L′,M′) are isomorphi and we write E ≈ E′, if (E,≤,#), (E′,≤′,#′) are isomorphiw.r.t. some bijetion B and1. L(e) = L′(B(e)) for every event e ∈ E, and2. M(C) =M′(B(C)) for every on�guration C ∈ CE.Remark: When the underlying event strutures of E and E′ are isomorphi w.r.t. to B(see De�nition 3.1.13), the bijetion B gives rise to a bijetion between on�guration sets
CE and CE′ in whih a on�guration C ∈ CE is assoiated to the on�guration B(C) ∈ CE′ .29

Chapter 3. Modeling onurrent systems by labeled event struturesCorollary 3.2.8. Let LTS
E and LTS

E′ be respetively indued labeled transition systemsof two labeled event strutures E and E′. If E and E′ are isomorphi, then LTS
E and

LTS
E′ are bisimilar.Proof. Obvious by De�nition 2.4.17 and De�nition 3.2.4.Example 3.2.9. Indued labeled transition systems of the labeled event strutures inExample 3.2.3 are bisimilar w.r.t. the bisimulation relation (RS ,RΣ) de�ned in Exam-ple 2.4.19.Moreover, one an �nd out that the labeled transition system indued by E = (E,≤,

#,LCT,MCT) in Example 3.2.3 is simulated by the ounter in Example 2.4.2 by simplyobserving its semantis depited in Figure 2.1 and Figure 3.4. The formal reason isthat E is just a pre�x of the labeled event struture for this ounter latterly de�nedin Setion 3.3.2.Lemma 3.2.10. Let C be a on�guration of a labeled event struture E = (E,≤,#,L,M).Let (S,Σ,→, s0), (S′,Σ′,→′, s0′), and (S′′,Σ′′,→′′, s0′′) be indued labeled transitions of
E, its C-pre�x E|≥(C), and its C-su�x E|(E\C\#(C)), respetively. We have:

• S = S′ ∪ S′′,
• Σ = Σ′ ∪ Σ′′,
• → =→′ ∪→′′, and
• s0 ∈M(∅), s0′ =M(∅), s0′′ ∈M(C).Proof. Obvious due to Lemma 3.1.16 and De�nition 3.2.4.3.2.2 Properties of labeled event struturesAs previously mentioned, we will onstrut labeled event strutures representing sys-tems' behavior. More preisely, suppose that a system is impliitly de�ned by a labeledtransition system where reahable states are represented by on�gurations' markings and�rable ations are represented by extensions. Therefore, if two on�gurations onernsa same state s, i.e. its markings ontain s, suh on�gurations should have extensionsin aordane with all �rable ations from s.De�nition 3.2.11 (Coherene). A labeled event struture is oherent if for all on�gu-rations C,C ′ ∈ CE,
• ifM(C) ∩M(C ′) 6= ∅ then for every a ∈ Σ = Codom(L) we have

⋃

e∈E,L(e)=a,C⊢e

M(C ∪ {e}) =
⋃

e∈E,L(e)=a,C′⊢e

M(C ′ ∪ {e})

• ifM(C) =M(C ′) then for every extension e ∈ E of C, there exists an extension
e′ ∈ E of C ′ suh that L(e) = L(e′) andM(C ∪ {e}) =M(C ′ ∪ {e′}).Figure 3.5 illustrates the �rst property of the oherene. A simple onsequene ofoherene is that if the markings of two on�guration C and C ′ are not disjoint sets,they are extended by the same set of labels/ations a in Codom(L). One an say that theseond property whih is a partiular ase of the �rst one when on�gurations have a samemarking, sounds more reasonable. However, we are in favor of the �rst one when workingon non-deterministi labeled event strutures as well as on non-deterministi systems. Ito�ers further some possibility of marking abstration for labeled event strutures.30

3.2. Labeled event strutures
C

(C ∪ {e}) (C ∪ {f})

C ′

(C ′ ∪ {e′}) (C ′ ∪ {f ′})

M(C) ∩M(C ′) 6= ∅

e f

⋃
M

e′ f ′L

Figure 3.5: Coherene of labeled event struturesOne again, look at the labeled event struture in Example 3.2.6. It representsonly some �nite exeutions of its indued labeled transition system. The ohereneproperty is not satis�ed in this example beause, for instane, on�gurations ∅ and
{e1, e2, e3, e4, e5, e6} have a same marking, however, the �rst one an be extended whilethe seond one an not. This example explains well that oherent labeled event struturesare generally not �nite. In fat, a on�guration in a labeled event struture represents notonly reahable states by means of its marking, but also �ring sequenes of some induedlabeled transition system. Hene, if the indued system has an in�nite exeution, thenthe orresponding labeled event struture should be in�nite too.Lemma 3.2.12. Let E = (E,≤,#,L,M) be a oherent labeled event struture and
LTS

E = (S,Σ, s0,→) be an indued labeled transition system of E. For all s ∈ S and
σ ∈ Σ+, we have s0։s

σ i� there exists a non-empty on�guration C ∈ CE and alinearisation l of C w.r.t. (E,≤) suh that σ = LW(l) and s ∈M(C).Proof. This lemma is a diret onsequene of the following property: s0 a1−→ s1, s1
a2−→

s2, . . . is a path of LTS
E i� there exists a sequene of events e1, e2, . . . suh that a1 =

L(e1), ∅ ⊢ e1 and s1 ∈ M({e1}); a2 = L(e2), {e1} ⊢ e2 and s2 ∈ M({e1, e2});This property ould be easily proved by indution on the length of the path and usingLemma 3.1.16, De�nition 3.2.4 and Lemma 3.2.10.Lemma 3.2.12 only states about non-empty �ring sequenes. However, the emptyword ε is of ourse a �ring sequene of LTS
E where its reahable state is equal to theinitial state s0. Other states s onerning the empty on�guration ∅, i.e. s ∈ (M(∅)\s0)does not mean that s is reahable. The following orollary is straightforward fromLemma 3.2.12.Corollary 3.2.13. Given a labeled event struture E = (E,≤,#,L,M), if M(∅) is asingleton s0 then the reahable state set of its unique labeled transition system LTS

E, i.e.
post∗

LTS
E , is equal to ⋃

C∈CE

M(C).As a onsequene of the Lemma 3.2.12, one on�guration of the labeled event stru-ture may represent several exeutions of its indued labeled transition system. Theseexeutions are simply di�erent interleavings of events of the on�guration, or in otherwords, interleavings of ations' ourrenes. The more onurreny between events ofthe on�guration, the more orresponding exeutions it has. Therefore, in the view ofmodeling systems by labeled event strutures, it is worth notiing that for two labeledevent strutures whose indued labeled transition systems are the same, the one in whihthere are more onurreny, seems to be the more ompat. 31

Chapter 3. Modeling onurrent systems by labeled event struturesDe�nition 3.2.14 (Redundany). A labeled event struture E = (E,≤,#,L,M) isredundant if there exists a on�guration C ∈ CE whih has two di�erent extensions
e, e′ ∈ E suh that e#e′, L(e) = L(e′) and (M(C ∪ {e}) ∩M(C ∪ {e′})) 6= ∅.De�nition 3.2.14 is similar to the one used in labeled ourrene nets [MM95a℄.However, non-redundany in labeled event strutures does not give rise to the notionof unique labeled event struture for some system. In other words, we an have manynon-redundant labeled event strutures whih model a same system, i.e. orrespond tothe labeled transition system modeling it. More details on redundany will be given inSetion 6.2.2.3.3 Modeling onurrent systems3.3.1 Labeled event treesDe�nition 3.3.1. An event tree is an event struture E = (E,≤,#) satisfying that allevents are pairwise in ausality or in on�it, i.e. (≤ ∪≥ ∪#) = (E × E).Corollary 3.3.2. Let E = (E,≤,#) be a tree,1. for every on�guration C ∈ CE, the restrition of ≤ onto C, i.e. ≤|C is a totalorder, and C has thus one and only one linearisation w.r.t. the ausality, and2. every non-empty on�guration C is the loal on�guration of some event e ∈ Ewhere e is the maximal event in C w.r.t. the ausality, i.e. {e} = Max≤(C) and

C = ≥(e).Proof. Sine every on�guration C is on�it-free, i.e. #|C = ∅, all its events are pairwisein ausality. The partial-order ≤|C is thus a total order on C. It de�nes the uniquelinearisation of C w.r.t. ≤ by De�nition 2.3.4. The �rst item is proved.As a onsequene, the �nite set C with its total order ≤|C admits a unique maximalevent w.r.t. ≤. Let us denote this maximal event by e, {e} = Max≤(C) if C is not empty.It follows from the downward-losure of C that ≥(e) ⊆ C. Beause of the uniqueness of
e, one has e′ ≤ e for all e′ ∈ C, and onsequently, C ⊂ ≥(e). Therefore, ≥(e) = C, andthe seond item is also proved.One an �nd di�erent ways of de�ning a tree in other works [Fin87, Fin91, SNW96℄.For an intuitive omparison, in our de�nition, non-empty on�gurations C (or eventswhose loal on�guration is C) orrespond to nodes, the empty on�guration ∅ orre-sponds to a partiular node, alled root ; and the ayli property says that there existsone and only one path from the root to any node of the tree. The notion of path isrepresented by the linearisation of events or equally by the extension of on�gurations(see Corollary 3.1.8) over event strutures. Suh an ayli property orresponds to the�rst item in Corollary 3.3.2.Figure 3.6 illustrates an event tree in whih events are labeled by either '−' or '+',and there is, in addition, an added root ∅ representing the empty on�guration ∅. Bygiving a simple marking funtionM : CE→ N de�ned as follow:

M(C) = 1 + |{e ∈ C /L(e) = +}| − |{e ∈ C /L(e) = −}|one an obtain a deterministi labeled event struture LET whose indued labeled tran-sition system is the same as the one indued from the labeled event struture E inExample 3.2.3 on page 28. However, LET is muh bigger than E beause LET has noonurreny between its events while E does.32

3.3. Modeling onurrent systems
∅

−

+

−

+

−

+

+

−

+

−

−

+

+

−

+

−

−

+

−

−

+

−

+

+

−

+

−

−

+

+

−

+

−

−

+

−

−

−

+

+

−

+

−

−

+

−

−

−Figure 3.6: Tree with labeled eventsDe�nition 3.3.3 (Labeled event tree). A labeled event tree is a oherent and non-redundant labeled event struture LET = (E,≤,#,L,M) where (E,≤,#) is an eventtree.Proposition 3.3.4. Let LET = (E,≤,#,L,M), LET
′ = (E′,≤′,#′,L′,M′) be twolabeled event trees whose indued labeled transition systems are the same. If LET,LET

′are deterministi then LET and LET
′ are isomorphi.Proof. Let LTS = (S,Σ, s0,→) denote the indued labeled transition system of both

LET and LET
′. Sine LET and LET

′ are deterministi, we have s0 =M(∅) =M′(∅).First, let us de�ne a relation R between Min≤(E) and Min≤′(E′) as follow: eR e′ if
L(e) = L′(e′) andM({e}) =M′({e′}). Notie that Min≤(E) are the set of extensions ofthe empty on�guration ∅ in LET. Let e be any event in Min≤(E), and denote a = L(e),
s = M({e}). By de�nition of indued labeled transition system (De�nition 3.2.4), itfollows from ∅ ⊢ e and M({e}) = s that s0 a

−→ s. Thanks to Lemma 3.2.12, in LET
′,there exist a on�guration that is a singleton {e′} suh that L′(e′) = a and M(e′) isthe reahable state s. Therefore, eR e′ beause ≥′(e′) = {e′} and thus e′ ∈ Min≤′(E′).

R is thus total. Suppose that R is not single-valued, there exists two events e′, f ′ ∈
Min≤′(E′) suh that {e′, f ′} ⊆ R(e) for some event e ∈ Min≤(E). We have then,
L′(e′) = L′(f ′) = L(e), M′({e′}) = M′({f ′}) = M({e}), and in addition, e′#′f ′ dueto Corollary 3.3.2. The labeled event tree LET

′ is thus redundant by De�nition 3.2.14.It ontradits to De�nition 3.3.3. Therefore, R is single-valued, and is a funtion from
Min≤(E) to Min≤′(E′), i.e. R : Min≤(E) → Min≤′(E′). By the same reasoning, we alsoobtain that R−1 : Min≤′(E′)→ Min≤(E). Hene, we an onlude that R is a bijetionbetween Min≤(E) and Min≤′(E′).Seond, let e be any event in Min≤(E) and e′ = R(e). Sine LET,LET

′ are de-terministi labeled event trees, their orresponding su�xes, denoted by LET|E\{e}\#(e)and LET
′|E′\{e′}\#′(e′), are also deterministi labeled event trees. Moreover, beause

M({e}) =M′({e′}), it follows from Lemma 3.2.10 on page 30 that these su�xes induethe same indued labeled transition system. Therefore, as previously proved, there existsa bijetion R′ between the sets of minimal events in these su�xes LET|E\{e}\#(e) and
LET

′|E′\{e′}\#′(e′), suh that L(f) = L(f ′) and M({e, f}) = M({e′, f ′} if R′(f) = f ′.33

Chapter 3. Modeling onurrent systems by labeled event struturesIt is straightforward that the domain and the o-domain of the bijetion R′ are the setsof diret suessors of e and e′ respetively, i.e. ⋖(e) and ⋖
′(e′).We an thus de�ned a relation B between E and E′ whih is the union of all bije-tions R,R′, . . . in a onstrutive way. Sine LET,LET

′ are event trees, these bijetions'domains as well as its o-domains are pairwise disjoint. Moreover, notie that every on-�gurations of an event tree is the loal on�guration of some event, i.e. CLET = Cl
LET

.
B is thus a bijetion that satis�es properties in De�nition 3.2.7 on page 29. Therefore,
LET and LET

′ are isomorphi.Proposition 3.3.4 gives rise to the notion of unique labeled event tree, up to isomor-phism, for labeled transition system.De�nition 3.3.5. Given a labeled transition system LTS, the deterministi labeled eventtree of LTS is a deterministi labeled event tree LET whose indued labeled transitionsystem is LTS.Although deterministi labeled event tree, a lassial struture for system's behavior,is not ompat and in general is not the minimal labeled event tree for some labeledtransition system, it is simple to onstrut in pratie (see Chapter 5). The reason isthat every on�guration represents only an exeution of the underlying system. And thesize of suh a labeled event tree beomes huge easily due to interleaving of �rable ations.Therefore, we only use labeled event trees for modeling omponent systems in whih itis di�ult to �nd or there exists no onurreny between ations/events (see Chapter 6),for instane, modeling systems' state without queues' ontent in ommuniating �nitestate mahines [Bo78, BZ83, LI05℄.3.3.2 CountersA ounter is a well-known datatype with values ranging over the set of natural numbers
N, equipped with two operations: '+' and '−' that respetively inreases and dereasesits value. A ounter takes a natural number as its initial value, and may be viewed as alabeled transition system.De�nition 3.3.6 (Counter). A v-initialized ounter, where v ∈ N, is a labeled tran-sition system v-CT = (N, {+,−},→CT, v) where the transition relation →CT is the set
({〈n,+, n + 1〉 /n ∈ N} ∪ {〈n + 1,−, n〉 /n ∈ N}).By de�nition, ounters are thus deterministi. Example 2.4.2 on page 15 shows thesemantis of the 1-initialized ounters. In the following, we aim at de�ning onurrentlabeled event strutures dediated to behaviors of suh ounters. We �rst restrit to theones modeling the 0-initialized ounter.De�nition 3.3.7 (k-ausality event strutures). Let k be a natural number, a k-ausalityevent struture is an event struture E = (E,≤,#) where # = ∅ and ≤ satis�es:1. for all e ∈ Min≤(E), ⋖(e) 6= ∅;2. for all e ∈ E, if ⋖(e) 6= ∅ then |⋖(e)| = k + 1 and |{e′ ∈ ⋖(e) / ⋖(e′) = ∅}| = 1;3. for all e ∈ (E \Min≤(E)), ⋗(e) is a singleton; and4. |Min≤(E)| = k if k > 0 and |Min≤(E)| =∞ if k = 0.Reall that ⋖ is the predeessor relation and is the minimal relation w.r.t. theinlusion order suh that ⋖

∗ = ≤. For an event e, ⋖(e) = ∅ means that e has no (diret)suessors, and is alled a leaf (as in graph theory). A minimal event (w.r.t. ausality)34

3.3. Modeling onurrent systemsis not a leaf due to the �rst item. While the seond item intuitively means that if anevent e is not a leaf, then it has exatly k + 1 diret suessors, formally de�ned by theset ⋖(e), and only one of them is a leaf. The �rst item says that every event e has atmost one diret predeessor, this predeessor is ⋗(e) if exists. As a onsequene, onean �nd out that the restrition of ≤ onto the loal on�guration of e, i.e. ≤|≥(e), is atotal order. Hene, a k-ausality event struture E is intuitively a set of disjoint eventtrees without on�it relation. The roots of suh trees orrespond 1-to-1 to the minimalevents in Min≤(E). The last item distinguishes the partiular ausality event struturewhere k is zero, and will be explained lately in Setion 3.3.2.Moreover, given any event e whih is not a leaf, let S denote the set of diret suessorsof e whih are not leaves. Then the restrition of the k-ausality event struture overthe upward-losure set of S, w.r.t. the ausality ≤, is isomorphi with E itself.Lemma 3.3.8. Given a k-ausality event struture E = (E,≤,#) and an event e ∈ Esuh that ⋖(e) 6= ∅. Let e′ be the unique diret suessor of e whih has no suessor,i.e. e ⋖ e′ and ⋖(e′) = ∅. If k > 0 then E and E|>(e)\{e′} are isomorphi.Proof. Obvious by de�nition.As a onsequene, the k-ausality event struture are unique, w.r.t. isomorphism, forany given number k. Aiming at modeling the 0-initialized ounter, a k-ausality eventstruture is nothing but an underlying struture for a k-ausality proess de�ned below.One intuitively labels its leaf events by the derement ation '−' and its other events bythe inrement ation '+'.De�nition 3.3.9 (k-ausality proess). Let k be a natural number, the k-ausalityproess is a labeled event struture k-CP = (E,≤,#,L,M) where E = (E,≤,#) is the
k-ausality event struture, and

• labeling funtion L : E → {+,−} de�ned as L(e) = −, if e has no suessor, i.e.
⋖(e) = ∅, and L(e) = +, otherwise;

• marking funtion M : CE → N de�ned as M(C) = |{e ∈ C /L(e) = +}| − |{e ∈
C /L(e) = −}|.Figure 3.7 illustrates k-ausality proesses for di�erent values of k. In ausalityproesses, all events, whih orrespond to either inrement ation '+' or derement ation'−', are pairwise onurrent or in ausality. There are two types of ausality: ausalitybetween a derement event and an inrement event, or ausality between two inrementevents. The �rst one naturally omes from the fat that a ounter an not take a negativevalue, so that a derement event must our after some inrement event. However theseond type of ausality is our own onstraint to ausality proesses in order to guaranteethe �nite-branhing property of k-ausality proesses.Lemma 3.3.10. The k-ausality proess k-CP = (E,≤,#,L,M), for a given �nitenumber k > 0, is a non-redundant and �nitely-branhing labeled event struture.Proof. Sine there is no on�it in k-ausality proess, k-CP is thus non-redundant byDe�nition 3.2.14.Let C be any on�guration of k-CP, and X = {e ∈ E /C ⊢ e} be the set of itsextension events. Due to the downward-losure property of on�gurations, we have

e ∈ X only if either e is a minimal event w.r.t. ausality, i.e. e ∈ Min≤(E), or e is adiret suessor of some inrement event e+ in C, i.e. ∃e+ ∈ C : e+ ⋖ e. Therefore, the35

Chapter 3. Modeling onurrent systems by labeled event strutures
+

−

+

−

+

−

(a) k = 0

+

− +

− +

(b) k = 1

+

− +

− + +

+

− + +

+

− +

− + +

+

− + +

() k = 2

Figure 3.7: Examples of k-ausality proessesardinal of X an not exeed |Min≤(E)| + (k + 1)|C| = k + (k + 1)|C|, beause eahinrement event has exatly (k + 1) diret suessors. It follows from the �niteness of
k and of on�guration C that the set X is �nite. As a onsequene, k-CP is �nitely-branhing by De�nition 3.1.9.Lemma 3.3.11. For any given number k, the k-ausality proess is oherent and itsindued labeled transition system is the zero-initialized ounter CT

0.Proof. Let k-CP = (E,≤,#,L,M) be the k-ausality proess, and denote E+ = {e ∈
E /L(e) = +} and E− = {e ∈ E /L(e) = −}. Let C be any on�guration of k-CP.We will �rst prove that there exists an extension event e+ of C suh that e+ ∈ E+(*). If C ∩E+ = ∅, sine Min≤(E) 6= ∅ and Min≤(E) ⊆ E+ by de�nition, we an hooseany event e+ in Min(E) that satis�es (*). If C ∩ E+ 6= ∅, let f+ be any maximal, w.r.t.
≤, inrement event of C, i.e. f+ ∈ Max≤(C ∩ E+), we have then two ases. In the�rst ase, k = 0, by De�nition 3.3.7, there are in�nitely many minimal events. Theset (Min≤(E) \ C) is not empty and ontains only inrement events. Any event in thisset satis�es (*). In the seond ase, k > 0, let e+ be any event in k inrement diretsuessors of f+. f+ is not in C and is thus an extension event of C whih satis�es.Seondly, suppose thatM(C) > 0. We an dedue that Max≤(C) ∩E+ 6= ∅ beauseotherwise, for every inrement event of C, its diret suessor whih is a derement eventis also in C. Hene |C ∩ E+| an not exeed |C ∩ E−|, so that M(C) = 0, ontraditto the hypothesis. Let e+ be any inrement event in Max≤(C) ∩ E+. By de�nition, e+has a diret suessor e− ∈ E−. It is obvious that C ⊢ e−. The reverse, i.e. if C has anextension event e− ∈ E− thenM(C) > 0, an be proved in the same manner.Now, by de�nition of the marking funtion M, if C ⊢ e, we have M(C ∪ {e}) =
M(C)+1 if e ∈ E+ andM(C∪{e}) =M(C)−1 otherwise. Beause for any on�guration36

3.3. Modeling onurrent systems
C, it always has an extension event in E+, and in addition, an extension event in E− if
M(C) > 0, the k-ausality proess is thus oherent.Therefore, in the indued labeled transition system, we have 〈M(C),+,M(C)+1〉 ∈
→

LTS
k-CP for all on�guration C of k-CP, and 〈M(C),+,M(C) + 1〉 ∈→

LTS
k-CP for all

C whose marking is positive due to De�nition 3.3.9 and De�nition 3.2.4. Moreover,
M(∅) = |∅ ∩ E+| − |∅ ∩ E−| = 0, the set of states in LTS

k-CP is thus N. Therefore,
LTS

k-CP is the zero-initialized ounter de�ned in De�nition 3.3.6.Parameter k in ausality proessesThe idea of our k-ausality proess is inspired by the unfolding tehnique on Petrinets [MM95a℄. A ounter ould be intuitively onsidered as a plae with tokens ofa Petri net. The value of a ounter orresponds thus to the number of tokens in thisplae. One an add a token to a plae or remove some existing one from this plae.These two ations are really independent.The 0-ausality proess is a deterministi labeled event struture in whih addedtokens are distinguishably represented by a minimal inrement event and its only diretsuessor. Eah pair of suh events with its ausality an be seen as a labeled eventstruture for a token. Moreover, a plae of a Petri net an be seen as a synhronizedprodut of tokens without synhronization vetor. As a onsequene, the 0-ausalityproess an be omputed by a synhronized produt of labeled event strutures modelingtokens (see Setion 3.3.4).Sine there is only ausality between an inrement event and a derement event asnaturally needed, 0-ausality proess is the most onurrent proess. In another words,this ausality proess admits ertain ω-onurreny. And by using it in synhronizedproduts of labeled event strutures, we an obtain the same struture as with labeledourrene nets [MM95a, Haa99℄ or branhing proesses [ERV96, DJN04℄ on Petri nets.However, there are three problems. First, 0-ausality proess may not be adaptedto de�ning bounded ounters or safe Petri nets' plaes (see Setion 3.3.2). Seond, 0-ausality proess' in�nitely-branhing property prevents itself from onurrent veri�a-tion tehnique (see Setion 4.2). Notie here that in other works, veri�ation tehniquesfor Petri nets is guaranteed by either the boundedness/safeness of plaes, whih is sup-posed or is proved by other tehniques. And third, like other k-branhing proesseswhere k is a great number, 0-branhing proess may give rise to enormous redundanyin a global synhronized produt in whih 0-branhing proess is used as a omponent.This redundany is not easy to redue (see Setion 6.2.2 for more details).By using a positive and �nite number k in ausality proesses, the deidability of veri-�ation problems based on labeled event strutures is guaranteed. The greater parameter
k is, the less ausality between inrement events there is, and as a onsequene, the moreonurrent ausality proess we have. Changing k for omponent ausality proess is aheuristi way to equilibrate the onurreny of the global labeled event struture andits redundany; so that one an obtain a more or less ompat labeled event struture(see omparison results in Setion 6.3.2). Intuitively, if ounter's value never exeeds b,parameter k greater than b is not neessary.The 1-ausality proess is a partiular one in whih there is a total ausality (order)over inrement events. Our proess for bounded ounters is based on it. 37

Chapter 3. Modeling onurrent systems by labeled event struturesBounded ountersA bounded ounter di�ers from general ounters (De�nition 3.3.6) only on its set ofreahable states. Its value never goes beyond some given number. Formally,De�nition 3.3.12 (b-bounded ounter). Let b ∈ N, b > 0 and v ∈ {0, 1, . . . b}. A v-initialized bounded ounter is the labeled transition system b-BC
v = ({0, 1, . . . , b}, {+,−},

→BC, v) where the labeled transition relation →BC is the union set {〈n,+, n + 1〉 /n ∈
{0, 1, . . . , b− 1}} ∪ {〈n,−, n − 1〉 /n ∈ {1, 2, . . . , b}}.Consider the 1-bounded ounter 1-BC

0 whose initial value is zero. This labeledtransition system has only two states 0 and 1 and two labeled ations '+' and '−'for swithing its state. An event orresponding to the inrement ation gives rise toonly one other event whih orresponds to a derement ation, and inversely. There isno onurreny at all in the behaviors of this bounded ounter. The minimal, w.r.t.isomorphism, �nitely-branhing and oherent labeled event struture for 1-BC
0 is thusits deterministi labeled event tree whih is graphially represented in Figure 3.8.a.

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

(a) k = 1. (b) k = 3.

Figure 3.8: Graphial representation of k-bounded proessesAs previously mentioned, a ounter an be seen as a synhronized produt of tokenson a Petri net's plae in whih every synhronization vetor onerns only one omponent.In the ase of a bounded ounter, the boundedness may be erti�ed by limiting thenumber of synhronized tokens to some number b. The b-bounded proess de�ned belowis somehow a synhronized produt of labeled event strutures whih all aim at modelingbehaviors of 1-BC
0. But with a slight modi�ation on synhronized produt's markingfuntionM so that Codom(M) is N, not N

b (see Setion 3.3.4).De�nition 3.3.13 (b-bounded proess). Given a positive natural number b, the b-bounded proess is the labeled event struture b-BP = (E,≤,#,L,M) where:1. # = ∅;2. |Min≤(E)| = b and for all e ∈ (E \Min≤(E), |⋗(e)| = 1;3. L : E → {+,−} andM : Cb-BP→ {0, 1, . . . , b} suh thatM(C) = |{e ∈ C /L(e) =
+}| − |{e ∈ C /L(e) = −}|.4. for every minimal event e ∈ Min≤(E), b-BP|(<(e)) is the deterministi labeled eventtree of 1-BC

0; and38

3.3. Modeling onurrent systemsThe �rst item obviously says that there is no on�it in the b-bounded proess.Due to the seond item, every event has one diret predeessor exept b minimal eventsw.r.t. the ausality ≤. As a onsequene, events an be distributed in b disjoint sets,eah set ontains a minimal event em ∈ Min≤(E), and all events whih are in ausalitywith em. Two events from di�erent sets are thus onurrent. The third item statesthat labeling funtions of the b-bounded proess are more or less similar to the ones forausality proesses in De�nition 3.3.9. The last one is the most interesting, it tells thateah disjoint set of events above, determines a labeled event tree for 1-bounded ounter
1-BC

0 by means of restrition. And the number of omponent strutures is exatly b dueto the seond item. As a onsequene of Proposition 3.3.4, for any given b, b-boundedproess is unique up to isomorphism.Figure 3.8 illustrates two bounded proesses. Sine the ausality in the labeled eventtree of 1-BC
0 is a total order, every event has a di�erent label with its only diretsuessor. It is obvious that the marking of a on�guration is determined by the labelof its unique maximal event w.r.t. ausality. Of the same manner,Remark: We haveM(C) = |Max≤(C) ∩ {e ∈ E /L(e) = +}| for any b-bounded proess.Lemma 3.3.14. Given a �nite number b, the b-bounded proess b-BP is deterministiand �nitely-branhing.Proof. Due to the de�nition of the marking funtion in De�nition 3.3.13, b-BP is de-terministi by De�nition 3.2.2. Let C ∈ Cb-BP be any on�guration, C has exatly bextension events whih are separately loated in b di�erent sub-strutures of b-BP. b-BPis thus �nitely-branhing due to De�nition 3.1.9.Lemma 3.3.15. Given a positive natural number b, the b-bounded proess b-BP = (E,≤,

#,L,M) is oherent and its indued labeled transition system LTS
b-BP is the b-boundedounter b-BC

0 whose initial state is 0.Proof. As mentioned, sine b-BP is intuitively omposed of b labeled event trees whoseausality is total, for any on�guration C ∈ Cb-BP, Max≤(C) is not greater than b. Andmoreover, any of its extension event is either a diret suessor of some maximal eventof C w.r.t. ≤, or a minimal event of E.Let us denote E+ = {e ∈ E /L(e) = +} and E− = {e ∈ E /L(e) = −}. Due to theremark above, if M(C) = k then Max≤(C) ∩ E− = ∅, thus C an not have extensionevent labeled by '+'. If M(C) < k, we have two ases. First, if Min≤(E) 6⊆ C, everyevent in the non-empty set Min≤(E) \ C is an extension event of C and is an inrementevent. Seond, if Min≤(E) ⊆ C, we have |Max≤(C)| = k. Sine M(C) < k, C has atleast one maximal event whih is a derement event, and its unique diret suessor,whih is an inrement event, is thus an extension event of C.Therefore, C has extension event whih is an inrement event if and only ifM(C) < k.In the same manner, we an prove that C has extension event labeled '−' if and only if
M(C) > 0 (1).By de�nition of the marking funtion M, when C ⊢ e we have M(C ∪ {e}) =
M(C)+1 if e ∈ E+, andM(C∪{e}) =M(C)−1 if e ∈ E− (2). The b-bounded proessis oherent by De�nition 3.2.11.In addition,M(∅) = |∅∩E+|− |∅∩E−| = 0. From (1) and (2), we an onlude thatthe indued labeled transition system LTS

b-BP is the b-BC
0 de�ned in De�nition 3.3.12.39

Chapter 3. Modeling onurrent systems by labeled event struturesNow let us disuss the possibility of adapting a k-ausality proess k-CP to modelbehaviors of b-bounded ounters for some given number b. Our idea is to add someausality between events so that the obtained labeled event struture, denoted by E,disallows all on�gurations of marking b to have an extension event whih is an inrementevent. Let C ∈ Ck-CP be a on�guration with M(C) = b, X+ and X− are the sets ofextension events of C whih are labeled by '+' and '−' respetively. Sine ausalityproesses' indued labeled transition system LTS
k-CP is zero-initialized ounter, we have

|X−| = b and X+ 6= ∅.Naturally, any event in X− is still an extension event of C in E while an event in
X+ is not. Moreover, let e+ be any event in X+, e+ ould be an extension event of theon�guration (C ∪ {e−}) ∈ CE for some (or all) event e− ∈ X−. Due to the absoluteonurreny between derement events in k-CP, this idea is di�ult to be implemented.We need somehow a total ausality over X− and to impose the ausality between e+ andthe minimal event of X−, w.r.t. ≤, afterward.Due to the intuitive idea above, we an only onform 1-ausality proess to mod-eling bounded ounters' behaviors. The goal labeled event strutures are isomorphiwith bounded M -ausality proesses for FIFO hannels where M is a singleton (see Se-tion 3.3.3).Counters initialized by positive valuesThe v-initialized ounter an be seen as a Petri net's plae in whih there are initially vtokens. Behaviors of suh a plae are the same as behaviors of an empty plae, modeledby means of 0-initialized ounter, ombined with onurrent events whih remove initialtokens. These v tokens with only removing operations an be modeled by a simplelabeled transition system, alled v-ountdown ounter.De�nition 3.3.16 (v-ountdown ounter). Given a number v, the v-ountdown ounteris the labeled transition system CD

v = ({0, 1, . . . , v}, {−},→, v) where the transitionrelation → is the set {〈n,−, n − 1〉 /n ∈ {1, . . . , v}}.Sine all events orresponding to the derement ation, labeled by '−', are pairwiseonurrent and there are at most v events. We de�ne a labeled event struture forountdown ounters in whih there is no strit ausality and on�it. However, byomitting this total onurreny, one an also gives other labeled event strutures forrepresenting ountdown ounters� for instane, labeled event trees.De�nition 3.3.17 (v-ountdown proess). Given a number v, the v-ountdown proessis a labeled event struture v-CD = (E,IE , ∅,L,M) where:
• there are exatly v events, i.e. |E| = v,
• labeling funtion L : E × {−}, and
• marking funtionM : Cv-CD→ {0, 1, . . . , v} is de�ned asM(C) = v − |C|.

− − − −Figure 3.9: The 4-ountdown proessThe following is straightforward.Lemma 3.3.18. Let v ∈ N be any number, the v-ountdown proess v-CD is a deter-ministi, �nitely-branhing and oherent labeled event struture for v-ountdown ounter
CD

v de�ned in De�nition 3.3.16.40

3.3. Modeling onurrent systemsOur labeled event struture for v-initialized ounters intuitively onsists of a v-ountdown proess and a k-ausality proess, for a given number k.De�nition 3.3.19 ((k, v)-ausality proess). Let k, v be two natural numbers, the (k, v)-ausality proess is a labeled event struture (k, v)-CP = (E,≤,#,L,M) where E is theunion set of two disjoint sets Ev and Ek suh that:1. (k, v)-CP|Ev is v-CD w.r.t. isomorphism,2. (k, v)-CP|Ek
is k-CP w.r.t. isomorphism,3. ≤ = (≤|Ev) ∪ (≤|Ek

) and # = ∅,4. Dom(L) = E and Codom(L) = {+,−}, and5. marking funtion M : C(k,v)-CP → N is de�ned as M(C) = v + |{e ∈ E /L(e) =
+}| − |{e ∈ E /L(e) = −}|.Although the labeling funtion L is not expliitly de�ned in De�nition 3.3.19, thanksto the �rst and seond items, one an see that L is the union of two disjoint funtions L|Evand L|Ek

whih are well de�ned. So that, for instane, events in Ev are all labeled by thederement ation '−' by De�nition 3.3.17. Figure 3.10 shows ausality proesses withdi�erent parameters k and v. For instane, in the (3, 2)-ausality proess (Figure 3.10.),we have Ev = {e1
v , e

2
v, e

3
v} and Ek = E \ Ev. Notie that when v = 0, i.e. Ev = ∅, the

(k, 0)-ausality proess is the k-ausality proess in De�nition 3.3.9.
+

−

e1
v

+

−

e2
v

+

−

+

−

(a) k = 0 and v = 2

+

−
ev

+

− +

(b) k = 1 and v = 1

−
e1
v

−
e2
v

−
e3
v

+

− +

− + +

+

− + +

+

− +

− + +

+

− + +

() k = 2 and v = 3

Figure 3.10: Example of (k, v)-ausality proessesFigure 3.10.a and Figure 3.10.b show the (k, v)-ausality proesses together with itsorresponding k-ausality proesses for two partiular values of k: k = 0 and k = 1.In these two �gures, events in k-ausality proess whih are not in the (k, v)-ausalityproess are olored in gray. One an �nd out that, (k, v)-ausality proess is intuitively asu�x of k-ausality proess for every value of v. However, it is true only when k is either41

Chapter 3. Modeling onurrent systems by labeled event strutures
0 or 1. As a onsequene, it follows from Lemma 3.2.10 that indued labeled transitionsystems of (0, v)-ausality proesses and (1, v)-ausality proesses are all v-initializedounters.Lemma 3.3.20. Let k, v be two numbers. (k, v)-CP = (E,≤,#,L,M) is a �nitely-branhing if k > 0, deterministi, non-redundant and oherent labeled event struturewhose indued labeled transition system LTS

(k,v)-CP is the v-initialized ounter v-CT inDe�nition 3.3.6.Proof. By de�nition of the marking funtion M, (k, v)-CP is deterministi by De�ni-tion 3.2.2. It is also non-redundant by De�nition 3.2.14 beause there is no on�it, i.e.
= ∅.Let C be any on�guration of (k, v)-CP. By de�nition, (k, v)-CP is intuitively aombination of v-CD, k-CP of whih event sets are respetively Ev, Ek, and these setsare onurrent, i.e. Ev ‖

s Ek. Hene, every extension event of C in (k, v)-CP is eitheran extension event of C ∩ Ev in v-CD (number of suh events an not exeed v) oran extension event of C ∩ Ek in k-CP (number of suh events is �nite if k > 0 due toLemma 3.3.10). Therefore, (k, v)-CP is �nitely-branhing.Now, we are going to prove the oherene of (k, v)-CP. Let X be the set of allextension events of C in (k, v)-CP, and denote by X+ = X ∩E+, X− = X ∩E− its twodisjoint subsets of inrement events, derement events respetively. X+ is not emptysine C has at least one extension event e+ ∈ E+ in k-CP due to Lemma 3.3.11.By de�nition of marking funtion M, M(C) = 0 (*) if and only if |C ∩ E−| =
v + |C ∩ E+|. Sine Ev ⊂ E−, we an write |Cv| + |Ck ∩ E−| = v + |Ck ∩ E+| where
Cv = C ∩Ev and Ck = C ∩Ek. Beause Ck is a on�guration of k-CP, so the number ofits derement events an not be greater than the one of its inrement events; and |Cv | isless than or equal to the number of events in v-CD, hene (*) if and only if Cv = Ev and
Mk-CP(Ck) = 0. In this ase, X− ⊆ Ek, and X− is thus empty due to Lemma 3.3.11.Otherwise, i.e. either Cv ⊂ Ev orMk-CP(Ck) 6= 0, X− ontains at least one event whihis in Ev \ Cv or is an event extension e− ∈ Ek of Ck in k-CP.Therefore, for all on�gurations C of (k, v)-CP, C always has an extension whihis an inrement event, and C has an extension whih is an derement event if andonly if M(C) > 0. Moreover, by de�nition, M(C ∪ e) = M(C) + 1 if e ∈ E+, and
M(C ∪ e) =M(C)− 1 otherwise. (k, v)-CP is thus oherent.In addition, sine M(∅) = v, the indued labeled transition LTS

(k,v)-CP is the v-initialized ounter v-CT in De�nition 3.3.6.Remark: Combination of labeled event strutures like in (k, v)-ausality proesses ouldbe applied to put together, for instane, ausality proesses with di�erent parameters
k, and then with any oherent and deterministi labeled event struture for v-boundedounters. But notie that the number of these omponent proesses should be �nite inorder to guarantee the �nitely-branhing property of the global one. In this way, we anobtain oherent labeled event strutures for ounters. The proof's idea is the same asthe one of Lemma 3.3.20.Labeled event strutures for bounded ounters whih are initialized by a given num-ber, are just su�xes of bounded proesses. As a onsequene, they inherit the oherene,�nitely-branhing, and non-redundany of bounded proesses. Moreover, there is onlyone labeled event struture, w.r.t. isomorphism, for eah pair of parameters bound kand initial value v. The following is thus a diret sequene of Lemma 3.2.10.42

3.3. Modeling onurrent systemsLemma 3.3.21. Given natural numbers k > 0, and a natural number v whih is notgreater than k. Let C be any on�guration in the k-bounded proess b-BP = (E,≤
,#,L,M) satisfyingM(C) = v. The C-su�x of b-BP, i.e. b-BP|E\C\#(C), is a labeledevent struture for the k-bounded ounter whih is initialized by v.3.3.3 FIFO hannelsNowadays, many works on veri�ation aim at verifying ommuniation protools. Thepopular model Communiating Finite State Mahine [BZ83℄ for speifying and verifyingthese protools, an be onsidered as a synhronized produt of some FIFO (First-In-First-Out) hannels and some other �nite-state labeled transition systems. FIFOhannel is thus a standard model whih allows to represent the exhange of messages ina ommuniation protool.Intuitively, a FIFO hannel is a variable holding a �nite word over some alphabet
M . This word determines its urrent state. At eah time, the environment, e.g. thelient of a server, an either remove the �rst letter of this word, by a so alled reeivingoperation, or insert a new letter in M after the last letter of this word, by a so alledsending operation.De�nition 3.3.22 (v-initialized FIFO hannel over M). Let M be a non-empty alphabetand v be any �nite word over M . The v-initialized FIFO hannel over M is the labeledtransition system (M,v)-FF = (M∗,Σ,→, v) where

• ation set Σ = {!m /m ∈M} ∪ {?m /m ∈M}, and
• transition relation → = {〈w, !m,w.m〉 /m ∈M,w ∈M∗} ∪
{〈m.w, ?m,w〉 /m ∈M,w ∈M∗}.Notation 3.3.23. We denote by !M the set {!m /m ∈M} and all it the sending ationset ; and respetively ?M = {?m /m ∈M} the reeiving ation set.Figure 2.2 on page 15 illustrates an example of (M,v)-FF where M = {a, b} and

v = a (Example 2.4.3). Although a state of a FIFO hannel is a �nite word, there isno limit on its size. As a onsequene, any sending ation !m where m ∈ M is alwaysenabled. However, a reeiving ation ?m is only enabled from a state w ∈ M∗ if m isa pre�x of the word w. Reahable states of (M,v)-FF an be omputed by means of
M -letter-morphisms de�ned as follow:De�nition 3.3.24 (M -letter-morphisms). The M -letter-morphisms Π!M and Π?M aretwo funtions from (!M ∪ ?M) to (M ∪ {ε}), where ε is the empty word, suh that

• Π!M (!m) = Π?M (?m) = m for all m ∈M , and
• Π!M (?m) = Π?M (!m) = ε for all m ∈M .Reall that the funtion ΠW

!M (ΠW
?M) is based on Π!M (Π?M , resp.) (see Setion 2.2on page 12). By de�nition, for a given word w ∈ (!M ∪ ?M), in order to obtain ΠW

!M(w)(ΠW
?M (w), resp.), one intuitively 'erases' all letters in ?M (!M , resp.) of w, then 'erases'all 'notes of exlamation' ('question marks', resp.).Let σ ∈ (!M ∪?M)∗ be any �ring sequene of (M,v)-FF, and w be its only reahablestate (beause (M,v)-FF is deterministi), i.e. v

σ
−→ w. We have that

w = (ΠW
?M (σ))−1(v.ΠW

!M (σ)) 43

Chapter 3. Modeling onurrent systems by labeled event struturesIntuitively, one an �rst insert all messages aording to sending ations in the �ringsequene σ, to obtain the word w′ = (v.ΠW
!M (σ)). Then, by removing all messagesaording to reeiving ations in σ from w′, one �nally gets the reahable state w. Thisinserting order as well as this removing order should respet to the order of ations in

σ. Therefore, suh removing messages form the pre�x ΠW
?M (σ) of w′ while w is a su�xof w′.The key idea of modeling a FIFO hannel by some labeled event struture E is thatevery event labeled by a sending ation !m ∈ !M , shortly alled a sending event, givesrise to another event labeled by ?m ∈ ?M , alled a reeiving event, that should be asuessor of the sending one. This relation between sending events and reeiving ones isa bijetion. Moreover, it follows from the total order of messages in FIFO hannels thatsending events should not be onurrent. In order to avoid redundany, it is natural thata sending event e! has |M | diret sending suessors whih orrespond to di�erent sendingations in !M . The reeiving event e? assoiated to e! is hopefully a diret suessor of

e! and onurrent with other diret sending suessors of e!.Aiming at labeled event strutures for FIFO hannels, and at �rst for the empty-initialized FIFO hannel, one may think about using k-ausality event strutures de�nedin De�nition 3.3.7. Reall that, given a k-ausality event struture E = (E,≤,#), let
E− = {e ∈ E / ⋖(e) = ∅} and E+ = E \ E−, hene E+ and E− orrespond respetivelyto the inrement event set and the derement event set in the k-ausality proess. Eahinrement event e+ ∈ E+ has exatly k + 1 diret suessors, and among them, there isonly one derement event. Moreover, B = {〈e+, e?〉 ∈ (E+×E−) / e+ ⋖e−} is a bijetionfrom E+ to E−. The bijetion B ould be obtain in another way that B = (E+×E−)∩⋖.In the following de�nition of M -ausality event struture, for an alphabet M , we simplyuse the k-ausality event struture where k is the ardinal of M , i.e. k = |M |.De�nition 3.3.25 (M -ausality event struture). The M -ausality event struture, fora given non-empty alphabet M , is an event struture E = (E,≤,#), where E is unionof two disjoint sets E! and E?, suh that:1. let ≤′ = (≤\ (E?×E?))∪IE?

, then (E,≤′, ∅) is the |M |-ausality event strutures,and E? = {e ∈ E / ⋖
′(e) = ∅};2. let B! be the bijetion de�ned by B! = (E! × E?) ∩ ⋖

′ and let B? = B−1
! , then forall e?, f? ∈ E?, e? ≤ f? i� B?(e?) ≤

′ B?(f?); and3. {〈e, f〉 ∈ # />(e)#s >(f)} = {〈e!, f!〉 ∈ (E! × E!) / e! 6= f! and
>(e!) = >(f!)}. 1An M -ausality event struture is simply a k-event struture, where k = |M |, withadditional ausality and on�it as stated in the �rst item. Events are separated intotwo sets E! and E? whih respetively represent sending events and reeiving events.Beause E? = {e ∈ E / ⋖

′(e) = ∅}, reeiving events intuitively orrespond to derementevents in |M |-ausality proess.Suppose that the FIFO hannel is initially empty, a message in the FIFO hannelmust be inserted by a sending event and ould be removed by another reeiving event.These two events are related by bijetions B! and B? de�ned in the seond item. It isobvious that the reeiving event must our after the sending one, thanks to the ausality
≤′ in the k-ausality event struture, so that e! ⋖

′ B!(e!) and equally, e! ⋖ B!(e!) for all
e+ ∈ E!. Moreover, the environment an only reeive messages in the order that theywere sent into the hannel due to its First-In-First-Out property, this fat gives rise to1 #s is the omplement of #s (see Setion 2.1 on page 11)44

3.3. Modeling onurrent systemsa ausality on the set of reeiving events whih respets the ausality on the set of itsorresponding sending events. More preisely, two reeiving events e?, f? ∈ E? are ausal,for example e? < f?, if and only if in the hannel, the orresponding message of e? isinserted before the one of f?. The seond ondition is guaranteed when orrespondingsending events are ausal, i.e. B?(e?) < B?(f?) whih is equivalent to B?(e?) <′ B?(f?)by de�nition.In the third item, the set {〈e, f〉 ∈ # />(e)#s >(f)} represents the relation ofminimal on�it on events, denoted by #m. In words, e#m f if events in the downwardlosure ≥({e, f}) are pairwise either ausal or onurrent, exept the pair e and f . Andwhen e# f and e #m f , we say that e and f are in on�it due to on�it inheritanew.r.t. ausality, that means there exists two predeessors of e and f whih are in on�it.Hene, the third item states that minimal on�it #m in M -ausality event struturesomes from the on�it between sending events whih are extension events of a sameon�guration, whih orrespond to sending ations from a same state. Intuitively, givenany word w ∈ M∗ whih is some urrent state of a FIFO hannel FF, one an �rstlysend a message a ∈ M and then another message b ∈ M , or onversely. However, sinemessages in FF are totally ordered, if a di�ers from b, one thus obtains di�erent statesby permuting this suessive sending ations !a and !b. Formally, beause w։w.a.b
!a!band w։w.b.a

!b!a , so a 6= b implies w.a.b 6= w.b.a. Sending ations are not independent.For the goal of having a non-redundant labeled event struture, eah sending eventin M -ausality event struture has exatly |M | sending diret suessors. These diretsuessors are pairwise in on�it, and moreover, it is the origin of the minimal on�it
#m from whih the whole on�it relation # an be omputed due to on�it inheritane.Therefore, all sending events are either in ausality or in on�it. The onurreny inFIFO hannel is formally represented by onurreny in the M -ausality event struture.Proposition 3.3.26. Let E = (E,≤,#) be any M -ausality event struture de�ned inDe�nition 3.3.25, for a given non-empty alphabet M .

‖ = {〈e?, f!〉, 〈f!, e?〉 / e? ∈ E?, f! ∈ E! and B?(e?) < f!}Proof. As previously mentioned, all sending events are pairwise either ausal due toausality in its k-ausality event struture, or in on�it by the third item of De�ni-tion 3.3.25. Hene there exists no onurreny between sending events (*). And so dofor reeiving events. Beause, suppose the opposite, let e?, f? be any reeiving eventswhih are onurrent. As a onsequene of the seond item in De�nition 3.3.25, the send-ing events orrespond to e? and f? w.r.t. B? are also onurrent, i.e. B?(e?) ‖ B?(f?).This ontradits (*). We an onlude that
‖ ∩ (E! ×E!) = ‖ ∩ (E? × E?) = ∅Now, let e? ∈ E? be any reeiving event, and f! ∈ E! be any sending one. If B?(e?)and f! are on�it, then sine e? is a diret suessor of B?(e?), it is also on�it with

f! due to on�it inheritane. Otherwise, i.e. B?(e?)# f!, as explained above, B?(e?)and f! must be in ausality. There are thus two ases. First, f! ≤ B?(e?), we have
f! < e? beause B?(e?) ⋖ e?. Seond, B?(e?) < f!, in the k-ausality event struture,
e? and f! are onurrent, hene 〈e?, f!〉 6∈ (≤′ ∪ ≥′). We have thus 〈e?, f!〉 6∈ (≤ ∪ ≥)beause ≤∩ (E? ×E!) = ≤′ ∪ (E? ×E!) = ∅. Moreover, we have ≥(B?(e?)) ⊂ ≥(e?) and
≥(f!) = ≥(B?(e?)) ∪ F! where F! ⊂ E! is the set of all events in the path from B?(e?) to
f! in the k-ausality struture. Therefore, suppose that B?(e?)#f!, this on�it must beinherited from some minimal on�it B?(e?)#m f ′

! where f ′
! ∈ F!. This ontradits the45

Chapter 3. Modeling onurrent systems by labeled event struturesfat that #m ⊂ (E! × E!) stated in the third item of De�nition 3.3.25. Hene, in thisase, e? ‖ f! if and only if B?(e?) < f!. Finally,
‖ = ‖ ∩ ((E! ×E?) ∪ (E? ×E!))

= {〈e?, f!〉, 〈f!, e?〉 / e? ∈ E?, f! ∈ E! and B?(e?) < f!}Proposition 3.3.26 intuitively says that a reeiving event e? is onurrent with allsending events whih our after the one orresponding to e?, i.e. B?(e?). And allonurreny in M -ausality event strutures is of this type.
!a

!a

!a ?a !b

?a !b

!a ?b !b

!b

!a

!a ?a !b

?b !b

!a ?b !bFigure 3.11: M -ausality proesses where M = {a, b}Figure 3.11 gives an example of M -ausality proess, de�ned in the following, as wellas its M -ausality event struture. Sine M = {a, b}, one an �nd out that it is similarto the 2-ausality event struture in Figure 3.7.. In addition to the 2-ausality eventstruture, there are the minimal on�it #m between sending events E! and the ausalitybetween reeiving events E?. This new ausality is represented by double-line arrows.and are shown in red olor. Intuitively, eah reeiving event has two diret suessorsthat are also reeiving events.Remark: Thanks to Proposition 3.3.26, given a on�guration C of a M -ausality eventstruture, its sending events (C ∩E!) are totally ordered. And so do the reeiving events
(C ∩ E?). As a onsequene, for all on�guration C, there is a unique linearisation of
(C ∩ E!), and a unique one of (C ∩ E?), w.r.t. the ausality.De�nition 3.3.27 (M -ausality proess). Let M be a non-empty alphabet. The M -ausality proess is a labeled event struture M -CP = (E,≤,#,L,M) where ((E!∪E?),≤
,#) is the M -ausality event struture de�ned in De�nition 3.3.25, and

• labeling funtion L : (E! ∪ E?)→ (!M ∪ ?M) suh that1. Codom(L|E!
) = !M and Codom(L|E?

) = ?M ,2. for all e! ∈ E!, Π!M (L(e!)) = Π?M (L(B!(e!))),3. for all e! ∈ E!, let F! = (⋖(e!) ∩ E!), then L|F!
is a bijetion between F! and

!M ;4. L|Min≤(E) is a bijetion between Min≤(E) and !M ,
• marking funtionM : CM-CP→M∗ de�ned by
M(C) = (ΠW

?M (LW(σ?)))
−1(ΠW

!M (LW(σ!))) where σ! and σ? are respetively thelinearisations, w.r.t. the ausality ≤, of (C ∩ E!) and (C ∩ E?).46

3.3. Modeling onurrent systemsIn words, the labeling funtion L says that: �rst, sending events E! are labeled bysending ations !M while reeiving events E? are labeled by reeiving ations ?M ; seond,by means of M -letter morphisms Π!M and Π?M , sending events and reeiving eventswhih are related by the bijetion B!, as well as by B?, must onern a same message;and third, events in the sending diret suessor set of any sending event e! ∈ E!, denotedby F!, must be pairwise distinguishably labeled. Sine F! = |M | by De�nition 3.3.7, wehave thus L(F!) = {L(e) / e ∈ F!} = !M . The fourth property of labeling funtion L islike the third one but the set of sending events here is the set of minimal events w.r.t.ausality.Notie that σ! and σ? in the de�nition of a marking funtion are linearisations whihare onsidered as words over alphabets (C ∩ E!) and (C ∩ E?) respetively. Therefore,
LW(σ!) as well as LW(σ!.σ?) may be �ring sequenes of some (M,v)-FF. The de�nitionof marking funtionM in De�nition 3.3.27 respets to the way of omputing reahablestates in the empty-initialized FIFO hannel (M,ε)-FF (see De�nition 3.3.22 on page 43).Lemma 3.3.28. Let M -CP = (E,≤,#,L,M) be the M -ausality proess for a non-empty alphabet M . M -CP is a oherent labeled event struture for (M,ε)-FF.Proof. Let C ∈ CM-CP be any on�guration of the M -ausality proess, let us denote
C! = C ∩ E! and C? = C ∩ E?. We �rst shows how the marking of C is omputed from
C! and C?. Sine B?(e?) ⋖ e? for all reeiving events e?, we have thus B?(C?) ⊆ (≥(C?)).It follows from the downward-losure of C w.r.t. the ausality ≤ that B?(C?) must bea subset of sending event set C!. Moreover, let C ′

! = C! \ B?(C?), we must have that,for all 〈e!, e
′
!〉 ∈ (B?(C?) × C ′

!), e! < e′! (1). Beause, as mentioned above, (C!,≤|C!
) is atotally-ordered set, if e′! < e! then B!(e

′
!) < B!(e!) by the seond item of De�nition 3.3.25.Hene the reeiving event B!(e

′
!) must be in C?, and as a onsequene, its orrespondingsending event e′! is in B?(C?). This ontradits to the fat that C ′

!∩B?(C?) = ∅. Therefore,from (1), the unique linearisation σ! of C!, w.r.t. ausality ≤, must be σB.σ′
! where σBis the linearisation of B?(C?) w.r.t. ≤. By de�nition of the labeling funtion L, wehave ΠW

?M (LW(σ?)) = ΠW
!M(LW(σB)), where σ? is the linearisation of C? w.r.t. ≤. ThemarkingM(C) in De�nition 3.3.27 an be omputed as follows:

M(C) = (ΠW
?M (LW(σ?)))

−1(ΠW
!M (LW(σB.σ′

!)))= (ΠW
?M (LW(σ?)))

−1(ΠW
!M (LW(σB))).(ΠW

!M (LW(σ′
!)))= (ΠW

!M (LW(σ′
!))) (2)Now, let e′!, f

′
! be respetively the minimal and maximal events, if they exist, of C ′

!w.r.t. ≤. Let x? = B!(e
′
!) be the diret reeiving suessor of e′! and X! = {f! ∈ E! / f ′

! ⋖f!}be the set of diret sending suessors of f ′
! . By de�nition, ({x?} ∪X!) ‖

s C. Sine forall x! ∈ X!,≥(x!) = ≥(f ′
!) ∪ {x!} = C! ∪ {x!}, and ≥(x?) = ≥(e′!) ∪ B!(≥(e′!) \ {e

′
!}) =

(B?(C?) ∪ {e
′
!}) ∪ C?, then x ∪ C are thus downward losed, and moreover on�it-free(by De�nition 3.3.25). Hene X = X! ∪ {x?} is the set of extension events of C, beauseall other events e ∈ (E \ (C ∪X)) whih is not on�it with events in C, must be eithera suessor of some some event x! ∈ X! if e ∈ E!, or a suessor of x? if e ∈ E?.Notie that |X!| is the number of f!'s diret suessors, |X!| must be |M |. It followsfrom the bijetion L|X!

between X! and !M by De�nition 3.3.27 that, for every m ∈M ,there exists a sending event x! ∈ X! satisfying L(x!) = !M . In other words, C has anextension event that orresponds to any sending ation in !M (3). And if M(C) 6= ε,let m be the �rst letter (or message) in the wordM(C) = ΠW
!M (LW(σ′

!)). Sine e′! is theminimal event, w.r.t. ≤, and C ′
! is totally ordered by ≤, the �rst letter of LW(σ′) mustbe L(e′!). We have thus Π!M (e′!) = m, as a onsequene, L(e′!) = !m and L(x?) = ?m.47

Chapter 3. Modeling onurrent systems by labeled event struturesTherefore, C has one and only one extension event labeled by ?m if and only if m is apre�x ofM(C) (4).Let x! be any sending extension event of a given label !m, i.e. L(x!) = !m. Beause,for all e ∈ C ′
! , e < x!, from (2) we have

M(C ∪ x!) = (ΠW
!M (LW(σ′

!.x!)))

= (ΠW
!M (LW(σ′

!))).Π!M (L(x!))

=M(C).mAnd if C has a reeiving extension event x? ∈ E? with label ?m, i.e. C ⊢ x? and
L(x?) = ?m, one again, due to (2),

M(C ∪ x?) = (ΠW
?M (LW(σ?.x?)))

−1(ΠW
!M (LW(σB.σ′

!)))

= (Π!M (L(x!)))
−1.(ΠW

!M (LW(σ′
!)))

= m−1.M(C)In oordination with (3) and (4), we an onlude that M -CP is oherent, and that themarking of C ∪ x orresponding to a state whih is reahable from the marking of C by�ring the ation L(x). Moreover,M(∅) = ε by de�nition, M -CP is a thus labeled eventstruture for (M,ε)-FF.Lemma 3.3.29. Let M -CP = (E,≤,#,L,M) be the M -ausality proess for a non-empty alphabet M . M -CP is �nitely-branhing and non-redundant.Proof. Thanks to the proof of Lemma 3.3.28, any on�guration C ∈ CM-CP has |M |sending extension events and at most one reeiving extension event. M -CP is thus�nitely-branhing by De�nition 3.1.9.Although sending extension events of C, denoted by the set X! are pairwise in on�it,its labels and the reeiving extension event's label, if exists, are pairwise di�erent beause
L|X!

is a bijetion between X! and !M by De�nition 3.3.27. As a onsequene, M -CP isnon-redundant by De�nition 3.2.14.FIFO hannels initialized with non-empty wordConsider now a FIFO hannel (M,v)-FF where v 6= ε. Intuitively, eah letter m of v givesrise to only one event whih orresponds to the reeiving ation ?m. Due to the �rst-in-�rst-out property, suh events, depending on letter m, are totally ordered. Withoutlooking at other events, these |v| events and their ausality form a simple labeled eventstruture alled a (M,v)-�ushing proess.De�nition 3.3.30 (v-�ushing proess). Let v ∈ M∗ be a �nite word for some givenalphabet M . The (M,v)-�ushing proess, denoted by (M,v)-CP
?, is the deterministilabeled event tree for the labeled transition system (M∗, ?M,→, v) where → is therestrition of the transition relation →FF in (M,v)-FF onto (M∗ × ?M ×M∗).Figure 3.12.a shows an example of (M,v)-�ushing proesses. It follows from theDe�nition 3.3.3 that there is no onurreny in (M,v)-CP

?. However, one an �nd outthat there is no on�it, so that all events are pairwise in ausal.Now, by the same manner as in ausality proesses for ounters (see Setion 3.3.2),we introdue a labeled event struture for a given (M,v)-FF that intuitively onsists ofa v-�ushing proess, a M -ausality proess, and some ausality in addition.48

3.3. Modeling onurrent systems
?b

?a

?a

?c

(a)
!a

!a

!a ?a !b

?a !b

!a ?b !b

?b

?a

!b

!a

!a ?a !b

?b !b

!a ?b !b

f?b

f?a

(b)

Figure 3.12: (a) (M,v)-�ushing proess where M = {a, b, c} and v = baac; (b) (M,v)-ausality proess where M = {a, b} and v = ba.De�nition 3.3.31. Let M be a non-empty alphabet and v be any �nite word over M .The (M,v)-ausality proess is a labeled event struture (M,v)-CP = (E,≤,#,L,M)where E is the union set of two disjoint sets Ef and Em suh that1. (M,v)-CP|Ef is the (M,v)-�ushing proess w.r.t. isomorphism,2. (M,v)-CP|Em is the M -ausality proess w.r.t. isomorphism,3. # = #|Em ,4. ≤ = (≤|Ef) ∪ (≤|Em) ∪ (Ef × Em
?) where Em

? is the set of reeiving events in
(M,v)-CP|Em .5. the labeling funtion L : E → (!M ∪ ?M) is de�ned as L(e) = L≤|

Ef
(e) if e ∈ Ef ,and L(e) = L≤|Em (e) otherwise, and6. the marking funtionM : CM-CP→M∗ is de�ned as

M(C) = (ΠW
?M (LW(σ?)))

−1(v.ΠW
!M (LW(σ!))) where σ! and σ? are respetively thelinearisations, w.r.t. the ausality ≤, of C! = {e ∈ C /L(e) ∈ !M} and C? = {e ∈

C /L(e) ∈ ?M}.Figure 3.12.b illustrates ({a, b}, ba)-ausality proess. Its ({a, b}, ba)-�ushing proessontains only two events f?b and f?a that are in the middle of the �gure. In this example,
Ef = {f?b, f?a} and Em = E \ Ef . As stated in the third item of De�nition 3.3.31,on�it in (M,v)-CP is the on�it in its M -ausality proess. The additional ausalitybetween events in these two disjoint sets, i.e. ≤ ∩ (Ef × Em), omes from the fatminimal reeiving events of M -ausality proesses, w.r.t. ≤, must be diret suessorsof the maximal event of (M,v)-�ushing proess in order to respet the �rst-in-�rst-outproperty. Hene, this predeessor relation ⋖ ∩ (Ef × Em) = Max≤(Ef) × Min≤(Em

?)is represented by double arrows in the �gure. It respets well to the third item. Themarking funtion is similar to the one of M -ausality proess in De�nition 3.3.27 withattention at initial word v.Lemma 3.3.32. Let M be a non-empty alphabet and v be any �nite word over M . The
(M,v)-CP is a oherent, non-redundant and �nitely-branhing labeled event struture forthe (M,v)-FF. 49

Chapter 3. Modeling onurrent systems by labeled event struturesProof. Let C be any on�guration of (M,v)-CP = (E,≤,#,L,M). C has exatly Mextension events whih are sending extension events of C ∩ Em in M -CP, and they areformally represented by the diret suessor set of the only sending event em
! where

{em
! } = Max≤(C ∩ E!). These extension events are distinguishably labeled by sendingations in !M (1) beause LM-CP|⋖(e!m), as a onsequene L|⋖(e!m), is a bijetion byDe�nition 3.3.27.First, if Ef ⊆ C, the Ef -su�x of (M,v)-CP is the M -FF w.r.t. isomorphism beausefor all on�gurations X ⊆ Em in this su�x, denoted by Ex = (M,v)-CP|E\Ef\#(Ef) =

(M,v)-CP|Em , one has that
MEx(X) =M(Ef ∪X)

= (ΠW
?M (LW(σ?)))

−1(v.ΠW
!M (LW(σ!)))

= (ΠW
?M (LW(σf

? .σx
?)))−1(v.ΠW

!M (LW(σ!)))

= ((ΠW
?M (LW(σf

?))).(ΠW
?M (LW(σx

?))))−1(v.ΠW
!M (LW(σx

!)))

= (v.ΠW
?M (LW(σx

?)))−1(v.ΠW
!M (LW(σx

!)))

= (ΠW
?M (LW(σx

?)))−1(ΠW
!M (LW(σx

!)))is the same formula as in de�nition of M -ausality proess, where σ?, σ! = σx
! , σf

? , and σx
?are respetively linearisations of (C ∩E?), (C ∩E!) = (X ∩E!), E

f , and X ∩E?. Thanksto Lemma 3.3.28, C has reeiving extension labeled by ?m ∈ !M if and only if m is the�rst letter ofM(C) =MEx(C \Ef), that means X = (C \Ef) has a reeiving extensionevent labeled by ?m in the Ef -su�x Ex.Seond, if Ef 6⊆ C, let ef
? be the maximal event w.r.t. ≤ of Ef , and xf

? is the uniquediret suessor of ef
? . Sine all reeiving events are either ausal or in on�it, we have

C∩E? = ≥(ef
?), xf

? ∈ Ef\C, and xf
? ∈ E?. Reeiving event xf

? is thus the unique reeivingextension event of C; and markingM(C) = (ΠW
?M (LW(σ?)))

−1(v.ΠW
!M (LW(σ!))) de�nedin De�nition 3.3.31 has a pre�x (ΠW

?M (LW(σ?)))
−1(v) where σ? is the linearisation of

≥(ef
?) w.r.t. ≤. By De�nition 3.3.30, the �rst letter of this pre�x, and of M(C) as aonsequene, is Π?M (xf

?) (2).Now let e be any extension event of C, i.e. C ⊢ e. Sine there is no onurrenybetween sending events, as well as reeiving events, if σ!, σ?, σ
′
! and σ′

? are respetivelylinearisations of (C ∩E!), (C ∩ E?), ((C ∪ {e}) ∩E!) and ((C ∪ {e}) ∩E!), then we havethat σ′
! = σ!.e and σ′

? = σ? if e ∈ E!, or σ′
! = σ! and σ′

? = σ?.e otherwise, i.e. e ∈ E?.Therefore, we an dedue from the de�nition of the marking funtion that
M(C ∪ {e}) =

{
M(C).Π!M (L(e)) if e ∈ E!

(Π!M (L(e)))−1M(C) if e ∈ E?
(3)Hene (M,v)-CP is oherent due to (1), (2), and (3). Moreover, M(∅) = v byde�nition, the indued labeled transition system LTS

(M,v)-CP is the (M,v)-FF de�nedin De�nition 3.3.22.Finally, sine the M -ausality proess is the Ef -pre�x of the (M,v)-ausality proess.It follows from the non-redundany and �nitely-branhing properties of M -ausality pro-ess whih are proved in Lemma 3.3.29, that (M,v)-ausality proess is non-redundantand �nitely-branhing too thanks to Corollary 3.1.17.Bounded FIFO hannelsIn pratie, FIFO hannels are usually �nite-state systems due to the fat that hannelsannot ontain more than b messages for some given number b. Intuitively, when the50

3.3. Modeling onurrent systemshannel is full, i.e. ontains b messages, all sending ation is enabled only after somereeiving one. Bounded FIFO hannels are formally de�ned as follows:De�nition 3.3.33. Let b be any positive number, M be a non-empty alphabet, and vbe a word over M whose size is not greater than b. The FIFO hannel over M whihis initialized by v and is bounded by b, denoted by (M,v, b)-BF, is the restrition of the
(M,v)-FF to the state set M [0,b].The ation set of (M,v, b)-BF is still (!M ∪ ?M) like the one of (M,v)-FF, however,its semantis are slightly di�erent. Sine (M,v, b)-BF is a restrition of (M,v)-FF on itsstates, every �ring sequene σ of (M,v, b)-BF is also a �ring sequene of (M,v)-FF. Sothat, if one an model the (M,v, b)-BF by a alled (M,v, b)-ausality proess (M,v, b)-CPwhih is based on (M,v)-ausality proess (M,v)-CP, then a on�guration in (M,v)-CPmust orrespond to a on�guration in (M,v, b)-CP. In fat, the key idea is intuitively thatone needs to add some ausality to (M,v)-CP in order to avoid all on�gurations whosemarking is not in the range M [0,b]. Let us onsider an example where M = {a, b, c}, v =
ba and the bound-parameter b = 3. Figure 3.13 illustrates a pre�x of the orresponding
(M,v)-CP in whih there is no on�it. Reall that, sine there is no on�it, this pre�xis similar to ausality proesses for FIFO hannels where the message set ontains onlyone message.

!c

!a

!a

!c

!b

b

a

c

a

a

c

b

?b

?a

?c

?a

?a

?c

?b

e!
3

e!
n

e!
n+1

e!
n+2

e!
n+3

e?
1

e?
2

e?
3

e?
n

e?
n+1

e?
n+2

e?
n+3

1

2

3

n

n + 2

n + 3

Figure 3.13: An example illustrates a (M,v) FIFO hannel's ontent together withorresponding events in the (M,v)-CP where M = {a, b, c} and v = 3. The double arrowis an additional ausality that omes from a bounded onstraint: b = 3.One an �nd in this example many on�gurations C, and as a onsequene, many�ring sequenes σ of both (M,v)-FF and (M,v, b)-BF. As usual, suh a �ring sequene
σ omes from a linearisation of some on�guration C. The graphial representation ofthe hannel's whole ontent, i.e. without removing message due to reeiving events,i.e. reeiving ations in σ, is drawn in the middle of Figure 3.13 (with gray olor). Allmessages inserted due to the exeution σ are represented in top-down order to respet51

Chapter 3. Modeling onurrent systems by labeled event struturesthe ausality of sending messages. Two messages b and a are found at the top beauseof the initial value v = ab, any other message m is the origin of a sending event e! and areeiving one e? satisfying m = Π!M (e!) = Π?M (e?). For instane, e3
! and e3

? onern the�rst message c in the hannel. Suh events e! and e? are related the one to the other bythe bijetions B! and B?, de�ned in De�nition 3.3.25, of (M,v)-CP. Moreover, onsiderthe hannel' ontent as a word in whih messages has distinguishable indies in N. Event
e! and e? are then assoiated to the index of the message m in this word. This indexould be de�ned in another way as below.De�nition 3.3.34. Given a (M,v)-CP = (E,≤,#,L,M), the depth funtion D : E →
N is de�ned by:

D(e) =

{
|v|+ |≥(e) ∩E!| if e ∈ E!

|≥(e) ∩E?| if e ∈ E?As shown in Figure 3.13, for all k > 0, D(e!
k) = D(e?

k) = k. The D funtion isomputed from the ausality as stated in De�nition 3.3.34. Moreover, one may use
D together with the on�it relation to determine the bijetions B! and B? on (M,v)-ausality proesses.Lemma 3.3.35. Given a (M,v)-CP = (E,≤,#,L,M), two events e! ∈ E! and e? ∈
(E? \E

f) are related by the bijetion B!, as well as B?, if and only if e! # e? and D(e!) =
D(e?).Proof. By the same manner as in the proof of Lemma 3.3.32, for the left-to-right implia-tion, if e? = B!(e!) then ≥(e?) = ≥(e!)∪B!(≥(e!))∪Ef . Hene, ≥(e?)∩E? = B!(≥(e!))∪
Ef , and onsequently, D(e?) = |B!(≥(e!))∪Ef | = |≥(e!)|+|E

f | = |≥(e!)∩E!|+v = D(e!).For the right-to-left impliation, thanks to Proposition 3.3.26, e! # e? implies thatthe sending diret predeessor B?(e?) of e? is in ausal with e!. Moreover, for all sendingsuessors f! ∈ E! of e!, i.e. e! < f!, it follows from (≥(f!)) ⊇ (≥(e!) ∪ {f!}) ⊃ (≥(e!))that D(f!) > D(e!) by de�nition of the funtion D. In a same manner for predeessors
f! ∈ E! of e!, one obtains D(f!) < D(e!). Therefore, D(e?) = D(e!) implies that B?(e?) is
e!, i.e. B?(e?) = e!, and of ourse, B!(e!) = e?.One again, look at Figure 3.13, the marking of a on�guration C intuitively orre-sponds to a window on the hannel's ontent. Suh a window is limited by the indiesof maximal events, w.r.t. the ausality, in C. For example, if C = {e!

3, . . . , e
!
n+2} ∪

{e?
1, . . . e

?
n−1}, its maximal events are e!

n+2 ∈ E! and e?
n−1 ∈ E?, the marking of C thusonsists of messages with indexes from n to n + 2, that is graphially grouped by thedouble-frame in Figure 3.13, i.e. M(C) = ΠW

!M(e!
n.e!

n+1.e
!
n+2) = aac.Aiming at de�ning labeled event strutures for bounded FIFO hannels based on

(M,v)-CP, for instane b = 3, we need somehow a onstraint in order to disable theextension event e!
n+3 of on�guration C beause |M(C)| = b. However, e!

n+3 is hopefullyan extension event of the on�guration (C∪{e?
n}) for respeting the fat that the boundedhannel an aept a new sending ation just after some reeiving one. In order to doso, we add a new ausality from e?

n to e!
n+3, and by generally applying this to all pairs ofa sending event e! ∈ E! and a reeiving e? ∈ E? where D(e!) = D(e?) + b, one an obtainlabeled event strutures for (M,v, b)-bounded FIFO hannels, based on (M,v)-ausalityproesses.De�nition 3.3.36 ((M,v, b)-ausality proess). Let b be any positive number, M bea non-empty alphabet, and v be a word over M whose size is not greater than b. Let52

3.3. Modeling onurrent systems
(M,v)-CP = (E,≤,#,L,M) be the (M,v)-ausality proess. The (M,v, b)-ausalityproess is the tuple (M,v, b)-CP = (E, (≤ ∪≤b),#,L,M) where

≤b = {〈e, f〉 ∈ ((E × E) \#) /D(f) ≥ D(e) + b}Lemma 3.3.37. (M,v, b)-CP is a oherent labeled event struture for
(M,v, b)-BF.Proof. Let us denote ≤′ = ≤∪≤b, we �rst prove that ≤′ is a partial-order. By de�nitionof funtion D, and as a onsequene of Proposition 3.3.26, we have e ≤ f implies that
D(f) is greater than or equal to D(e). Let e, f be any two events in E. If e ≤ f then,for all f ′ ∈ E, f ≤ f ′ implies e ≤ f ′ beause (E,≤) is a poset; and f ≤b f ′ implies
e ≤b f ′ beause D(f ′) ≥ D(f) + b ≥ D(e) + b (1). If e ≤b f , i.e. D(f) ≥ D(e) + b, wealso have that, for all f ′ ∈ E, f ≤ f ′ implies e ≤b f ′; and f ≤b f ′ implies e ≤b f ′ (2)beause D(f ′) ≥ D(f). From (1) and (2), e ≤′ f and f ≤′ f ′ implies e ≤′ f ′. Hene, ≤′is transitive. Moreover, sine for all e, f ∈ E, D(e) < D(f) implies e 6= f , so if e ≤′ fand f ≤′ e then it is due to e ≤ f and f ≤ e. As a onsequene, e = f beause ≤ is apartial order. Therefore, ≤′ is antisymmetri, and onsequently, is a partial order on E.By the third item of De�nition 3.3.25, for all e! ∈ E!, sine e! ⋖B!(e!), two sets #(e!)and #(B!(e!)) oinide (3). When two events e, f ∈ E are in on�it, we have either
e#B!(f) if f ∈ E!, or e#B?(f) if f ∈ E?. Therefore, for every event f ′ ∈ E suhthat f ≤b f ′, f ′ must be in ausality with either f or B!(f) or B?(f) if exists. Dueto the on�it-inheritane of (M,v)-CP, we have e#f ′. The on�it inheritane thus ispreserved in (M,v, b)-CP (4).From (3), (4), and notie that the on�it relation is the same in (M,v)-CP and
(M,v, b)-CP, (M,v, b)-CP is a labeled event struture. And moreover, C(M,v,b)-CP =
C(M,v)-CP\C

′ where C′ is the set of on�gurations C ∈ C(M,v)-CP whih are not downward-losed w.r.t. ≤′. Sine sending events are pairwise onurrent or in on�it, and so doreeiving events, we have (≤′ \ ≤) = {〈e!, e?〉 ∈ ((E × E) \ #) /L(e!) ∈ !M,L(e?) ∈
?M and D(e!) ≥ D(e?) + b}, as intuitively mentioned above.Therefore, for any C ∈ C(M,v)-CP, C is not downward-losed w.r.t. ≤′ if and onlyif, denoted by e! the maximal event w.r.t. ≤ of C ∩ E!, {e? ∈ (C ∩ E?) /D(e?) + b =
D(e!)} = ∅; this is equivalent to D(e!) > D(f?) + b, where f? is the maximal event w.r.t.
≤ of C ∩ E?. Thanks to Lemma 3.3.35, we have |M(C)| > b by de�nition of a markingfuntion. Hene, in words, C(M,v,b)-CP ontains all on�guration C in C(M,v)-CP whosesize is less than or equal to b, i.e. b ≥ |M(C)| or simplyM(C) ∈M [0,b].

(M,v, b)-CP is thus oherent and is a labeled event struture of the bounded FIFOhannel (M,v, b)-BF.Lemma 3.3.38. (M,v, b)-CP is a deterministi, �nitely-branhing and non-redundantlabeled event struture.Proof. By De�nition 3.3.36, (M,v, b)-CP di�ers from (M,v)-CP only on additional ausal-ity ≤b. Hene, (M,v, b)-CP inherits all deterministi, �nitely-branhing and non-redund-ant properties of (M,v)-CP whih are proved by Lemma 3.3.32.Figure 3.14 illustrates a ausality proess for bounded FIFO hannel where M is asingleton. In this ase, there is no di�erene between messages whih implies the on�itrelation over events. (M,v, b)-bounded FIFO hannel is bisimilar with b-bounded ounterwhih is initialized by |v|. The simulation relation (RS ,RΣ) ould be formally de�nedas follows: 53

Chapter 3. Modeling onurrent systems by labeled event strutures
?m !m

?m !m

?m !m

?m !m

Figure 3.14: The (M,v, b)-ausality proess where M = {m}, v = m, and b = 2.
• RS : M∗ → N suh that ∀w ∈M∗,RS(w) = |w|, and
• RΣ = {〈!m,+〉, 〈?m,−〉}.Therefore, the ({m}, v, b)-ausality proess, for some given word v ∈ {m}∗ suhthat |v| ≤ b, is a deterministi, non-redundant, �nitely-branhing, and oherent for b-bounded ounter initialized by |v| (see De�nition 3.3.12). Notie that in this labeledevent struture, there is no on�it but all inrement events are pairwise in ausality,and so do derement events.3.3.4 Synhronized Produts of Labeled Event StruturesMost of systems an be onsidered as onurrent systems whih are omposed of di�erentomponents. These omponent systems an at in parallel and interat with eah other.Interation between omponents as well as simple omponent's ations are thus repre-sented by a synhronization of the global system whih, for example, ould be modeledby synhronization vetors as explained in Setion 2.4.2.The unfolding tehnique [MM95a℄ was �rstly applied to one-safe Petri nets, andthen to synhronized produts of transition systems [ER99℄, ommuniating �nite-statemahines [LI05℄, or high-level Petri nets [KK03℄. The goal is to �nd ompat stru-tures modeling onurrent behaviors of suh systems (systems' model). However, theseomplex models may be seen as synhronized produt of standard systems, for example,plaes of Petri nets, FIFO hannels, ounters. Therefore, we hopefully aim at givinga general unfolding tehnique whih omputes onurrent strutures for synhronizedproduts from the ones of their omponents based on labeled event strutures.De�nition 3.3.39 (Produt of event strutures). Let Ei = (E1,≤1,#1), . . . , En =

(En,≤n,#n), be n event strutures, for some given number n ∈ N. A produt of
E1, . . . ,En is any quadruple (E,≤,#,V), where:1. ≤ is a partial order on E,2. V is a funtion from E to ⊗ε(E1, E2, . . . , En) \ {〈ε, ε, . . . , ε〉},3. for all e, e′ ∈ E, e ⋖ e′ implies that there exists i ∈ {1, 2, . . . , n} suh that V(e)↓i

⋖iV(e′)↓i,4. for all e, e′ ∈ E, e#e′ i� there exists f ≤ e, f ′ ≤ e′ suh that f 6= f ′ and for some
i ∈ {1, 2, . . . , n}, we have either V(f)↓i #i V(f ′)↓i or V(f)↓i = V(f ′)↓i 6= ε,54

3.3. Modeling onurrent systems5. not self-on�it : for all e ∈ E, e# e, and6. omponentially downward-losed : for all e ∈ E and for all i ∈ {1, . . . , n}, V(≥(e))↓i
\{ε} is a downward-losed set w.r.t. (Ei,≤i).Intuitively, the funtion V tells us how omponent events are synhronized togetherto obtain a global event. Although the ausal relation ≤ and this funtion V are in-dependently de�ned, the onstraint stated in the third item of De�nition 3.3.39 simplymeans that ausality ≤ must be a onsequene of some ausalities in its omponent eventstrutures. However, there is no way to de�ne ≤ from V and omponent ausalities ≤i,

i ∈ {1, 2, . . . , n}. Beause, for instane, there may exist two events that are related to asame vetor v as seen in the example in the next sub-setion.But, on�it relation in a omponent, for instane #i, gives rise to the on�it relation
in the produt. Moreover, sine all on�gurations in an event struture are set ofevents, two di�erent events whih orrespond to a same event in a ertain omponentevent struture must be in on�it, or in other words, they annot both our. As aonsequene, a global event annot be in on�it with itself due to the not-self on�itproperty.The omponentially downward-losed property in De�nition 3.3.39 may be the mostinteresting one, and is the key idea for onstruting synhronized produt of labeledevent strutures (see Setion 5.3). Intuitively, every global event e orresponds to nomponent event sets V(≥(e))↓i, i ∈ {1, 2, . . . , n}. Although of the downward-losureof e w.r.t. ≤, its event sets V(≥(e))↓i must be downward-losed too, w.r.t. ≤i. As aonsequene, for every on�guration C in the produt, its restrition on any omponent
i, i.e. V(C)↓i, is a on�guration in Ei.Lemma 3.3.40. Let (E,≤,#,V) be a produt of n event strutures E1,E2, . . . ,En.
E = (E,≤,#) is an event struture.Proof. # is irre�exive due to the non-self on�it property of De�nition 3.3.39, andmoreover, the on�it-inheritane is guaranteed by de�nition of on�it relation #.Moreover, for all events e, e′ ∈ E satisfying e < e′, if ε 6∈ {V(e)↓i,V(e′)↓i} for some
i ∈ {1, 2, . . . , n}, then V(e)↓i 6≥i V(e′)↓i (1). Now, reall that it follows from the �nitaryproperty of omponent event strutures Ei (see De�nition 3.1.1) that every omponentevent in Ei has �nitely many predeessors. As a onsequene, a global event e ∈ E hasalso a �nite number of diret predeessors. Beause otherwise, i.e. ⋗(e) is in�nite, sinethe number of omponents n is �nite, there exists two diret predeessors f, f ′ ∈ ⋗(e)and an index i ∈ {1, 2, . . . , n} suh that V(f)↓i = V(f ′)↓i. Hene f#f ′ due to the forthitem in De�nition 3.3.39, and it ontradits the �fth item that means e is not in on�itwith itself. Therefore, ⋗(e) is �nite for all e ∈ E (2).Now, suppose that there exists a global event e ∈ E of whih loal on�guration
≥(e) is in�nite. It follows from (2) that there is an in�nite sequene e = e1 ⋗ e2 ⋗ . . .where ek ∈ ≥(e) for all k ∈ N. Sine n is �nite, thanks to (1) and the third item ofDe�nition 3.3.39, this in�nite sequene ontains another in�nite sequene ek1 , ek2 , . . . ,where V(ek1)↓i >i V(ek2)↓i >i . . ., for some index i. This ontradits the �nitary propertyof the event struture Ei that requires the �niteness of ≥i(ek1).Therefore, (E,≤,#) satis�es the �nitary property, i.e. ≥(e) is �nite for all e ∈ E,and is thus an event struture. 55

Chapter 3. Modeling onurrent systems by labeled event struturesGraphial representation of a produt of event struturesExample 3.3.41. Let Ee = (Ee,≤e,#e) and Ef = (Ef ,≤f ,#f) be two event stru-tures obtained from k-bounded proesses for 2-BC
0 and 1-BC

0 (see De�nition 3.3.13 andLemma 3.3.21). Let e1 be any event in Min≤e(Ee) and f1 be any event in Min≤f
(Ef);and e2, f2 are respetively its diret suessors. Let us de�ne:

• P = {p1, p2, p3, p4, p5};
• ≤ = {〈p1, p2〉, 〈p3, p5〉, 〈p4, p5〉} ∪ IP ;
• V : P → (⊗ε(Ee, Ef) \ {〈ε, ε〉}) where� V(p1) = 〈e1, f1〉,� V(p2) = 〈e2, f2〉,� V(p3) = 〈e1, ε〉,� V(p4) = 〈ε, f1〉,� V(p5) = 〈e2, f2〉; and
• # = ({p1, p2} × {p3, p4, p5}) ∪ ({p3, p4, p5} × {p1, p2}).The quadruple (P,≤,#,V) is thus a produt of Ee and Ef by De�nition 3.3.39.

+
e4

−
e5

+
e6

+
e1

−
e2

+
e3

p1

p2 p5

−
f1

+
f2

−
f3

p3 p4

+
e4

−
e5

+
e6

+

−

+
e3

−

+

−
f3

p1

p2

p3 p4

p5

e1 f1

e2 f2

(b)

(a)

Figure 3.15: Two graphial representations of a produt of event struturesFigure 3.15 illustrates the produt (P,≤,#,V) in Example 3.3.41, as well as itsomponent event strutures Ee,Ef by two manners. With the �rst one, Figure 3.15.a, theevent struture (P,≤,#) is represented in the middle while the funtion V is illustratedby dashed ars whih tell us the relation between a global event and its related omponent56

3.3. Modeling onurrent systemsevents. However, in this work, we prefer the seond one partiularly for produt of morethan two omponents, Figure 3.15.b, where global events are represented by boxes whihgroup its orresponding omponent events.It is worth notiing that the funtion V is not injetive, for instane V(p2) = V(p5),so that the ausality ≤ an not be de�ned solely based on V. And there is a partial-order on produts of the same omponent event strutures, like the pre�x-order on eventstrutures (see De�nition 3.1.12 on page 25). Suh a produt (E,<,#,V) is a pre�x ofanother one (E′, <′,#′,V′) if (E,≤,#) is a pre�x of (E′,≤′,#′) w.r.t. some bijetion Band for all e ∈ E, V(e) = V′(B).Lemma 3.3.42. Let E = (E,≤,#) be the event struture of a produt (E,≤,#,V)of n given event strutures E1,E2, . . . ,En. For all on�gurations C of E and for all
i ∈ {1, 2, . . . , n}, we have V(C)↓i \{ε} is a on�guration of Ei, i.e. (V(C)↓i \{ε}) ∈ CEi

.Proof. Reall that V(C)↓i =
⋃

e∈C

(V(≥(e))↓i).Sine, for all e ∈ E, (V(≥(e))↓i) \ {ε} is downward-losed w.r.t. (Ei,≤i) by Def-inition 3.3.39, (V(C) ↓i) \ {ε} is thus downward-losed w.r.t. (Ei,≤i). Suppose that
V(C)↓i is not on�it-free w.r.t. #i for some index i. Hene, there exists two omponentevents ei, fi ∈ V(C)↓i suh that ei #i fi, and onsequently, there are two orrespondingevent e, f ∈ C satisfying V(e)↓i = ei and V(f)↓i = fi. It follows from the irre�exiv-ity of #i that ei 6= fi. Hene e should not be equal to f . The fat that e#f and
e, f ∈ C, ontradits the on�it-freeness of the on�guration C. Therefore, we anonlude that V(C)↓i is on�it-free w.r.t. #i, and is thus a on�guration in Ei for everyindex i ∈ {1, 2, . . . , n}.Remark: For all di�erent events e, f in a on�guration C, for all index i ∈ {1, 2, . . . , n},one has either ε ∈ {V(e)↓i,V(f)↓i} or V(e)↓i 6= V(f)↓i. Although this is not stated inLemma 3.3.42, its proof is similar to the one of Lemma 3.3.42.Notation 3.3.43. Given n sets E1, E2, . . . , En. Let Li,Mi, i ∈ {1, 2, . . . , n} be 2n fun-tions satisfying Dom(Li) = Ei and Dom(Mi) = P(Ei), for all i ∈ {1, 2, . . . , n}. Let Vbe any funtion whose o-domain is ⊗ε(E1, E2, . . . , En). We denote:

• LV the funtion from Dom(V) to ⊗ε(Codom(L1),Codom(L2), . . . ,Codom(Ln)) suhthat, for all e ∈ Dom(V) and i ∈ {1, 2, . . . , n}, LV(e) ↓i = ε if V(e) ↓i= ε, and
LV(e)↓i = Li(V(e)↓i) otherwise,

• MV the funtion from P(Dom(V)) to ⊗(Codom(M1),Codom(M2), . . . ,
Codom(Mn)) suh that, for all C ∈ P(Dom(V)), MV(C) = M1(V(C)↓i \{ε}) ×
M2(V(C)↓2 \{ε}) × . . . ×Mn(V(C)↓n \{ε}).De�nition 3.3.44 (Synhronized produt of labeled event strutures). Given n la-beled event strutures E1 = (E1,≤1,#1,L1,M1), E2 = (E2,≤2,#2,L2,M2), . . . ,En =

(En,≤n,#n,Ln,Mn). Let Σ be any subset of ⊗ε(Codom(L1),Codom(L2), . . . ,
Codom(Ln)). Let (E,≤,#,V) be the maximal produt, w.r.t. isomorphism, of n eventstrutures (E1,≤1,#1), (E2,≤2,#2), . . . , (En,≤n,#n) suh that

• synhronization: for all e ∈ E,LV(e) ∈ Σ, and
• no-dupliation: for all e, f ∈ E, if (>(e)) = (>(f)) and V(e) = V(f) then e = f .The synhronized produt of labeled event strutures E1,E2, . . . ,En w.r.t. Σ is the tuple

SP = (E,≤,#,LV,MV). 57

Chapter 3. Modeling onurrent systems by labeled event struturesThe event struture of SP ontains only events satisfying the synhronization on-straint. Suppose that the maximal produt without dupliation of (E1,≤1,#1), (E2,≤2

,#2), . . . , (En,≤n,#n) is (E′,≤′,#′,V′), the event struture ESP = (E,≤,#) is thus themaximal pre�x of (E′,≤′,#′) satisfying this onstraint. Formally, ESP = (E′,≤′,#′)|Ewhere E = E′ \ ≤({e ∈ E′ /LV(e) 6∈ Σ}).However, the no-dupliation property does not imply the no-redundany in the syn-hronized produt SP. For instane, in the Example 3.3.41 above, due to the maxi-mality of SP, E must ontain not only p1 but also another event p′1 where (>(p′1)) =
(>(p1)) = ∅ and V(p′1) = 〈e4, f1〉 while V(p1) = 〈e1, f1〉. It is obvious that p1#p′1 byDe�nition 3.3.39, but in the 2-bounded proess for 2-BC

0, Le(e1) = Le(e4) = + and
Me({e1}) =Me({e2}) = 1 so that LV(p1) = LV(p′1) andMV({p1}) =MV({p′1}). Thissatis�es the redundany property stated in De�nition 3.2.14. Setion 6.2.2 will give moredetails on ways to redue this redundany, alled auto-redundany [KK03℄, whih omesfrom synhronized produts of onurrent labeled event strutures.Lemma 3.3.45. The synhronized produt of labeled event strutures is a labeled eventstruture and it is �nitely-branhing if its omponent labeled event strutures are all�nitely-branhing.Proof. Let SP = (E,≤,#,LV,MV) be the synhronized produt of n labeled eventstrutures E1 = (E1,≤1,#1,L1,M1),E2 = (E2,≤2,#2,L2,M2), . . ., En = (En,≤n

,#n,Ln,Mn). Sine ESP = (E,≤,#) is an event struture, SP is obviously a labeledevent struture by de�nition.Let C be any on�guration in ESP and X be its set of extension events, i.e. X =
{e ∈ E /C ⊢ e}. For all x ∈ X, beause C ∪ {x} is downward-losed w.r.t. (E,≤),
x must be a diret suessor of some event e ∈ C or x ∈ Min≤(E). In the �rst ase,due to the third property of De�nition 3.3.39, e has at most ∏

i:V(e)↓i 6=ε

|⋖i(V(e)↓i)| diretsuessors whih is �nite beause omponent event strutures are �nitely-branhing andthere is no dupliation in SP. In the seond ase, we have that for all i ∈ {1, 2, . . . , n},
V(x)↓i ∈ Min≤i

(Ei), one again, the number of extension events x is �nite. Therefore Xis �nite, and onsequently, SP is �nitely-branhing.Theorem 3.3.46. Given a number n ∈ N and n oherent labeled event strutures E1 =
(E1,≤1,#1,L1,M1),E2 = (E2,≤2,#2,L2,M2), . . . ,En = (En,≤n,#n,Ln,Mn). Let Σbe any subset of ⊗ε(Codom(L1),Codom(L1), . . . ,Codom(L1)), and SP = (E,≤,#,L,M)be the synhronized produt of E1,E2, . . . ,En w.r.t. the synhronization Σ. We have that:

• SP is oherent, and
• if E1,E2, . . . ,En are respetively labeled event strutures for some n labeled transi-tion systems LTS1,LTS2, . . . ,LTSn, then SP is the labeled event struture for thesynhronized produt of these labeled transition systems w.r.t. Σ.Proof. We will prove the two items of this theorem the order that they are stated.
• For the oherene of SP, let C,C ′ be any two on�gurations in SP. Let Ci and C ′

irespetively denote the sets V(C)↓i \{ε} and V(C)↓i \{ε}, for i ∈ {1, 2, . . . , n}.Thanks to Lemma 3.3.42, Ci and C ′
i are both on�gurations in Ei.First, if M(C) = M(C ′) then Mi(Ci) = Mi(C

′
i) by Notation 3.3.43 and byDe�nition 3.3.44 whih means that M = MV. Let e be any extension eventof C, i.e. C ⊢ e, and onsequently, for every index i, Ci ⊢i V(e)↓i. It is also a58

3.3. Modeling onurrent systemsonsequene of Lemma 3.3.42. Notie that V(e)↓i may be equal to ε. It follows fromthe oherene of omponent Ei, more preisely the seond item in De�nition 3.2.11,that if ei 6= ε then there exists an extension event e′i of C ′
i satisfyingM(C ′

i∪{e
′
i}) =

M(C ∪ V(e) ↓i) and Li(e
′
i) = Li(V(e) ↓i). Therefore, due to the maximality ofthe synhronized produt SP, there must exists an extension event e′ ∈ E of C ′,i.e. C ′ ⊢ e′ suh that V(e′) = 〈e′1, e

′
2, . . . , e

′
n〉. We have that M(C ′ ∪ e′) ↓i =

Mi(C
′ ∪ {e′i}) =Mi(C ∪ {ei}) = M(C ∪ e)↓i if V(e)↓i 6= ε, and M(C ′ ∪ e′)↓i =

Mi(C
′) =Mi(C) =M(C ∪e)↓i otherwise. Hene,M(C ′∪{e′}) =M(C∪{e}) inboth ase. Moreover, L(e) is obviously equal to L(e′). The oherene of SP, morepreisely the seond item in De�nition 3.2.11, is thus proved whenM(C) =M(C ′).Seond, if M(C) ∩M(C ′) 6= ∅. By the same reasoning as above, for eah label

a ∈ Σ, the set of extension events e of C satisfying L(e) = a gives rise to the set ofextension events e′ of C ′ satisfying L(e′) = a. Due to the oherene of omponentlabeled event strutures and the maximality of synhronized produt SP, by takingthe union of all marking sets, one obtains that
⋃

e:C⊢e,L(e)=a

M(C ∪ e) ⊆
⋃

e′:C′⊢e′,L(e′)=a

M(C ′ ∪ e′)and reversely,
⋃

e:C⊢e,L(e)=a

M(C ∪ e) ⊇
⋃

e′:C′⊢e′,L(e′)=a

M(C ′ ∪ e′)These two marking set are thus equal, so that SP is oherent by the �rst item inDe�nition 3.2.11.
• Let us denote s1, s2, . . . , sn respetively the initial states of LTS1,LTS2, . . . ,LTSn,and LTSΣ the synhronized produt of these labeled event strutures w.r.t. Σ. ByDe�nition 3.3.44, we have that for all e ∈ E,L(e) ∈ Σ. Moreover, it follows fromthe de�nition of funtion markingM that 〈s1, s2, . . . , sn〉 ∈ M(∅). In other words,
M(∅) ontains the initial state of LTSΣ. Hene, in order to prove the seondproperty of this theorem, one only needs to show that the extension relation in
E orresponds to the transition relation → of LTSΣ. That means s

a
−→ s′ is atransition in LTSΣ i� there exist a on�guration C ∈ CE and an extension e of

C suh that s ∈ M(C), s′ ∈ M(C ∪ {e}) and L(e) = a (1). It follows from theohereny of E as well as of its omponents that C ⊢ e for some event e where
L(e) = a, then for all i, let Ci = V(C)↓i \{ε}, we have that:

⋃

e′:C⊢e′,L(e′)=a

M(C ∪ e′) =
⊗

i

⋃

e′:C⊢e′,L(e′)=a

M(C ∪ e′)

↓i

=
⊗

i

⋃

e′i:Ci⊢e′i,Li(e′i)=a↓i

Mi(Ci ∪ {e
′
i} \ {ε})

=
⊗

i

⋃

si:si∈M(Ci)

⋃

s′i:〈si,a↓i,s
′
i〉 ∈→i

s′i

=
⋃

s∈M(C)

⋃

s′:〈s,a,s′〉 ∈→

s′

 59

Chapter 3. Modeling onurrent systems by labeled event struturesTherefore, the right-to-left impliation of (1) is obvious. By de�nition, transi-tion relation in a synhronized produt of labeled transition systems is based onthe synhronisation Σ and the transition relations of its omponents (see De�-nition 2.4.12). It follows from the maximality of E (De�nition 3.3.44) that theleft-to-right impliation of (1) is also true. Hene, E is a labeled event struturefor LTSΣ, or in other words, LTSΣ is an indued labeled transition systems of E.

60

Chapter 4Trunation for well-preorderedlabeled event strutures
Contents4.1 Well-preordered systems . 624.1.1 Adapting preordered ompatibility to labeled transitions 624.1.2 Well-preordered labeled transition systems 634.1.3 From forward analysis to bakward analysis in well-preorderedtransition systems . 664.2 Trunation of well-preordered labeled event strutures . . . 684.2.1 Well-preordered labeled event strutures 694.2.2 Trunation tehniques . 734.2.3 Well-preorders on on�gurations 774.3 Partial-order veri�ation for well-preordered labeled eventstrutures . 784.3.1 Loal utting ontexts . 784.3.2 Coverability and quasi-liveness 814.3.3 Termination and boundedness 83A labeled event struture is in�nite as soon as the underlying system has an in�niteexeution. Thus, we need property-preserving trunation tehniques in order to deideveri�ation problems using only a �nite pre�x of an event struture. Well-struturedtransition systems were introdued in [Fin91, AJ93, AJ94, A�J00℄ as an abstrat gener-alization of Petri nets satisfying the same monotoity property, and hene enjoying niedeidability properties. It turns out that many lasses of in�nite-state systems are well-strutured [FS01℄. The appliation to labeled event strutures of this result is detailedin Setion 4.1.In Setion 4.2, we will show that the well-known trunation tehniques [MM95a,ERV96, CGP01, DJN04℄ for safe Petri nets are also suessful for well-preordered labeledevent strutures. Hene, one an verify di�erent problems on in�nite systems as explainedin Setion 4.3. 61

Chapter 4. Trunation for well-preordered labeled event strutures4.1 Well-preordered systemsA preordered system intuitively onsists of a (in�nite) system as well as a preorder 4 onthe system's state spae and a ompatibility property on the system's transition relation.Its formal de�nition ould be found in [FS01℄. In fat, this de�nition is the same as ourDe�nition 4.1.5 when one does not deal with ations/labels as remarked in Setion 2.4.Figure 4.1 illustrates a ompatibility whih tells that if v is a reahable from a state s,i.e. s։v, then from any state s′ satisfying s 4 s′, one an obtain a state v′ (may bepossibly s′), i.e. s′։v′, suh that v 4 v′. We an say that the preorder 4 is preservedby the transition relation.
s s′

v v′

4

4

∀

∃Figure 4.1: CompatibilityRemark: One an see in other works the word quasi-order that is also ommon for pre-orders. In this work, we use the same terminology as in [HST07℄ so that we prefer theword preorder instead of quasi-order, and as a onsequene, prefer well-preordered tran-sition systems, and further well-preordered labeled event strutures (f. De�nitions Def-inition 4.1.5 and De�nition 4.2.1) to well-strutured ones whih are more standard and�rstly given in [Fin87℄. The reason is that we would like to avoid the onfusion be-tween the "well-strutured" property over states by means of ompatibility and thestruture over events determined by ausality and on�it relations in labeled eventstrutures (see Setion 4.2.1).Example 4.1.1. Sine "less than or equal to" ≤ is a preorder over natural numbers N,ounters (see Setion 3.3.2) are preordered systems in whih there are only inrementand derement ations.4.1.1 Adapting preordered ompatibility to labeled transitionsOur presentation of preordered systems di�ers from the standard (non-labeled) one aswe need to take are of labels. However, our de�nition is su�iently general so thatall results from standard preordered systems may be found in a same way with a littletuning. Before giving this formal de�nition in Setion 4.1.2, let us take an example tolarify its intuitive idea.An example: Lossy FIFO hannelsNowadays, lossy FIFO hannels [AJ94℄ are widely used for modeling ommuniatingsystems and verifying ommuniating protools. They di�ers from the FIFO hannels(see De�nition 3.3.22 on page 43) on the possibility of loosing messages: hannel's ontentwhih is a �nite word may loose some letter at any moment and beome a subword (seeDe�nition 2.2.1 on page 12) of the old one.62

4.1. Well-preordered systemsDe�nition 4.1.2 (v-initialized lossy FIFO hannel over M). Let M be a non-emptyalphabet and v be any �nite word over M . The v-initialized lossy FIFO hannel over
M is the labeled transition system (M,v)-LF = (M∗,Σ,→, v) where

• the ation set Σ is {τ} ∪ !M ∪ ?M , and
• the transition relation

→ = {〈w, τ,w′〉 /m ∈M,w,w′ ∈M∗ and w′ 4 w}

∪ {〈w, !m,w.m〉 /m ∈M,w ∈M∗}

∪ {〈m.w, ?m,w〉 /m ∈M,w ∈M∗}where 4 is the subword order over M∗.De�nition 4.1.2 is the same as De�nition 3.3.22 exept for ation τ , alled a lossyation, as well as its related transitions→ ∩ (M∗×{τ}×M∗). Let s, s′ ∈M∗ be any twostates of (M,v)-LF satisfying s 4 s′, we have s′։s
τ∗ . Hene, all reahable states from

s are also reahable states from s′. Lossy FIFO hannels form obviously a preorderedsystem.Internal ations ΣτOne an say that the lossy ation τ gives lossy FIFO hannels its preordered ompat-ibility, and moreover this fat an be found in many other preordered systems. In thefollowing de�nition of preordered labeled transition systems till the end, we assume thateah set of ations Σ is partitioned into a set Στ of internal ations and a set Σγ ofnormal ations. This introdution of internal ations Στ , on the one hand, is to taklethe problem when generalizing preordered ompatibility for transitions with label bymeans of ations, and on the other hand, allows to learly desribe the harateristis ofpreordered labeled transition systems in the point of view of preordered properties.Moreover, it is worth notiing that one an somehow eliminate internal ations Στwhile modeling preordered systems by labeled transition systems. For example, by on-sidering eah sending ation !m (eah reeiving ation ?m) of a lossy FIFO hannel asa omposed ation in whih the hannel �rstly loses some messages, then exeutes thesending ation !m (the reeiving ation ?m respetively), and �nally loses some othermessages; one an obtain another model for lossy FIFO hannel without loss of generality,as the following:De�nition 4.1.3 (v-initialized lossy FIFO hannel over M without Στ). Let M be anon-empty alphabet and v be any �nite word over M . The v-initialized lossy FIFOhannel over M without Στ is a labeled transition system (M,v)-LF = (M∗,Σ,→, v)where
• the ation set Σ is {!m /m ∈M} ∪ {?m /m ∈M}, and
• the transition relation → is {〈w, !m,w′〉 ∈M∗× !M ×M∗ /∃v ∈M∗ : v 4 w,w′ 4

v.m} ∪ {〈w, ?m,w′〉 ∈ M∗ × !M ×M∗ /∃v ∈ M∗ : m.v 4 w,w′ 4 v} where 4 isthe subword order over M∗.4.1.2 Well-preordered labeled transition systemsReall that ε is the "do nothing" ation that is partiularly used in synhronized produtsof labeled transition systems. ε is also the empty �ring sequene for all labeled transitionsystems, and, in whih s
ε
−→ s for every state s. In the following de�nition and afterwards,we assume that the internal ation set Στ does not ontain ε, i.e. ε 6∈ Στ . 63

Chapter 4. Trunation for well-preordered labeled event struturesDe�nition 4.1.4 (Compatibilities). Let LTS = (S,Σ, s0,→) be a labeled transitionsystem and 4 be a preorder on S. We say that 4 is ompatible (resp. transitivelyompatible, re�exively ompatible) with the transition relation → if for every transition
s

a
−→ v and s 4 s′ there exists v 4 v′ suh that s′։v′

σ for some σ ∈ Σ∗ satisfying:
• ompatibility : σ ∈ (Στ)∗ if a ∈ Στ and σ ∈ (Στ)∗.a.(Στ)∗ otherwise, or
• transitive ompatibility : σ ∈ (Στ)+ if a ∈ Στ and σ ∈ (Στ)∗.a.(Στ)∗ otherwise, or
• re�exive ompatibility : σ ∈ ({ε} ∪ Στ) if a ∈ Στ and σ = a otherwise.One an say that 4 is also ompatible with the transitive losure։ of the transitionrelation → as a onsequene of De�nition 4.1.4. That means if s։v

σ and s 4 s′ thenthere exists v′ ∈ S and σ′ ∈ Σ∗ suh that s′։v′
σ′ (proof by indution in the length of σ).And σ′ must not be shorter than σ only in the ase of transitive ompatibility. Moreover,the re�exive ompatibility indues that the longest subwords of σ and σ′ whih ontainonly normal ations Σγ are the same.A preorder 4 is stritly ompatible with → if both 4 and ≺ are ompatible with →(reall that s ≺ s′ is de�ned by s 4 s′ 64 s). Of ourse, this stritness notion may beombined with transitive and re�exive ompatibilities.Remark: De�nition 4.1.4 as well as the de�nition of strit ompatibility oinide withthe de�nitions for systems without labeled ations of Finkel et al. given in [FS01℄ when

Σ = Στ is a singleton. Moreover, their only de�nition for labeled transition systemorresponds to our re�exive ompatibility when there is no internal ation, i.e. Στ = ∅.In this ase, we say that 4 is strongly ompatible with transition relation→. Lossy FIFOhannels in De�nition 4.1.3 are examples of this ompatibility.A lass of in�nite systems with deidability resultsAlthough there is ompatibility between preorder 4 on states and transition relation →,deidability results for suh in�nite systems must rely on the existene of a well-preorderproperty of 4 (see De�nition 2.3.1 on page 13).De�nition 4.1.5 (Well-preordered labeled transition systems). A well-preordered labeledtransition system (LTS,4) onsists of a labeled transition system LTS = (S,Σ, s0,→)and a preorder 4 on S satisfying:
• well-preorder : 4 is well-preorder or onverse well-preorder on S, and
• ompatibility : 4 is ompatible with →.Example 4.1.6. Sine the "less than or equal to" order ≤ is well-founded on N, and isthus well-preordered, as a onsequene of Example 4.1.1, ounters are well-preorderedlabeled transition systems. One an also say that lossy FIFO hannels (De�nition 4.1.2)are well-preordered labeled transition systems. Beause, the subword order over M iswell-founded and well-preordered for all �nite alphabet M (f. Higman's lemma).In [FS01℄, Finkel et al. have given a lassi�ation of well-known systems into familyof well-strutured transition systems as well as its deidable problems whih depends onthe type of ompatibility. Notie that their downward well-struture transition systemsorrespond to our well-preordered labeled transition systems in whih the preorder onstates is onverse well-preorder (see De�nition 2.3.1).Our de�nition of well-preorder labeled transition systems is enough general so that alldeidability results in [FS01℄ are still valid. The goal of the next setions is not to provethese results again but to essentially show how to e�iently verify deidable problemson a partial-order struture, more preisely, on labeled event strutures.64

4.1. Well-preordered systemsSynhronized produts of well-preordered labeled transition systemsDe�nition 4.1.7 (Produt preorder). Let 41,42, . . . ,4n be n preorders on n sets
X1,X2, . . . ,Xn respetively. The produt preorder of these n preorders is a binary re-lation, denoted by 4⊗, on the n-dimension spae ⊗(X1,X2, . . . ,Xn), and is de�ned by:for all x, x′ ∈ ⊗(X1,X2, . . . ,Xn), x 4⊗ x′ i� xi 4i x′

i for every 1 ≤ i ≤ n.Reall that xi = x↓i is the omponent restrition onto i of x. We also write 4⊗ =
〈41,42, . . . ,4n〉 and naturally mean that 4i is the omponent restrition onto i of 4⊗.The produt preorder is also a preorder like its name, and moreover, the well-preorderedproperty of its omponent, if exists, is preserved.Lemma 4.1.8. The produt preorder 4⊗ of n preorders 41,42, . . . ,4n, is a preorderand is well-preordered (onverse well-preordered) if 4i is well-preordered (onverse well-preordered resp.) for all 1 ≤ i ≤ n.Proof. By De�nition 4.1.7, 4⊗ is re�exive and transitive binary relation, and is thusa preorder. We will prove that 4⊗ is well-preordered on X by indution on n where
X = ⊗(X1,X2, . . . ,Xn). When n = 1, it is straightforward. Suppose that it is truefor some given k, i.e. the produt preorder 4′

k of k well-preorders 41,42, . . . ,4k isa well-preorder on X. Let x0, x1, . . ., be any in�nite sequene. Thanks to Erdös andRado's lemma, it says that this sequene ontains an in�nite inreasing subsequene
xi0 4′

k xi1 4′
k . . ., due to the well-preorder 4′

k. Further, it follows from the well-preorder
4k+1 and this seond in�nite sequene that there exist two indies l < m satisfying
xil 4k+1 xim . Hene, one obtains both xil 4′

k xim and xil 4k+1 xim , and onsequently,
xil 4′

k+1 xim where 4′
k+1 is the produt preorder of k+1 well-preorders 41,42, . . . ,4k+1.In other words, the indution hypothesis is also true for k + 1. One an onlude that

4⊗ is a well-preorder for any �nite number n.The set of internal ations Στ previously introdued, not only gives the ompatibilityof preordered systems but also separates internal transitions and synhronized ones ofsynhronized produts of labeled transition systems. We assume (1) that every synhro-nization onstraint Σ⊗ impliitly ontains the set Στ
⊗ of synhronization vetors, de�nedas follows:

Στ
⊗ = {〈τ1, ε, . . . , ε〉 / τ1 ∈ Στ

1} ∪ . . .

∪ {〈ε, . . . , ε, τi, ε, . . . , ε〉 / τi ∈ Στ
i } ∪ . . .

∪ {〈ε, . . . , ε, τn〉 / τn ∈ Στ
n}and (2) that no internal ation τi ∈ Στ

i may appear in a synhronization vetor of Σ⊗\Σ
τ
⊗,i.e. for all i ∈ {1, 2, . . . , n}: (Σ⊗ \ Στ

⊗)↓i ∩Στ
i = ∅. Naturally, Στ

⊗ is a subset of loalations of any synhronized produt w.r.t. Σ⊗.De�nition 4.1.9. The synhronized produt of n preordered labeled transitions (LTS1,
41), (LTS2,42), . . . , (LTSn,4n) w.r.t. some synhronization onstraint Σ⊗ ∈ ⊗ε(Σ1,Σ2,
. . . Σn) is the synhronized produt LTS⊗ of LTS1,LTS2, . . . ,LTSn w.r.t. Σ⊗ equippedwith the produt preorder 4⊗ = ⊗(41,42, . . . ,4n); and is denoted by (LTS⊗,4⊗).The following lemma shows that all ompatibility notions de�ned above for pre-ordered labeled transition systems are preserved under synhronized produt.Lemma 4.1.10. Let Cond denote any ompatibility ondition among {(non-strit), strit}
× {(standard), transitive, re�exive}. Any synhronized produt of preordered labeled tran-sition systems with ompatibility Cond also has ompatibility Cond. 65

Chapter 4. Trunation for well-preordered labeled event struturesProof. Consider n preordered labeled transition systems (LTS1,41), (LTS2,42), . . . ,
(LTSn,4n) where LTSi = (Si,Σi, s

0
i ,→i); and assume that eah LTSi has ompatibility

Cond. We show that (LTS⊗,4⊗) has ompatibility Cond, where LTS⊗ is the synhro-nized produt of LTS1,LTS2, . . . ,LTSn w.r.t. a given synhronization onstraint Σ⊗.Let s
v
−→⊗ s′ be any transition in LTS⊗, let t be any state suh that s 4⊗ t. There aretwo ases, depending on whether the ation v ∈ Σ⊗ ontains an internal ation:1. v ∈ Στ

⊗, that means vj ∈ Στ
j for some 1 ≤ j ≤ n and vi = ε for all i 6= j. It followsfrom ompatibility of (LTSj,4j) that there exists a path πj = tj

v1

−→j u2 v2

−→j

u3 . . .
vk

−→j uk+1 where uk+1 <j s′j and for all i ∈ {1, 2, . . . , k}, vi ∈ Στ
j (1). Thispath may be extended to the synhronized produt LTS⊗ as π = t

v1

−→⊗ t2
v2

−→⊗

t3 . . .
vk

−→⊗ tk+1 where vh = 〈ε, . . . , ε, vi, ε, . . . , ε〉, thi = uh and thi = ti for all i 6= j.Observe that s′ 4 tk+1 beause s′i = si 4 ti for all i 6= j.2. v ∈ Σγ
⊗, that means vi ∈ {ε} ∪ Σγ

i for all 1 ≤ i ≤ n. We may assume withoutloss of generality that there exists 1 ≤ m ≤ n suh that vi ∈ Σγ
i for all i ≤ m and

vi = ε for all m < i. From ompatibility of (LTSi,4i) with i ≤ m, we obtain thatthere exists m paths πi = ti։iu
iσi vi−→i u′i։it

′
i

σ′i with t′i <i s′i and σi, σ′i ∈ (Στ
i)

∗.Remark that u
v
−→⊗ u′ where ui = ui and u′

i = u′i for all i ≤ m, and ui = u′
i = tiotherwise. As in the previous ase, we may extend eah sub-path ti

σi

−→i ui and
u′

i

σ′i

−−→i t′i to the synhronized produt, and their onatenations yields a path
π = t

σ⊗
−−→⊗ u

v
−→⊗ u′

σ′
⊗
−−→⊗ t′ where σ⊗, σ′

⊗ ∈ (Στ
⊗)∗, t′i = t′i for all 1 ≤ i ≤ m and

t′i = ti otherwise. Observe that t′ <⊗ s′ sine s′i = si 4⊗ ti for all i > m.Thus we obtain that there exists t′ < s′ and σ ∈ (Σ⊗)∗ suh that t։⊗ t′
σ . Moreover,a routine hek shows that in both ases, the onstruted path t։⊗ t′

σ satis�es Cond'srequirements (for strit ompatibility, the omponent path(s) should be arefully hosenso as to ensure stritness).A diret onsequene of Lemma 4.1.8 and Lemma 4.1.10 is the following:Lemma 4.1.11. Synhronized produt (LTS⊗,4⊗) of n well-preordered labeled transi-tion systems (LTS1,41), (LTS2,42), . . . , (LTSn,4n) is a well-preordered labeled transi-tion system if 41,42, . . . ,4n are either all well-preorders or all onverse well-preorders.4.1.3 From forward analysis to bakward analysis in well-preorderedtransition systemsIn this setion, we show how to embed, in our forward partial-order analysis approahlately detailed (see Setion 4.3), standard bakward analysis tehniques (alled set satu-ration methods in [FS01℄) for well-preordered transition systems. This idea is based onduality in the ategory of (labeled) transition systems.De�nition 4.1.12. The dual of a given labeled transition system LTS = (S,Σ, s0,→LTS)is the labeled transition system DT S = (S,Σ, s0,→DT S) suh that 〈s, a, s′〉 ∈ →DT S i�
〈s′, a, s〉 ∈ →LTS.1We use supersript indexing in addition to avoid onfusing it with the omponent projetion (xi =
x↓i).66

4.1. Well-preordered systemsThe dual of a lossy FIFO hannel LTS in De�nition 4.1.2 is a labeled transitionsystem DT S modeling a well-known insertion-error FIFO hannel in whih ations areall renaming suh that !m beomes ?m and onversely. The internal ation τ allows toinsert message into FIFO's ontent at any moment. More interestingly, sine (LTS,4)is a well-preordered labeled transition system, (DT S,<) is too. However, 4 is well-preordered while < is onverse well-preordered, and vie versa.Notie that initial states of dual systems are not important for the reahability/ov-ering problem in whih one only needs to know if from a state s, some state v is reahableor not. By duality, s ։LTS v if and only if v ։DT S s. Intuitively, with bakward anal-ysis tehnique, one �rstly omputes the set of states, denoted by pre∗(v) from whih wean reah v, and then test if pre∗(v) ontains s. With forward analysis, one omputesthe set post∗(s) of reahable states from s and then veri�es if it ontains v. Figure 4.2illustrates these two approahes.
։LTS

։DT S

s v

pre∗
LTS

(v) post∗
LTS

(s)

Figure 4.2: Forward and bakward analysis for reahabilityWe now need a few additional notations in this setion. Consider any labeled tran-sition system LTS = (S,Σ, s0,→LTS). The one-step reahability relation is the binaryrelation RLTS on S de�ned by sRLTS s′ i� s
a
−→LTS s′ for some ation a ∈ Σ. By Def-inition 4.1.12, we have thus RDT S = RLTS where RDT S is the one-step reahabilityrelation of the dual labeled transition system DT S of LTS.We will use the following bakward/forward (reahability) set transformers: for anysubset X ⊆ S, we de�ne postLTS(X) = RLTS(X), preLTS(X) = RLTS(X), post∗

LTS
(X) =

R∗
LTS

(X), and pre∗
LTS

(X) = R∗
LTS

(X). Observe that the reahability set post∗
LTS

of LTSde�ned in Setion 2.4.1 is equal to post∗
LTS

(s0). For any label a ∈ Σ and subset X ⊆ S,we de�ne preLTS(a,X) = {s ∈ S /∃s′ ∈ X, s
a
−→LTS s′}. Remark that we have, for every

X ⊆ S, preLTS(X) =
⋃

a∈Σ preLTS(a,X).Bakward analysis for well-preordered systems is performed by a lassial �x-pointomputation of pre∗(4(X)) in whih one applies an upward losure w.r.t. 4 at eahstep. It requires a so alled �nite pred-basis ondition [ACJT00, FS01℄.De�nition 4.1.13 (Finite pred-basis). Given a preordered labeled transition system
(LTS,4) with LTS = (S,Σ, s0,→LTS). A �nite pred-basis for (LTS,4) is any funtion
pb from Σ× S to Pf (S) satisfying:

•
⋃

a∈Σ pb(a, s) is �nite for all s ∈ S, and
• 4(pb(a, s)) = 4(preLTS(a,4({s})) for all a ∈ Σ and s ∈ S.Given any �nite pred-basis pb for (LTS,4), we de�ne the pb-reverse of (LTS,4, pb)as the labeled transition systemR(LTS,4, pb) = (S,Σ, s0,→R) where transition relation

→R is de�ned by s→R s′ i� s′ ∈ pb(a, s). 67

Chapter 4. Trunation for well-preordered labeled event struturesLemma 4.1.14. For any preordered labeled transition system (LTS,4) with and �nitepred-basis pb, R = R(LTS,4, pb) is �nitely-branhing, (R,<) has re�exive ompatibility,and R satis�es
pre∗LTS(4({s})) = 4(post∗R({s}))for every state s.Proof. Let R shortly denote R(LTS,4, pb). Reall that R is �nitely-branhing sine⋃

a∈Σ pb(a, s) is �nite for every state s. Consider any transition s
a
−→R s′ and let t 4 s.One obtains that

4(pb(a, s)) = 4(preLTS(a,4({s})))

⊆ 4(preLTS(a,4({t})))

= 4(pb(a, t))Sine s′ ∈ pb(a, s), we get that s′ < t′ for some t′ ∈ pb(a, t). Observe that t
a
−→R t′ andhene (R,<) has re�exive ompatibility.Consider any state s, let us prove that pre∗

LTS
(4({s})) = 4(post∗R({s})). We �rstprove inlusion ⊆ and assume that π = s

a1−→LTS s2 . . . sk
ak−→LTS sk+1 is a path in

LTS suh that sk+1 < s. Let tk+1 = s. Observe that sk ∈ preLTS(ak,4({tk+1})) ⊆
4(pb(ak, tk+1)). Sin pb is a �nite pred-basis for (LTS,4), we get that tk 4 sk for some
tk ∈ pb(ak, tk+1) and hene tk+1

ak−→R tk. By iterating this onstrution along the path π(from sk+1 to s1) we get that there exists a path s = tk+1
ak−→R tk

ak−1
−−−→R tk−1 . . . t2

a1−→R

t1 in R with ti 4 si, and in partiular with t1 4 s1. Therefore s1 ∈ 4(post∗R({s})) whihonludes the proof of this inlusion.Let us now prove inlusion⊇ and assume that s = tk+1
ak−→R tk

ak−1
−−−→R tk−1 . . . t2

a1−→R

t1 is a path in R and let s1 4 t1. For every 1 ≤ i ≤ k, we get that ti ∈ pb(ai, ti+1) ⊆

4(preLTS(ai,4({ti+1}))) and hene there exist ui, u
′
i suh that ti < ui

ai−→LTS u′
i < ti+1.We obtain from the ompatibility of (LTS,4) that there exists s2 < t2, . . . , sk+1 < tk+1suh that s1։LTS

∗
s2։LTS s3
∗

. . . sk։LTS sk+1
∗ . Therefore s1 ∈ pre∗

LTS
(4({s})) sine

sk+1 < tk+1 = s.We impliitly assumed that the partition of Σ into internal ations Στ and nor-mal ations Σγ is the same in R(LTS,4, pb) as in LTS. It is lear from the proof ofLemma 4.1.14 that re�exive ompatibility of (R(LTS,4, pb),<) does not depend on thispartition (e.g. we may as well hoose that there is no internal ation in R).4.2 Trunation of well-preordered labeled eventstruturesThe intuition behind well-struture/well-preorder is that any state may be weakly simu-lated by any greater state, and thus we may forget about smaller states when performingreahability analysis. The well-preordering ondition between states guarantees termi-nation of the analysis [FS01℄. We show in this setion how to extend these ideas to theveri�ation of well-preordered labeled transition systems.Notie that Finkel et al. all tree-saturation methods for well-preordered system, theveri�ation methods representing all possible exeutions inside a �nite tree-like struture(partiularly the �nite reahability tree). Sine we model well-preordered systems bylabeled event strutures, it is hoped that these methods bene�t of the partial-orderadvantage of event strutures.68

4.2. Trunation of well-preordered labeled event strutures4.2.1 Well-preordered labeled event struturesWe lift the well-preorder notions de�ned in the previous setion from labeled transitionsystems to labeled event strutures. Given a labeled event struture E = (E,≤,#,L,M),
E gives rise to a labeled transition system LTS = (CE,Codom(L), ∅,⊢L) where for all
C,C ′ ∈ CE, a ∈ Codom(L), C

a
−→LTS C ′ i� there exists e ∈ E so that C ⊢ e,C ′ = C ∪{e}and L(e) = a. The transitive losure L = ։LTS of transition relation ⊢L may be alsode�ned from the extension set relation of E. It is worth notiing that the markingfuntionM is not taken into aount in LTS.Let 4C be any preorder on CE that is ompatible with the labeled event struture Eas de�ned in De�nition 4.1.4. Intuitively, C ⊢ e where C ∈ CE, e ∈ E implies that everyon�guration C ′ satisfying C 4C C ′ ould be extended by an event set X ⊆ E, andthe preorder 4C is preserved, i.e. (C ∪ {e}) 4C (C ∪X). Moreover, with an additionalondition based on the labeling funtion L, the de�nition of well-preordered labeled eventstrutures oinides with the one for labeled transition systems (De�nition 4.1.5).De�nition 4.2.1. Let E = (E,≤,#,L,M) be a labeled event struture and 4C beany preorder on CE. We say that (E,4C) is (well-)preordered labeled event struture i�

((CE,Codom(L), ∅,⊢L),4C) is a (well-)preordered labeled transition system.Notie that the odomain of labeling funtion L may ontains also some subset of in-ternal ations Στ . So that (E,4C) an have di�erent ompatibilities Cond ∈ {(non-strit),strit} × {(standard), transitive, re�exive, strong} based on this Στ as in De�nition 4.1.5.Preordered labeled transition systems vs preordered labeled event strutureLet us reall the idea of using labeled event strutures for modeling onurrent systems.One just gives a partial-order struture, here is a labeled event struture, that possiblyrepresents all behaviors of some system. The system ould be modeled in another wayby a well-known labeled transition system. These two models are related the one to theother by the means of indued labeled transitions systems of labeled event strutures inwhih one assoiates on�gurations to systems' states. Therefore, while working withpreordered labeled event strutures, among many binary relations on on�guration set,we fous only on the one whih is dedued from a given preorder on the system's statespae. In the following, for every labeled event struture E = (E,≤,#,L,M), we denote
S the base set of the odomain of marking funtion M, i.e. S =

⋃
C∈CE

M(C), like inDe�nition 3.2.1 on page 27.De�nition 4.2.2 (Marking preorder). Let E = (E,≤,#,L,M) be a labeled event stru-ture and 4 be a preorder on S. The marking preorder of E w.r.t. 4, denoted by 4M,is a binary relation on CE de�ned by: for all C,C ′ ∈ CE, C 4M C ′ i� for all s ∈M(C),there exists s′ ∈M(C ′) suh that s 4 s′.In a partiular ase where E is deterministi, that means Codom(M) ontains onlysingletons of P(S), one an simply use 4 in the plae of 4M without risk of onfusion.Notie that, C is stritly less than C ′ w.r.t. 4M i� C 4M C ′ and their markings ontainat least two elements whih are stritly ordered by 4. Formally, C ≺M C ′ i� C 4M C ′and ∃s ∈M(C), s′ ∈M(C ′) : s ≺ s′.Lemma 4.2.3. The marking preorder 4M is a preorder on CE if 4 is a preorder on S.Proof. The re�exivity and transitivity of 4M is obvious from De�nition 4.2.2. 69

Chapter 4. Trunation for well-preordered labeled event struturesLemma 4.2.4. Let E = (E,≤,#,L,M) be a labeled event struture and 4 be a preorderon S. If1. for all s, s′ ∈ S, s 4 s′ implies ∃C,C ∈ CE : C 4M C ′ and 〈s, s′〉 ∈ (M(C) ×
M(C ′)),2. for all C,C ′ ∈ CE, (M(C)×M(C ′)) ∩4 6= ∅ implies C 4M C ′, and3. E is oherent;then (E,4M) is a preordered labeled event struture i� (LTS

E,4) is a preordered labeledtransition system, and they have a same type of ompatibility.Proof. Reall that Σ is the odomain of labeling funtion L. One an write a induedlabeled transition system of E as LTS
E = (S,Σ, s0,→

LTS
E) for some s0 ∈M(∅), and thelabeled transition system based on the extension relation previously de�ned as LTS⊢ =

(CE,Σ, ∅,⊢L). We will prove that the right-to-left impliation, that means (LTS
E,4) ispreordered if (E,4M) is preordered, is a onsequene of the �rst item. And reversely,the left-to-right impliation is a onsequene of the seond and third items.

(⇒): (E,4M) is a preorder labeled event struture. Let s
a
−→

LTS
E v be any transitionin LTS

E and assume that s 4 s′ for some given s′ ∈ S. Due to the de�nition of induedlabeled transition system (De�nition 3.2.4), there must exist on�gurations C ∈ CEand one of its extension event e ∈ E, i.e. C ⊢ e suh that L(e) = a, s ∈ M(C) and
v ∈ M(C ∪ {e}). The �rst ondition yields the existene of a on�guration C ′ ∈ CEsatisfying C 4M C ′. Beause 4M is ompatible with ⊢L, we have C ′։LTS⊢

(C ′ ∪X)
σfor some given extension set X ⊂ E of C ′, and σ = LW(lX) ∈ Σ∗ where lX ∈ E∗ is alinearisation of X w.r.t. ≤. And (C ∪ {e}) 4M (C ′ ∪X) is also a onsequene of theompatibility of 4M. By de�nition of 4M (De�nition 4.2.2), sine v ∈ M(C ∪ {e}),there exists v′ ∈ M(C ′ ∪ X) satisfying v 4 v′ and s′։

LTS
E v′

σ due to Lemma 3.2.12.Therefore 4 is ompatible with →
LTS

E .
(⇐): (LTS

E,4) is a labeled transition system. Suppose that C
L(e)
−−→LTS⊢

(C ∪ {e})and C 4M C ′ for some given on�guration C,C ′ ∈ CE and extension event e ∈ E of C.By de�nition of 4M (De�nition 4.2.2), one an hoose any two states s, s′ ∈ S whihare respetively inluded in C and C ′ so that s 4 s′. Let v be any state inM(C ∪ {e}),it follows from the de�nition of an indued labeled transition system (De�nition 3.2.4)that s
L(e)
−−→

LTS
E v. Moreover, due to the ompatibility of 4 with →

LTS
E , there exists anexeution s′։

LTS
Ev′

σ for some given v′ ≺ v, and more preisely a path π = s′
b1−→

LTS
E

s1
b2−→

LTS
E s2 . . . sn−1

bn−→
LTS

E sn = v′ where σ = b1.b2 . . . bn ∈ M∗
E
and v 4 v′. Sine Eis oherent, s′

b1−→
LTS

E s1 and s′ ∈ M(C ′) implies that there exists on�guration C1 =
C ′ ∪ e1 for a given extension event e1 ∈ E of C ′ suh that L(e1) = b1 and s1 ∈ C1. Byiterating this onstrution along the path π we get that C ′ ⊢ (C ′∪{e1}) ⊢ (C ′∪{e1, e2}) ⊢
. . . (C ′ ∪X) where X = {e1, e2, . . . , en}, σ = LW(e1.e2 . . . en), and sn = v′ ∈M(C ∪X).One thus an write it as C ′։LTS⊢

(C ′ ∪X)
σ and 〈s′, v′〉 ∈ (M(C ′)×M(C ′∪X). Thanksto the third ondition, beause 〈v, v′〉 ∈ (M(C ∪ {e})×M(C ∪X)) and v 4 v′, we have

(C ∪ {e}) 4M (C ∪X). Preorder 4M is thus ompatible with ⊢L.Notie that onlusions above depend on neither the type of ompatibility of (E,4M)nor the one of (LTS
E,4), this lemma's whole state is thus obvious.It is worth onsidering here ounter-examples of some impliation between ompat-ibilities of a preordered labeled event struture and of its indued labeled transitionsystem, when we have not the three additional onditions stated in Lemma 4.2.4. Fig-ure 4.3 illustrates two simple preordered labeled event strutures where on�gurations70

4.2. Trunation of well-preordered labeled event struturesare strutured as a DAG w.r.t. the extension relation. Eah on�guration C is repre-sented by the ouple C : M(C). And there is no onurreny in both labeled eventstrutures, i.e. ‖ = ∅. For simpliity, we suppose that there is no internal ation, i.e.
Στ

E
= ∅, and we look only at standard ompatibility.

∅:{z}
{e1}:{s, t}e1

{e1, e3}:{u, v}

e3

{e2}:{s′, t′}e2

{e2, e4}:{u′}

e4

{e2, e5}:{v′}e5

∅:{s′′}
{f1}:{s′, v}f1

{f1, f3}:{s}f3

{f2}:{v′}f2

a. (4,→
LTS

E) 6⇒ (4M,⊢L) b. (4M,⊢L) 6⇒ (4,→
LTS

E)

Figure 4.3: Counter examples of impliation between ompatibilitiesFor the �rst labeled event struture E = (E,≤,#,L,M) represented in Figure 4.3-awhere E = {e1, e2, e3, e4, e5} and CE = {∅, {e1}, {e2}, {e1, e3},
{e2, e4}, {e2, e5}}, we take the preorder 4 = IS ∪ {〈s, s

′〉, 〈t, t′〉, 〈u, u′〉, 〈v, v′〉}. It isobvious that the unique indued labeled transition system LTS
E is a preordered onebeause the ompatibility of 4 w.r.t. →

LTS
E is guaranteed mostly by e4, e5 and e3.Consider on�gurations C = {e1} and C ′ = {e2} that ould be ordered by 4M, wehave M(C) = {s, v} 4M {s′, u′} = M(C ′). However, the marking of on�guration

C ∪ {e3} extended from C, i.e. {u, v}, is inomparable with markings of on�gurationsthat may be obtained from C ′ by the extension relation. More preisely, there are threeon�gurations C ∪ {e4} = {e2, e4}, C ′ ∪ {e5} = {e2, e5} and C ′ = {e2} itself of whihmarkings are respetively {u′}, {v′}, and {s′, t′}. This example shows the need of theseond ondition in Lemma 4.2.4 that avoids the ase when, for instane, u 4 u′ butthere exists inomparable markings {u, v} and {u′}. In other words, the onstraint givenby this ondition omes from the fat that one an not say anything on reahable statesin post∗
LTS

E ({u, v}) and post∗
LTS

E ({u′}).For the seond example illustrated in Figure 4.3-b, where E = {f1, f2, f3} and CE =
{∅, {f1}, {f2}, {f1, f3}}, let us assume that the preorder 4 satis�es 4 ∩ ({s, s′, s′′} ×
{v, v′}) = ∅, s ≺ s′ ≺ s′′ and v ≺ v′. By de�nition, 4M= ICE

∪ {〈{s}, {s′, v}〉} ∪
{〈{s}, {s′′}〉}. It is obvious that (E,4M) is preordered labeled event struture sine theunique on�guration {f1, f3} of whih marking is {s}, has no extension. However, 4is not ompatible with →

LTS
E due to the fat that v

L(f3)
−−−→

LTS
E s while v ∈ M({f2})is not enabled by any ation in Σ = Codom(L). The �rst ondition in Lemma 4.2.4may eliminate all suh ases where, for instane here, v 4 v′ but there is no omparableon�gurations w.r.t. 4M that ontain respetively v and v′. With this ondition, theompatibility of 4M in E implies the one of 4 in LTS

E as it is proved previously. Bythe way, we also point out that when working only on preorder labeled event strutures,one does not really need the ompatibility in its indued labeled transition system.Remark: In deterministi labeled event strutures, sine every marking is singleton of S,the �rst and seond onditions in Lemma 4.2.4 are both guaranteed. 71

Chapter 4. Trunation for well-preordered labeled event struturesThe following lemma is a diret onsequene of Lemma 4.2.4.Lemma 4.2.5. Let E = (E,≤,#,L,M) be a deterministi and oherent labeled eventstruture and 4 be a preorder on S. (E,4M) is a (well-)preordered labeled event struturei� (LTS
E,4) is a (well-)preordered labeled transition system, and they have a same type ofompatibility Cond ∈ {(non-strit), strit} × {(standard), transitive, re�exive, strong}.

{v, . . .}

C ∪ {e}

C

e a

{s, . . .}

{s, . . .}

C ′C ′ ∪ {e′} a
e′

{v, . . .} {s′, . . .}

C ′′ C ′′ ∪X
X

{v′, . . .}

∩ 6= ∅ 4M

∩
6=
∅

oherene 4
M

ompatiblity
Figure 4.4: Coherene vs ompatibilityCoherene is a required ondition for the two-way impliation stated in Lemma 4.2.5and it somehow looks like ompatibility. However, oherene and ompatibility are quitedi�erent, as illustrated in Figure 4.4.Lemma 4.2.6. Let E = (E,≤,#,L,M) be a oherent and deterministi labeled eventstrutures. (E,IM) is a preordered labeled event struture with strong ompatibility where

IM = IS is the identity relation over S.Proof. The oherene of E by De�nition 3.2.11 is exatly the strong ompatibility ofidentity order IS with ⊢L.In Setion 4.3, one will see that ompatibility of preordered labeled event strutures,whih may be nondeterministi, is enough for trunating, and onsequently, doing ertainveri�ations on their �nite pre�xes obtained. One does not need to see whether thereexists a ompatibility in its indued labeled transition systems.Produts of preordered labeled event struturesDe�nition 4.2.7. Given a number n ∈ N. A synhronized produt of n preorderedlabeled event strutures (E1,4
C
1), (E2,4

C
2), . . . (En,4C

n) is any tuple (E⊗,4C
⊗) where

• E⊗ is a synhronized produt of E1,E2, . . . ,En w.r.t. some synhronization on-straint Σ⊗, and
• 4C

⊗ is a binary order on CE⊗ de�ned by: C 4C
⊗ C ′ i� for all 1 ≤ i ≤ n, (V(C))↓i

4C
i (V(C ′))↓i where V is the synhronization funtion of E⊗.Reall that the synhronization funtion V ould map eah on�guration C in thesynhronized produt E⊗ into a tuple 〈C1, C2, . . . , Cn〉, where Ci ∈ CEi

(see Lemma 3.3.42on page 57), and V is not injetive. The preorder property of 4C
⊗ is trivial and similarto the one of the produt preorder ⊗(4C

1 ,4C
2 , . . . ,4C

n) on ⊗ε(CE1 ,CE2 , . . . ,CEn
).72

4.2. Trunation of well-preordered labeled event struturesLemma 4.2.8. Let Cond denote any ompatibility ondition among {(non-strit), strit}
× {(standard), transitive, re�exive}. Any synhronized produt of preordered labeledevent strutures with ompatibility Cond also has ompatibility Cond.Proof. Let (E⊗,4C

⊗) denote some synhronized produt of n preordered labeled eventstrutures (E1,4
C
1), (E2,4

C
2), . . . , (En,4C

n). Suppose that LTS⊢⊗

= (CE⊗ ,ΣE⊗ , s0
⊗,⊢⊗) and LTS⊢1 ,LTS⊢2 , . . . ,LTS⊢n

are respetively their labeled tran-sition systems based on the extension relation. We de�ne another labeled transitionsystem LTS⊗ = (S⊗,ΣE⊗ , s0
E⊗

,→⊗) as the synhronized produt of n labeled transitionsystem LTS⊢1 ,LTS⊢2 , . . . ,LTS⊢n
, its synhronized onstraint is ΣE⊗

. We have then:1. by De�nition 4.2.7, for all C,C ′ ∈ CE⊗
, C 4C

⊗ C ′ i� 〈RS(C),RS(C ′)〉 ∈ ⊗(4C
1 ,4C

2

, . . . ,4C
n) where RS(C) = 〈V(C)↓1,V(C)↓2, . . . ,V(C)↓n〉 for all C ∈ CE⊗

.2. (LTS⊗,⊗(4C
1 ,4C

2 , . . . ,4C
n)) is a preordered labeled transition system with ompat-ibility Cond due to Lemma 4.1.10.3. LTS⊢⊗ and LTS⊗ are bisimilar w.r.t. (RS ,IΣE⊗

) (f. De�nition 2.4.17) beauseof the maximization in E⊗ by De�nition 3.3.44.Hene, (LTS⊢⊗ ,4C
⊗) as well as (E⊗,4C

⊗) is preordered with ompatibility Cond.4.2.2 Trunation tehniquesAlthough labeled event strutures preserve all system's behaviors, they unfortunatelymay be in�nite in general, as it may be "too deep" and/or "too wide". A well-preorderingondition avoids the �rst possibility, and a branhing �niteness assumption eliminatesthe seonds. Hene, it is hoped that one an obtain some �nite parts of a labeled eventstruture to deide several veri�ation problems.Our tehnique is not far from the tree-saturation methods given in [Fin87, Fin91,FS01℄ where all system's possible exeutions are represented in some way inside a �nitetree-like struture. In this setion, we give the general idea of a trunation tehnique,and the more onvenient one when partial-order is taken into aount will be desribedin Setion 4.3.Cutting ontextDe�nition 4.2.9. A utting ontext of a given labeled event struture E is any tuple
(4C ,C) where:1. (E,4C) is a preordered labeled event struture,2. for all C,C ′ ∈ CE, C ⊂ C ′ implies C 64C C ′,3. C ⊆ CE is a set of on�gurations.We all the seond property in De�nition 4.2.9 the inlusion respet ondition. In-tuitively, by using a preorder 4C, for instane 4C=4M, one may be interested in onlyon�gurations whih are maximal w.r.t. 4C when doing some analysis suh as omputingreahable states of possible indued labeled transition systems. However, notie that inpratie, a labeled event struture E is onstruted step by step by means of pre�xes sothat its on�gurations as well as its events are added to E w.r.t. the inlusion order ⊂(see Chapter 5). Every on�guration omes from its sub-on�gurations w.r.t. the in-lusion order. Suppose the opposite, 4C does not stik to the trunation idea desribedlater. For example, some on�guration C ′ may be used for utting another one C be-ause C 4C C ′ while C is a subset of C ′. Therefore, the inlusion respet ondition isnaturally required. 73

Chapter 4. Trunation for well-preordered labeled event struturesWe introdue the set of on�gurations C in De�nition 4.2.9 in order to make thisde�nition general. In this work, only two ases of C where C is either CE or Cl
E
are dis-ussed (see Setion 4.3). In our �rst approah to trunation tehnique, let us temporarilyignore the importane of on�guration set C and assume that it is the on�guration set

CE. This assumption leads us to the standard trunation tehnique on the overabilitytree of an in�nite system [Fin91℄.De�nition 4.2.10 (Cuto� on�guration). Let (4C ,C) be a utting ontext for a labeledevent struture E. A uto� on�guration is any on�guration Ccut ∈ C suh that thereexists another on�guration C ∈ C satisfying Ccut ≺
C C.We all a on�guration Cout ∈ CE an outer on�guration if Cout is greater thansome uto� on�guration Ccut w.r.t. the inlusion order ⊆. Suh an outer on�guration

Cout may be obtained by the extension relation from a uto� on�guration Ccut, i.e.
Ccut Cout. Hene, Cout is intuitively useless, from the point of view of veri�ation, dueto the ompatibility of preordered labeled event strutures (E,4C). More preisely, itfollows from De�nition 4.2.10 that Ccut is uto� due to the existene of some on�guration
C suh that Ccut ≺

C C, and as a onsequene, there exists another on�guration C ′obtained from C, i.e. C C ′, satisfying Cout ≺
C C ′.Remark: If C = CE then every outer on�guration is also a uto� on�guration. However,it does not hold in general when C ⊂ CE. Beause, for example, either Cout or theorresponding on�guration C ′ in the above reasoning may not be in C.It is worth notiing here that in other works on trunation tehniques, one an�nd only notions of uto� on�guration/event ([MM95a℄) or of subsume node ([Fin87℄)whih all oinide with our uto� notion. Our notion of outer on�guration on the onehand lari�es the de�nition of trunation below, and on the other hand, distinguishesouter ("useless") on�gurations with uto� ones of whih some are required for verifyingertain problem, for instane, system's boundedness.Notation 4.2.11. For a given labeled event struture E and any utting ontext (4C ,C),we denote

• Co
E
the family of outer on�gurations,

• Cc
E
the family of uto� on�gurations, and

• Cn
E
the family of on�gurations whih are neither uto� nor outer ones, i.e. Cn

E
=

CE \ (Co
E
∪ Cc

E
).De�nition 4.2.12 (Trunation). Let (4C ,C) be a utting ontext of a labeled eventstruture E. The trunation of E w.r.t. (4C ,C), denoted by T(E,4C ,C), is the union ofall non-outer on�gurations, i.e. :

T(E,4C ,C) =
⋃

C∈(CE\C
o
E
)

CExample 4.2.13. Let us onsider an example when E = (E,≤,#,L,M) is the labeledevent strutures for the 2-bounded ounter initialized by 1, i.e. 2-BC
1. Figure 4.5illustrates E whih is obtained from 2-bounded proess 2-BP (see Setion 3.3.2). Sine

E is deterministi and oherent and post∗
2-BC

1 = Codom(M) = {0, 1, 2}, (E,IN) is awell-preordered labeled event struture. Moreover, as proved in the next subsetion,
(E,4C) is also well-preordered with strit ompatibility where 4C is de�ned by: for all
C,C ′ ∈ CE, C 4C C ′ i�M(C) =M(C ′) and |C| ≥ |C ′|.74

4.2. Trunation of well-preordered labeled event strutures
−

e1
−

+

e2
+

−

e3
−

+

f1
+

−

f2
−

+

f3
+

C1 C2

C3

Figure 4.5: Trunation example of a labeled event struture for 2-bounded ounter ini-tialized by 1.One an see that Cn
E
ontains only three on�gurations ∅, {e1

−}, and {f1
+} whosemarkings are respetively 1, 0 and 2. All other on�gurations ould not have a markingout of the set {0, 1, 2} and beause its size is greater than 1, they are all uto� on�gu-rations if the utting ontext is (4C ,CE). For example, C1 = {e1

−, e2
+}, C2 = {f1

+, f2
−},and C3 = {e1

−, f1
+} are all uto� ones due to the on�guration ∅.It follows then from De�nition 4.2.12 that the trunation of E w.r.t. the uttingontext (4C ,CE) is the set T(E,4C ,CE) = {e1

−, e2
+, f1

+, f2
−}. Events whih are outside ofthis trunation are illustrated in Figure 4.5 by dashed line. The trunation, and morepreisely the pre�x of E based on T(E,4C ,CE) is enough, for instane, for omputing allpossible markings. Formally, let us simply denote the trunation T(E,4C ,CE) by T, andthe T-pre�x E|T by the tuple E′ = (T,≤′,#′,L′,M′), we obtain that

⋃

C∈CE

M(C) =
⋃

C∈CE:C⊆T

M(C)

=
⋃

C∈C
E′

M′(C)

= {0, 1, 2}Remark: By de�nition, C ⊆ T(E,4C ,C) for every on�guration C ∈ Cn
E
. And all uto�on�gurations whih are minimal w.r.t. inlusion are also subsets of the trunation.Although T(E,4C ,C) is the union of non-outer on�gurations, it may ontain some outer-on�gurations. As shown in the example above, the trunation is an outer one itself.Trunation's propertiesBeause every on�guration is a downward losed set w.r.t. ausality, a trunation isalso downward losed set w.r.t. ausality. When there is no risk of onfusion, we alsoall the pre�x of a labeled event struture E based on its trunation T(E,4C ,C) for somegiven utting ontext (4C ,C), i.e. E|(E,4C ,C), its trunation.This trunation is determined somehow by the set of all minimal uto� on�gurationsw.r.t. the inlusion order ⊆. In other words, the trunation is bounded by events whoseloal on�gurations are of ourse outer ones, but more preisely, by some of them whihare minimal w.r.t. the ausality. Formally, the set Ef = Min≤({e ∈ E />(e) ∈ Cc

E
}) is75

Chapter 4. Trunation for well-preordered labeled event struturesintuitively the outside-frontier of the T(E,4C ,C)-pre�x of E, and
T(E,4C ,C) = E \ ≤(Ef)It is due to a onsequene of the fat that every on�guration C ∈ CE ontaining a su-essor of an event ef ∈ Ef must ontain ef itself. Therefore, C is an outer on�gurationbeause >(ef) ⊂ C and >(ef) ∈ Cc

E
. In example in Figure 4.5, we have Ef = {e3

−, f3
+}.Theorem 4.2.14 (Completeness). Let (4C ,C) be a utting ontext of a labeled eventstruture E = (E,≤,#,L,M). If 4C is onverse well-founded and (E,4C) has stritompatibility then for all on�gurations C ∈ CE, there exists a on�guration C ′ ∈ Cn

Esuh that C 4C C ′.Proof. We will prove this theorem by ontradition. Suppose that there exists a on�g-uration C ∈ CE suh that for all C ′ ∈ Cn
E
, C 64C C ′ (*). It follows the re�exivity of 4Cthat C 6∈ Cn

E
, and as a onsequene, there are two ases:

• C is a uto� on�guration, i.e. C ∈ Cc
E
. By de�nition, it is due to anotheron�guration C1 ∈ C ⊂ CE satisfying C ≺C C1.

• C is an outer on�guration, i.e. C ∈ Co
E
. One again, there must exist a uto�on�guration Ccut and thus another on�guration C ′ suh that: Ccut ⊂ C,Ccut ≺

C

C ′. Thanks to the strit ompatibility of (E,4C), there exists a on�guration
C1 ∈ CE whih may be obtained from C ′, i.e. C ′ C1, and satis�es that C ≺C C1.In both ases, one an onlude that there exists C1 ∈ CE satisfying C ≺ C1. It followsfrom the hypothesis (*) that C1 6∈ Cn

E
. By repeating this reasoning, we obtain an in�nitesequene of on�gurations whih is an inreasing sequene w.r.t. 4C , that means C ≺C

C1 ≺
C C2, . . . where Ci ∈ CE for all i ∈ N. This ontradits to the onverse well-foundedness of 4C. Therefore, hypothesis (*) thus results in ontraditions.The "respet inlusion" of utting ontexts is not only a natural property in pratiebut also gives rise to the onverse well-foundedness of the order 4C. And it is thus a key inthe proof of Theorem 4.2.14. This theorem is somehow alled "trunation ompleteness"theorem, for instane, for reahability based veri�ation (see Setion 4.3). However, suha veri�ation is deidable if the orresponding trunation is �nite.Theorem 4.2.15 (Finiteness). Let (4C ,C) be a utting ontext of a �nitely-branhinglabeled event struture E = (E,≤,#,L,M). If 4C is onverse well-preordered and Cl

E
isa subset of C, then the trunation T(E,4C ,C) is �nite.Proof. We �rst prove that for every event e ∈ E, if its loal on�guration ≥(e) is anouter on�guration then e 6∈ T(E,4C ,C) (*). Suppose that it is not true for some even

e. Sine ≥(e) is an outer on�guration, there exists a on�guration Ccut ∈ Cc
E
suh that

Ccut ⊂ (≥(e)). As a onsequene, for all on�guration C ∈ CE satisfying e ∈ C, Cmust be an outer on�guration due to Ccut, more preisely beause Ccut ⊂ (≥(e)) ⊆ C.In other words, every non-outer on�guration an not ontain e. It follows from thede�nition of the trunation (De�nition 4.2.12) that e 6∈ T(E,4C ,C).Now, suppose that the trunation T(E,4C ,C) is in�nite. Let us onsider the DAG
(V,E′) where V = T(E,4C ,C) and E′ is de�ned by: for all e, e′ ∈ V, 〈e, e′〉 ∈ E′ i�
e ⋖ e′. Sine E is �nitely-branhing, (V,E′) is �nitely-branhing too. As a onsequeneof König's lemma, there exists an in�nite path e1 ⋖ e2 ⋖ . . . in T(E,4C ,C). Due tothe onverse well-preorder 4C , there exists indies k > i suh that (≥(ek)) 4C (≥(ei)).Thanks to the inlusion respet ondition of utting ontexts, it follows from (≥(ei)) ⊂76

4.2. Trunation of well-preordered labeled event strutures
(≥(ek)) that (≥(ei)) 64

C (≥(ek)). We have thus (≥(ek)) ≺
C (≥(ei)). Therefore, ≥(ek) is auto� on�guration beause both on�gurations ≥(ei) and ≥(ek) are elements of Cl

E
⊆ C.Hene, for every index l > k, the loal on�guration ≥(el) is an outer on�guration.The fat that el belongs to the trunation T(E,4C ,C) ontradits (*). One an �nallyonlude that T(E,4C ,C) is �nite.The family of on�gurations C of a utting ontext (4C ,C) is introdued for a generalutting ontext. We have not found the preise ondition on C for the �niteness ofthe orresponding trunation stated in Theorem 4.2.15. However, our ondition that

CE ⊇ Cl
E
is enough for partial-ordered veri�ations detailed in Setion 4.3 in whih theloal utting ontext is based on the family of loal on�gurations Cl

E
. We also hopethat a good hoie of C an help tuning our veri�ation algorithms detailed in the nexthapters.4.2.3 Well-preorders on on�gurationsAll di�erent variants of trunating tehniques may be generalized by ours. The preorderon on�gurations is determined by a pair of orders (4M,E) where 4M and E are bothorders on on�gurations, and

• 4M is based on the marking funtion,
• E is based on the inlusion order or/and the labeling funtion.The order E, and more preisely its strit order ⊳, alled adequate order, mustbe a strit partial-order on CE re�ning/extending the inlusion order ⊂, i.e. C ⊂ C ′implies C ⊳ C ′. This property orresponds to the inlusion respet ondition on uttingontexts. Moreover, this pair of orders (4M,E) must be preserved by �nite extensions.This means that for every pair of on�gurations C 4M C ′, and for every extension set Xof C, i.e. C X, there exists an extension set X ′ of C ′ suh that (C∪X) 4M (C ′∪X ′),and if C E C ′ then (C ∪X) E (C ′ ∪X ′). It intuitively oinides with our de�nition ofompatibility of 4M with extension relation , and will be proved in the rest of thissub-setion. One an �nd in the literature the following orders:Marking orders

• 4M = ICodom(M) for �nite systems [MM95a℄ whih is the most widely usedfor unfolding tehnique on safe Petri nets.
• 4M = ≈Codom(M) where on�gurations' markings may be partitioned into �-nite lasses and ≈Codom(M) is the orresponding equivalene relation [KK03℄.For example, this is used for symmetri Petri nets [CGP01℄ or Signal Transi-tion Graphs [SY96℄.
• 4M is a well-preorder on states of well-strutured transition systems [Fin87℄.Adequate orders
• E = ⊆ for �nite reovery trees [Fin87, FS01℄.
• E based on on�gurations' sizes, C E C ′ i� |C| ≥ |C ′|, for unfolding of Petrinets [MM95a℄.
• E based on lexiographi order over Σ∗ or Foata normal form of on�gura-tions [ERV96℄.In this work, we fous only on well-preorders 4C that are based on some markingpreorders 4M (see De�nition 4.2.2) and some adequate orders E given above. Intuitively,77

Chapter 4. Trunation for well-preordered labeled event strutures
4M gives rise to the ompatibility of utting ontext while E guarantees the foundednessof 4C , and as a onsequene the deidability of some veri�ation problems.Notation 4.2.16. Let E be a labeled event struture and 4M,E are respetively a markingorder and an adequate order for E. We denote 4C= (4M ⋓ D) the binary relation on CEthat is de�ned as: denoted by (4M ⋓ D) where

• C 4C C ′ i� 〈C,C ′〉 ∈ (4M ∩D),
• C ≺C C ′ i� C 4C C ′ and C ⊲ C ′.The adequate order based on lexiographi order de�ned below has been �rst givenby Esparza and is widely used in nowadays unfolding tehniques for Petri nets. One an�nd its de�nition as well as the original idea of how to improve unfolding tehniquesin [ERV96℄. Brie�y, the purpose of giving or re�ning adequate orders is to obtain smalltrunations.De�nition 4.2.17. Given a labeled event struture E = (E,≤,#,L,M) and a totalorder ≪ on Σ. The lexiographi labeling order on CE, denoted by El, is de�ned by: forall C,C ′ ∈ CE, C El C ′ if either:
• |C| < |C ′|, or
• |C| = |C ′| and the linearisation w.r.t. ≪ of labels of events in C is lexiographiallysmaller than or equal to the one of C ′.4.3 Partial-order veri�ation for well-preordered labeledevent struturesBased on the general utting ontext de�ned in the previous setion, we are going toshow di�erent trunation tehniques. Eah trunation tehnique is dediated to a kindof information in labeled event strutures that one wants to preserve by means of trun-ations and its orresponding pre�xes. Then, by analyzing these pre�xes, one an verifyvarious problems on systems whih are modeled by labeled event strutures, suh astermination and boundedness. There are two types of utting ontexts (4C ,C) whihare widely used. It depends on the hoie of the on�guration set C whih is either thewhole set of on�gurations CE or the set of loal on�gurations Cl

E
.The �rst one, i.e. C = CE, is alled a global utting ontext, an result to a ompattrunation but ontradits to the partial-order onstrution of labeled event strutures(see Chapter 5). Beause, in pratie, one must ompute and examine all on�gura-tions and their markings in order to deide the trunation and whether the onstrutingalgorithm may terminate.The seond one, i.e. C = Cl

E
, may be integrated in the algorithm that onstrutslabeled event strutures. It keeps up the partial-order idea and almost does not slowdown the running time of the algorithm in pratie (see Chapter 6 for details). Inthis setion, we only onsider this kind of utting ontext, alled loal utting ontext,however, all statements as well as their proofs are also true for the global utting ontext.4.3.1 Loal utting ontextsLet us �rstly give some new notions about events that are derived from the ones abouton�gurations.78

4.3. Partial-order veri�ation for well-preordered labeled event struturesDe�nition 4.3.1. Let E = (E,≤,#,L,M) be a labeled event struture and (4C ,Cl
E
)be a loal utting ontext of E. An event e ∈ E is

• a uto� event if ≥(e) is a uto� on�guration,
• an outer event if ≥(e) is an outer on�guration.Sine uto� on�gurations are determined by Cl

E
, the seond item of De�nition 4.3.1an be stated in another way, event eout is an outer event e if it is a suessor of someuto� event ecut, i.e. ecut < eout. By the same manner as in Notation 4.2.11, we alsodenote the set of uto� events, the set of outer events by Ec, Eo respetively; and theset of events whih are neither uto� nor outer by En, i.e. En = (E \Ec) \ Eo.Lemma 4.3.2. Given a loal utting ontext (4C ,Cl

E
) of a labeled event struture E. Wehave

T(E,4C ,Cl
E) = En ∪Min≤(Ec).Proof. In the same manner as the proof of Theorem 4.2.15, we obtain that for all e ∈ Eo,

e 6∈ T(E,4C ,Cl
E
). It follows diretly from the de�nition of outer events that for all e ∈ En,

(≥(e) ∩ Eo) = ∅. And moreover, a uto� event ecut ∈ Ec is an outer event i� it is asuessor of some other uto� event, or in other words, i� it is not minimal w.r.t. ausalityover the set of uto� ones, i.e. ecut 6∈ Min≤(Ec). Therefore, by de�nition of the trunation(De�nition 4.2.12), T(E,4C ,Cl
E
) =

⋃
C∈(CE\C

o
E
) C = (≥(En)) ∪ (≥(Min≤(Ec))) = En ∪

Min≤(Ec).
−

e1
−

−

e2
−

−

e3
−

+

e1
+

+

e2
+

+

e3
+

Ccut C ′
cut

(a) Loal: (4C ,Cl
E
)

−

e1
−

−

e2
−

−

e3
−

+

e1
+

+

e2
+

+

e3
+

Ccut

(b) Global: (4C ,CE)

Figure 4.6: Loal vs global utting ontextsExample 4.3.3. Let us denote E = (E,≤,#,L,M) the labeled event struture for 2-bounded ounter initialized by 1, i.e. 2-BC
1, whih is isomorphi to ({a}, a, 2)-CP forbounded FIFO hannels (see De�nition 3.3.13 on page 38). And let us take the same well-preorder 4C as in Example 4.2.13, that is C 4C C ′ if M(C) =M(C ′) and |C| ≥ |C ′|.Figure 4.6-a and Figure 4.6-b illustrate E and its trunations with respetively the loalutting ontext (4C ,Cl

E
) and the global one (4C ,CE).As shown in Figure 4.6-a, events e2

− and e2
+ are uto� events due to e1

− and e+1. Andmore over, these two events form the minimal set w.r.t. ausality of uto� events, i.e.
Min≤(Ec

E
) = {e2

−, e2
+}, hene give the intuitive frontier/bound of the trunation. How-ever, in Figure 4.6-b, e2

− and e2
+ are both "outer events" beause its loal on�gurationsare outer ones due to on�guration Ccut = {e1

−, e1
+} whih is not loal. One an say79

Chapter 4. Trunation for well-preordered labeled event struturesthat the trunation with global utting ontext, in this example is {e1
−, e1

+} is smallerthan the one with loal utting ontext, {e1
−, e1

+, e2
−, e2

+}, while they preserve the sameinformation on reahability/marking set, i.e.
⋃

C∈CE:C⊆T(E,4C ,Cl
E
)

M(C) = {0, 1, 2} =
⋃

C∈CE:C⊆T(E,4C ,CE)

M(C)Lemma 4.3.4. Let (E,4M) be a preordered labeled event struture where 4M is a mark-ing preorder. Let E be the adequate preorder based on on�guration size, i.e. C E C ′ i�
|C| ≤ |C ′|. If (E,4M) has re�exive ompatibility then (E,4M ⋓ D) is also a preorderedlabeled event struture with strit and re�exive ompatibility.Proof. Let us denote 4C = (4M ⋓ D). The re�exivity and transitivity of 4C are trivialso that 4C is a preorder on CE. Let C,C ′ be two on�gurations in CE and assume that
C 4C C ′. Sine (E,4M) is a preordered labeled event struture, by De�nition 4.2.1, forevery extension set X of C, there exists an extension set X ′ of C ′ suh that (C ∪X) 4M

(C ′ ∪X ′). It follows from the re�exive ompatibility that |X ′| = |X|. Beause C 4C C ′,we have |C| ≥ |C ′| and thus |C ∪X| = |C|+ |X| = |C|+ |X ′| ≥ |C ′|+ |X ′| = |C ′ ∪X ′|(reall that a on�guration and its extension set are disjoint sets). Therefore (C∪X) 4C

(C ′ ∪ X ′) by de�nition and (E,4C) is preordered with re�exive ompatibility beause
|X| = |X ′|. Moreover the strit ompatibility follows diretly from the de�nition of
(4M ⋓ D) whih says that C ≺C C ′ i� C 4M C ′ and C ⊲ C ′.In the proof above, there are no onstraint on labels of events and extension events.However, with a little modi�ation, one an also say that the preorder based on thelexiographi order preserves strong ompatibility, i.e. when there is no event labeled byan internal ation in Στ .Lemma 4.3.5. Given a preordered labeled event struture (E,4M) where 4M is a mark-ing preorder, if (E,4M) has strong ompatibility then (4M ⋓Dl,E) 2 is also a preorderedlabeled event struture with strit and strong ompatibility.Proof. By the same manner as in the proof of Lemma 4.3.4, this lemma is a onsequenethat omes from a property of the lexiographi order 4l orresponding to El, i.e. CElC

′if L(C) 4l L(C ′). In fat, for all multisets A,B,C over Σ = Codom(L), we have that
A 4l B implies (A ⊕ C) 4l (B ⊕ C) where the operator ⊕ represents the union ofmultisets.The lexiography-based order El re�nes the size-based order E, that means for allon�gurations C,C ′ ∈ CE, C El C ′ implies C E C ′. And they both re�ne the inlusionorder ⊆. Hene, (4M ⋓ D,C) and (4M ⋓ Dl,C) are utting ontexts for any family
C ⊆ CE if the ompatibility is satis�ed. Moreover, if the orresponding trunations are�nite, one an easily �nd out that T(E,4M⋓Dl,C) is generally smaller and never greaterthan T(E,4M ⋓D,C), as the word "re�ne" means. Esparza et al. have given an examplein [ERV96℄ showing that the trunation, obtained by using E is exponential while theone that uses El is linear w.r.t. the size of the original system.Lemma 4.3.6. Given a preorder labeled event struture (E,4M). If E is �nitely-branhing then 4C= (4M ⋓⊇) is a onverse well-foundeded.2El is lexiographi labeling order (see De�nition 4.2.17 on page 78).80

4.3. Partial-order veri�ation for well-preordered labeled event struturesProof. As a onsequene of König's lemma, the �nitely-branhing property implies thatthere is no in�nite sequene of on�guration C1 ⊃ C2 ⊃ Hene there is no in�niteinreasing sequene of on�gurations w.r.t. the order 4C= (4M ⋓⊇).Remark: If E is �nitely-branhing and 4M is a onverse well-preorder then (4M ⋓ D) aswell as (4M ⋓ Dl) is a onverse well-preorder.4.3.2 Coverability and quasi-livenessDe�nition 4.3.7 (Coverability). Given a labeled transition system LTS = (S,Σ, s0,→)and a preorder 4 on its state spae S, the overability problem is to deide whether astate s is overed by some reahable state s′, i.e. s 4 s′ and s0։s′
σ for some σ ∈ Σ∗.This problem may be solved by the omputation of the downward losure w.r.t. 4 of

post∗
LTS

. While using labeled event strutures (E,4M) for modeling systems by means ofindued labeled transition systems (LTS
E,4), one needs, and this is enough, to omputethe downward losure w.r.t. 4 ofM(CE) =

⋃
C∈CE

M(C). Beause, by De�nition 3.2.4,
M(CE) = post∗

LTS
E .Notation 4.3.8. Let T be the trunation of a preordered labeled event struture (E,4C)w.r.t. some utting ontext (4C ,C). We denote CT the family of on�gurations in

T(E,4C ,C), i.e. CT = {C ∈ CE /C ⊆ T(E,4C ,C)}.In this subsetion, we will show that the overability problem is deidable if there isa re�exive/strong ompatibility by using either (4M ⋓ D) or (4M ⋓ Dl). As stated byLemma 4.3.4 and Lemma 4.3.5, both (4M ⋓ D,CE) and (4M ⋓ Dl,CE) are loal uttingontexts.Lemma 4.3.9. For any �nitely-branhing and preordered labeled event struture (E,4M)with re�exive (strong) ompatibility, let E be the size-based adequate order (the lexiogra-phy-based adequate order, resp.) and T(E, (4M ⋓D),Cl
E
) be the orresponding loal trun-ation. Then we have:

<(M(CT)) = <(post∗
LTS

E)Proof. By de�nition of indued labeled transition systems (De�nition 3.2.4), we haveto simply prove that <(M(CT)) = <(M(CE)). Sine CT ⊆ CE, it su�es to showthat M(CE) ⊆ (<(M(CT))). It follows from Lemma 4.3.6 that the order (4M ⋓ D)is onverse well-founded. Let C be any on�guration in CE, by Theorem 4.2.14, thereexists a on�guration C ′ ∈ Cn
E
⊆ CT suh that C ≺C C ′ where 4C = (4M ⋓ D), andso C 4M C ′. It follows from the de�nition of marking preorders (De�nition 4.2.2)that M(C) ⊆ (<(M(C ′))). Therefore, by a same manner as for strong ompati-bility with lexiography-based adequate order, one an onlude that (<(M(CT))) =

(<(M(CE))) = (<(post∗
LTS

E)).The downward losure set for overability may be rewritten in another way as
(
< (M(CT))

)
=

(
<

(
M(Max4M(CT))

))

=

<

⋃

C∈Max
4M(CT)

M(C)

 81

Chapter 4. Trunation for well-preordered labeled event struturesIn words, one takes the set of maximal on�gurations, w.r.t. the marking preorder
4M, in the trunation; then one omputes the union of their markings and �nally oneomputes its downward losures.The orretness of this lemma is based on the one of Theorem 4.2.14 so that the stritompatibility of the utting ontext's order (4M ⋓ D), as well as the strit omparisonin de�nition of uto� on�gurations (see De�nition 4.2.10) is very important for theompleteness of the trunation while verifying overability. One an �nd a ounter-example in [ERV96℄. For example, if we replae the ondition Ccut ≺

C C by Ccut 4C C,for some preordered labeled even struture, (C ∪Ccut) is an outer on�guration and thetrunation may have no on�guration C ′ whih overs (C ∪ Ccut), i.e. (C ∪Ccut) 64
C C ′and (C ∪ Ccut) 64

M C ′.Remark: Our overing problem orresponds to the sub-overing one in [FS01, HST07℄ byduality. The sub-overing problem is deidable for re�exive and downward well-preorderlabeled event strutures (LTS,4) by means of omputing upward losure of post∗
LTS

.The downward ompatibility tells that from a smaller state, one an do the same thing asfrom a greater one w.r.t. 4. In this work, we give no downward notion for ompatibility.However, suh systems orresponds to our well-preordered labeled transition systems
(LTS,<) where the onverse preorder < is onverse well-preordered.Lemma 4.1.14 ombined with Lemma 4.3.9 allows us to redue bakward analysisto forward analysis: to ompute pre∗

LTS
E (4({s})) in a well-preordered labeled transition

(LTS
E,4) and �nite pred-basis pb, it is su�ient to build the �nite trunation of theorresponding well-preordered labeled event struture (E,4M).Lemma 4.3.10. Let (E,4M) be any preordered labeled event struture with re�exive(strong) ompatibility and E be the size-based adequate order (the lexiography-based ad-equate order, resp.). If E is �nitely-branhing then T(E, (4M ⋓ D),Cl

E
) is �nite.Proof. Thanks to Lemma 4.3.6, the preorder (4M ⋓ D) is a onverse well-founded. Andas a sequene of Theorem 4.2.15, the trunation is �nite.As seen in Chapter 5, one an obtain the pre�x based on the loal utting ontext

(E, (4M ⋓ D),Cl
E
) by a partial-order onstrution. Although the overing problem isdeidable on (E,4M) due to the �niteness of the trunation, one need ompute more orless all markings as well as possible on�gurations (generally not loal ones) in the pre�x.This omputation after the onstrution does not suit with partial-order veri�ation.De�nition 4.3.11 (Quasi-liveness). Let LTS = (S,Σ, s0,→) be a labeled transitionsystem. An ation a ∈ Σ is quasi-live if there is an exeution of LTS in whih a is �red.In the ontext of labeled event strutures, the quasi-liveness of a redues to theexistene of an event labeled by a. Unlike the overing problem, the quasi-liveness wouldbe veri�ed in onurrent with partial-order trunation's onstrution, and fortunately,without omputing on�gurations that are possibly not loal.Theorem 4.3.12. Let (E,4M) be any �nitely-branhing and preordered labeled eventstruture with re�exive (strong) ompatibility and E be the size-based adequate order (thelexiography-based adequate order, resp.). For any global ation a ∈ Σ, a is quasi-live in

LTS
E i� a labels an event in T(E, (4M ⋓ D),Cl

E
).Proof. Let us denote by E = (E,≤,#,L,M) the labeled event struture. By de�nition ofindued labeled transition systems (De�nition 3.2.4 on page 28), it su�es to prove that82

4.3. Partial-order veri�ation for well-preordered labeled event strutures
L(T(E, (4M⋓D),Cl

E
)) = Σ (*) (reall that Σ = Codom(L)). Sine T(E, (4M⋓D),Cl

E
) ⊆

E, the left-side inlusion of (*) is obvious. For the right-side inlusion, suppose that
e be any event e ∈ E. Thanks to Theorem 4.2.14, for the on�guration >(e), thereexists another on�guration C ∈ Cn

E
suh that 〈>(e), C〉 ∈ (4M ⋓ D). Sine a is notan internal ation, i.e. a 6∈ Στ , beause of the re�exive ompatibility of (E,4C) where

4C = (4M ⋓ D), we have C ⊢ e′ for some extension event e′ satisfying L(e′) = L(e).Moreover, it follows from the downward losed property of the on�guration (C ∪ {e′})that >(e′) ⊆ C, and as a onsequene >(e′) does not ontain uto� events. Thanks toLemma 4.3.2, e′ ∈ T(E, (4M ⋓ D),Cl
E
). The right-side inlusion of (*) is proved.4.3.3 Termination and boundednessDe�nition 4.3.13 (Termination). Given a labeled transition system LTS, we say that

LTS terminates if LTS has no in�nite exeution.Suppose that we has already a labeled event struture E for LTS. Then LTS ter-minates if E is �nite. Or reversely, LTS does not terminate if E has no bound on itson�gurations' sizes. In order to resolve the termination problem, we use the uttingontext based on 4C = (<M⋓⊇). The intuitive idea is that if a on�guration Ccut is utdue to another on�guration C, the ompatibility of 4C implies the existene of in�nitesequene of on�gurations Ccut, C
′
cut, C

′′
cut, . . . in CE. An important thing here is thatthis sequene is inreasing while omparing elements' sizes. The reasoning that an befound in following proofs, bases on both C and Ccut (1); and the fat that Ccut may beobtained from C (2). The �rst point really di�ers from the reasoning for overability andliveness problems in whih Ccut is somehow useless. And due to the seond point, onehas that C ⊆ C ′ so that the adequate order ⊆ is naturally onvenient for the terminationproblem.Lemma 4.3.14. Given a preordered labeled event struture (E,4M) where 4M is amarking preorder, (E, (<M ⋓⊇)) is also a preordered labeled event struture.Proof. Let us denote 4C = (<M⋓⊇). The re�exivity and transitivity of 4C are trivial sothat 4C is a preorder on CE. The ompatibility of preorder 4C is diretly inherited fromthe inlusion order. Let C,C ′ be two on�gurations in CE and assume that C 4C C ′.Let X be any extension set of C, i.e. C X. Sine C ⊇ C ′, we have thus C ′ ⊆

(C ∪ X). Hene, X ′ = (C \ C ′) ∪ X is simply an extension set of C ′ whih guarantiesthe ompatibility of 4C beause C ′ ∪X ′ = C ∪X.As seen in the previous proof, (E, (<M ⋓ ⊇)) may not have the strit ompatibilityneeded in Theorem 4.2.14 so that the orresponding loal trunation is not omplete inview of overability. However, this trunation preserves enough information for termi-nating problem. And the veri�ation is deidable due to its �niteness.Theorem 4.3.15. Let (E,4M) be any well-preordered labeled event struture. If E is�nitely-branhing then T(E, (<M⋓ ⊇),Cl
E
) is �nite.Proof. Suppose that the trunation T(E, (<M⋓ ⊇),Cl

E
) is in�nite. Thanks to König'slemma, it follows from the �nitely-branhing property of E that the trunation T ontainsan in�nite sequene of events e1 ⋖ e2 ⋖ As a onsequene, (≥(e)) ⊂ (≥(ej)) for all

i < j. Moreover, sine 4M is well-preordered, by de�nition, there exist two indies i < jsuh that (≥(ei)) 4M (≥(ej)). We obtain that the loal on�guration ≥(ej) is a uto�one, and ej is a uto� event due to ei, or more preisely, due to the loal on�guration83

Chapter 4. Trunation for well-preordered labeled event strutures
≥(ei). Hene, ej+1 is an outer event by de�nition. The fat that T(E, (<M⋓ ⊇),Cl

E
)ontains ej+1 ontradits to Lemma 4.3.2. Therefore, the trunation is �nite.In overing-based veri�ation, uto� events as well as uto� on�gurations are some-how useless (see Theorem 4.2.14). However, for termination, it is the opposite. Theexistene of uto� events in the trunation is enough for deiding whether the orre-sponding system terminates if there is transitive ompatibility.Theorem 4.3.16 (Termination). For any well-preordered �nitely-branhing labeled eventstruture (E,4M) with transitive ompatibility, LTS

E terminates i� T(E,<M ⋓ ⊇,Cl
E
)ontains no uto� event.Proof. Let us denote the labeled event struture by E = (E,≤,#,L,M), and the loaltrunation simply by T. Thanks to Theorem 4.3.15, T is �nite. Reall that T = En ∪

Min≤(Ec), the trunation ontains a uto� event i� there exists a uto� event in E.(⇐) Assume that T ontains no uto� event. This implies that there is no outer eventand by de�nition, E = T. The event set E is also �nite. We dedue from Lemma 3.2.12that every exeution in LTS
E whih orresponds to linearisation w.r.t. ausality of someon�guration has length at most |E|. Therefore, LTS

E terminates.(⇒) Assume that T ontains a uto� event ecut. There exists another event suhthat e < ecut and (≥(e)) 4M (≥(ecut)). Due to the transitive ompatibility of (E,4M),let X = ((≥(ecut)) \ (≥(e))), sine X is an extension set of ≥(e) there exists anotherextension set X ′ of ≥(ecut) suh that (≥(e) ∪ X) = (≥(ecut)) 4M ((≥(ecut)) ∪ X ′)and |X ′| ≥ |X| > 0. By iterating this reasoning, we obtain an in�nite sequene ofon�gurations C 4M (C ∪X) 4M (C ∪X ∪X ′) 4M . . . so that there is no bound fortheir size. The indued labeled transition system LTS
E must have an in�nite exeutiondue to Lemma 3.2.12.De�nition 4.3.17 (Boundedness). A labeled transition system LTS is bounded if it hasa �nite reahability set, i.e. post∗

LTS
is �nite.In order to deide boundedness, we use the same loal utting ontext as in termina-tion, i.e. based on (<M⋓ ⊇), but we need the notion of marking-strit uto� events.De�nition 4.3.18 (Marking-strit uto� event). Given a preordered labeled event stru-ture (E,4M) and its loal utting ontext (<M⋓ ⊇,Cl

E
). A marking-strit uto� eventis any event ecut suh thatM(≥(ecut)) ≻

MM(≥(e)) and ecut < e for some event e.It is worth notiing that, in pratie, ecut may be a marking-strit uto� event dueto the empty on�guration ∅ ∈ Cl. We simply say that it is due to the partiular event ε.Observe that any marking-strit uto� event is also a uto� event. The idea of verifyingboundedness is losed to the one of termination. Their orresponding trunations is thesame sine we use a loal utting ontext ((<M ⋓ ⊇,Cl
E
). However, the deidability ofboundedness veri�ation depends on a strit ompatibility of marking preorder 4M, notthe strit ompatibility of the utting preorder (<M ⋓⊇).Theorem 4.3.19 (Boundedness). Given (E,4M) be any well-preordered labeled eventstruture with transitive and strit ompatibility, and 4M is a partial-order. If E isoherent and �nitely-branhing then its indued labeled transition system LTS

E is boundedi� T(E,<M ⋓ ⊇,Cl
E
) ontains no marking-strit uto� event andM(CT) is �nite.84

4.3. Partial-order veri�ation for well-preordered labeled event struturesProof. Let us denote the labeled event struture by E = (E,≤,#,L,M) and its lo-al trunation simply by T. By de�nition of indued labeled event strutures (De�ni-tion 3.2.4), we have post∗
LTS

E = M(CE). Hene, the theorem ould be rewritten as:
M(CE) is �nite (1) i� T ontains no marking-strit uto� event andM(CT) is �nite (2).We are going to �rst show that "not (2) implies not (1)" and seond "(2) implies (1)".Therefore, one an thus onlude the theorem.

• Sine T ⊆ E and CT ⊆ CE, the marking setM(CE) whih inludesM(CT) must bein�nite ifM(CT) is in�nite. Now, suppose that T ontains a marking-strit uto�event ecut due to another event e, that means e < e′ andM(e) ≺MM(ecut). Dueto the strit and transitive ompatibility of (E,4M), by the same manner as inthe proof of Theorem 4.3.16, there must exists an in�nite sequene of on�guration
C1 ≺

M C2 ≺
M C3 ≺

M . . . in CE where C1 = ≥(e) and C2 = ≥(ecut). And theirmarkings are all belongs toM(CE) so thatM(CE) is in�nite.
• We will prove that M(CE) ⊆ M(CT) if there is no marking-strit uto� event in

T. As a onsequene, M(CE) is �nite due to the �niteness of M(CT). Let Co
Tdenote the set of on�gurations of whih marking does not belong toM(CT), i.e.

Co
T

= {C ∈ CE / (M(C) \M(CT)) 6= ∅}. Suppose that Co
T
is not empty. Sine E is�nitely-branhing, the size-based order E on CE is founded so that one an hoosea minimal on�guration C ∈ Co

T
w.r.t. E. It obviously follows from de�nition that

C must ontain an outer event, and thus as a onsequene, a uto� event ecut dueto another event e. Without lost of generality, suppose that ecut is minimal w.r.t.ausality ≤ in C, then ecut is also minimal w.r.t. ≤ over E beause C is downwardlosed. As a onsequene of Lemma 4.3.2, ecut belongs to the trunation T.Beause there is no marking-strit uto� event in T as supposed, for uto� event
ecut, we have thus ecut > e (ausality), ≥(ecut) <M ≥(e) and ≥(ecut) 6≻

M ≥(e)(marking). Therefore ≥(ecut) = ≥(e) sine 4M is a partial order. Let X =
C \ (≥(ecut), as a sequene of the seond property of oherene (De�nition 3.2.11)of E, it follows from the extension set X of ≥(ecut) that there exists an extension set
X ′ of on�guration ≥(e) satisfying |X ′| = |X| andM(≥(ecut)∪X) =M(≥(e)∪X ′).The on�guration C ′ = ≥(e) ∪ X ′ has the same marking as C, hene C ′ ∈ Co

T
.Moreover,

|C ′| = |≥(e)|+ |X ′| = |≥(e)|+ |X| < |≥(ecut)|+ |X| = |C|This fat ontradit to the minimality of hosen on�guration C. Therefore, Co
Tmust be empty so thatM(CE) is �nite.Remark: Abdulla et al. have given an unfolding algorithm for symboli veri�ation ofunbounded Petri nets in [AIN00℄. They adapt an algorithm desribed in [ACJT96℄ forbakward reahability analysis. This tehnique is more or less the dual of the ours.One an also �nd another work on boundedness of Petri nets whih based on forwardanalysis in [DJN04℄. In both ases, their algorithms operate on onstraints that eahon�guration may represent an (in�nite) upward losed set of Petri nets' markings 3.3A marking in Petri nets is a bit di�erent to our marking for nondeterministi labeled event strutures(see De�nition 2.5.1 on page 20). 85

Chapter 5Compositional unfolding tehniques
Contents5.1 Unfolding algorithm . 885.2 Causality proesses' unfolding 925.2.1 k-ausality proesses . 935.2.2 M -ausality proesses . 965.2.3 Generalization . 1035.3 Synhronized produts' unfolding 1095.3.1 Funtion ConfigVectorSet_i . 1115.3.2 Funtion ConfigVectorSet . 1145.3.3 Funtions InitSP and ExtendSP 1175.4 Trunating . 1225.4.1 Algorithmi uto� events . 1235.4.2 Complete pre�xes . 125Our goal in this hapter is to give algorithms, alled unfolding algorithms, for buildinglabeled event strutures using a method similar to Petri net unfolding. The �rst Petrinet unfolding algorithm was given by MMillan [MM95a℄. This algorithm intuitivelyenlarges some pre�x of a labeled ourrene net (see Setion 2.5 on page 19) by iterativelyadding events to it. A new event is omputed from existing onditions in the pre�x thatpossibly enable this event. This idea was later applied to synhronized produts oftransition systems [ERV96℄. In the result: for adding events, omponent states ouldbe analyzed without fousing global states of the synhronized produt. In our ase, weadapt this tehnique to synhronized produts of label event strutures. One onstrutsnot only pre�xes of a synhronized produt but also orresponding omponent pre�xestogether.We present the general algorithm in Setion 5.1. Intuitively, every event is reatedand inserted into the being onstruted pre�x when all its diret predeessors are alreadythere. Then, we detail our unfolding algorithm into two partiular ases: for omponentlabeled event strutures and for synhronized produts of labeled event strutures.First, in eah standard labeled event struture de�ned in Setion 3.3, an event and itsdiret predeessors as well as its diret suessors form somehow a motif. For example, inthe k-ausality proess, every inrement event has k inrement diret suessors and onederement one. As a onsequene, based on the de�nition of a labeled event struture,87

Chapter 5. Compositional unfolding tehniquesone an write a orresponding algorithm to onstrut it, more preisely, to onstrut itspre�xes. Setion 5.2 will give algorithms, for instane, building ausality proesses forounters and FIFO hannels.Seond, in a synhronized produt of labeled event strutures, a global event is noth-ing but a synhronization of omponent events. The unfolding algorithm, in the onehand, suessively extends a pre�x of the synhronized produt, and in the other hand,uses assoiated unfolding algorithms for omponents in order to aordingly extend itsomponent pre�xes. This algorithm will be detailed in Setion 5.3. Moreover, one anonsider a synhronized produt of labeled event strutures as a omponent of anotherlarger one. As a onsequene, one an obtain a global unfolding algorithm for a om-plex system whih is hierarhially modeled by means of labeled event strutures. Ourontribution is not only a generalization of the unfolding method in [ER99℄ to parallelomposition of labeled event strutures, but also gives an algorithm whih is apable ofexploiting onurreny in omponents as well as among them.In Setion 5.4, we will explain how to integrate trunating riterion into an unfoldingalgorithm in order to only onstrut �nite trunations whih are omplete for ertainveri�ation problems given in Chapter 4.5.1 Unfolding algorithmAiming at building a labeled event struture (E,≤,#,L,M), the unfolding algorithmalways maintains a pre�x of E, w.r.t. isomorphism, and tries to extend it until it isimpossible. This pre�x under onstrution is presented by so alled struture variables
Ê = (Ê, ≤̂, #̂, L̂,M̂) that are the main variables in our algorithms. Extending the pre�x
Ê intuitively means that the unfolding algorithm reates new events, adds them to Ê,and aordingly modi�es other struture variables, e.g. ≤̂, #̂, L̂,M̂, so that the obtained
Ê is still a pre�x of E w.r.t. isomorphism.Remark: In this hapter, for simpliity of proofs, when two labeled event strutures areisomorphi w.r.t. some bijetion B, we assume that they have a same set of events.On this understanding, one does not need to take are of bijetion B without risk ofonfusion. Due to this assumption, one an say that Ê is a pre�x of E and simply write
Ê = E| bE . That means Ê is a downward-losed subset w.r.t. ≤ of E. And in this ase,the ausality ≤̂ and the on�it relation #̂ are respetively restritions of ≤ and # ontothe event set Ê, i.e. ≤̂ = ≤| bE and #̂ = #| bE .To be preise, notie that Ê onstruted by our algorithm will not be a pre�x of E asin De�nition 3.1.12 but rather an isomorphi opy of it. In this hapter, we will nevertalk about this isomorphism though, and always think of Ê as a sub-event struture of EAlgorithm 5.1 represents the pseudo-ode of our general unfolding algorithm. Besidesstruture variable Ê representing the pre�x being onstruted, this algorithm maintainsa variable PE, alled possible extensions. PE ontains a set of events in Ê from whihthe pre�x Ê may be extended.The algorithm starts by initializing the pre�x Ê as well as PE using funtion Init (line2). As the output of Init, Ê will be usually the pre�x of E onsisting of its minimal events,i.e. Ê = E|Min≤(E). At the same time, PE will be the whole event set of Ê, i.e. PE = Ê.Then the algorithm proeeds by onsidering events in PE in turn. For a hosen event ein PE (line 4), it alls the funtion Extend that is the ore of our unfolding algorithm.This funtion takes e as well as values of struture variable Ê and of possible extension88

5.1. Unfolding algorithmAlgorithm 5.1: Unfolding algorithm1 begin2 (Ê,PE) := Init()3 while PE 6= ∅ do4 take an event e in PE5 (Ê,PE) := Extend(Ê,PE, e)6 end while7 end
PE as input (line 6), and does the following:

• �nds whih diret suessors e′ of e in E, i.e. e ⋖ e′, should be added to Ê: Suhsuessors e′ must satisfy that its predeessors are not only in Ê, i.e. >(e′) ⊆ Ê,but have also been previously extended, >(e′) ∩ PE = ∅;
• adds suh suessors e′ to Ê and updates the labeled event struture Ê aordingto these new events; e is removed from PE while its suessors is inserted into PE;and
• returns the new pre�x Ê and the possible extension PE.The two onditions stated in the �rst item are important. The �rst one ensures thatadding suessor e′ does not break the downward-losure w.r.t. the ausality ≤ of theobtained pre�x. And the seond one avoids dupliation of e′ when, for instane, extendinganother diret predeessor f of e′, i.e. f ⋖ e′ and f 6= e, by alling Extend(f) afterwards.The unfolding algorithm repeats extending Ê by alling funtion Extend as long as theset PE is not empty (line 3).Remark: The Algorithm 5.1 does not terminate if the labeled event struture E beingonstruted is in�nite. In Setion 5.4, we will introdue trunating riteria, and onse-quently, terminating algorithms that onstrut only �nite pre�xes.Funtion Extend obviously depends on the labeled event struture E that we wantto onstrut (see Setion 5.2 and Setion 5.3). However, it is possible to state generalorretness riteria for the algorithm. We formulate them as the unfolding invariant(De�nition 5.1.1) and orretness riteria (De�nition 5.1.3). The unfolding invariant isguaranteed at any step in the unfolding algorithm inluding the inputs of Extend as wellas the outputs of Init and Extend.De�nition 5.1.1 (Unfolding invariant). (Ê,PE) is orret w.r.t. E if

I1. Ê is a pre�x of E, i.e. Ê = E| bE ,
I2. PE is a subset of Ê, and
I3. for all e ∈ E, ⋗(e) ⊆ (Ê \ PE) i� e ∈ Ê.The property I3 determines whih events should be in the pre�x Ê. Reall that forall event e, >(e) is the downward-losure of ⋗(e) w.r.t. the ausality ≤. When Ê is apre�x of E, its event set Ê is a downward-losed set w.r.t. the ausality ≤ of E. Hene

⋗(e) ⊆ (Ê \ PE) means that diret predeessors of e are already extended, and so do allpredeessors of e.Lemma 5.1.2. If (Ê,PE) is orret w.r.t. E then 89

Chapter 5. Compositional unfolding tehniques
• PE ⊆ Max≤(Ê), and
• for all e ∈ E, e 6∈ Ê and ⋗(e) ⊆ Ê implies that there exists e′ ∈ PE satisfying

e′ ⋖ e.Proof. We will prove the �rst property by ontradition. Let e be an event in PE andsuppose that e is not maximal in Ê w.r.t. the ausality ≤. There exists another event
e′ ∈ Ê that is diret suessor of e, i.e. e⋖ e′. We have that ⋗(e′) ontains e 6∈ (Ê \PE).This is in ontradition with the unfolding invariant I3 in De�nition 5.1.1. Therefore,
PE ⊆ Max≤(Ê).The seond property is a diret onsequene of the right-to-left unfolding invariant
I3 from De�nition 5.1.1.As stated in Lemma 5.1.2, the set of possible extensions, PE, is always a subset of Êthat ontains only maximal events w.r.t. the ausality. When extending from an event
e, some of its suessors are added to Ê as well as to PE. Instrutions of funtion Extendmust somehow reestablish the invariant I3. For example, e should be removed from PEbeause it is no longer maximal w.r.t. the ausality. The seond item of Lemma 5.1.2says that an event e an not be added to Ê while some of its predeessors e′ is notextended yet. It is regardless of the hoie of e as input of Extend (line 4) that the orderof extending events respets to the ausality.De�nition 5.1.3 (Extend's orretness). We say that a funtion Extend is orret w.r.t.a given labeled event struture E if, for all (Ê,PE) that are orret w.r.t. E (by De�-nition 5.1.1), and for all e ∈ PE, the return value (Ê′,PE′) = Extend(Ê,PE, e) satis�es:
C1. (Ê′,PE′) is orret w.r.t. E,
C2. Ê ⊆ Ê′, and
C3. PE′ = (PE \ {e}) ∪ (Ê′ \ Ê).The property C1 requires that the unfolding invariant (De�nition 5.1.1) is preserved.When Extend is orret, due to the property C2, it adds new events to the pre�x withoutremoving any existing event. The property C3 intuitively means that, while e is removedfrom the possible extension set PE, no new event is left out of PE.For k = 0, 1, . . ., let Êk = (Êk, ≤̂k, #̂k, L̂k,M̂k) and PEk denote respetively thevalues of the variables Ê and PE after k steps of the prinipal loop in Algorithm 5.1. Let

ek be the value of parameter e hosen at the kth step of this loop. Then this unfoldingalgorithm satis�es following properties:Proposition 5.1.4. Given a labeled event struture E = (E,≤,#,L,M), if the output
(Ê0,PE0) = Init() is orret w.r.t. E (De�nition 5.1.1) and the funtion Extend is orretw.r.t. E (De�nition 5.1.3), then1. Ê0, Ê1, . . . is an inreasing sequene of pre�xes of E w.r.t. the inlusion order onits event sets, i.e. Ê0 ⊆ Ê1 ⊆ . . .;2. the order of extending events respets to the ausality order, that means ej 6≤ ei forall j > i;3. for every extended event ek,

Êk \ Êk−1 =
{
f ∈ ⋖(ek) / ⋗(f) ⊆

(
(Êk−1 \ PEk−1) ∪ {ek}

)}
.Proof. We will prove these properties in the order in whih they are stated.90

5.1. Unfolding algorithm1. The �rst property is obtained by indution on k. Beause, in the base ase, theoutput (Ê0,PE0) of the funtion Init() is orret w.r.t. E. Moreover, the orretnessof Extend w.r.t. E is enough for indutive step. The inreasing order on event sets
Ê0, Ê1, . . . is a diret onsequene of the orretness ondition C2.2. Suppose that ei is extend before ej , i.e. j > i. It follows from the previous propertythat Ei−1 ⊆ Ej−1. Consequently, Ej−1 ontains not only ej but also ei. Thanks toLemma 5.1.2, ej is maximal w.r.t. the ausality in Êj−1, and one thus reasons outthat ej 6< ei. Moreover, due to ondition C3, Extend inserts only new events intothe possible extension PE. Then, ei 6∈ PEi, and moreover, ei 6∈ PEk for all k ≥ i.As a onsequene, ei 6= ej . It follows from the partial order ≤ that ej 6≤ ei.3. Using C3 we get

Êk \ PEk = Êk \
(
(PEk−1 \ {ek}) ∪ (Êk \ Êk−1)

)

=
(
Êk−1 ∪ (Êk \ Êk−1)

)
\

(
(PEk−1 \ {ek}) ∪ (Êk \ Êk−1)

)

= Êk−1 \ (PEk−1 \ {ek})

= (Êk−1 \ PEk−1) ∪ {ek}beause ek ∈ PEk−1. Therefore, exept diret suessors of ek, an event f ∈ Esatis�es the left-hand side of the unfolding invariant I3 w.r.t. (Êk,PEk) i� fsatis�es it w.r.t. (Êk−1,PEk−1). Hene, the set (Êk \ Êk−1) of added events whenalling Extend(Êk−1,PEk−1, ek) ontains only diret suessors of ek, i.e. Êk \
Êk−1 ⊆ ⋖(ek). By ombining one again with the unfolding invariant I3, oneobtains the third item of this Proposition.As seen in the proof of Proposition 5.1.4, for any run of the Algorithm 5.1, events inits extending sequene e1, e2, . . . are pairwise di�erent. In other words, the orretnessof Extend, and more preisely, the property C3 stated in De�nition 5.1.3 ensures thatno event is extended twie. Moreover, one an see that some implementation of theunfolding algorithm is exhaustive. The operations on variable PE may be implementedso that every inserted element is eventually out, for example using a queue. In suh aase, events are taken (line 4) in a same order as they are inserted, and every event willbe eventually extended.It follows from the third property in Proposition 5.1.4 that an event f ∈ E is addedto the pre�x Ê when extending some of its diret predeessor ek. If f has many diretpredeessors, then ek should be the predeessor whih is extended last. Earlier on, Extendould not reate f when extending another diret predeessor of f than ek. Hene, theorretness of Extend, more preisely, the unfolding invariant I3 in De�nition 5.1.1,prohibits the unfolding algorithm to reate a repliation of some event.Remark: If an event f has no suessors in E, i.e. ⋖(f) = ∅, then alling Extend(Ê,PE, f)intuitively does nothing but removing f from PE. In this ase, the input pre�x and theoutput pre�x of Extend is the same, i.e. Ê′ = Ê and Ê′ = Ê. Assume that f is addedwhen extending some of its diret predeessor e, i.e. e ∈ ⋗(f). One an write a funtion

Extend so that it does not insert f into PE when extending e. The unfolding invariant
I3 is still preserved, and in the algorithmi view, one takes advantage of not extending
f later. However, the ondition C3 does not hold and should be hanged a little bit.91

Chapter 5. Compositional unfolding tehniquesWe prefer to keep the strit ondition C3 as stated in De�nition 5.1.3 beause it is moregeneral and the output PE′ as well as Ê′ is preisely determined.5.2 Causality proesses' unfoldingAs shown in the previous setion, while onstruting pre�xes of a labeled event struture,the unfolding algorithm is orret as stated in Proposition 5.1.4 if the funtion Extendis (De�nition 5.1.3). For example, algorithms for reahability trees and their orretnessproofs are not far from the ones for k-ausality proesses sine, in both ases, eventshave only one diret predeessor exepts those whih are minimal w.r.t. ausality.In this setion, we present funtion Extend for k-ausality proesses (Setion 3.3.2)and M -ausality proesses (Setion 3.3.3). In a sense, the funtion Extend is nothing butan algorithmi omputation of event's suessor set in a given labeled event struture
E. Eah event and its diret suessors in E form a motif that may be derived from thede�nition of E (see Setion 3.3). In other words, if an labeled event struture is obtainedby repeating a ertain motif, one an follow the shema desribed below and develop analgorithm for onstruting the labeled event struture.Remark:

• Reall that the ausality ≤ is the re�exive and transitive losure of the predeessorrelation ⋖. The ausality relation an be omputed from the predeessor one andvie versa. This is true also for their orresponding restritions onto a given subset
Ê of E, i.e. ≤̂ = ≤| bE and ⋖̂ = ⋖| bE. Hene, our algorithms do not diretly workwith ≤̂ but omputes only ⋖̂.

• In any ausality proess, the marking funtionM ould be de�ned based on events'label, i.e. the labeling funtion L, and the marking of empty on�guration M(∅)(see Setion 3.3 for details). Therefore, in our algorithms, we do not show expliitinstrutions for the marking funtionM.In order to shorten the presentation of the algorithms, we use a funtion Create(Ê,PE, P, l)(f. in Algorithm 5.2). Funtion Create takes four arguments that are: the onstrutedpre�x Ê, the atual possible extension PE, an event set P ⊆ Ê, and a label l ∈ Codom(L).It intuitively reates a new event e of whih label is l and the set of diret predeessorsis P , i.e. ⋗(e) = P . We require that the events in P are pairwise onurrent. As shownin Algorithm 5.2, the funtion adds new event e not only to Ê (line 4) but also to thepossible extension PE (line 5). The modi�ation of the labeling funtion L is done inline 6. Then it updates the predeessor relation ⋖̂ so that e is a diret suessor of allevents in P .The loop at lines 8-10 is responsible for updating the on�it relation #̂. In fat,due to the on�it-inheritane in (prime) event strutures by De�nition 3.1.1, for everypredeessor p ∈ P = ⋗(e), e is on�it with every event f whih is on�it with p, i.e.
f ∈ #(p). This is done in line 9.The following whih is similar to the third ondition of Extend's orretness (De�ni-tion 5.1.3 on page 90) is straightforward.Lemma 5.2.1. Let (Ê′,PE′) denote the return value of some alling
Create(Ê,PE, P, l). Then, we have PE′ = PE ∪ (Ê′ \ Ê).92

5.2. Causality proesses' unfoldingAlgorithm 5.2: Funtion Create1 funtion Create(Ê,PE, P, l)2 begin3 reate an event e4 Ê := Ê ∪ {e}5 PE := PE ∪ {e}6 L̂ := L̂ ∪ 〈e, l〉7 ⋖̂ := ⋖̂ ∪ (P × {e})8 for eah p ∈ P do9 #̂ := #̂ ∪ (#̂(p)× {e}) ∪ ({e} × #̂(p))10 end11 return (Ê,PE, e)12 end funtionIt is worth notiing that the value of struture variable Ê returned by the funtion
Create (line 11) may not be a label event struture. It may lak some on�its onerning
e that do not ome from on�it-inheritane. They will be added in the funtion Extend(see Setion 5.2.2). However, the funtion Create is fully in harge of the ausality ≤̂ aswell as the labeling funtion L̂. The new event e and updated possible extension PE arereturned, together with Ê, by the funtion Create .5.2.1 k-ausality proessesAlgorithm 5.3 represents our implementation of funtion Initk for the k-ausality proess
k-CP (see De�nition 3.3.9 on page 35). Reall brie�y that, in k-CP, there are only twotype of events: derement events, labeled by '−', that have no suessors; inrementevents, labeled by '+', so eah of them has exatly one derement diret suessor and kinrement ones. There are k minimal events, w.r.t. the ausality, that are all inrementevents. Algorithm 5.3: Funtion Initk for the k-ausality proess k-CP1 funtion Initk()2 begin3 Ê := ∅; ⋖̂ := ∅; #̂ := ∅; L̂ := ∅4 PE := ∅5 for i := 1 to k do6 (Ê,PE, e+) := Create(Ê,PE, ∅,+)7 end for8 return (Ê,PE)9 end funtionOne �rst initializes the pre�x Ê being onstruted to the one ontaining no event, i.e.
Ê, ≤̂, #̂ and L̂ are all the empty set (line 3). The possible extension PE is empty too.Then, the loop at lines 5-7 suessively reates k inrement events. The third argument's93

Chapter 5. Compositional unfolding tehniquesvalue when alling Create(Ê,PE, ∅,+) (line 6) is the empty set, i.e. P = ∅. So, returnevent e+ is minimal w.r.t. the ausality Ê in Ê. Moreover, there is no modi�ationonerning the on�it relation #̂ exept the assignment in line 3. Beause the loop atlines 8-10 of funtion Create in Algorithm 5.2 is not taken into aount when P is empty.Therefore, these k new events are pairwise onurrent.Notie that the funtion Initk uses the variable e+ as well as the variable PE just forgetting return value of alling Create in line 6. The funtion Create inserts new eventsin both Ê and PE. Hene, it follows from the loop's invariant Ê = PE in funtion Initkthat the returned event set Ê is equal to the returned possible extension PE. In line 8,returning (Ê,PE) is the same as returning (Ê, Ê). The following is straightforward byDe�nitionDe�nition 3.3.9 on page 35 of k-ausality proesses.Lemma 5.2.2. The output (Ê,PE) = Initk() of Algorithm 5.3 is orret w.r.t. k-CP =

(E,≤,#,L,M), moreover Ê = k-CP|Min≤(E).Algorithm 5.4 illustrates the funtion Extendk for the k-ausality proess k-CP (seeDe�nition 3.3.9). It only expands the pre�x Ê from inrement events, that means from
e where L(e) = + (line 4). In a same way as the funtion Initk, k inrement events arereated due to the loop at lines 5-7. In addition, a derement event is also reated (line8). By alling Create(Ê,PE, {e},+), these k + 1 new events are all suessors of e, andmoreover, they have only e as a diret predeessor.Algorithm 5.4: Funtion Extendk for the k-ausality proess k-CP1 funtion Extendk(Ê,PE, e)2 begin3 PE := PE \ {e}4 i f L(e) = + then5 for i := 1 to k do6 (Ê,PE, e+) := Create(Ê,PE, {e},+)7 end for8 (Ê,PE, e−) := Create(Ê,PE, {e},−)9 end if10 return (Ê,PE)11 end funtionNotie that in k-ausality proess, derement events have no suessor. Therefore,when e is a derement event, i.e. L̂(e) = −, the test in line 4 fails and the funtion
Extendk only removes e from the possible extension PE (line 3). The updated pre�x Êand possible extension PE are �nally returned by the funtion Extendk (line 10).Lemma 5.2.3. For every k ∈ N and k > 0, the funtion Extendk in Algorithm 5.4 isorret w.r.t. to the k-ausality proess k-CP.Proof. We will prove that Extendk satis�es all orretness properties C1, C2 and C3stated in De�nition 5.1.3. Let (Ê′,PE′) = Extendk(Ê,PE, e) denote the return value forsome input (Ê,PE, e). We assume that (Ê,PE) is orret w.r.t. k-CP and e ∈ PE. Thereare two ases depending on the label of e.94

5.2. Causality proesses' unfolding
• e is a derement event: Only the instrutions in line 3 and 10 in Algorithm 5.4are brought into e�et beause the test in line 4 fails. Hene, we have thus

PE′ = PE \ {e} while the pre�x Ê is unhanged, i.e. Ê′ = Ê. Conditions C2and C3 are satis�ed. Consider now the ondition C1 that onsists of I1, I2, I3 inDe�nition 5.1.1. Beause Ê′ = Ê, Ê′ remains a pre�x of k-CP (I1). By removing
e from PE, PE′ is a subset of PE and is thus a subset of Ê′ = Ê (I2). Let S (S′)denote the set of events in k-CP whose diret predeessors are all in (Ê \PE) (and
(Ê′ \ PE′) respetively). It is su�ient to prove the invariant I3 that S′ = Ê′. Itfollows from Ê′ = Ê and PE′ = PE \ {e} that S′ di�ers from S only on events
e′ whose set of diret predeessors ontains e. However, by De�nition 3.3.7 andDe�nition 3.3.9 for k-CP, as e is labeled '−', it has no suessor in k-CP. Hene,suh an event e′ does not exist, and onsequently, S′ = S. Sine (Ê,PE) is orretw.r.t. k-CP as assumed, we have S = Ê and thus S′ = S = Ê = Ê′. The ondition
I3 is satis�ed and one an onlude that Extendk is orret w.r.t. k-CP when e islabeled by '−'.

• otherwise, i.e. e is an inrement event: the ondition in line 4 in Algorithm 5.4is satis�ed. Let X+ denote the set of events that are reated by ount-ontrolledloops of size k (lines 5-7) and e− the event reated in line 8. We have thus Ê′ =
Ê ∪X+ ∪ {e−}. Lemma 5.1.2 gives us that PE ⊆ Max≤(Ê), hene, e ∈ PE impliesthat e has no suessor in Ê. Therefore, k + 1 new events in (X+ ∪ {e−}) exatlyorrespond to k+1 suessors of e in k-CP by De�nition 3.3.7 and De�nition 3.3.9.As a onsequene, Ê′ is the pre�x of k-CP where the event set is Ê′ = Ê∪X∪{e−},i.e. Ê′ = k-CP| bE′ (invariant I1 in De�nition 5.1.1). Moreover, it follows from theinstrution in line 3 and Lemma 5.2.1 that PE′ = (PE \ {e}) ∪ X+ ∪ {e−}, andonsequently, PE is the union of subsets of Ê′ so that PE′ ⊆ Ê′ (invariant I2).By the same manner as in the �rst ase, let S and S′ denote respetively the sets
{e′ ∈ E / ⋗(e′) ⊆ (Ê \ PE)} and {e′ ∈ E / ⋗(e′) ⊆ (Ê′ \ PE′)}. We have S = Êbeause (Ê,PE) is orret w.r.t. k-CP by De�nition 5.1.1. We will prove that
S′ = Ê′, and as a onsequene, (Ê′,PE′) also satis�es the invariant I3. Notie thatevery event in k-CP has at most one diret predeessor, and X ∪ {e−} ontains alldiret suessors of e in k-CP. Therefore,

S′ =
{

e′ ∈ E / ⋗(e′) ⊆ (Ê′ \ PE′)
}

=
{

e′ ∈ E / ⋗(e′) ⊆
(
(Ê ∪X ∪ {e−}) \ (PE \ {e} ∪X ∪ {e−})

)}

=
{

e′ ∈ E / ⋗(e′) ⊆
(
(Ê \ PE) ∪ {e}

)}

=
{

e′ ∈ E / ⋗(e′) ⊆ (Ê \ PE)
}
∪

{
e′ ∈ E / ⋗(e′) = {e}

}

= Ê ∪ (X ∪ {e−})

= Ê′

(Ê′,PE′) satis�es all I1, I2, I3 and is thus orret w.r.t. k-CP. The ondition C1 ofDe�nition 5.1.3 is thus guaranteed. Moreover, both the onditions C2 and C3 arepreviously obtained. One an then onlude that Extendk is orret w.r.t. k-CP.As we have said above, for larity, marking funtions are not taken into aount in thisargument. Let us just say that both M̂ and M̂′ an be de�ned asM in De�nition 3.3.9,i.e. for all on�gurations C, M̂(C) = M̂′(C) = |{e ∈ C /L(e) = +}| − |{e ∈ C /L(e) =
+}|. 95

Chapter 5. Compositional unfolding tehniquesLemma 5.2.4. For every k ∈ N, the funtion Extendk in Algorithm 5.4 terminates andhas a time omplexity of O(k).Proof. Sine Algorithm 5.4 ontains only a ount-ontrolled loop of size k (lines 5-7)and the reating proess in Algorithm 5.2 for eah event (line 6 or line 8) has a timeomplexity of O(1), the funtion Extendk in Algorithm 5.4 has a time omplexity of O(k).Beause k is �nite, this funtion terminates.5.2.2 M-ausality proessesFirst, reall that, for a non-empty alphabet M , the M -ausality proess M -CP (f.De�nition 3.3.27 on page 46) has only two type of events: sending events with labelsin !M and reeiving events with labels in ?M . Eah sending event has one reeivingdiret suessor and |M | sending ones that have pairwise di�erent labels. There are |M |minimal events, w.r.t. the ausality, in M -CP and they also orrespond one-to-one tomessages in M . All sending events (reeiving events) are pairwise either in ausal or inon�it. Algorithm 5.5: Funtion InitM for the M -ausality proess M -CP1 funtion InitM()2 begin3 Ê := ∅; ⋖̂ := ∅; #̂ := ∅; L̂ := ∅4 PE := ∅5 for eah m ∈M do6 (Ê,PE, e!m) := Create(Ê,PE, ∅, !m)7 end for8 # := (Ê × Ê) \ I bE9 return (Ê, Ê)10 end funtionLet us explain how Algorithm 5.5 initializes the onstrution of M -ausality proess'spre�xes. By the same manner as in Algorithm 5.3, it starts with a labeled event struturewithout events (line 3), then suessively inserts |M | new events in the loop at lines 5-7. These events are all sending ones (line 6) and orrespond to di�erent messages in
M . Moreover, sine the argument orresponding to the predeessor set, when alling
Create in line 6, is empty, added events are all minimal w.r.t. the ausality ≤̂. Theon�it relation #̂ is assigned in line 8 so that events in Ê are pairwise in on�it.These |M | sending events orrespond to minimal events w.r.t. ausality in M -CP byDe�nition 3.3.27 on page 46. Therefore, we have that Ê = M -CP|Min≤(E) and its eventset Ê = Min≤(E) are �nally returned by the funtion InitM (lines 9). Lemma 5.2.5 isthus obvious by de�nition.Lemma 5.2.5. The output (Ê, Ê) = InitM of Algorithm 5.5 is orret w.r.t. M -CP =

(E,≤,#,L,M), moreover Ê = k-CP|Min≤(E).Consider now Algorithm 5.6 of our funtion ExtendM for the M -ausality proess
M -CP = (E,≤,#,L,M). This funtion is divided into two parts depending on whetherthe input event e is a sending event or a reeiving one. In both ases, however, one always96

5.2. Causality proesses' unfoldingremoves e from the possible extension PE (line 4) in order to satisfy the orretnessondition C3 in De�nition 5.1.3 on page 90.The �rst ase is when e is a sending event (lines 5-20). The algorithm gets themessage m ∈ M whih orresponds to the label of e, i.e. L̂(e) = !m (line 6). Notiethat suessors of e do not exist in the atual pre�x yet beause e is a maximal eventw.r.t. the ausality ≤̂ when alling ExtendM(Ê,PE, e). The loop at lines 8-11 reatesthen new sending events orresponding to diret suessors of e by alling Create in line9. There are exatly |M | events reated, one for eah message in M due to the "for eah"riterion (line 8). The variable X delared in line 2 is initialized (line 7) and updatedinside the loop (line 10) so that X is the set of new sending suessors of e. There aretwo kinds of on�it onerning these sending suessors: the �rst one omes from edue to inheritane and is done in side the funtion Create (line 9) and the seond one isthe on�it between these suessors themselves. The set X is used just for modifyingon�it in order to respet to the seond kind (line 12).Algorithm 5.6: Funtion ExtendM for the M -ausality proess M -CP1 funtion ExtendM(Ê,PE, e)2 var X3 begin4 PE := PE \ {e}5 i f L̂(e) ∈ !M then6 let m ∈M s . t . L̂(e) = !m7 X := ∅8 for eah m′ ∈M do9 (Ê,PE, e!m′) := Create(Ê,PE, {e}, !m′)10 X := X ∪ {e!m′}11 end for12 #̂ := #̂ ∪ ((X ×X) \ IX)13 i f ⋗̂(e) = ∅ then14 (Ê,PE, e?m) := Create(Ê,PE, {e}, ?m)15 else16 take an event e!m′ ∈ ⋗̂(e)17 i f exists e?m′ ∈ (⋖̂(e!m′) \ PE) s . t . L̂(e?m′) ∈ ?M then18 (Ê,PE, e?m) := Create(Ê,PE, {e, e?m′}, ?m)19 end if20 end if21 else22 let e!m ∈ ⋗̂(e) s . t . L(e!m) ∈ !M23 for eah e!m′ ∈ (⋖̂(e!m) \ PE) s . t . L̂(e!m′) ∈ !M do24 let m′ ∈M s . t . L̂(e!m′) = !m′25 (Ê,PE, e?m′) := Create(Ê,PE, {e, e!m′}, ?m′)26 end for27 end if28 return (Ê,PE)29 end funtion 97

Chapter 5. Compositional unfolding tehniquesNow, let us look how to determine whether the unique reeiving suessor of e denotedby e?m must be added to the pre�x. If e is a minimal event w.r.t. the ausality, formally
⋗̂(e) = ∅, (lines 13-14) e?m is simply reated and inserted into the atual pre�x beauseit has only one predeessor whih is e. Otherwise, i.e. when e is not minimal, (lines15-20) e must be a suessor of some sending event e!m′ . The event e!m′ obtained at line16 is unique, and moreover it has a unique reeiving suessor denoted by e?m′ in M -CP,i.e. {e?m′} = {e′ ∈ ⋖(e!m′) /L(e′) ∈ ?M}. However, e?m′ may not be in the event set
Ê of the atual pre�x Ê. Therefore, e?m needs to be reated if and only if Ê ontainssuh e?m and moreover e?m′ is already extended (not in PE). It follows from ⋖̂ = ⋖| bEthat one an simply write ⋖̂(e) in the plae of ⋖(e) ∩ Ê. The test at line 17 formallyrepresents this ondition. If it is true, then e?m is reated by alling Create (line 18) sothat e and e?m′ are its only two diret predeessors. Notie that on�it onerning e?momes only from e, and it is done in side the funtion Create.The seond ase is when e is a reeiving event (lines 21-27). We know that e exatlyone diret predeessor whih is a sending event. The event e!m obtained at line 22 is thusunique. Moreover, e!m orresponds to the send of the message that e is a reeive, i.e.
L(e) = ?m and L(e!m) = !m. By de�nition of M -CP, the event e!m has |M | diret sendingsuessors represented by the set {e!m′ ∈ ⋖(e!m) /L(e!m′) ∈ !M}. These suessors arepairwise in on�it. Moreover, they are already added to the atual pre�x Ê beause
e!m has been expanded before e. We formally write {e!m′ ∈ ⋖(e!m) /L(e!m′) ∈ !M} =
{e!m′ ∈ ⋖̂(e!m) /L(e!m′) ∈ !M} and denote it by S!.The event e on its turn has exatly M diret suessors whih are all reeiving onesand are represented by the set ⋖(e). For a given message m′ ∈ M (whih may be m),the orresponding reeiving event e?m′ ∈ ⋖(e) has two diret predeessors whih are eand e!m′ ∈ S!. Therefore, e?m′ ould be added in the atual pre�x by ExtendM i� e!m′has been extended, i.e. e!m′ 6∈ PE. This ondition is represented in the loop ondition inline 23. Eah reeiving suessor e?m′ reated by the loop at lines 23-26, is at the sametime is a diret suessor of e and a diret suessor of the orresponding e!m′ (line 25).One again, the on�it relation onerning e?m, is inherited from either e or e!m. Andthis is done inside the funtion Create.As usual, in both ases, the new pre�x Ê and the possible extension PE are returnedin the end of the funtion ExtendM (line 28).Lemma 5.2.6. For every given alphabet M whih is not empty, the funtion ExtendMin Algorithm 5.6 is orret w.r.t. to the M -ausality proess M -CP = (E,≤,#,L,M).Proof. Let (Ê′,PE′) = Extendk(Ê,PE, e) denote the return value for some given input
(Ê,PE, e) whih satis�es that (Ê,PE) is orret w.r.t. k-CP and e ∈ PE. Let us de�ne
E! = {e′ ∈ E /L(e′) ∈ !M} and E? = {e′ ∈ E /L(e′) ∈ ?M}. It follows from theproperties of the M -ausality proess (De�nition 3.3.25 on page 44 and De�nition 3.3.27on page 46) that(1) let ⋖k = (⋖ \ (E? × E?)), then ⋖k, E! and E? respetively orrespond to thepredeessor relation, the set of inrement events, and the set of derement eventsin |M |-ausality proess (see De�nition 3.3.7 on page 34 and De�nition 3.3.9 onpage 35), and Min≤(E) ⊂ E!;(2) let B? = ⋗ ∩ (E? × E!), then for all e?, f? ∈ E?, e? ⋖ f? i� B?(e?) ⋖ B?(f?);(3) let us denote by #m = {〈f, g〉 ∈ # />(f) #̂s >(g)} (and #m! = {〈f!, g!〉 ∈ (E! ×

E!) / f! 6= g! and >(f!) = >(g!)}) the relation of on�it between events in E (and98

5.2. Causality proesses' unfoldingbetween sending events in E! respetively) whih does not omes from inheritane,then #m = #m!;(4) for all e? ∈ E?, Π?M (L(e?)) = Π!M (L(B?(e?))); and(5) for all e! ∈ E!, L|S!
is a bijetion between S! and !M where S! = ⋖(e!) ∩ E!.Sine Ê is a pre�x of M -CP, by de�nition, we have Ê is a subset of E and moreover,

⋖̂, #̂, L̂ are respetively the restrition of ⋖,#,L onto Ê. We are going to show that Ê′is also a pre�x of M -CP. There are two ases depending on whether the argument event
e of alling ExtendM is a sending event or is a reeiving one.

• When e is a sending event, i.e. L̂(e) = !m for some message m ∈M , let us denote
e = e!m. Notie that e!m is maximal in Ê w.r.t. ≤̂ beause (Ê,PE) is orret w.r.t.
M -CP (Lemma 5.1.2). Event e!m has |M | sending suessors in Ê′

! due to the loopat lines 8-11. Let us denote the set of these sending suessors by X!. Moreover,
e!m has at most one reeiving suessor in Ê′

? depending on whether the onditionsat line 13 and line 17 are satis�ed or not. This reeiving suessor, if exists in Ê′, isthe event e?m obtained either in line 14 or in line 18. Moreover, it follows from (1)that, in E, we have |⋖(e!m) ∩ E!| = |M | and |⋖e!m ∩ E?| = 1. Hene, without lostof generality, we suppose that X! = ⋖(e!m) ∩ E! and {e?m} = ⋖(e!m) ∩ E?. Then,we will prove that ⋖̂
′
, #̂′, L̂′ are respetively the restritions of ⋖,#,L onto Ê′.If e!m is minimal w.r.t. (Ê, ≤̂), then a reeiving suessor e?m of e is reated in line14. One skips all the rest of the algorithm and diretly returns �nal struture Ê′and PE′ (line 28). Brie�y, due to the funtion Create in Algorithm 5.2, we obtainthat:� Ê′ = Ê ∪X! ∪ {e?m},� ⋖̂

′
= ⋖̂ ∪ ({e!m} × (X! ∪ {e?m}),Let X shortly denote the set of diret suessors of e!m in E, i.e. X = ⋖(e!m) =

X! ∪ {e?m} = Ê′ \ Ê. We have,
⋖| bE′ = ⋖| bE ∪

(
⋖ ∩ (Ê ×X)

)
∪

(
⋖ ∩ (X × Ê′)

)

= ⋖̂ ∪
(
⋖ ∩ (Ê ×X)

)
∪

(
(⋖ ∩ (X × Ê)) ∪ (⋖ ∩ (X ×X))

)It follows from (1) that suessors of sending event e!m are pairwise not in ausal.Hene ⋖ ∩ (X × X) = ∅. Thanks to Lemma 5.1.2, e!m = e is maximal event in
Ê w.r.t. ≤̂ = ≤| bE . Suessors of e!m may not have predeessors in Ê, and as aonsequene, ⋖ ∩ (X × Ê) = ∅. Therefore,

⋖| bE′ = ⋖̂ ∪
(
⋖ ∩ (Ê ×X)

)One again, due to (1), every sending event in X! ⊂ X has one diret predeessorwhih is e!m. And sine e!m is minimal event w.r.t. ≤, it has no diret predeessor.It follows from (2) that e?m has no reeiving predeessor in E?. In addition to (1),
e?m also has only one diret predeessor in E! whih is e!m. Hene, for all e′ ∈ X,
⋗(e′) = {e!m}. Therefore, ⋖∩ (Ê×X) = {e!m}×X, and onsequently, ⋖| bE′ = ⋖̂

′.In words, ⋖̂
′ is the restrition of ⋖ onto Ê′. 99

Chapter 5. Compositional unfolding tehniquesNotie that when alling Create at lines 9 and 14, instrutions for on�it relationinside the funtion Create onern only on�it that omes from inheritane. Wehave then #̂′
m (de�ned by a same manner as #m in (3)) is the set #̂m∪ (X!×X!)\

IX!
. When proving #̂′ = #| bE′ , it is su�ient to show that #̂′

m = #m| bE′ . Thanksto (3), we have #m = #m! and as a onsequene #̂m = #m| bE = #m!| bE = #̂m!.We have:
#m| bE′ = #m!| bE′

= #m!| bE ∪
(
#m! ∩ (Ê′ ×X)

)
∪

(
#m! ∩ (X × Ê′)

)

= #̂m ∪
(
#m! ∩ (Ê′

! ×X!)
)
∪

(
#m! ∩ (X! × Ê′

!)
)

= #̂m ∪
(
#m! ∩ (Ê! ×X!)

)
∪

(
#m! ∩ (X! × Ê!)

)

∪ (#m! ∩ (X! ×X!))By de�nition, for all events f, g ∈ E!, f #m! g i� >(f) = >(g) and f 6= g.Moreover, sine e!m = e is maximal in Ê w.r.t. ≤, hene for all f ∈ Ê′
! , e!m ∈ >(f) if

f ∈ X! and e!m 6∈ >(f) if x ∈ Ê!. We obtain that #m!∩(E′×X!) = (E′×X!)∩#m! =
∅. Therefore,

#m| bE′ = #̂m ∪ (#m! ∩ (X! ×X!))

= #̂m ∪ ((X! ×X!) \ IX!
)

= #̂′
mThe on�it relation #̂′ is thus the restrition of # onto Ê′.The event e!m and its diret reeiving suessor e?m are related to a same message

m obtained in line 6. It respets to (4). Due to the "for eah" riterion of the loopat lines 8-11, property (5) is guaranteed for sending event e!m. One an verify that
L̂′ \ L̂ = L|(X!∪{e?m}), and as a onsequene, the labeling funtion L̂′ is also therestrition of L onto Ê′. Therefore, Ê is a pre�x of M -CP.Now, if e = e!m is not minimal in Ê w.r.t. ≤̂. It follows from (1) that event e!m′(line 16) exists and is the unique event in ⋗(e!m). First, if the ondition in line 17is true, one reates event e?m due to line 18. Like previous ase, we have� Ê′ = Ê ∪X! ∪ {e?m}, but� ⋖̂

′
= ⋖̂ ∪ ({e!m} × (X! ∪ {e?m}) ∪ {〈e?m′ , e?m〉},where e?m′ is the reeiving suessors of e!m′ . And the restrition of ⋖ onto Ê′ isstill equal to ⋖| bE ∪ (⋖ ∩ (Ê ×X)). It follows from (2) that e?m′ ⋖ e?m. Beause

B?(e!m′) = e!m′ , B?(e!m) = e!m, and e!m′ is the diret predeessor of e!m, i.e.
e!m′ ⋖ e!m. By the same reasoning as above, one obtain that ⋖̂

′
= ⋖| bE′ . The proofwhih show that #̂′ = #| bE′ as well as L̂′ = L̂| bE′ is also the same. Therefore, Ê′ isthus a pre�x of M -CP. Seond, if the test in line 17 fails, no reeiving suessorof e!m is reated. The �nal Ê′ is intuitively the pre�x of the one in previous ase(where ondition in line 17 is true). Hene, Ê′ is also a pre�x of M -CP.

• When e is a reeiving event, i.e. L̂(e) = ?m for some message m ∈ M , let usdenote e = e?m. It follows from (1) that e?m 6∈ E! is not minimal in E. Moreover,it has one and only one sending predeessor. The event e!m obtained in line 22 is100

5.2. Causality proesses' unfoldingunique and orresponds to the same message m as its subsript means. One again,due to (1), beside e?m, e!m has |M | diret suessors whih are sending events. Letus denote X! = ⋖(e!m). By the invariant I3 in De�nition 5.1.1 on page 89, e?m ∈ Êimplies that its predeessor e!m may not be in PE. And every event e! ∈ X!, on itsturn, we have e! ∈ Ê beause ⋗(e!) = {e!m} ⊆ PE. Therefore, X! ⊆ Ê.We �rst suppose that X!∩PE = ∅. The loop at lines 23-26 then reates a reeivingevent e?m′ aording to eah event e!m′ ∈ X!. Eah pair e?m′ and e!m′ are relatedby its ommon message m′ ∈M (line 24). Thanks to Lemma 5.1.2, e?m is maximalin Ê w.r.t. ≤. So that suh a reeiving event e?m′ may not be in Ê. It follows fromthe all Create in line 25 that e?m′ has two diret predeessors that are e!m′ ∈ E!and e?m ∈ E?. As a onsequene, e?m′ is the unique sending diret suessor of e!m′ .By de�nition of M -ausality proess, we have B?(e?m′) = e!m′ and B!(e!m′) = e?m′ .We will prove that ⋖̂
′
, #̂′, L̂′ are then restritions of ⋖,≤,L onto Ê′ respetively.Let X? = B?(X!) denote the set of new reeiving events. It obviously follows fromthe loop at lines 23-26 that:� Ê′ = Ê ∪X?,� ⋖̂

′
= ⋖̂ ∪ ({e?m} ×X?) ∪ {〈B?(e?), e?〉 / e? ∈ X?}.By the same reasoning as in previous ase, we obtain:

⋖| bE′ = ⋖̂ ∪ (⋖ ∩ (Ê ×X?))Let e? be any event in X?. Due to (1), e? has a diret predeessor whih is asending event. By de�nition of B?, this predeessor is e! = B?(e?) ∈ X!. Moreover,
e! has only one predeessor whih is the sending event e!m beause e! ∈ X!. Hene,
⋗(e!) = {e!m}, and as a onsequene of (2), we have ⋗(e?) ∩ E? = B?(⋗(e!)) =
B?(e!m) = {e?m}. Therefore, for all e? ∈ X?, ⋗(e?) = (⋗(e?)∩E!)∪ (⋗(e?)∩E?) =
{B?(e?)}∪{e?m}. We thus onlude that ⋖| bE′ = ⋖̂

′. Sine #̂′
m is the same as #̂m,it is also the restrition of # onto Ê′. As a onsequene, #̂′ = #| bE′ . The labelingfuntion L̂′, on its turns, is L| bE′ by simply omparing L̂′ \ L̂ = L̂′|X?

with L|X?
.Therefore, Ê′ is a pre�x of M -CP.Now, if X! ∩ PE 6= ∅, denote then X ′

! = X! \ PE. Events in X ′
! satisfy the loopondition in line 23 while events in (X! \ X ′

!) do not. The �nal Ê′ is intuitivelya pre�x of the one previously obtained where X ′
! = X! (i.e. X! ∩ PE = ∅). Morepreisely, these two pre�xes di�er, the one from the other, only on events in B?(X!\

X ′
!). Therefore, Ê′ is also a pre�x of M -CP in this ase.

(Ê′,PE′) satis�es the onditions C2 in De�nition 5.1.3 as well as the invariants I1, I2in De�nition 5.1.1 on page 89 beause Ê′ is always a pre�x of M -CP as previously proved.The ondition C3 that says PE′ = (PE \ {e})∪ (Ê′ \ Ê), is thus diret from Lemma 5.2.1and the assignment in line 4. For proving the orretness of the funtion ExtendM, it is�nally su�ient to show that the invariant I3 is preserved in (Ê′,PE′).Notie that only e is taken from PE (line 4), so Ê′ \ PE′ = (Ê \ PE) ∪ {e}. Weneed to reestablish the invariant I3 by adding some suessors e′ of e that ⋗(e′) ⊆
(Ê \PE)∪{e} (*). We have two ases depending on whether e is a sending or a reeivingevent.

• If L(e) = !m for some message m ∈M (lines 5-20) then e has |M | sending and diretsuessors whih are represented by the set X!, i.e. X! = ⋖(e) ∩ E! as previously101

Chapter 5. Compositional unfolding tehniquesdisussed. Moreover, for all e′ ∈ X!, e′ has only one diret predeessor whih is e,and as a onsequene, e′ satis�es (*). Then we should add these suessors to Êand PE in order to reestablish the invariant I3. This is done by the loop at lines8-11. Apart from these send events, e has a suessor e?m that is a reeive of amessage m, L(e?m) = ?m. And, more preisely e?m = ⋖(e) ∩E?. If e is a minimalevent in Ê and thus in M -CP, i.e. e ∈ Minb≤(Ê) ⊆ Min≤(E), then it follows from(1) and (2) that e is the only predeessor of e?m. Hene e?m satis�es (*) and shouldbe added to Ê and PE in order to guarantee I3. This is done in lines 14. If e isnot a minimal event then it has a predeessor e!m′ that is a sending event. Event
e!m′ has a suessor e?m′ that is a reeiving event. In M -CP, e?m′ is a predeessorof e?m due to (2) beause B?(e?m′) = e!m′ ⋖e = B?(e?m). The invariant I3 requiresthat we add e?m to Ê and PE i� e?m′ is already in Ê \ PE. This is done in line18. In brief, the invariant I3 is preserved for all suessors of e inluding both in
⋖(e) ∩ E! and in ⋖(e) ∩ E?.

• If L(e) = ?m for some message m ∈ M , then e has a diret predeessor e!m ∈ Êwhere L(e!m) =!m. Beause e!m is not maximal in Ê w.r.t. ≤̂, PE does not ontains
e!m. Due to the invariant I3, every diret suessor of e!m whih is a sending event,and onsequently, has only e!m as diret predeessor, must be already in Ê. Or onean say X! = ⋖(e!m) ∩ E! is a subset of Ê. Therefore, in M -CP, diret suessorsof e are all sending events and orrespond one-to-one to X! w.r.t. the bijetion B?.Formally, X? = ⋖(e) ⊂ E? and X? = B?(X!). Eah event e? in X? has two diretpredeessors whih are e and the orresponding event e! in X!, i.e. B?(e!) = e?.So e? satis�es (*) if e! is not in PE. In suh a ase, the invariant I3 requires that
e? must be added to Ê. The loops at lines 23-26 reates and adds event e? in theset B?(X! \ PE). Therefore, the invariant I3 is preserved in (Ê′,PE′) for all diretsuessors of e.We an �nally onlude that the funtion ExtendM in Algorithm 5.6 is orret w.r.t.

M -ausality proess M -CP.As seen in the proof of Lemma 5.2.6, a di�ult point to show is the orretness ofadding reeiving events. In general, eah reeiving event e?m has two predeessors: the�rst one is its orresponding event e!m and the seond one is another reeiving event e?m′ .The predeessor relation between e?m′ and e?m intuitively omes from the FIFO orderingof messages. Here, e?m′ and e?m respetively orrespond to some two messages m′ and
m. And the message m′ is inserted into the FIFO hannel just before the message m.The event e?m is reated when alling funtion ExtendM for either e!m or e?m′ . However,sine e!m and e?m′ are onurrent, one does not know whih event is extended the �rst.Thanks to the test in line 17 and the loop riterion in line 23 of Algorithm 5.6, thereis no double opy of e?m in the pre�xes of M -CP generated by Algorithm 5.1. Thisno-redundany property is formally stated as the seond property of Proposition 5.1.4.One will see lately in Setion 5.3 that the order of expanding e!m and e?m′ is generallydetermined by the proess of unfolding a whole synhronized produt of labeled eventstrutures in whih M -CP is simply one of its omponents.Notie that on�it in M -CP omes from sending events. And like the markingfuntionM, the on�it relation # in M -CP may be omputed based on the ausality ≤102

5.2. Causality proesses' unfoldingand the labeling funtion L. Formally, as a onsequene of Proposition 3.3.26, we have:
= (E × E) \ (≤ ∪≥) \ ‖

= (E × E) \ (≤ ∪≥) \

{〈e?, f!〉, 〈f!, e?〉 /L(e?) ∈ ?M,L(f!) ∈ !M and B?(e?) < f!}The bijetion B? is de�ned in De�nition 3.3.25 on page 44, and may be alulated fromthe ausality ≤ and the labeling funtion L. Therefore, in Algorithm 5.6, there is noneed to verify on�it for adding new events, for labeling them as well as for updatingausality. Instrutions onerning the on�it relation #̂, for instane in line 12, arejust for omputing #̂ itself. Therefore, one an write a funtion Extend for M -ausalityproesses that omputes only the ausality and the labeling funtion in addition toreating events. The on�it relation may be omputed at need.Lemma 5.2.7. If one removes the instrutions omputing the on�it relation in Algo-rithm 5.2 (lines 8-10), then the algorithm of funtion ExtendM for M -CP in Algorithm 5.6terminates and has a time omplexity of O(|M |).Proof. In Algorithm 5.6, there are only loops whose bound does not exeed the numberor messages in M . Moreover, when reating a new event by alling Create, one has onlyto label it and assign the predeessor relation aording to at most two other events.Therefore, the time omplexity of the algorithm is thus O(|M |). Sine the alphabet Montains �nite messages, that means |M | is �nite, Algorithm 5.6 terminates.5.2.3 GeneralizationReall that, ausality proesses de�ned in Setion 3.3 are similar, the one to the other.In this setion, we only give intuitive ideas of how to modify previous algorithms offuntions InitM and ExtendM in order to have algorithms that are suitable for any given
M -ausality proess orresponding to a FIFO hannel. In a sense, our modi�ations arejust adaptations of InitM as well as of ExtendM to the fat whether the FIFO hannelinitially has some messages, or whether it is bounded. Even though we explain algorithmsfor FIFO hannels, modi�ations onerning algorithms for ounters are also mentionedat neessary points.
(M,v)-ausality proessesBy De�nition 3.3.31 on page 49, for a given alphabet M and a word v ∈M , the (M,v)ausality proess, denoted by (M,v)-CP, intuitively onsists of the (M,v)-�ushing pro-ess (De�nition 3.3.30 on page 48) and the M -ausality proess. Therefore, this fatonduts to a funtion InitMv di�ers from the funtion InitM in Algorithm 5.5 on page 96,only on whether there exists a reeiving e? whih is a minimal event in (M,v)-CP. Inother words, e? exists if the FIFO hannel ontains some messages at the beginning, i.e.
|v| > 0. In this ase, e? should be labeled aording to the �rst message m in the word v,i.e. L(e?) = ?m. We an simply modify Algorithm 5.5 by adding instrutions onerning
e? just after line 8 as follows:For the funtion ExtendMv, we are in need of two additional funtions: Dep and
NotConflict. First, the funtion Dep(e) takes an event e as argument and is exatly thedepth funtion in De�nition 3.3.34 on page 52. As explained in Setion 3.3.3, (M,v)-CPrepresents behaviors of the FIFO hannel initialized by the word v ∈ M∗. And for anyon�guration C of (M,v)-CP, the whole ontent of the FIFO hannel without removing103

Chapter 5. Compositional unfolding tehniquesi f |v| > 0 thenlet m be the f i r s t message in v

(Ê,PE, e?) := Create(Ê,PE, ∅, ?m)end ifmessages is some word w = M(C) over M . Moreover, every event e in C orrespondsto one message in w, and as a onsequene, orresponds to the index of this message in
w. Suh an index is the return value of Dep(e).By De�nition 3.3.31 on page 49, (M,v)-CP onsists of a (M,v)-�ushing proess anda M -ausality proess. Let us denote by Ef the set of |v| events of (M,v)-CP whihorrespond to the �ushing proess. One an see that Ef ontains only reeiving events,i.e. Ef ⊂ E?, and the depth values of these events are pairwise di�erent and are all inthe range of {1, 2, . . . , |v|}. Moreover, for all event e ∈ (E \Ef), we have Dep(e) > |v|.Seond, the funtion NotConflict(e, d) takes an event e and a depth d as input. Itintuitively returns the set of events e′ whose depth is d and e′ is not in on�it with e.And there is a onstraint that NotConflict(e, d) returns only reeiving messages if e is asending one, and vie versa. Formally,

NotConflict(e, d) =

{
{e? ∈ E? /Dep(e?) = d and e? # e} if e ∈ E!

{e! ∈ E! /Dep(e!) = d and e! # e} otherwise.As stated in Lemma 3.3.35, the bijetion B! ∈ (E! × (E? \ Ef)) as well as B? = B−1
!between sending and reeiving events in (M,v)-CP an be determined by funtion Dep,the labeling funtion L and the on�it relation #. However, for a general use of funtion

NotConflict, NotConflict may not return a singleton due to the variation of argument d.Let us onsider some examples of alling NotConflict. One an �nd two of these examplesin Algorithm 5.7.
• For all sending event e! ∈ E!, NotConflict(e!,Dep(e!)) returns {B!(e!)}.
• For all sending event e! ∈ E!, NotConflict(e!,Dep(e!)− 1) returns� ∅ if |v| = 0 and Dep(e) = 1, or otherwise� Max≤(Ef) if Dep(e) = |v|+ 1, and {B!(e!)} if Dep(e) > |v|+ 1.
• For all reeiving event e? ∈ E?, NotConflict(e?,Dep(e?)) returns� ∅ if e? ∈ Ef , i.e. Dep(e?) ≤ |v|, and� {B?(e?)} otherwise.
• For all reeiving event e? ∈ E? suh that Dep(e?) ≥ |v|,

NotConflict(e?,Dep(e?) + 1) returns� Min≤(E!) if Dep(e?) = |v|, i.e. e? is the maximal event in Ef , and� ⋖(B?(e?)) ∩E!, i.e. the set of sending suessors of B?(e?), otherwise.Notie that when alling NotConflict on a pre�x Ê = (Ê, ≤̂, #̂, L̂,M̂) of (M,v)-CP =
(E,≤,#,L,M), the return set may be not omplete and may even be the emptyset. Beause Ê is only a subset of E. For instane with some reeiving event e? ∈
Ê, if B?(e?) is maximal in the poset (Ê, ≤̂) then ⋖̂(B?(e?)) = ∅ and onsequently,
NotConflict(e?,Dep(e?) + 1) = ∅.Now, let us give some details of Algorithm 5.7 and show that it is not far fromAlgorithm 5.6 beause M -CP is just a partiular ase of (M,v)-CP where v = ε. The104

5.2. Causality proesses' unfoldingalgorithm is split into two parts orresponding to the type of its input event e. In bothase, one start by removing e from the possible extension PE (line 4).Algorithm 5.7: Funtion ExtendMv for (M,v)-CP1 funtion ExtendMv(Ê,PE, e)2 var Y3 begin4 PE := PE \ {e}5 i f L(e) ∈ !M then6 let m ∈M s . t . L̂(e) = !m7 for eah m′ ∈M do8 (Ê,PE, e!m′) := Create(Ê,PE, {e}, !m′)9 end for10 i f (|v| = 0) & (Dep(e) = 1) then11 (Ê,PE, e?m) := Create(Ê,PE, {e}, ?m)12 else if exists e?m′ ∈ (NotConflict(e,Dep(e)− 1) \ PE) then13 (Ê,PE, e?m) := Create(Ê,PE, {e, e?m′}, ?m)14 end if15 else16 i f Dep(e) < |v| then17 let m′ be the (Dep(e) + 1) message of v18 (Ê,PE, e?m′) := Create(Ê,PE, {e}, ?m′)19 else20 Y := NotConflict(e,Dep(e) + 1) \ PE21 for eah e!m′ in Y do22 (Ê,PE, e?m′) := Create(Ê,PE, {e, e!m′}, ?m′)23 end for24 end if25 end if26 return (Ê,PE)27 end funtionWhen extending a sending event (lines 5-14), one gets the message whih orrespondsto the label of e and denotes it by m (line 6), i.e. L(e) = !m. Aordingly, let us denote
e by e!m. The "for eah" loop at lines 7-9 in Algorithm 5.7 does the same thing as theone at lines 8-11 in Algorithm 5.6. This loop simply inserts |M | sending events whihare diret suessors of e!m into the pre�x Ê. Notie that these sending events has onlyone diret predeessor whih is e. Sine e is no more in PE, the insertion of suh sendingevents respets to the invariant I3 of ExtendMv's orretness by De�nition 5.1.3. Now,look at whether a reeiving suessor, denoted by e?m of e!m has to be reated (lines10-14). In the �rst ase (lines 10-11) where v is the empty word, i.e. |v| = 0, and e!mis a minimal event w.r.t. ausality, i.e. Dep(e!m) = |v| + 1 = 1, sending event e?m,whih has only e!m as a diret predeessor, is inserted. This orresponds to the aseat lines 13-14 in Algorithm 5.6. In the seond ase, sine v is not the empty word,the event e?m must be a diret suessor of another reeiving event e?m′ . As explainedpreviously, we have NotConflict(e!m,Dep(e!m) − 1) ⊆ {e?m′} (line 12). Notie that e?m′is either the maximal event w.r.t. ausality in Ef (when e!m is a minimal one, i.e.105

Chapter 5. Compositional unfolding tehniques
Dep(e!m) = |v| + 1) or the unique event in the set B?(⋗(e!m)). No matter what e?m′orresponds to, event e?m is added (line 13) if and only if e?m′ is already extended.One an see that NotConflict(e!m,Dep(e!m) − 1), when v = ε, orresponds more or lessto the set ⋖̂(e!m′) in line 17 in Algorithm 5.6. And if e?m′ exists then an ommondiret suessor of e and e?m′ should be added to the pre�x Ê in order to reestablish theinvariant I3.When extending a reeiving event (lines 15-24), denoted by e?m, there are also twoases. The �rst one whih does not exists in Algorithm 5.6, is when e?m ∈ Ef and e?mis not the maximal one w.r.t. ausality in Êf (lines 16-18), i.e. Dep(e) < |v|. Onesimply reates the unique suessor of e?m. This suessor is also an event in Ef and hasonly one diret predeessor whih is e?m 6∈ PE. Hene, the invariant I3 is guaranteed.In the seond ase, let us denote S! = NotConflict(e?m,Dep(e?m) + 1). If e?m is themaximal event w.r.t. ausality in Ef then S! is thus the set of minimal sending events,i.e. S! = Min≤(E!). Otherwise, we have S! = ⋖(B?(e?m)) ∩ E!. In both sub-ases,extending e?m requires that one reates the reeiving suessor of eah event e!m′ in S!if e!m′ has been extended, i.e. e!m′ ∈ Y = (S! \ PE) (the loop's ondition in line 21).Partiularly, if |v| = 0, the set Y is obvious the set ⋖̂(e!m) \ PE = ⋖̂(B!(e!m)) \ PE usedin the loop's riterion in line 23 in Algorithm 5.6. Preise instrutions for adding thesesuessors (line 22) is the same as in the loop at lines 23-26 in Algorithm 5.6.As usual, in both ases, the new pre�x Ê and possible extension PE are returned (line26).
(M,v, b)-ausality proessesThe (M,v, b)-CP de�ned in De�nition 3.3.36 on page 52 may also onstruted by ourunfolding algorithm. One an slightly modify the Algorithm 5.7 to have an algorithmof funtion Extend for (M,v, b)-CP. Beause, by de�nition, (M,v, b)-CP di�ers from
(M,v)-CP only on the ausality whih omes from the onstraint of boundedness.

≤b = {〈e, f〉 ∈ ((E × E) \#) /Dep(f) ≥ Dep(e) + b}As illustrated in Figure 3.13 on page 51, this ausality based on pairs of a sendingevent e! ∈ E! and a reeiving event e? ∈ E? suh that e! # e? and Dep(e!) = Dep(e?) + b.Intuitively, in order to guarantee the bound of b, e! must be a suessor, and morepreisely, a diret suessor of e?, i.e. e? ⋖ e!. This fat means that one an insert intothe FIFO hannel a message indexed by Dep(e!) if and only if the message indexed by
Dep(e?) has been released. Beause, the bounded FIFO hannel an ontains at most bmessages at a time. The di�erene between (M,v, b)-CP and (M,v)-CP may be depited,in another way, by using its predeessor relations.

⋖b = ⋖ \⋖
′

= {〈e?, e!〉 ∈ (E? × E!) / e! # e? and Dep(e!) = Dep(e?) + b}Here, ⋖ and ⋖′ are respetively the predeessor relations of (M,v, b)-CP and its orre-sponding (M,v)-CP (see De�nition 3.3.36 on page 52). We are going to show how to mod-ify Algorithm 5.5 as well as Algorithm 5.7 to have adapted algorithms for (M,v, b)-CP.Intuitively, for reating any sending event e!, one needs to take are of not only the diretsending predeessor e′! of e!, i.e. e′! ⋖
′ e!, but also the orresponding reeiving event e?aording to ⋖b, i.e. e? ⋖b e!. The event e′! as well as the event e? may not exist for someevent e!. Modi�ation in the funtion Extend for (M,v, b)-CP onerns only instrutions106

5.2. Causality proesses' unfoldingfor adding sending events to the pre�x. And instrutions for adding reeiving events arethe same as the ones in Algorithm 5.7. Notie that we still use two funtions Dep and
NotConflict previously desribed.Remark: Given any (M,v, b)-CP, the bound parameter b must not be zero. Moreover,due to the boundedness, the initial word v an not has a length greater than b, i.e.
|v| ≤ b.Consider now the funtion Init. One initializes the pre�x Ê by the same way as inthe funtion InitMv exept for minimal sending messages w.r.t. ausality. Beause forthe partiular ase where the length of v is b, all sending events must be preeded by themaximal reeiving event Ef 1 w.r.t. the ausality ≤. Formally, if {e?} = Max≤(Ef) then
{e?}×Min≤(E!) ⊂ ⋖. As a onsequene, the "for eah" loop at lines 5-7 in Algorithm 5.5must be enlosed by a test as in the following.i f |v| < b thenfor eah m ∈M do

(Ê,PE, e!m) := Create(Ê,PE, ∅, !m)end forend ifNotie that if |v| = b, the return pre�x Ê of Init() ontains only the minimal event
f of Ef whih is a reeiving one. It is done as the same manner as in funtion InitMv.The minimal sending event in Min≤(E!) will be added to the pre�x Ê when extending fafterward.Next, there are two modi�ations on ExtendMv aording to the type of argumentevent e of funtion Extend. First, when e is a sending event, i.e. e ∈ E!, e has |M |sending suessors and one reeiving suessor in (M,v, b)-CP whih are all diret ones.A suh sending suessors e!, on its turn, have two ommon diret predeessors whih are
e and, possibly, another reeiving event e?. The �rst one is due to the usual total orderof messages in hannel while the seond one is in order to guarantee the boundedness,i.e. e? ⋖b e!. Let us denote the set of diret sending suessors of e by S!, we have:

• {e?} = NotConflict(e,Dep(e)− b + 1), and
• for all e! ∈ S!, ⋗(e!) = {e, e?}.Therefore, one must take are of the existene of e?. If D(e) < b, and onsequently

D(e!) ≤ b for all e! ∈ S!, then suh e? does not exists in E, i.e. ⋗b(e!) = ∅ for all e! ∈ S!.In other words, every event e! ∈ S! has only one diret predeessor whih is e, and shouldbe add to the pre�x Ê. Otherwise, i.e. E ontains orresponding event e?, the invariant
I3 in De�nition 5.1.1 for Extend's orretness requires that e! ∈ S! is added i� e? is inthe pre�x Ê and has been extended, i.e. e? ∈ (Ê \ PE). The "for eah loop" at lines 7-9in Algorithm 5.7 whih generates these events S! should be modi�ed as follows:i f (Dep(e) < b) thenfor eah m′ ∈M do

(Ê,PE, e!m′) := Create(Ê,PE, {e}, !m′)end forelse if exists e? ∈ (NotConflict(e,Dep(e)− b + 1) \ PE) thenfor eah m′ ∈M do1In (M, v, b)-CP as well as in (M, v)-CP, Ef is the event sets of the orresponding �ushing proess.107

Chapter 5. Compositional unfolding tehniques
(Ê,PE, e!m′) := Create(Ê,PE, {e, e?}, !m

′)end forend ifWhen no sending suessors is reated, it intuitively means that e is extended soonerthan e?. An eventual alling Extend(e?) will take are of reating events in S!. Asdisussed above, the boundedness onstraint has no in�uene on whether the diretreeiving suessor of e is added. Hene, instrutions onerning this reeiving event atlines 10-14 in Algorithm 5.7 remain unhanged in our funtion Extend for (M,v, b)-CP.Seond, when e is a reeiving event, its diret reeiving suessors are added to thepre�x ⋖̂ by the same manner as shown at lines 16-24 in Algorithm 5.7. In addition, let
X! denote the set ⋖b(e) ⊂ E!, we are in need of some new instrutions for adding eventsin S! if possible. One again, every event in ⋖b(e) has two diret predeessors whih are
e and another sending event e! in the set NotConflict(e,Dep(e)+b−1). Therefore, eventsin S! is reated based on its seond diret predeessors. These instrutions are shownbelow and may be inserted, for instane, into Algorithm 5.7 just before line 16.for eah e! in (NotConflict(e,Dep(e) + b− 1) \ PE) dofor eah m′ ∈M do

(Ê,PE, e!m′) := Create(Ê,PE, {e, e!}, !m
′)end forend forEah event e! ∈ NotConflict(e,Dep(e) + b− 1) \ PE) gives rise to |M | new suessorswhose labels are pairwise di�erent due to the inner loop. And beause e! ∈ (Ê \ PE)as a onsequene of the outer loop's riterion, the invariant I3 for Extend's orretnessis respeted. In all ases, new events added to the pre�x are also be inserted into thepossible extension PE. The funtion Extend �nally returns Ê and PE as usual.Estimation of time omplexityThe omplexity of funtion Extend for (M,v)-CP as well as (M,v, b)-CP depends on theomplexity of the funtion Dep and espeially of the funtion NotConflict. One an havea funtion Dep of time omplexity O(1) by relating a depth value to eah event sineit is reated. This manner does not inrease the spae omplexity of our algorithms.However, time omplexity of NotConflict(e, d) is somehow in funtion of d and the depthof event e.Let us �rst onsider only two partiular ases of parameters e and d in Algorithm 5.7.First, e is a sending event in E! and d = Dep(e) − 1 (line 12). The omputation of

NotConflict may be more or less instrutions at lines 16-17 in Algorithm 5.6. Intuitively,one gets the diret predeessor of e, denoted by e!, and then return the reeiving diretsuessor of e! if exists. It thus has time omplexity O(1). Seond, e is a reeiving eventin E? and d = Dep(e) + 1 (line 20). Funtion NotConflict returns a set of at most |M |sending events and its time omplexity is proportional to O(|M |). This omplexity omesfrom the orresponding instrutions at lines 23-24 in Algorithm 5.6 while assuming thatsuessor set as well as label of an event an be returned in O(1) time. Therefore, one anhave an implementation of Dep and NotConflict so that Algorithm 5.7 for (M,v)-CP hasa same time omplexity as Algorithm 5.6 for M -CP, whih is O(|M |). Notie that thetime omplexity here is of funtion ExtendMv and not of the global unfolding algorithm108

5.3. Synhronized produts' unfolding(Algorithm 5.1) whih must also depends on |v|.Now, onsider the algorithm of funtion Extend for (M,v, b)-CP. Its most expensivepart in terms of time omplexity is intuitively the third modi�ation desribed above.Sine e is a reeiving event in E? and d = Dep(e)+b−1, funtion NotConflict reates theset S! of sending events whih are in ausal with the sending predeessor e! of e. Notiethat in (M,v, b)-CP, events in ausal with e!, i.e. ≤(e!), with the ausality betweenthem forms an intuitive tree of whih the root is e!. Moreover, it follows from the fat
Dep(e!) = Dep(e) and ∀e′! ∈ S! : Dep(e′!) = Dep(e) + b − 1 that S! is the set of all nodeof distane (b − 1) from the root e!. Beause eah node of this tree may also have |M |suessors, in the worst ase, the size of S! is |M |b−1. Therefore, due to the unique nestedloop in the algorithm of funtion Extend for (M,v, b)-CP, this funtion Extend has timeomplexity of O(|M |.|M |b−1) = O(|M |b).5.3 Synhronized produts' unfoldingOur idea of onstruting synhronized produts of labeled event strutures is similarto that of well-known unfolding algorithm in other works [MM95a, ER99, KK03℄. Weassume that one does have algorithms for onstruting labeled event strutures of theomponents by means of funtion Extend desribed in Setion 5.2.Given n labeled event strutures E1 = (E1,≤1,#1,L1,M1), . . . ,En = (En,≤n,#n,Ln,Mn)and an ation set Σ ∈ ⊗ε(Codom(L1), . . . ,Codom(Ln)). The synhronized produt
ESP = (E,≤,#,L,M) of E1, . . . ,En w.r.t. Σ (De�nition 3.3.44 on page 57) is a partof the maximal produt of n event strutures (E1,≤1,#1), . . . , (En,≤n,#n) (De�ni-tion 3.3.39 on page 54) that satis�es the synhronization Σ, i.e. onstruting events esatisfying LV(e) ∈ Σ. Reall that both the labeling funtion L = LV and the markingfuntionM =MV are well de�ned by those of omponent labeled event strutures andthe funtion V (see Notation 3.3.43 on page 57). Therefore, in this setion, we are goingto show how to algorithmially onstrut ESP in terms of produt of event strutures.In other words, our algorithms ompute only pre�xes (Ê, ≤̂, #̂) of (E,≤,#) and theorresponding vetors V̂ ⊆ V.Reall that, by De�nition 3.3.44, every event e ∈ E orresponds to an unique pair
〈C, v〉 where C = >(e) and v = V(e) ∈ ⊗ε(E1, E2, . . . , En). Given an Ê-pre�x of ESP, theunfolding algorithm intuitively �nds new pairs 〈C, v〉 that represent events whih may beadded to the pre�x. Sine v must satisfy the labeling onstraint: 〈L1(v↓1), . . . ,Ln(v↓n
)〉 = L(e) ∈ Σ, one groups suh pairs 〈C, v〉 into disjoint subsets based on di�erentations a ∈ Σ, and searhes these subsets separately. The omputation of a pair 〈C, v〉orresponding to an ation a onsists more or less of:1. Initializing C, may be by the empty set.2. Suessively �nding v↓i = ei ∈ Ei for some ei satisfying Li(ei) = a↓i for all i suhthat a↓i 6= ε.3. For every found v↓i 6= ε, suessively enlarging C by adding events in E to C inorder to have that C is still a on�guration in CESP

and v ↓i is an extension of
V(C)↓i in Ei.In our algorithm desribed later, the two funtions ConfigVectorSet and ConfigVectorSet_iare respetively dediated to the seond and the third sub-proesses above. ConfigVectorSetsuessively alls ConfigVectorSet_i for all index i suh that a↓i 6= ε. Both ConfigVectorSetand ConfigVectorSet_i may fail that means there is no pair 〈C, v〉 orresponding to theation a. In the �rst ase, it is beause, for instane, there is no event labeled by a↓i109

Chapter 5. Compositional unfolding tehniquesin Ei; while in the seond ase, it is beause there is no on�guration C ′ ⊇ C in the
Ê-pre�x of E suh that V(C ′)↓i ⊢i ei for previously obtained ei.By alling ConfigVectorSet, the funtion InitSP as well as the funtion ExtendSP forsynhronized produts has to initialize ation a as well as on�guration C so that all andonly pairs 〈C, v〉 orresponding to new events e ∈ (E \ Ê) will be found. In the sameway as funtion Extend for omponent labeled event strutures, it is due to the use ofthe possible extension PE and by limiting C to subsets of Ê \ PE.Before giving details on ConfigVectorSet_i as well as ConfigVectorSet, let us introduethe notion of on�g-vetor whih is the base type of these funtions' parameter.Notation 5.3.1. Given n ∈ N and n sets X1,X2, . . . ,Xn, for any x ∈ ⊗ε(X1,
X2, . . . ,Xn), we denote I(x) the set of indies i ∈ {1, 2, . . . , n} satisfying x↓i 6= ε.De�nition 5.3.2 (Con�g-vetor). Given a synhronized produt ESP of some n labeledevent strutures E1,E2, . . . ,En w.r.t. Σ. A on�g-vetor of ESP is any triple 〈C, v, a〉where C ⊆ E, v ∈ ⊗ε(E1, E2, . . . , En), and a ∈ Σ suh that:1. C is a on�guration in CESP

,2. for all i ∈ {1, 2, . . . , n}, either v↓i = ε or Li(v↓i) = a↓i.3. for all i ∈ {1, 2, . . . , n}, if v↓i 6= ε then v↓i 6∈ V(C)↓i and v↓i is not in on�it withany event in C, i.e. {v↓i}# s
i V(C)↓i.A on�g-vetor 〈C, v, a〉 is partially omplete for an index i if v↓i is an extension eventof V(C)↓i in Ei, i.e. V(C)↓i ⊢i v↓i.De�nition 5.3.3 (Complete on�g-vetor). A on�g-vetor 〈C, v, a〉 is omplete if1. I(v) = I(a),2. 〈C, v, a〉 is partially omplete for every index i ∈ I(v), and3. for every event e ∈ Max≤(C), there exists an index i suh that V(e)↓i ⋖iv↓i.Let us take an example of a on�g-vetor cv = 〈>(e),V(e),L(e)〉 where e is a givenevent in Ê. By de�nition, cv is omplete. Let C be any on�guration so that e isone of its extension event, i.e. C ⊢ e. One an verify that the triple 〈C,V(e),L(e)〉 isalso a on�g-vetor whih is partially omplete for every index i ∈ I(V(e)) = I(L(e)).However, the third property of a omplete on�g-vetor in De�nition 5.3.3 may not hold.The reason is that C may ontain some event e′ whih is onurrent with e. In otherwords, the this property requires somehow that C is equal to >(e).Reall that, in the synhronized produt ESP, there may exist other events f alsosatisfying V(f) = V(e), onsequently, L(f) = L(e), and 〈>(f),V(e),L(e)〉 is a ompleteon�g-vetor. Therefore, for a same vetor v orresponding to some label a, one ouldhave many omplete on�g-vetors 〈C, v, a〉.Lemma 5.3.4. Given a synhronized produt E = (E,≤,#,L,M) of n labeled eventstrutures E1 = (E1,≤1,#1,L1,M1), . . . ,En = (En,≤n,#n,Ln, Mn) w.r.t. some syn-hronization onstraint Σ. Let v be any vetor in ⊗ε(E1, . . . , En) satisfying that 〈L1(v↓1

), . . . ,Ln(v↓n)〉 = a for some given a ∈ Σ. Let CS be the set of on�gurations C suhthat 〈C, v, a〉 is a omplete on�g-vetor. Then
CS = {>(e) / e ∈ E and V(e) = v}Proof. Let C be any on�guration in CS. Let e′ be any maximal event w.r.t. theausality in C, i.e. e′ ∈ Max≤(C). It follows from De�nition 5.3.2 that there exists anindex i ∈ {1, 2, . . . , n} satisfying V(C) ↓i⊢i v ↓i, we have V(e′) ↓i ⋖i v ↓i. Due to the110

5.3. Synhronized produts' unfoldingmaximality w.r.t. isomorphism of E, by De�nition 3.3.44 of synhronized produts oflabeled event strutures, there exists an event e ∈ E suh that V(e) = v and e′ ⋖ e forall e′ ∈ Max≤(C). One an simply write C = >(e) for some event e ∈ E.Conversely, it is straightforward from De�nition 5.3.2 and De�nition 5.3.3 that, forevery event e, if V(e) = v then 〈>(e), v, a〉 is a omplete on�g-vetor. This lemma isthus proved.Remark: The two funtions ConfigVectorSet_i and ConfigVectorSet in the next subse-tions are reursive funtions. In order to ompute on�g-vetors of ESP, they have aessto the being onstruted pre�x ÊSP of the synhronized produt E as well as its orre-sponding pre�xes Êi, i = {1, 2, . . . , n}, of all omponent labeled event strutures Ei.However, these funtions do not modify or add anything to the pre�xes. This is done inthe funtion Extend.5.3.1 Funtion ConfigVectorSet_iThe funtion ConfigVectorSet_i(F, i, C, v, a) is given in Algorithm 5.8 and has 5 param-eters. The �rst parameter is a downward-losed set of events in Ê while the seond oneis an index in I(a). The three last parameters form a on�g-vetor, and there are twoadditional onditions on the input of ConfigVectorSet_i:
• v↓i is some event in Êi, i.e. v↓i 6= ε, and as a onsequene from De�nition 5.3.2,

v↓i= a↓i;
• C is a subset of F , i.e. C ⊆ F .The output of this funtion is the set of all on�g-vetors 〈C ′, v, a〉 whih are partiallyomplete for the index i, moreover, C is a subset of C ′, and C ′ is a subset of F at thesame time, i.e. C ⊆ C ′ ⊆ F .Let us explain intuitive ideas of Algorithm 5.8. The set Pi obtained at line 3 is the setof v↓i's diret predeessors in omponent Êi whih are not inluded in V̂(C)↓i. If this set

Pi is empty (line 4), by de�nition, the on�g-vetor 〈C, v, a〉 is already partially ompletefor the index i, hene one just returns the singleton {〈C, v, a〉} (line 5). Otherwise (lines6-17), one needs to add events in F to C in order to satisfy the partial ompletenessin the omponent i. These added events, if exist, orrespond 1-to-1 to the omponentevents in Pi. The �nding proedure is reursive.The algorithm takes an event e′i in Pi (line 7). Intuitively, e′i is a missing predeessorof v↓i so that 〈C, v, a〉 is still not partially omplete for index i. The set X obtained inline 8 is the set of all events e′ in F whih is related to e′i and is not in on�it with eventsin C. It worth to notie that by de�nition of synhronized produt of event strutures(De�nition 3.3.39 on page 54), e′ an not be in C and, as a onsequene, (C ∩X) = ∅beause V̂(e′)↓i= e′i ∈ Pi and Pi ∩ V̂(C)↓i= ∅.If X is empty (line 9), there is no partially omplete on�g-vetor {C ′, v, a} where
C ′ ⊇ C. The funtion simply returns the empty set (line 10). Otherwise (lines 11-16), for eah event e′ ∈ X, one tries to searh partially omplete on�g-vetor from
〈C ∪ ≥̂(e′), v, a, i〉 by alling ConfigVectorSet_i itself. Found on�g-vetors are insertedinto the set CVS (line 14) whih will be �nally returned by the funtion ConfigVectorSet_i(line 16).Lemma 5.3.5. Let CVS be the return set of some all
ConfigVectorSet_i(F, i, C, v, a). 111

Chapter 5. Compositional unfolding tehniquesAlgorithm 5.8: Funtion ConfigVectorSet_i1 funtion ConfigVectorSet_i(F, i, C, v, a)2 begin3 Pi := ⋗̂i(v↓i) \ V̂(C)↓i4 i f Pi = ∅ then5 return {〈C, v, a〉}6 else7 take a omponent event e′i in Pi8 X := {e′ ∈ F / V̂(e′)↓i= e′i and {e′} #̂s C}9 i f X = ∅ then10 return ∅11 else12 CVS := ∅13 for eah e′ ∈ X do14 CVS := CVS ∪ ConfigVectorSet_i(F, i, C ∪ ≥̂(e′), v, a)15 end for16 return CVS17 end if18 end if19 end funtion
• CVS ontains only on�g-vetors 〈C ′, v, a〉 whih are partially omplete for the om-ponent i; and
• the projetion of CVS on the �rst omponent, i.e. CVS ↓1, is equal to the set

Min⊆{C
′ ∈ CbESP

/C ⊆ C ′ ⊆ F and V̂(C ′)↓i ⊢i v↓i}.Proof. As the invariant of ConfigVectorSet_i's input, we have C ⊆ F and 〈C, v, a〉 is aon�g-vetor. Sine event v↓i has only �nite diret predeessors in Êi, we will prove thislemma by indution on the size k = |⋗̂i(v↓i) \ V̂(C)↓i |.
• The �rst property: When k = 0, due to lines 4-5 in Algorithm 5.8, we have CVS =
{〈C, v, a〉}, where 〈C, v, a〉 is a on�g-vetor. It follows from De�nition 5.3.2 foron�g-vetor 〈C, v, a〉 that v↓i 6∈ V̂(C)↓i and {v↓i} #̂s

i V̂(C)↓i. Hene, V̂(C)↓i ⊢i v↓ibeause ⋗̂i(v↓i) ⊆ V̂(C)↓i. As a onsequene, 〈C, v, a〉 is partially omplete foromponent i by de�nition. Suppose that this property is orret for some k ≥ 0 and
Pi = ⋗̂i(v↓i) \ V̂(C)↓i (line 3) has k + 1 events. There are two ases depending onthe set X obtained in line 8. First, if X is empty, then CVS ontains nothing, andonsequently, this property is true. Seond, if X is not empty. For every event e′taken in the loop (line 13), by de�nition of X in line 8, we have that the downward-losed set ≥̂(C ∪ {e′}) = C ∪ ≥̂(e′) is a on�guration. And (C ∪ ≥̂(e′)) ⊆ Fbeause F also downward-losed w.r.t. the ausality ≤̂ and e′ ∈ F . Event e′an not be in C beause V̂(e′) = e′i 6∈ V̂(C)↓i. Let us denote C ′′ = C ∪ ≥̂(e),
〈C ′, v, a〉 is thus a on�g-vetor. One again, it follows from the de�nition of X that
(⋗̂i(v↓i)\ V̂(C ′′)↓i) = (⋗̂i(v↓i)\ V̂(C)↓i \e

′
i), and onsequently, |(⋗̂i(v↓i)\ V̂(C ′′)↓i

)| = k+1−1 = k. By indution hypothesis, alling ConfigVectorSet_i(F, i, C ′′, v, a)returns only partially omplete on�g-vetor 〈C ′, v, a〉 for omponent i. So do the�nal return set CVS in line 16. The �rst property is thus proved.112

5.3. Synhronized produts' unfolding
• The seond property: Let CS denote the set {C ′ ∈ CbESP

/C ⊆ C ′ ⊆ F and V̂(C ′)↓i

⊢i v↓i}. When k = 0, i.e. ⋗̂i(v↓i) \ V̂(C)↓i= ∅, the return set CVS ontains only
〈C, v, a〉 (line 5). Thanks to the �rst property, 〈C, v, a〉 is partially omplete foromponent i. By De�nition 5.3.2, we have V̂(C ′)↓i ⊢i v↓i. Hene, C is inluded in
CS, moreover, C is the minimal on�guration in CS w.r.t. the inlusion order ⊆.Beause every on�guration C ′ in CS satis�es C ′ ⊇ C by de�nition of CS. Thisproperty thus holds in the base ase. Suppose that it holds for some number k,and we have |⋗̂i(v↓i) \ V̂(C)↓i | = k + 1.First, let C ′ be any on�guration in the set Min⊆CS, we will prove that C ′ ∈ CVS↓1(1). Let e′i be the event in Êi obtained at line 7. It follows from V̂(C ′)↓i ⊢i v↓ithat e′i ∈ V̂(C ′) ↓i. Thanks to the exponentially downward losure of C ′, thereexists an event e′ ∈ C ′ satisfying V̂(e′) = e′i. Notie that e′ an not be in Cbeause V̂(e′) = e′i 6∈ V̂(C)↓i. In addition, sine C ′ ⊆ F is also on�guration, e′must be in the set X obtained at line 8. By the for-loop at lines 13-15, 〈C ′, v, a〉must be returned when alling ConfigVectorSet_i(C ∪ ≥̂(e′), v, a, i) (line 16) andis thus inluded in the �nal set CVS (line 18). Beause, in the one hand, C ′ ∈

Min⊆{C
′ ∈ CbESP

/C ⊆ C ′ ⊆ F and V̂(C ′) ↓i ⊢i v ↓i} and e′ ∈ C ′ implies that
C ′ ∈ Min⊆{C

′ ∈ CbESP

/ (C∪≥̂(e′)) ⊆ C ′ ⊆ F and V̂(C ′)↓i ⊢i v↓i}; and in the otherhand, the seond set is the return value of ConfigVectorSet_i(F, i, C ∪ ≥̂(e′), v, a)due to the indution hypothesis (*) where |⋗̂i(v↓i) \ V̂(C ∪ ≥̂(e′))↓i | = |⋗̂i(v↓i
) \ V̂(C)↓i \{e

′
i}| = k + 1− 1 = k. Therefore (1) is true.Seond, let 〈C ′, v, a〉 be any on�g-vetor in the return set CVS. We will provethat C ′ must be in the set CS and moreover, it is minimal w.r.t. inlusion or-der (2). This on�g-vetor must ome from some all ConfigVectorSet_i(F, i, C ∪

≥̂(e′), v, a, i) in line 14 for some event e′ obtained at lines 7-8. One again,thanks to indution hypothesis (*), we must have C ′ ⊇ (C ∪ ≥̂(e′)) ⊃ C and
V̂(C ′) ↓i ⊢i v ↓i. Hene, C ′ is in CVS. Suppose that C ′ is not minimal w.r.t.inlusion order, that means there exists another on�guration C ′′ ∈ CS satisfy-ing C ′′ ⊂ C ′. Sine V̂(C ′′) ↓i ⊢i v ↓i there exists an event e′′ ∈ C ′′ suh that
V̂(e′′) ↓i = V̂(e′) ↓i ∈ ⋗̂i(v ↓i). It follows from e′ ∈ C ′, e′′ ∈ C ′′ ⊂ C ′ and theon�it-free of C ′ that e′ and e′′ must be the same event, i.e. e′ = e′′. As a on-sequene, C ′′ ⊇ (C ∪ ≥̂(e′)). Therefore, C ′ is not minimal, w.r.t. inlusion order,in the return set of ConfigVectorSet_i((C ∪ ≥̂(e′)) due to the existene of C ′′. Itontradits to the indution hypothesis. Hene, C ′ is thus minimal on�gurationin CVS, and (2) is true.From (1) and (2), the indution hypothesis (*) holds for all �nite number k. Andthe lemma is thus proved by indution.It is worth giving some details here on the minimality property w.r.t. the inlusionorder ⊆ of on�g-vetors returned by ConfigVectorSet_i. Let e be any event in the syn-hronized produt, suppose that e has two diret predeessors f, g, i.e. ⋗(e) = {f, g}.Thanks to Lemma 5.3.4, cv = 〈>(e),V(e),L(e)〉 is a omplete on�g-vetor. Let us de-note C = (>(e))\{f, g}. It is obvious that 〈C,V(e),L(e)〉, 〈C∪{f},V(e),L(e)〉 and 〈C∪

{g},V(e),L(e)〉 are on�g-vetors. But they are not omplete due to some omponentindies. Assume that 〈C,V(e),L(e)〉 is not partially omplete for some omponent i but113

Chapter 5. Compositional unfolding tehniques
〈C∪{f},V(e),L(e)〉 is. When alling the funtion ConfigVectorSet_i(F, i, C,V(e),L(e)),for a given downward-losed set F ⊇ (>(e)), the value 〈C ∪ {f},V(e),L(e)〉 is returned.Although cv is partially omplete for index i, it is not returned. One an see that(C ∪ {f}) ⊂ >(e), and it respets to the seond property in Lemma 5.3.5. The mini-mality property on on�gurations of returned on�g-vetors intuitively means that oneadds only neessary event to C in order to omplete the on�g-vetor 〈C,V(e),L(e)〉 forindex i. The on�g-vetor cv may be returned afterward, for instane, when one tries toomplete 〈C ∪{f},V(e),L(e)〉 for another index j by alling ConfigVectorSet_i(F, j, C ∪
{f},V(e),L(e)).Lemma 5.3.6. If F is �nite, then funtion ConfigVectorSet_i(F, i, C, v, a) in Algo-rithm 5.8 terminates.Proof. The reursive all of ConfigVectorSet_i an not be in�nite. Suppose the oppositethat means there exists an in�nite sequene of on�gurations C1, C2, . . . where C1 = Cand ConfigVectorSet_i(F, i, Cj , v, a) alls to ConfigVectorSet_i(F, i, Cj+1, v, a) for all j ≥

1. We have not only Cj ⊂ Cj+1 due to line 14 but also (⋗̂i(v ↓i) \ V̂(Cj)) ⊃ (⋗̂(v ↓i
) \ V̂(Cj+1)) for all j ≥ 1. The in�niteness of dereasing sequene ⋗̂i(v ↓i) \ V̂(Cj)w.r.t. inlusion order ontradits to the �niteness of predeessor set of v ↓i in Êi byde�nition of event strutures (see De�nition 3.3.39 on page 54). Moreover, sine F is�nite too, for every all of ConfigVectorSet_i, the set X obtained in line 8 is �nite. As aonsequene, the loop at lines 15-17 is �nite. Therefore, the funtion ConfigVectorSet_iterminates.Remark: One an onsider the unfolding algorithm in [ER99℄ as the one for synhronizedprodut of labeled event trees, and the unfolding algorithm in [MM95a℄ as the one forsynhronized produt of labeled event strutures modeling simple Petri net's plae. Inboth ase, one still has some funtion like ours ConfigVectorSet_i. It is muh simplerthough beause every omponent event has at most one predeessor. As a onsequene,there is no need to use the reursion shown in Algorithm 5.8.5.3.2 Funtion ConfigVectorSetAlgorithm 5.9 represents the funtion ConfigVectorSet(F,C, v, a) whih takes a downward-losed set, w.r.t. the ausality, of events F and a on�g-vetor 〈C, v, a〉 as parameters.The on�g-vetor 〈C, v, a〉 must (satisfy the invariant that it is) partially omplete forall index i ∈ I(v). The funtion ConfigVectorSet(F,C, v, a) then omputes and returnsall omplete on�g-vetors 〈D,w, a〉 suh that

• w↓i = v↓i for all i ∈ I(v), and
• D is a subset of F , i.e. D ⊆ F .By De�nition 5.3.2, it follows from the partial ompleteness of on�g-vetors 〈D,w, a〉that w↓i is an extension event of D↓i for all i ∈ I(a). As a onsequene, diret predees-sors of w↓i are inluded in D↓i⊆ F ↓i. Therefore, aiming at omputing suh ompleteon�g-vetors in a pre�x ÊSP of the synhronized produt, one requires that Êi on-tains all events whose predeessors are in F ↓i for all i. Formally, for all i, ei ∈ Êi if

>i(ei) = >̂i(ei) ⊆ F↓i. The following is straightforward.Lemma 5.3.7. Let 〈C, v, a〉 be a omplete on�g-vetor where C is a subset of a down-ward losed set F w.r.t. the ausality. If Êi ⊇ {ei ∈ Ei />i(ei) ⊆ F ↓i} for all i, then
v ∈ ⊗ε(Ê1, Ê2, . . . , Ên).114

5.3. Synhronized produts' unfoldingIn Algorithm 5.9, in the base ase where I(v) = I(a) (line 3), it follows from theonstraint on parameters that the on�g-vetor 〈C, v, a〉 is already omplete. The fun-tion simply returns the singleton {〈C, v, a〉} (line 4). In the general ase (lines 5-18), byde�nition, I(v) must be a subset of I(a). The algorithm takes any index i in the di�erentset (I(a) \ I(v)) (line 6) and tries to partially omplete the on�g-vetor 〈C, v, a〉 for theomponent i. Then, it tries to assign some omponent event e′i in Êi to v↓i (line 11). Byde�nition of on�g-vetors, v↓i should be labeled by a↓i. The set Xi obtained at line 7thus represents the set of suh omponent events e′i. Notie that, for every omponentevent e′i ∈ Ei, if either e′i ∈ V̂(C) ↓i or e′i is in on�it with some event in V̂(C) ↓i,exploiting suh an event e′i does not give rise to any omplete on�g-vetor from C.Therefore, the restrition of Xi line 9, in the one hand, is an algorithmi amelioration,and in the other hand, is in order to guarantee the invariant that one always works withon�g-vetors.The loop at lines 10-13 searhes all partially omplete on�g-vetors 〈C ′, v′, a〉 forthe index i by alling ConfigVectorSet_i(F, i, C, v′, a). Due to assignments at lines 8 and11, vetors v and v′ are di�erent only on index i. More preisely, we have v↓i = ε while
v′↓i = e′i for some e′i ∈ Xi. All found on�g-vetors 〈C ′, v′, a〉 are stoked in the set CVSi.Notie that if Xi is empty, the algorithm skips this loop, and CVSi is thus empty. As aonsequene, in this ase, the algorithm skips also the loop at lines 15-17 and return theempty set CVS (line 20). Otherwise, i.e. Xi 6= ∅, every on�g-vetor 〈C ′, v′, a〉 is partiallyomplete for all index in the set I(v′) = I(v) ∪ {i}. As a onsequene, 〈C ′, v′, a〉 maybe used as parameter for the funtion ConfigVectorSet itself (line 16). Due to the loopat lines 15-17, the return set CVS (line 18) hopefully ontains omplete on�g-vetors
〈D,w, a〉 where D ⊇ C and I(w) = I(a) ⊃ I(v).Algorithm 5.9: Funtion ConfigVectorSet1 funtion ConfigVectorSet(F,C, v, a)2 begin3 i f I(v) = I(a) then4 return {〈C, v, a〉}5 else6 take an index i in (I(a) \ I(v))7 Xi := {e′i ∈ (Êi \ V̂(C)↓i) / L̂i(e

′
i) = a↓i and {e′i} #̂s

i V(C)↓i}8 v′ := v9 CVSi := ∅10 for eah e′i ∈ Xi do11 v′↓i := e′i12 CVSi := CVSi ∪ ConfigVectorSet_i(F, i, C, v′, a)13 end for14 CVS := ∅15 for eah 〈C ′, v′, a〉 ∈ CVSi do16 CVS := CVS ∪ ConfigVectorSet(F,C ′, v′, a)17 end for18 return CVS19 end if20 end funtion 115

Chapter 5. Compositional unfolding tehniquesLemma 5.3.8. Let F be any downward-losed set, w.r.t. the ausality. Let 〈C, v, a〉 beany on�g-vetor suh that:1. C is a subset of F , i.e. C ⊆ F ,2. 〈C, v, a〉 is partially omplete for every index i ∈ I(v), and3. for every e ∈ Max≤(C), there exists an index i ∈ I(v) satisfying that 〈C \ {e}, v, a〉is not partially omplete for index i.If Êi ⊇ {ei ∈ Ei />i(ei) ⊆ F↓i} for all i, then the return value of
ConfigVectorSet(F,C, v, a) is the set of omplete on�g-vetors 〈D,w, a〉 suh that C ⊆
D ⊆ F and w↓i= v↓i for all i ∈ I(v).Proof. Let CVS denote the return value of ConfigVectorSet(F,C, v, a) and CS the set ofomplete on�g-vetors 〈D,w, a〉 satisfying C ⊆ D ⊆ F and w↓i= v↓i for all i ∈ I(v).We will prove by indution on the �nite size k of the set (I(a)\I(v)), i.e. k = |I(a)\I(v)|,that CVS = CS.

• We �rst prove that CVS ⊆ CS: In the base ase, i.e. I(v) = I(a), due to the as-sumption that 〈C, v, a〉 is partially omplete for all indies i ∈ I(v), 〈C, v, a〉 isthus omplete by De�nition 5.3.3. And the return set CVS = {〈C, v, a〉} is ofourse a subset of CVS. In the general ase, by de�nition, 〈C, v′, a〉 (line 12) is aon�g-vetor for all event e′i hosen in the set Xi obtained in line 7. Thanks toLemma 5.3.5, the set CVSi obtained after the loop at lines 10-13 in Algorithm 5.9ontains on�g-vetors 〈C ′, v′, a′〉 whih satis�es C ⊆ C ′ ⊆ F , and at the sametime, is partially omplete for not only for the indies in I(v) but also for the index
i obtained in line 6. Moreover, let e be any maximal event in C ′ w.r.t. the ausal-ity, i.e. e ∈ Max≤(C ′) = Maxb≤(C ′). If e ∈ (C ′ \ C), then 〈C ′ \ {e}, v′, a〉 is notpartially omplete for index i. Beause, suppose the opposite, 〈C ′, v′, a〉 is returnedby alling ConfigVectorSet_i(F, i, C, v′, a) but C ′ is not the minimal on�gurationof the set {C ′′ ∈ CESP

/C ⊆ C ′′ ⊆ F and V̂(C ′′) ↓i ⊢i v′ ↓i} due to the exis-tene of the on�guration (C ′ \ {e}) ⊆ C ′. It ontradits to Lemme Lemma 5.3.5.Therefore, the on�g-vetor 〈C ′, v, a〉 satisfy thus the three property stated bythis Lemma as the ondition of ConfigVectorSet's input. So that, when alling
ConfigVectorSet(F,C ′, v′, a) in line 16, sine (I(a) \ I(v′)) ⊂ (I(a) \ I(v)), by in-dution hypothesis, its return value is a subset of CS. And so does the �nal returnvalue of ConfigVectorSet(F,C, v, a) (line 18).

• We now prove that CS ⊆ CVS: Thanks to Lemma 5.3.7, for every omplete on�g-vetor 〈D,w, a〉, sine D ⊆ F , we have w ∈ ⊗ε(Ê1, Ê2, . . . , Ên). In the base ase,i.e. I(v) = I(a), one has CVS = {〈C, v, a〉}. Suppose that there exists a ompleteon�g-vetor 〈D,w, a〉 ∈ CS whih is not inluded in CVS. By de�nition, oneobtains C ⊂ D ⊆ F and v = w. Let e be any event in Maxb≤(D\C) ⊆ Maxb≤(D). Itsfollows from the on�it-freeness of on�guration D that, for all i, V̂(e)↓i 6∈ V̂(C)↓i.Moreover, sine 〈C, v, a〉 is partially omplete for all indies i ∈ I(v) = I(a), wehave V̂(C)↓i ⊢i v↓i, and onsequently, ⋗̂i(v↓i) ⊆ V̂(C)↓i for all i ∈ I(v). Therefore,the third property in De�nition 5.3.3 does not hold for 〈D, v, a〉 beause, for all
i ∈ I(v), V̂(e) ↓i ⋖̂i v ↓i. It ontradits to the ompleteness of 〈D, v, a〉. As aonsequene, CS = {〈C, v, a〉} is thus a subset of CVS.In the general ase, i.e. I(v) ⊂ I(a), let {D,w, a} be any omplete on�g-vetorin CS. Let i be the value obtained at line 6 in Algorithm 5.9, and e′i = w ↓i.116

5.3. Synhronized produts' unfoldingOne must have C ⊂ D beause if otherwise, 〈D,w, a〉 = 〈C,w, a〉 an not beomplete. Sine 〈D,w, a〉 is a on�g-vetor and C ⊆ D, one has then w ↓i 6∈

V̂(C) ↓i and {w ↓i}# s
i V̂(C) ↓i by De�nition 3.3.39 on page 54. It follows from

Li(w ↓i) = a ↓i (by De�nition 5.3.2) that w ↓i must be in the set Xi obtainedat line 7. As a onsequene, in the loop at lines 10-13, there is a step where
v′ ↓i = w↓i and v′ ↓j = v ↓j for all j 6= i. Thanks to Lemma 5.3.5, when alling
ConfigVectorSet_i(F, i, C, v′, a), it must return some on�g-vetors. Thanks toLemma 5.3.5, among suh return on�g-vetors in CVSi, there exists 〈C ′, v′, a〉suh that C ′ ⊆ D. Beause on�guration D satis�es V̂(D)↓i ⊢i v′↓i. By the samereasoning as in the previous ase, one an verify that 〈C ′, v′, a〉 satis�es the input'svariant of the funtion ConfigVectorSet like 〈C, v, a〉. So that by the indutionhypothesis, the omplete on�g-vetor 〈D,w, a〉 must be found in the �nal set CVSdue to some all ConfigVectorSet(F,C ′, v′, a) in line 16.One an �nally onlude that CVS is equal to CS.The third property on on�guration C as input of ConfigVectorSet is important. Asseen in the proof above, it orresponds more or less to the third property in the de�nitionof omplete on�g-vetors (see De�nition 5.3.3 on page 110). Without suh a property oninput on�gurations C, alling ConfigVectorSet(F,C, v, a) may return some on�g-vetor

〈D,w, a〉 whih is partially omplete for all indies i ∈ I(w) = I(a). However, 〈D,w, a〉is not omplete, and as a onsequene of Lemma 5.3.4 on page 110, it orresponds tono event in the synhronized produt ESP. Aiming at onstruting pre�xes of ESP, theomputation of on�g-vetor 〈D,w, a〉 is useless.Lemma 5.3.9. If Ê as well as Ê1, Ê2, . . . Ên is �nite, then the funtion ConfigVectorSetin Algorithm 5.9 terminates.Proof. Let (F,C, v, a) denote some input of ConfigVectorSet. We will prove this Lemmaby indution on the size k of (I(a) \ I(v)) sine k an not exeeds the number of om-ponents, and is thus �nite. When k = 0, i.e. I(v) = I(a), one falls into the base aseof the funtion ConfigVectorSet's reursion (lines 3-4). The funtion ConfigVectorSetjust terminates. Suppose that ConfigVectorSet terminates for all k smaller than somenumber m > 0. We will prove that it also terminates for k = m. For every value of
i obtained at line 6, the set Xi is �nite beause Êi is �nite. Thanks to Lemma 5.3.6,
ConfigVectorSet_i(F,C ′, v′, a, i) terminates beause F ⊆ Ê is �nite, and at the sametime, thanks to Lemma 5.3.5, its return set has a ardinal smaller than or equal to theone of {C ′′ ∈ CbESP

/C ′′ ⊇ C}. As a onsequene, the loop at lines 10-13 terminatesand the set CVSi obtained afterward is �nite. Consider now the loop at lines 15-17.Beause |I(a) \ I(v′)| = |I(a) \ I(v) \ {i}| = m − 1, by indution hypothesis, the allof ConfigVectorSet(C ′, v′, a) at line 16 terminates. This loop with �nite bound |CVSi|should terminates. As a onsequene, the funtion ConfigVectorSet terminates.5.3.3 Funtions InitSP and ExtendSPIn this subsetion, we assume that one has already n funtions Initi as well as n funtions
Extendi, i ∈ {1, 2, . . . , n}, for unfolding n omponent labeled event strutures. In addi-tion to the pre�x ÊSP of ESP whih is being onstruted, we always have n pre�xes of theomponents. The funtion InitSP as well as ExtendSP should use these 2n funtions forexpanding omponents pre�xes if neessary. Moreover, omponent possible extensions
PEi, i ∈ {1, 2, . . . , n} an be aessed from InitSP and ExtendSP. 117

Chapter 5. Compositional unfolding tehniquesAs stated by Lemma 5.3.4, in a synhronized produt of labeled event strutures,omplete on�g-vetors orrespond to events. Formally, we say that 〈C, v, a〉 orrespondsto event e if C = >(e), v = V(e), and a = L(e). In addition, due to the maximalityand no-dupliation property in De�nition 3.3.44 on page 57, this orrespondene is abijetion.By de�nition, a minimal event e, w.r.t. the ausality, in the synhronized produtis a synhronization of minimal events in omponent labeled event strutures. Formally,
e ∈ Min≤(ESP) i� >(e) = ∅ and V(e) ∈ ⊗ε(Min≤1(E1), . . . ,Min≤1(E1)). In order tobuilding the pre�x ESP|Min≤(E), funtion InitSP intuitively omputes omplete on�g-vetors 〈∅, v, a〉 where v ∈ ⊗ε(Min≤1(E1), . . . ,Min≤n(E1)) and a = 〈L1(v↓1), . . . ,
Ln(v↓n)〉 is inluded in synhronization onstraint Σ.Algorithm 5.10: Funtion InitSP for synhronized produts1 funtion InitSP()2 onstant vε = 〈ε, ε, . . . , ε〉3 begin4 Ê := ∅; ⋖̂ := ∅; V̂ := ∅5 for i := 1 to n do6 (Êi,PEi) := Initi()7 end for8 CVS := ∅9 for eah a in Σ do10 CVS := CVS ∪ ConfigVectorSet(∅, ∅, vε, a)11 end for12 for eah 〈C, v, a〉 ∈ CVS do13 e′ := Create(Ê,PE, ∅, a)14 V̂ := V̂ ∪ {〈e′, v〉}15 end for16 return (Ê, Ê)17 end funtionAlgorithm 5.10 represents the funtion InitSP. The synhronized pre�x is initializedwithout events (line 4). Component pre�xes are also initialized by alling the orre-sponding funtions Initi for all i ∈ {1, 2, . . . , n} due to the loop at lines 5-7. As seenin Setion 5.2, after this loop, eah omponent pre�x Êi, i ∈ {1, 2, . . . , n}, ontains onlyminimal events w.r.t. its ausality ≤̂i. Due to the loop at lines 9-11, the algorithm thusomputes all omplete on�g-vetors 〈C, v, a〉 by alling ConfigVectorSet(∅, ∅, vε, a) for allations a in the synhronization onstraint Σ. The onstant vε delared in line 2 is justfor initializing the third parameter when alling ConfigVectorSet. Sine the �rst param-eter F of ConfigVectorSet is the empty set, C is empty too. Eah omplete on�g-vetor
〈∅, v, a〉 in CVS intuitively orresponds to an minimal event e′ w.r.t. the ausality in theglobal labeled event struture beause >(e′) = ∅. Funtion InitSP �nally reates eventsaording to on�g-vetors in CVS and aordingly updates funtion V̂. This is done bythe loop at lines 12-15. Reall that the on�it relation #̂ and the labeling funtion L̂may be omputed from the ones of omponent pre�xes, i.e. #̂i and L̂i, the predeessorrelation ⋖̂ and the vetor V̂. In Algorithm 5.10, only instrutions for ⋖̂ and V̂ are shown.The following is straightforward.118

5.3. Synhronized produts' unfoldingLemma 5.3.10. If Initi() is orret that means its return value (Êi,PEi) is orret w.r.t.
Ei and Êi = Initi() = Ei|Min≤i

(Ei), then the return value (Ê, Ê) is orret w.r.t. thesynhronized produt ESP, moreover, Ê = E|Min≤(E).Now, we an go into details of the funtion ExtendSP. Reall the prinipal mehanismof Extend: one avoids adding two times a same event, and at the same time, does notomit any possible event. In order to do that:
• One adds only suessors e′ of event e where e is the parameter of Extend. ByDe�nition 3.3.39, the omplete on�g-vetor 〈C, v,L(e′)〉 orresponding to e′ mustsatis�es that V(e)↓i ⋖i v↓i for some index i, and at the same time, C ontains e.
• One adds only and all those events e′ whose predeessors have been extended, i.e.

⋗(e′) ⊆ (Ê \ PE) where Ê is the event set of the atual pre�x, and PE ⊆ Ê is theset of events that have not been extended.Let us explain the instrutions of ExtendSP given in Algorithm 5.11. As usual, whenextending event e, the algorithm �rst removes e from the possible extension PE (line 4).Then, it extends the omponent events orresponding to e by the loop at lines 5-9 ifneessary. Let i be an index in I(V̂(e)), when the test V̂(e)↓i ∈ PEi (line 6) is false, itmay be due to extending another event e′ before e where e′ onerns the same omponentevent as e, i.e. V̂(e)↓i = V̂(e′)↓i. In this ase, the algorithm does nothing so that Extendiis alled with argument V(e)↓i at most one time. Otherwise, i.e. V(e)↓i ∈ PEi, it meansthat omponent event V(e)↓i in Ei has not been extended. One must extend it by alling
Extendi(Êi,PEi,V(e)↓i) (line 7). After this instrution, V(e)↓i is no more in PEi.Algorithm 5.11: Funtion ExtendSP for synhronized produts1 funtion ExtendSP(Ê,PE, e)2 onstant vε = 〈ε, ε, . . . , ε〉3 begin4 PE := PE \ {e}5 for eah i ∈ I(V̂(e)) do6 i f V̂(e)↓i ∈ PEi then7 (Êi,PEi) := Extendi(Êi,PEi, V̂(e)↓i)8 end if9 end for10 CVSi := ∅11 for eah i ∈ I(V̂(e)) do12 v′ := vε13 for eah vi ∈ ⋖̂i(V̂(e)↓i) do14 v′↓i := vi15 for eah a ∈ {a ∈ Σ / a↓i = L̂i(vi)} do16 CVSi := CVSi ∪ ConfigVectorSet_i((Ê \ PE), i, ≥̂(e), v′, a)17 end for18 end19 end for20 CVS := ∅21 for eah 〈C ′, v′, a〉 ∈ CVSi do22 CVS := CVS ∪ ConfigVectorSet((Ê \ PE), C ′, v′, a)23 end for 119

Chapter 5. Compositional unfolding tehniques24 for eah 〈C, v, a〉 ∈ CVS do25 e′ := Create(Ê,PE,Maxb≤(C), a)26 V̂ := V̂ ∪ {〈e′, v〉}27 end for28 return (Ê,PE)29 end funtionRemark: In our unfolding algorithm for a synhronized produt of labeled event stru-tures, we only use Algorithm 5.1 for the global produt, and not for its omponents. Thefuntion ExtendSP of the global produt, on the one hand, is responsible for onstrutingpre�xes ÊSP of the synhronized produt, and on the other hand, takes ontrol of howto develop pre�xes Êi, i ∈ {1, 2, . . . , n}, of the omponents. The hoie of extendingomponent events is no more random as seen at line 4 in Algorithm 5.1. In other words,a event ei in some omponent Êi is extended by alling Extendi only when a global event
e in the synhronized produt whih onerns ei, i.e. V(e)↓i= ei, is extended.The omputing proess of omplete on�g-vetors CVS whih orrespond to diretsuessors e′ of e is started by �nding partially omplete on�g-vetors 〈C ′, v′, a〉 forsome index i ∈ I(V(e)) (the nested loops at lines 11-19).

• Sine e′ is a diret suessor of e, by the third property of De�nition 3.3.39, V(e′)↓imust be a diret suessor of V(e)↓i in some omponent labeled event strutures
Ei. Hene, one restrits index i on the set I(V(e)) (line 11).

• The omponent event V(e)↓i may have many diret suessors in Ei. For suh adiret suessor vi (line 13), one initializes v′ so that it is di�erent from the onstantvetor vε (line 2) only on the index i due to instrutions at lines 12 and 14. Allpartially omplete on�g-vetors obtained afterward must be based on the samevetor v′.
• One groups partially omplete on�g-vetors 〈C ′, v′, a〉 into di�erent sets whihbased on label a ∈ Σ. By De�nition 5.3.2, one has, of ourse, a↓i = Li(V(v′)↓i=
Li(vi) where vi is an event in Ei obtained previously.

• The alling ConfigVectorSet_i with the on�guration parameter ≥(e) (line 16) guar-antees somehow that return on�g-vetors 〈C ′, v′, a〉 satis�es C ′ ⊇ (>(e)). As aonsequene, new event e′ orresponding to 〈C ′, v′, a〉 satis�es (>(e′)) ⊇ (≥(e))and is thus a diret suessor of e.All partially omplete on�g-vetors in CVSi are thus used for omputing ompleteon�g-vetors by the loop at lines 21-23. One simply all the funtion ConfigVectorSet(line 33). Notie that obtained on�g-vetors in CVS may be di�erent on its vetorsor its orresponding ations. However, the on�guration of suh on�g-vetors alwaysontains e, and is thus a superset of ≥(e).Finally, as in the funtion Init, for every omplete on�g-vetor 〈C, v, a〉 in CVS, anew event e′ is reated and inserted into the global pre�x by the loop at lines 24-27.Sine only events in Maxb≤(C) are diret predeessor of e′. Maxb≤(C) is passed as theparameter value of ConfigVectorSet (line 25). The funtion V̂ is also modify for adaptingto new events (line 26). The set of new events is returned as usual (line 28). However,the set CVS as well as CVSi may be empty. In this ase, the loop at lines 21-24 aswell as the one at lines 24-27 is algorithmially skipped. And as a onsequene, no newsuessors of e is reated and returned in the end of the all Extend(e).Lemma 5.3.11. If Extendi is orret w.r.t. Ei for all i ∈ {1, 2, . . . , n} then the funtion120

5.3. Synhronized produts' unfolding
ExtendSP in Algorithm 5.11 is orret w.r.t. the synhronized produt ESP = (E,≤
,#,L,M) of these n labeled event strutures E1,E2, . . . ,En w.r.t. Σ.Proof. Let us denote by Ê = (Ê, ≤̂, #̂, L̂,M′), Ê′ = (Ê′, ≤̂

′
, #̂′, L̂′,M̂′) respetively thevalues of struture variables of the synhronized produts just before and after alling

ExtendSP(e) for some e ∈ ({ε}∪E′); and by the same manner, E′
i = (E′

i,≤
′
i,#

′
i,L

′
i,M

′
i),

E′′
i = (E′′

i ,≤′′
i ,#

′′
i ,L

′′
i ,M

′′
i) for the values of struture variables of every omponent

i ∈ {1, 2, . . . , n}.Let S be the set of suessors e′ of e in ESP whose predeessors has been alreadyextended, i.e. S = {e′ ∈ E /e⋖e′ and >(e′) ⊆ (Ê\PE′)}. Here PE′ = (PE\{e})∪(Ê′\Ê)due to line 4 and the alls of Create in line 25. We will prove that there is a bijetionbetween S and the �nal on�g-vetors set CVS in the funtion ExtendSP (*).Due to the loop at lines 5-9 that tries to extend omponent events eah time oneextends a global event, one an easily prove by indution that for all i, (Êi \ PEi) ⊇
(Ê \ PE)↓i just before instrutions for omputing CVS in the funtion Extend (line 10).As a onsequene, for every event e′ ∈ E, if (>(e′)) ⊆ (E′ \ PE) then (>i(V(e′) ↓i
)) ⊆ (>(e′)↓i⊆ (E′ \ PE)↓i = (E′

i \ PEi). Moreover, due to the orretness of Extendi,
(>i(V(e′) ↓i)) ⊆ (E′

i \ PEi) implies that event V(e′) ↓i must be already in the eventset E′
i of omponent pre�x E′

i. Now, for eah suessor e′ ∈ S, let us assoiate it tothe omplete on�g-vetor 〈>(e′),V(e′),L(e′)〉. We have then (>(e′)) ⊆ (Ê \ PE′) and
V(e′) ∈ ⊗ε(E

′
1, E

′
2, . . . , E

′
n). In other words, event sets E′

1, E
′
2, . . . , E

′
n are su�ient foromputing the omplete on�g-vetors 〈>(e′),V(e′),L(e′)〉.Consider the nested loops at lines 11-19. Sine e′ is a suessor of e, by de�nitionof synhronize produts of event strutures (see De�nition 3.3.39), there exists an in-dex i suh that V(e)↓i ⋖i V(e′)↓i. Moreover, the ation a = L(e′) ∈ Σ satis�es that

a↓i = Li(V(e′)↓i). Let v′ is the vetor satisfying v′↓i = V(e′)↓i and v′↓i = ε otherwise.Thanks to Lemma 5.3.5, after this nested loop, CVSi must ontain some partially om-plete on�g-vetor 〈C ′, v′, a〉 for the index i due to the all ConfigVectorSet_i(Ê \ (PE \
e),≥(e), v′, a) in line 16. Moreover, (≥(e)) ⊆ C ′ and C ′ ⊆ (>(e′)) due to its minimalityw.r.t. the inlusion order. Therefore, it follows from Lemma 5.3.8 that CVS ontains
〈>(e′),V(e′),L(e′)〉 (1) beause of the all ConfigVectorSet

(Ê \ PE, C ′, v′, a) in line 33.Reversely, let 〈C, v, a〉 be any omplete on�g-vetor in CVS in the end of the loopat lines 21-23. One again, C is a supset of another on�guration C ′ whih ontains
e; and v is based on another vetor v′ whih satisfying that v′ ↓i = V(e) ↓i for someindex i. Thanks to Lemma 5.3.4, there exists an event e′ ∈ E suh that V(e′) = v and
C = >(e′). Notie that C ⊆ (E′ \ (PE \{e})) beause the �rst parameter F when alling
ConfigVectorSet as well as ConfigVectorSet_i is always equal to Ê \ (PE\{e}). Moreover,sine e is a maximal event w.r.t. the ausality in Ê by Lemma 5.1.2 on page 89, e isalso a maximal one in C = >(e′). The event e is just a diret predeessor of e′ and as aonsequene, e′ must be in S (2). It follows from (1) and (2) that (*) is obvious. Thebijetion, denoted by B, may be de�ned by B(e′) = 〈>(e′),V(e′),L(e′)〉.The for loop at lines 24-27 simply adds events in S to the Ê-pre�x of the synhronizedprodut. Beause e is maximal event in Ê, its suessors do not exist in Ê. As a onse-quene, adding these suessors guaranties that �nal Ê′ is a pre�x of ESP. The unfoldinginvariant I3 in De�nition 5.1.1 on page 89 is a diret onsequene of (*) while invariants
I1, I2 as well as onditions C2, C3 of the Extend's orretness are straightforward. Thefuntion ExtendSP is thus orret w.r.t. ESP.Lemma 5.3.12. The funtion ExtendSP terminates if Ê as well as Êi, i ∈ {1, 2, . . . , n},121

Chapter 5. Compositional unfolding tehniquesis �nite.Proof. Thanks to Lemma 5.3.6 and Lemma 5.3.9, ConfigVectorSet_i and ConfigVectorSetterminates. The size of the set returned by ConfigVectorSet_i (Algorithm 5.8 on page 112)does not exeed the number of subsets of Ê, and is thus �nite. On its turn, the funtion
ConfigVectorSet (Algorithm 5.9 on page 115) has two �nite loops: the �rst one alls to ter-minating funtion ConfigVectorSet_i and the seond one whih alls to ConfigVectorSetitself. Sine the number n of omponents is �nite, the depth of reursion is bounded by
n. Then, the funtion ExtendSP in Algorithm 5.11 terminates.In order to �nd new diret suessors of an event in the atual pre�x Ê of a synhro-nized produt ESP, i.e. Ê = ESP| bE , the funtions ConfigVectorSet and ConfigVectorSet_iare the most important and slowest parts of unfolding algorithms. Although ESP issimply a synhronized produt of Petri nets' plaes (or of ounters), the omplexity of
ConfigVectorSet as well as ExtendSP in the worst ase is a NP-omplete problem as statedin [ERV96, Hel99℄. The question of how to e�iently ompute suh suessors is stillopen. Some onrete ideas on Petri nets an be found in [Kho03℄.In pratie, one aims only at a �nite pre�x of the synhronized produt ESP whih isomplete for some veri�ation problem. As seen in the next setion, the better uttingontext is, the more ompat pre�xes one obtains. Beause the omplexity in time and inspae of ExtendSP depends on the size of these pre�xes, a good hoie of utting ontextould redues this omplexity (see Chapter 6).5.4 TrunatingOne we have a orret funtion Extend for onstruting pre�xes of a labeled eventstruture E, we wish to modify the unfolding algorithm given in Algorithm 5.1 on page 89to obtain some trunations of E. A omputed trunation, if it exists and is �nite, willbe used to verify the orresponding deidable problem (see Chapter 4).As seen in previous setions, our unfolding algorithm as well as various funtions
Extend respet the idea of partial-order. Intuitively, one does not need to look at thewhole set of on�gurations when omputing new events and extending pre�xes. In or-der to integrate trunation tehnique into the unfolding algorithm, we are partiularlyinterested in loal utting ontexts (E,4C ,Cl

E
) (see Setion 4.3.1). Moreover, reall thatwell-preorders 4C over on�gurations are restrited to the ones de�ned in Setion 4.2.3.Formally, that means 4C= (4M ⋓ D) where E is an adequate order over on�gurations.Remark: Without the risk of onfusion, we simply write e E e′ in the plae of (≥(e)) E

(≥(e′)) for all events e, e′ ∈ E. Therefore, E may be onsidered as an order over theevent set E. And it is well-founded when E is �nitely-branhing.Reall that, the trunation of E w.r.t. to a loal utting ontext (4C ,Cl
E
) is themaximal subset of events that ontains no outer one (f. De�nition 4.2.12 on page 74and Lemma 4.3.2 on page 79). Algorithm 5.12 represents our trunating algorithmwhih aims at onstruting the the pre�x Ê of E based on the trunation T(E,4C ,Cl

E
),i.e. Ê = E|

T(E,4C ,Cl
E
). While trying to keep the being onstruted pre�x Ê of E away fromouter events, one simply does not extend uto� events.In Algorithm 5.12, we use a variable CE to stok uto� events. This variable is, ofourse, initialized by the empty set (line 2). The algorithm starts with the pre�x of Ebased on its minimal events w.r.t. the ausality ≤ (line 3) as the same manner as inAlgorithm 5.1. However, the loop for enlarging the atual pre�x terminates if possibly122

5.4. TrunatingAlgorithm 5.12: Trunating algorithm1 begin2 CE := ∅3 (Ê,PE) := Init()4 while (PE \ CE) 6= ∅ do5 take an event e in MinE(PE \ CE)6 i f isCutoff(e) then7 CE := CE ∪ {e}8 else9 (Ê,PE) := Init(Ê,PE, e)10 end if11 end while12 endextensible events in PE are all uto� ones (line 4). For eah event e obtained at line 5,one must test whether e is uto� event by alling the funtion isCutoff. If e is a uto�event, one simply inserts it into the set CE (line 7). Notie that, in this ase, e alwaysbelongs to the set PE. If e is not a uto� event, one extends e by alling Extend by thesame manner as in Algorithm 5.1.If the prinipal loop terminates, in the end of trunating algorithm, we obtain an�nite pre�x of E. In the result, CE is equal to PE and is the set of minimal uto�events w.r.t. the ausality ≤. Moreover, the event set of the �nal pre�x is a supersetof the trunation T(E,4C ,Cl
E
). Let Ê denote the event set of the atual pre�x alongan exeution of the trunating algorithm, it is worth notiing some intuitive ideas inAlgorithm 5.12:

• In order to prevent adding outer events as well as its suessors afterward, uto�events should not be removed from PE. Beause alling Extend(Ê,PE, e) returnssuessors of e whose predeessors are all in Ê\PE due to the orretness of Extend.
• CE is always a subset of both PE and Min≤(Êc) where Êc is the set of uto� eventin the Ê-pre�x of E w.r.t. 4C . They onverge only when the loop terminates.
• The implementation of the funtion isCutoff is not far from the de�nition of uto�events (see De�nition 4.2.10 on page 74 and De�nition 4.3.1 on page 79).

isCutoff(e) returns {
true if exists e′ ∈ (Ê \ CE) : (≥(e)) ≺C (≥(e′)
false otherwiseHowever, omputation in isCutoff does not base on the whole labeled event stru-ture E but only on one of its �nite pre�x, here is the Ê-pre�x.5.4.1 Algorithmi uto� eventsConsider an exeution of Algorithm 5.12, let us simply all CE the set of algorithmiuto� events. Reall that, as stated by Proposition 5.1.4 on page 90, one obtains aninreasing sequene of pre�xes of E. By de�nition, every algorithmi uto� event is auto� event in E. However, there may be some uto� event in E whih is not detetedas an algorithmi uto� event, and is eventually extended. This fat is the ause of an�nal pre�x, if algorithm terminates, whih is bigger than the desired trunation. 123

Chapter 5. Compositional unfolding tehniquesTherefore, the hoie of extending some minimal event e w.r.t. the adequate order Ein (PE \CE) (line 5) is very important. First, it redues the risk of adding a uto� eventto the atual pre�x without pereiving it as an algorithmi uto� event and insertingit into CE. Seond, for every pre�xe obtained along the exeution after extending e,
isCutoff(e) always returns the same value.Proposition 5.4.1. Let us denote by Êk = (Êk, ≤̂k, #̂k, L̂k,M̂k) and PEk respetivelythe value of struture variables and PE after k steps, k = 0, 1, . . ., of the prinipal loopin Algorithm 5.12 (lines 4-11). Let ek, k = 1, 2, . . ., the value of variable e hosen at the
kth step of this loop. Suppose that Extend is orret w.r.t. E. Then isCutoff(ek) (line 6)returns true i� ek is a uto� event in Ên for all n ≥ (k − 1).Proof. Thanks to Proposition 5.1.4 on page 90, sine Extend is orret w.r.t. E, forevery k, Êk is a pre�x of E. And moreover, Ê0 ⊆ Ê1 ⊆ As a onsequene, ek isa uto� event in Êk−1, i.e. isCutoff(ek) returns true, implies that ek is a uto� eventin En for all n ≥ (k − 1). Now, suppose that isCutoff(ek) = false but ek is a uto�event in En for some n ≥ k (*). Without lost of generality, one an assume that kis the minimal number satisfying (*). There exists thus another event e′ ∈ Ên suhthat (≥(ek)) ≺

C (≥(e′)). Then, e′ ⊳ ek. Sine adequate order E re�nes the inlusionorder ⊆, we have that e′′ ⊳ e′ ⊳ ek for all e′′ ∈ (>(e′)). Due to the hoie of extendingminimal event w.r.t. E at line 5 in Algorithm 5.12, e′′ must be extended before ek forall e′′ ∈ (>(e′)). It follows from the orretness of Extend that Êk−1 ontains e′. Thisontradits to isCutoff(ek) = false and to (*). This proposition is thus proved.
p1

c

p5

c′

p6

p3

b

p2

a′

p4

a

•

•

• •

(a)
p1

c
e4

p5

c′
e5

p′6

p2

a′
e2

p6

p3

b
e3

p′2

a′
e′

p′′6

p4

a
e1

p′4

(b)
• • • •

Figure 5.1: (a) An one-safe Petri net and (b) its orresponding labeled ourrene net.Example 5.4.2. Figure 5.1.a represents an one-safe Petri net (N,mi) whih has 6 plaes,5 transition and mi(p) = 1 if p ∈ {p1, p2, p3, p4} and mi(p) = 0 otherwise. Its labeledourrene net is also an one-safe Petri net (N′,m′i) and may be obtained by the well-known unfolding tehnique [MM95a℄. These two Petri nets are obviously bisimilar.Figure 5.1.b illustrates (N′,m′i). By onsidering more or less only transitions of (N′,m′i),one intuitively obtained a equivalent labeled event struture E whih is illustrated inFigure 5.2.a.124

5.4. Trunating
c
e4

c′
e5

a′
e2

b
e3

a′

e′

a
e1ut ut(a)

c
e4

c′
e5

a′
e2

b
e3

a
e1ut(b)

Figure 5.2: (a) The labeled event struture orresponding to the labeled ourrene netin Figure 5.1.b, and (b) the �nal pre�x generated by Algorithm 5.12.Among 6 events in E, there are two ouples of events whose loal on�gurations are thesame. Intuitively, both ≥(e1) and ≥(e3) lead to the marking where only plaes p1, p2, p4have a token; while both ≥(e5) = {e5, e5} and ≥(e′) = {e′, e3} lead to another markingwhere only plaes p4, p6 has a token. Consider the lexiographi labeling order E basedon the total order ≪ over labels suh that a ≪ a′ ≪ b ≪ c ≪ c′ (see De�nition 4.2.17on page 78. In this deterministi labeled event struture E, e3 is a uto� event w.r.t. theloal utting ontext (E,I ⋓ D,Cl
E
) due to e1, and e5 is a uto� event due to e′.Sine the hoie of expanding events in Algorithm 5.12 respets E, e3 is determined asan algorithmi uto� event and its suessor e′ should not be added to the onstrutingpre�x. And as a onsequene, e5 is neither an algorithmi uto� event nor a uto� eventin the �nal pre�x generated by the trunating algorithm. The �nal pre�x whih onsistsof 5 events in E′ = {e1, e2, e3, e4, e5} is represented by Figure 5.2.b, while the trunation

T(E,I ⋓ D,Cl
E
) is the set {e1, e2, e3, e4} by de�nition.Remark: We use the notation of algorithmi uto� event for distinguishing between anevent determined by Algorithm 5.12 and a uto� event by De�nition 4.3.1 on page 79.However, both kinds of uto� onditions depend on the utting ontext (E,4M ⋓ D,Cl

E
).One an dedue from Algorithm 5.12 a indutive de�nition of CE together with eventset Ê as follows:

• e′ ∈ Ê if (>̂(e′)) ∩ CE = ∅, and
• e′ ∈ CE if e′ ∈ Ê and e′ is a uto� event w.r.t. (E′,4M ⋓ D,Cl

bE
) where Ê is the

Ê-pre�x of E.In this way, the sets Ê and CE are similar to the sets of feasible events and of stati uto�events in [Kho03℄. The di�erene only omes from the fat that we use a loal uttingontext (E,4M ⋓ D,Cl
E
) in the plae of the global one (E,4M ⋓ D,CE). In other words,an algorithmi uto� event is due to some loal on�guration while a stati uto� eventis due to arbitrary on�guration in Ê.5.4.2 Complete pre�xesTheorem 5.4.3 (Termination). Let (E,4C) be a onverse well-preordered labeled eventstruture where E is �nitely-branhing. If Extend is orret w.r.t. E and then Algo-rithm 5.12 terminates.Proof. Thanks to De�nition 5.1.3, struture variables always give rise to some E′-pre�xof E where E′ is its atual event set. Sine Extend is orret and E is �nitely-branhing,125

Chapter 5. Compositional unfolding tehniquesAlgorithm 5.12 does not terminates only if it alls the funtion Extend an in�nite numberof times. Parameters e of suh alls are pairwise di�erent due to the instrution at line9. Let us denote by ek, k = 1, 2, . . ., the parameter of the kth alling of Extend. Bythe same reasoning as in the proof of Theorem 4.2.15 on page 76, sine E as well asits pre�xes is �nitely-branhing, the in�nite sequene e1, e2, . . . must ontain an in�nitesubsequene ei1 , ei2 , . . . whih are in ausal order where i1, i2, . . . is a inreasing sequeneof indies. It follows from the onverse well-preorder 4C that there exits indies il and
im suh that (≥(eim)) 4C (≥(eil)) and il < im. Moreover, sine eil is stritly smallerthan eim w.r.t. the ausality, one has (≥(eim)) ≺C (≥(eil)). Event eim is thus a uto�event and it ontradits to the fat that isCutoff(eim) returns false in the test at line 6.Therefore, Algorithm 5.12 must terminate.Theorem 5.4.4 (Termination). If Extend is orret w.r.t. E and Algorithm 5.12 termi-nates then the trunation T(E,4C ,Cl

E
) is a subset of the �nal event set E′ omputed bythis trunating algorithm.Proof. Let En denote the set of events in E whih are neither a uto� event nor an outerevent w.r.t. the utting ontext (E,4C ,Cl

E
). Thanks to Proposition 5.4.1, for every event

e ∈ (E′ ∩ En), isCutoff(e) returns true and e should be extended by alling Extend(e)(line 10 in Algorithm 5.12). As a onsequene of De�nition 5.1.3 on page 90, one anprove by indution on loal on�gurations' size that En is a subset of E′. Let Ec denotethe set of uto� events in E, and let e′ be any event in Min≤(Ec). Due to its minimalityw.r.t. the ausality ≤, one has (>(e′)) ∩ Ec = ∅. Hene, (>(e′)) ⊆ En ⊆ E′. Event
e′ must be inserted into E′ while extending some predeessor of e′. Therefore, En and
Min≤(Ec) are both subset of E′. This lemma is thus a onsequene of Lemma 4.3.2 onpage 79 whih states that T(E,4C ,Cl

E
) = En ∪Min≤(Ec).The inlusion order ⊆ is a partiular ase of adequate order E in loal utting ontexts(see termination and boundedness problems in Setion 4.3.3). Sine the order of addingevents Algorithm 5.12 respets the inlusion order, an event is algorithmi uto� eventif and only if it is a uto� one. The following is straightforward.Corollary 5.4.5. When Extend is orret w.r.t. E and Algorithm 5.12 terminates, itsgenerated pre�x is the T(E,4C ,Cl

E
)-pre�x of E if 4C inludes ⊇.The �nal pre�x obtained by the trunating algorithm sometimes is muh bigger, interms of number of events, than neessary. This problem may be redues by using abetter adequate order. Esparza has given in [ERV96℄ an example showing that one anobtain a pre�x of polynomial size with a lexiography-based adequate order in the plaeof a pre�x of exponential size with a sized-based adequate order. In our framework ofmodeling system by synhronized produts of labeled event strutures in a hierarhialway, the trunating tehnique using uto� onditions may be applied only at the toplevel, i.e. the global labeled event struture.However, eah veri�ation problem disussed in Setion 4.3 may have a more suitablealgorithm whih is derived from Algorithm 5.12. For example, when deiding bounded-ness of a labeled event struture E suh an algorithm an terminate if the �rst stritlyuto� event has been found. This on-the-�y algorithm, in the ase where E is unbounded,generates in general a pre�x whih is more ompat than the orresponding trunation.Finally, it is worth notiing that when the adequate order is a total order overthe event set E, Algorithm 5.12 is deterministi. Otherwise, the algorithm is non-deterministi and it is not lear that every run of it returns the same pre�x. This126

5.4. Trunatingphenomenon was stated for the ase of Petri nets in [HKK02℄. It was shown there that,for any adequate order, all possible runs give the same pre�x. We onjeture that it isthe ase also for our algorithm.

127

Chapter 6Experimental results
Contents6.1 Modeling and veri�ation of heterogeneous systems 1296.1.1 Alternating Bit Protool . 1296.1.2 Modeling the ABP as a synhronized produt 1306.1.3 Veri�ation of ounter's boundedness 1326.1.4 Veri�ation of lossy FIFOs' overability 1346.2 The tool Esu . 1376.2.1 Modeling Petri nets . 1396.2.2 Redundany redution . 1416.3 Experiment results on Petri nets 1496.3.1 1-safe Petri nets . 1496.3.2 General bounded Petri nets . 1516.3.3 Unbounded Petri nets . 154We �rstly demonstrate how to model an heterogeneous system and use our tehniquefor verifying some properties on this system. The Alternating Bit Protool (ABP) istaken as the ase study in Setion 6.1. Then, our model-heker Esu is brie�y desribedin Setion 6.2. The auto-onurreny problem of the unfolding tehnique will be disussedin this setion. We also detail our tehnique for reduing redundany that is integratedin Esu in order to attak the auto-onurreny problem. Finally, Setion 6.3 is dediatedto experimental results as well as a omparison of Esu and other well-known tools.6.1 Modeling and veri�ation of heterogeneous systems6.1.1 Alternating Bit ProtoolThe Alternating Bit Protool (ABP) [BSW69℄ is a onnetion-less protool for transfer-ring messages in one diretion between two entities. These entities, alled the senderand the reeiver, exhange messages by means of two FIFO hannels. This protoolguarantees the retransmission of lost or orrupted messages by using aknowledge bits.Intuitively, eah message from both the sender and the reeiver ontains a bit, i.e. avalue that is either 0 or 1. When the sender sends a message m, it sends it ontinuously,until it reeives an aknowledgment bit from the reeiver that is the same bit in m.When it happens, the sender starts transmitting the next message with the omplement129

Chapter 6. Experimental resultsof this bit. At the reeiver side, when it reeives a message with bit 0, it starts sendingbit 0 as aknowledgment, and keep doing so until it reeives another message with bit 1.Then, it starts sending bit 1, and so on.In this example, we are not interested in the fat that the hannels may orruptmessages as well as the way that the sender and the reeiver deide whether a messageis orret. For simpliity, we assume that exhanged messages are the bits 0 and 1themselves. We will see further that ABP is tolerant to lost messages in hannels.
A

B

a

b

S2R!0R2S?1

R2S?0S2R!1

R2S?0R2S?1

R2S!1S2R?1

S2R?0R2S!0

S2R?0S2R?1

Sender Reeiver
0 1 1

1

FIFO hannel S2R
FIFO hannel R2SFigure 6.1: A model for the Alternating Bit ProtoolIn other works, the ABP is generally modeled by two �nite-state mahines, thatorrespond to the sender and the reeiver, ommuniating through two hannels [AAB99℄.Figure 6.1 illustrates suh a model in whih both the sender and the reeiver have onlytwo states. As previously assumed, these hannels, named S2R and R2S, are FIFOhannels over M = {0, 1}. The sender, at the left side of Figure 6.1, may either insertmessages into the hannel S2R or remove messages from the hannel R2S. These ationsare graphially represented by loops or urved arrows over the sender's states A and B,or more preisely by the label of these loops and arrows. In addition, an ar onnetingtwo states intuitively means that the sender hanges its state while a loop does not. Forexample, when the sender's state is A, it inserts only messages 0 into the hannel S2Runtil it removes a message 0 from the hannel R2S. In this ase, the sender hanges itsstate to B and starts inserting messages 1 into the hannel S2R. In the same manner,the reeiver is shown at the right side of Figure 6.1.6.1.2 Modeling the ABP as a synhronized produtThe �rst thing we have to do is to deompose the ABP into some simple omponents.There are two reasons. First, we an use standard labeled transition systems for model-ing these omponents, and as a onsequene, we obtain their orresponding labeled eventstrutures that are introdued in Setion 3.3. The ABP may be modeled by both thesynhronized produt of these omponent labeled transition systems and the synhro-nized produt of these labeled event strutures. Seond, by using unfolding algorithmsof Chapter 5, we an iteratively onstrut suh labeled event strutures, and moreover,the synhronized produt one inherits the onurreny of its omponents.In our example, the ABP an be naturally onsidered as a omposition of four om-ponents: a sender S, a reeiver R, two FIFO hannels S2R, R2S over {0, 1} for messagesfrom the sender to the reeiver and for messages from the reeiver to the sender respe-tively. In addition, we assume that there is a ounter in order to ompute the numberof suessfully transmitted messages.130

6.1. Modeling and veri�ation of heterogeneous systems
A B

A2A B2B

A2B

B2A(a) a b

a2a b2b

a2b

b2a(b)
?0

?1

!1

!0() ?0

?1

!1

!0(d) 0

1

2

+ −

+ −

(e)Figure 6.2: Components modeling the ABP: (a) Sender S, (b) Reeiver R, () Channel
S2R, (d) Channel R2S, (e) (Unbounded) ounter.The sender, as well as the reeiver, an be simply modeled by a labeled transitionsystem with two states A,B, and four transitions that orrespond to the fat of stayingon a same state: A2A, B2B; or hanging from one state to the other state: A2B,
B2A. We suppose that, at the initial state, the sender is in state A, the reeiver is instate a, the two FIFO hannels are empty, and the ounter is set to 0. Hene, these twoFIFO hannels S2R and R2S may be represented by the ({0, 1}, ε)-FF labeled transitionsystem (see De�nition 3.3.22 on page 43), and the ounter is formally de�ned by the 0-CTlabeled transition system (see De�nition 3.3.6 on page 34). Figure 6.2 illustrates these�ve omponents.Sender Reeiver FIFO S2R FIFO R2S Counter Vetor name

A2A ε !0 ε ε A2AS!0

A2A ε ε ?1 ε A2AR?1

A2B ε ε ?0 ε A2BR?0

B2B ε !1 ε ε B2BS!1

B2B ε ε ?0 ε B2BR?0

B2A ε ε ?1 ε B2AR?1

ε a2a ε !1 ε a2aR!1

ε a2a ?1 ε ε a2aS?1

ε a2b ?0 ε + a2bS?0+

ε b2b ε !0 ε b2bR!0

ε b2b ?0 ε ε b2bS?0

ε b2a ?1 ε + b2aS?1+Table 6.1: Synhronization onstraint for the ABP with ounter of suessfully trans-mitted messages.The ABP is then modeled by a synhronized produt of these �ve labeled transitionsystems. Therefore, its set of states is S = {A,B}×{a, b}×{0, 1}∗×{0, 1}∗×N. Table 6.1shows all synhronization vetors, i.e. ations in Σ, of the synhronized produt. For131

Chapter 6. Experimental resultsexample, the �rst vetor A2AS!0 = 〈A2A, ε, !0, ε, ε〉 means that the ation A2A of thesender (Figure 6.2.a) must be synhronized with the sending ation !0 of the FIFOhannel S2R (in Figure 6.2.). This global ation intuitively orresponds to the loopwith label S2R!0 over the state A of the sender in Figure 6.1. Notie that, sine theounter omputes the number of suessfully transmitted messages, its inrement ation'+' should be synhronized with reeiving ations of the hannel S2R (?0 or ?1) thathange the state of the reeiver R (a2b or b2a).6.1.3 Veri�ation of ounter's boundednessWe investigate the question whether the number of suessfully transmitted messages isbounded if the two hannels are bounded. Suppose that these two FIFO hannels arebounded by 2. The answer "no" means that by using the ABP, we an transmit as manymessages as we want from the sender to the reeiver.To exploit the onurreny, we prefer to use labeled event strutures than labeledtransition systems in order to model omponents of the ABP, and to verify the prop-erty above. The synhronized produt of these labeled event strutures w.r.t. thesynhronization vetors in Table 6.1 represents then all behaviors of the ABP. Hene,the synhronized produt is su�ient for verifying this property. Here, we use the
({0, 1}, ε, 2)-ausality proess, denoted by EFF = ({0, 1}, ε, 2)-CP (see Setion 3.3.3),for both bounded hannels S2R and R2S. Figure 6.3 graphially shows EFF. Labeledevent trees introdued in Setion 3.3.1 are onvenient for the sender as well as for thereeiver, beause they have no onurreny. Finally, one an let any ausality proessgiven in Setion 3.3.2 model the ounter. Let ES ,ER,ECT respetively denote the labeledevent strutures for the sender, the reeiver, and the ounter.

!0

!0

!0 ?0 !1

?0 !1

!0 ?1 !1

!1

!0

!0 ?0 !1

?1 !1

!0 ?1 !1

Figure 6.3: The ({0, 1}, ε, 2)-ausality proess for the empty-initialized FIFO hannelover {0, 1} that is bounded by 2, i.e. ({0, 1}, ε, 2)-BC.Notie that these omponent labeled event strutures EFF,ES ,ER, and ECT are alldeterministi and oherent. The identity relation "=" is ompatible with EFF,ES ,ER dueto the �niteness of their marking sets, and moreover, with a re�exive and strit ompati-bility. One an verify that (ECT,≤) is also a well-preordered labeled event struture withre�exive and strit ompatibility where ≤ is the "less than or equal" relation over N. Let
E denote the synhronized produt of ES ,ER,EFF,EFF,ECT w.r.t. the synhronizationonstraint Σ shown in Table 6.1; and let 4 be the produt preorder ⊗(=,=,=,=,≤).Thanks to Lemma 4.1.8 on page 65, (E,4) is a well-preordered labeled event struturewith re�exive and strit ompatibility. Here, there is no internal ation, i.e. Στ = ∅.132

6.1. Modeling and veri�ation of heterogeneous systemsTherefore, we an use the trunation tehnique to answer the boundedness problem (asdesribed in Setion 4.3.3).Let us give some details on how the trunation algorithm (Algorithm 5.12 on page 123)works based on the loal utting ontext (< ⋓ ⊇,Cl). It is worth notiing that the ad-equate order is the subset order over (loal) on�gurations, i.e. E = ⊆. One mayobtain the answer "yes" whih means that the ABP is unbounded without ompletelyonstruting the trunation T(E,< ⋓ ⊆,Cl). In other word, any strit ut-o� event isenough to onlude the unboundedness. Moreover, the verifying proess an quiklyterminate while using depth-�rst-searh. That means, in the unfolding algorithm, whenan event e is extended before another event e′, the suessors of e should be extendedbefore e′ too if these suessors are not ut-o� events. In order to do so, we simply imple-ment the possible extension PE (see Algorithm 5.12) as a stak based on the priniplelast-ome-�rst-served.
A2AS!0

A2AS!0

A2AS!0

a2bS?0+

b2bS?0

A2BR?0

B2BS!1

B2BS!1 b2aS?1+

a2aS?1 a2aR!1

B2AR?1

b2bS?0 b2bR!0

b2bR!0

a2aR!1
e1 e2

e5 e6

e7 e10

e11

e12 e13

e14 e15

e3

e9

e16

e4

e8

Figure 6.4: Obtained pre�x for boundedness problem of the ABP initialized by s0 =
〈A, a, ε, ε, 0〉.Figure 6.4 illustrates the pre�x of E that is generated by our algorithm. Its eventset is thus a subset of the trunation T(E,< ⋓ ⊆,Cl). The loal on�guration of event
e16 is the set ≥(e16) = {e1, e4, e6, e8, e11, e13, e15, e16}, and its marking is M(≥(e16)) =
〈A, a, ε, ε, 2〉. Event e16 is thus a marking-strit uto� event due to the partiular event ε,or more preisely, due to the empty on�guration ∅ ∈ Cl, beauseM(∅) = 〈A, a, ε, ε, 0〉 ≺
〈A, a, ε, ε, 2〉 =M(≥(e16)) (see De�nition 4.3.18 on page 84). Thanks to Theorem 4.3.19,the ABP is unbounded. Hene one an onlude that the ounter ounting suessfullytransmitted messages is unbounded too beause the sender and the reeiver have �nite133

Chapter 6. Experimental resultsstates and the two hannels are bounded.6.1.4 Veri�ation of lossy FIFOs' overabilityNow, assume that the two hannels S2R and R2S may loose messages. There aredi�erent formal models for these lossy hannels, e.g. the v-initialized lossy FIFO hannelsover {0, 1} with or without internal ations Στ (see De�nition 4.1.2 on page 63 andDe�nition 4.1.3 on page 63). However, for the simpliity of the demonstration, weprefer to de�ne lossy FIFO hannels over {0, 1} as the labeled transition systems FL =
(M∗, !M ∪ ?M,→FL, ε) where M = {0, 1}, and

→FL = {〈w, !m,w′〉 /m ∈M,w,w′ ∈M∗ and w′ 4 w.m}

∪ {〈w′′.m.w, ?m,w′〉 /m ∈M,w,w′, w′′ ∈M∗ and w′ 4 w}In the de�nition above, 4 is the subword order over M∗ (see De�nition 2.2.1 on page 12).The labeled transition system FL intuitively means that the hannel may loose messagesat the moment of sending or reeiving a message. In other words, for example, a reeivingoperation ?m from a word w′′.m.w onsists of the loss of its pre�x w′′, the normalreeiving ation ?m, and �nally another loss of messages in w. Moreover, one ould �ndout that the subword order 4 is re�exively ompatible with the transition relation →FL.Let us use the same labeled transition systems as in the previous setion for thesender, the reeiver, and the ounter, and denote them respetively by LTSS ,LTSR, and
CT. The lossy ABP, denoted by SP, is the synhronized produt of LTSS ,LTSR,FL,FL,CTw.r.t. the synhronization onstraint ΣSP shown in Table 6.1. One an easily verify thatthe produt preorder 4SP = ⊗(=,=,4,4,≤) is ompatible with SP with a re�exive andstrong ompatibility.In the alternating bit protool, the sender ontinues to transmit a new messageonly if the reeiver has already reeived the previous one and has replied by sendingan aknowledgment. Assume that, in our simple model of the ABP, the old messageorresponds to some onseutive messages 0 in the hannel S2R. The possibility oftransmitting a new message orresponds thus to the fat that the sender's state is B. Inthis ase, one may obviously dedue that, in the hannel S2R, suh onseutive messages
0 may not be preeded by some message 1. Hene, all states 〈B, s, 10, w, n〉 where
s ∈ {a, b}, w ∈M∗, n ∈ N, are not reahable in SP. For instane, the state 〈B, b, 10, ε, 0〉is not overed in the well-preordered transition system (SP,4SP), i.e. 〈B, b, 10, ε, 0〉 6∈
<SP(post∗

SP
). In the view of bakward analysis, it is formulated as the following:

〈A, a, ε, ε, 0〉 6∈ pre∗SP(4SP(〈B, b, 10, ε, 0〉))We will verify this statement based on our forward analysis tehnique disussed in Se-tion 4.1.3. Let us de�ne a funtion pb : (!M ∪ ?M) ×M∗ → Pf (M∗) suh that, for all
m ∈M and w′ ∈M∗,

• pb(!m,w′.m) = {w′, w′.m},
• pb(!m,w′) = {w′} if w′ ∈ (M∗ \ (M∗.m)), and
• pb(?m,w′) = {m.w′}.The two �rst properties orrespond to the sending ations !m in the lossy FIFO hannel

FL above while the last one orresponds to the reeiving ations ?m where m ∈ M .One an easily verify that pb is a �nite pred-basis for (FL,4) by De�nition 4.1.13. As a134

6.1. Modeling and veri�ation of heterogeneous systemsonsequene, let us denote RFL = (M∗, !M∪?M,→RFL
, ε) the pb-reverse of (FL,4, pb).We obtain thus

→RFL
= {〈w′.m, !m,w′〉, 〈w′.m, !m,w′.m〉 /m ∈M,w′ ∈M∗}

∪ {〈w′, !m,w′〉 /m ∈M,w′ ∈ (M∗ \ (M∗.m))}

∪ {〈w′, ?m,m.w′〉 /m ∈M,w′ ∈M∗}

= {〈w′.m, !m,w′〉 /m ∈M,w′ ∈M∗}

∪ {〈w′, !m,w′〉 /m ∈M,w′ ∈M∗}

∪ {〈w′, ?m,m.w′〉 /m ∈M,w′ ∈M∗}Here, for the purpose of an easy understanding, we rename the ations in RFL byusing ?m ∈ ?M instead of !m ∈ !M and reversely. Then, RFL di�ers from the ε-initialized FIFO hannel over M , i.e. (M,ε)-FF, only on the reeption-error transitions
{〈w′, ?m,w′〉 /m ∈ M,w′ ∈ M∗}. These transitions intuitively orrespond to sendingations of messages that the hannel loses afterward. Therefore, we assoiate a simplelabeled event struture that is derived from the {0, 1}-ausality proess {0, 1}-CP (seeDe�nition 3.3.27) in order to representing RFL. This labeled event struture, denotedby ERFL

, is shown in Figure 6.5.a. The additional events illustrated by double framesorrespond to reeption-errors. They are not in on�it with any other events. In ourexample, for simpliity, we restrit reeption-error events of a given label ?m ∈ ?M to bepairwise ausal. While onsidering RFL as a FIFO hannel like system where its state isa word, messages are inserted at the beginning of the word by sending ations, and oneremoves messages at the end of the word by reeiving ations.Let us denote by E!, E?, and E′
? respetively the sets of sending events, of (normal)reeiving events and of reeption-error events in ERFL

. These event sets are pairwisedisjoint. The marking funtionM is then de�ned like in the ({0, 1}, ε)-ausality proess(De�nition 3.3.27) that formally isM(C) = (ΠW
?M (LW(σ?)))

−1(ΠW
!M (LW(σ!))) where σ!and σ? are respetively the linearisations, w.r.t. the onverse relation ≥ of the ausality

≤, of (C ∩E!) and (C ∩E?) = (C \E! \E′
?). Reall that reeption-errors in RFL do nothange the ontent of the hannel, the marking funtionM does not take reeption-errorsevents E′

? into aount. More interestingly, events in E′
? give the strong ompatibility inthe well-preordered labeled transition system (ER,<).Figure 6.5.b illustrates our labeled event struture ER

FL′ for the pb-reverse of (FL
′,4

, pb) where FL
′ is the labeled transition system modeling the 10-initialized lossy FIFOhannel over {0, 1}, i.e. FL

′ = (M∗, !M ∪ ?M, 10,→FL). Intuitively, ER
FL′ omes fromthe ({0, 1}, 01)-ausality proess (see De�nition 3.3.31 on page 49).For the sender LTSS , the reeiver LTSR, and the ounter CT, we simply de�ne three�nite pre-basis pbS, pbR, and pbCT respetively as follows:

• pbS(l, s) = {s′ / s′
l
−→S s} for all 〈l, s〉 ∈ {A2A,A2B,B2A,B2B} × {A,B},

• pbR(l, s) = {s′ / s′
l
−→R s} for all 〈l, s〉 ∈ {a2a, a2b, b2a, b2b} × {a, b}, and

• pbCT(l, n) = {n′ /n′ l
−→CT n} for all 〈l, n〉 ∈ {+,−} × (N \ {0}),

pbCT(+, 0) = {1}, and pbCT(−, 0) = {0}.It is worth notiing that LTSS ,LTSR,CT are all deterministi and their dual labeledtransition systems are themselves respetively (see De�nition 4.1.12 on page 66). The135

Chapter 6. Experimental results
!0

!0

!0 ?0 !1

?0 !1

!0 ?1 !1

!1

!0

!0 ?0 !1

?1 !1

!0 ?1 !1

?0?0?0
?1?1?1

!0

!0

!0 ?0 !1

?0 !1

!0 ?1 !1

?0

?1

!1

!0

!0 ?0 !1

?1 !1

!0 ?1 !1

?0
?0?0

?1
?1?1

(a)
(b)

Figure 6.5: Labeled event strutures modeling the pb-reverse RFL and RFL
′ of lossyFIFO hannels FL and FL

′ over {0, 1} where: (a) FL is initially empty, and (b) theinitial state of FL
′ is 10.three �nite pre-basis above give rise to these (dual) labeled transition systems by meansof their pb-reverse. For example, the pb-reverse of (LTSS,=, pbS), denoted by RS , isintuitively the well-preordered transition labeled system (LTSS ,=) if one renames ationsin RS so that A2B beomes B2A, and B2A beomes A2B reversely. Therefore, one mayuse the preordered labeled event tree ES (ER) for representing the pb-reverse RS (RRresp.) (see Setion 3.3.1) and any k-ausality proess CP for representing the pb-reverse

RCT of (CT,≤, pbCT) (see Setion 3.3.2).Now, let us de�ne the �nite pre-basis pbSP of the lossy ABP SP suh that, for all
l = 〈lS , lR, lS2R, lR2S , lCT〉 ∈ ΣSP, s = 〈sS , sR, sS2R, sR2S , sCT〉 ∈ SSP = {A,B}×{a, b}×
(!M ∪ ?M)× (!M ∪ ?M)× {+,−},

pbSP(l, s) = pbS(lS , sS)× pbR(lR, sR)× pb(lS2R, sS2R)×

pb(lR2S , sR2S)× pbCT(lCT, sCT)The pb-reverse RSP of (SP,4SP, pbSP) is �nally a synhronized produt of the pb-reverses RS , RR, RFL, RFL
′ , and RCT. Moreover, RSP is the indued labeled transitionsystem of a synhronized produt ESP of ES , ER, ERFL

, ER
FL′ , and ECT. It is worthnotiing that, due to the hange of ations' name disussed above, the synhronizedonstraint Σ′

RSP
for RSP as well as for ESP that is shown in Table 6.2 slightly di�ersfrom the one for the synhronized produt SP given in Table 6.1.Thanks to Lemma 4.1.11 on page 66, both (RSP,<SP) and (ESP,<SP) are well-136

6.2. The tool EsuSender Reeiver FIFO S2R FIFO R2S Counter Vetor name
A2A ε ?0 ε ε A2AS?0

A2A ε ε !1 ε A2AR!1

A2B ε ε !1 ε A2BR!1

B2B ε ?1 ε ε B2BS?1

B2B ε ε !0 ε B2BR!0

B2A ε ε !0 ε B2AR!0

ε a2a ε ?1 ε a2aR?1

ε a2a !1 ε ε a2aS!1

ε a2b !1 ε − a2bS!1−
ε b2b ε ?0 ε b2bR?0

ε b2b !0 ε ε b2bS!0

ε b2a !0 ε − b2aS!0−Table 6.2: Synhronization onstraint of the synhronized produt RSP.preordered with re�exive ompatibility. Notie that the initial state ofRSP is 〈B, b, 10, ε, 0〉.It follows thus from Lemma 4.1.14 that
pre∗SP(4SP({〈B, b, 10, ε, 0〉})) = 4SP(post∗RSP

({〈B, b, 10, ε, 0〉}))

= 4SP(post∗RSP
)Moreover, (ESP,<SP) is onverse well-preordered labeled event struture with re�exive(strong) ompatibility, the sub-overing question an be answered by using our trunationtehnique for sub-overability problem (see Setion 4.3.2).By using the trunating algorithm (Algorithm 5.12 on page 123), we obtain thetrunation T = (ESP, (<SP ⋓ D),Cl

ESP
) that is illustrated in Figure 6.6.a. Boxes withdouble frame represent uto� events, and among them, the ones with dashed frame arereeption-errors. Experimental result gives 58 reahable states that are the marking of allon�gurations in the trunation T. The table in Figure 6.6.b shows all maximal markingsw.r.t. the produt preorder <SP as well as on�gurations in aordane. Therefore,thanks to Lemma 4.3.9 on page 81, one an dedue that

pre∗SP(4SP({〈B, b, 10, ε, 0〉})) = 4SP(post∗RSP
)

= 4SP(M(CT))Hene,
(
4SP(post∗RSP

)
)
∩ {〈A, a,w,w′ , c〉 /w,w′ ∈M∗, c ∈ N}

= (4SP(〈A, a, 01, ε, 0〉)) ∪ (4SP(〈A, a, ε, 0, 0〉))and thus, 〈A, a, ε, ε, 0〉 6∈
(
4SP(post∗R

SP′
)
). It means that, in the lossy ABP SP, one annever obtain states 〈B, b, 10, ε, n〉, for all n ∈ N, from the initial state 〈A, a, ε, ε, 0〉.6.2 The tool EsuIn order to test appliability of the results previously shown, we have developed a model-heker named Esu [esu℄. This tool is implemented in Objetive Caml (Oaml) and137

Chapter 6. Experimental results
(a)

B2BR!0

B2BS?1

B2AR!0 b2aS!0− b2bR?0

b2bS!0

A2AS?0

A2AR!1

A2BR!1

A2AS?0 b2bR?0 a2aR?1

a2aS!1

a2bS!1−

A2AS?0

A2AR!1

A2BR!1 b2aS!0− b2bR?0

b2bS!0

B2BS?1

B2BR!0

B2AR!0

B2BS?1 a2aR?1 a2aR?1

a2aS!1

a2bS!1−

B2BS?1

B2BR!0

B2AR!0 a2aR?1

a2aS!1

a2bS!1−

A2AS?0

A2AR!1

A2BR!1

B2BS?1 a2aR?0

A2AS?0

A2AR!1

A2BR!1

B2BS?1

B2BR!0

B2AR!0

e1 e2

e3

e5

e7

e9

e10

e11

e6

e8

e4

(b)Con�guration C M(C)

{e1, e3, e4, e6} 〈A, a, 01, ε, 0〉
{e1, e3, e4, e5, e6, e7, e8, e9, e10} 〈A, a, ε, 0, 0〉

{e1, e3, e4} 〈A, b, 1, ε, 0〉
{e1, e3, e4, e5, e7, e9} 〈A, b, ε, 01, 0〉

{e1, e3, e4, e5, e6, e7, e8} 〈B, a, 0, ε, 0〉
{e1, e3, e4, e5, e6, e7, e8, e9, e10, e11} 〈B, a, ε, 10, 0〉

{} 〈B, b, 10, ε, 0〉
{e1, e3, e4, e5, e7} 〈B, b, ε, 1, 0〉Figure 6.6: Trunation for sub-overability problem of ERSP

where M(∅) =
〈B, b, 10, ε, 0〉: (a) The trunation, (b) Maximal markings w.r.t. <SP.
138

6.2. The tool Esupermits the veri�ation of termination, boundedness and quasi-liveness properties forthe lass of (in�nite-state) well-strutured systems.Systems are modeled in Esu as synhronized produts of (heterogeneous) omponentsin a hierarhial way: a omponent itself an be a synhronized produt of other ompo-nents. The semantis of omponents is given in terms of labeled event strutures. Esuhas three important modules dediated to modeling systems, unfolding (synhronizedproduts) and the trunation tehnique respetively.Component labeled event strutures In fat, in the implementation of ourEsu tool,eah labeled event struture is represented by an objet of a lass in whih Extendis a method and struture variables are instane variables (see Chapter 5). Theonstrut of a synhronized produt an be done on the �y, and of ourse it isnot neessary to onstrut the omponents ompletely in advane but they an beonstruted on demand too.Several standard systems, e.g. ounter, queue, are prede�ned in Esu by simplyde�ning onurrent labeled event strutures given in Setion 3.3 on page 32. Esufailitates also extensions by new types of omponents.Unfolding synhronized produt Due to the onstrutive de�nition of the unfolding,a synhronized produt an be used as a omponent in Esu. Hene, we assoiatesynhronized produts to a lass derived from the base lass for labeled event stru-tures. In addition, this lass has an instane variable for synhronisation vetors V(see Setion 3.3.4 on page 54). The well-known unfolding tehnique, more preiselyfuntion Extend for synhronization produts [ER99℄, is implemented in this lass(see Setion 5.3 on page 109). In order to extend a pre�x of a synhronized prod-ut, the main part of this funtion Extend is omputing new possible ombinationsof events in omponent labeled event strutures, and onsequently, updating V.Trunation tehnique This module onerns trunation tehniques given in Chap-ter 4. In fat, Algorithm 5.12 on page 123 is implemented with loal uttingontexts in Setion 4.3 on page 78. Esu provides not only MMillan's and Es-parza's tehniques [MM95a, ERV96℄ for bounded Petri nets but also our teh-niques [HST07℄ for termination, boundedness and quasi-liveness of (in�nite) well-preordered systems (see Setion 4.3.3 on page 83).Esu has its own �le format in order to desribe input systems. Some details onthis format are given in the next setion. In addition, Esu also provides a onverterthat allows transforming a standard net's �le [pep℄ to Esu's one. As a ommand-lineprogram, Esu's options give users a versatility ontrol of what veri�ation problem tosolve, of what tehnique to use, and also how the results are reported to users. Thanksto the Graphviz appliation [gra℄, Esu permits users to have a graphial representationof the generated pre�x.6.2.1 Modeling Petri netsSine all experimental results in Setion 6.3 are taken for Petri nets, let us detail on howPetri nets are modeled in Esu. As disussed in Setion 2.5 and along with this work, weassume that a Petri net is generally a synhronized produt of n ounters where n is thenumber of its plaes. Within Esu, one an assoiate any labeled event struture givenin Setion 3.3.2 to eah plae, and the synhronization onstraint orresponds to the setof the Petri net's transitions. 139

Chapter 6. Experimental resultsHowever, in some Petri nets, for instane, the one given in Example 5.4.2 on page 124,the plae p2 may not be represented by neither a ounter nor a k-ausality proess.Beause this plae onerns the transition b that tests whether p2 ontains a token but�ring b does not onsume any token on p2. Therefore, when modeling p2 (and also
p4) as a ounter-like labeled transition system, we need a new ation in addition tothe inrement and the derement ones. Formally, the plae p2 may be represented bythe labeled transition system P = (N, {+,−, o},→, 1) where → = {〈n,+, n + 1〉, 〈n +
1,−, n〉, 〈n + 1, o, n + 1〉 /n ∈ N}.6 // number of plaes (ounters)BP 1 1 // p1P1 1 // p2KP 1 1 // p3P1 1 // p4BP 1 0 // p5BP 1 0 // p65 // number of synhronized ationsN O - N N N // aN N - O N N // b- N - N + N // - - N N N + // a'N - N N - + // 'Figure 6.7: An example of Esu's input �leIt is worth notiing that this Petri net is 1-safe. As a onsequene, one an assoiatenot only some labeled event struture of P but also any labeled event struture of P1 =
P|{0,1} to the plae p2. One may realize that the ations +,−, o of P1 are pairwise notindependent. Therefore, we simply use the labeled event tree of P1 in order to representthe plae p2 as well as the plae p4. The Petri net in Example 5.4.2 on page 124 maybe given by the input �le shown in Figure 6.7. The number of plaes, here 6, is givenin the �rst line and plaes are separately desribed in the 6 following lines. Suh a linestarts with a type of some prede�ned labeled event struture in Esu, and additionalparameters ome after this type. In this input �le,

• 'BP b v' stands for the b-bounded proesses initialized by v, i.e. (b, v)-BP (see Se-tion 3.3.2);
• 'P1 v' stands for our labeled event struture for a plae that is bounded by 1 andhas initially v token. Reall that v is either 0 or 1, and 'P1 1' orresponds to thelabeled event tree of P1 disussed above;
• 'KP k v' stands for the (k, v)-ausality proesses, i.e. (k, v)-CP (see Setion 3.3.2).Although these 6 plaes are all 1-bounded, one may assoiate di�erent types to a plaeand obtain �nite pre�xes having the same size. But it is not true when working with Petrinets that are not 1-safe. Some examples and omparisons will be shown in Setion 6.3.2.Moreover, a good hoie for modeling plaes sometimes avoids or redues the redundanyin the generated pre�x of the synhronized produt. This phenomenon is detailed in thenext setion.140

6.2. The tool EsuThe last 6 lines in the input �le (Figure 6.7) give the number of the Petri net'stransitions and desription of these transitions themselves line by line. Eah transition,as usual, intuitively onsists of omponent ations. Notie here that the "do nothing"ation ε is represented by the harater N.6.2.2 Redundany redutionThe advantage of using onurrent labeled event strutures for omponents when unfold-ing is that the synhronized produt not only exploits onurreny between omponentsbut also the intrinsi onurreny inside eah omponent. As onsequene, the onstrut-ing pre�x is hopefully more ompat. However, redundany in the synhronized produtmay ome from omponent events that are onurrent and have the same label at thesame time. In this ase, the generated pre�x of the synhronized produt is usually muhbigger than neessary. This phenomenon is alled the auto-onurreny problem [KK03℄.Let us take an example in order to larify this problem. Figure 6.8.a illustrates abounded Petri net that has three plaes and three transitions. One an simply representsits plaes p1, p2, p3 by using bounded proesses as shown in Figure 6.8.b in the left-to-right order respetively. Hene, the Petri net is represented by the synhronized produt,denoted by ESP = (E,≤,#,L,M), of these bounded proesses w.r.t. to the synhro-nization onstraint Σ = {a, b, c} where a = 〈−,+, ε〉, b = 〈ε,+,−〉, and c = 〈+,−, ε〉.Figure 6.8. gives a pre�x ontaining only 10 events of the synhronized produt. Letus denote S = {s1, s2, s3, s4, s5, s
′
5, s6, s

′
6, s7, s8}, this pre�x is aordingly representedby ESP|S . Reall that a global event in the synhronisation produt is nothing but asynhronization of omponent events, hene, a global one may be illustrated by a losedurve that groups omponent ones as illustrated in Figure 6.8.b. For instane, the losedurve labeled s2 means that V(s2) = 〈e1, f2, ε〉; while both global events s′5, s

′
6 have thesame synhronization vetor, i.e. V(s′5) = V(s′6), and is represented by the same urve.The bounded proess (2, 0)-BP orresponding to the plae p2 onsists of two boundedproess (1, 0)-BP (see De�nition 3.3.13 on page 38). Intuitively, one distinguishes tokenson p2 so that there are onurrent events of the same label in (2, 0)-BP. For example,

f2 is somehow a opy of f1 and vie versa. When omputing the synhronized produtby the unfolding tehnique, f1 and f2 give rises to two di�erent global events labeled
a = 〈−,+, ε〉 that are respetively s1 and s2. However, s1 is in on�it with s2 beausethey orrespond to a same event e1 in the �rst omponent (see De�nition 3.3.39 onpage 54). As a onsequene, the empty on�guration ∅ = (>(s1)) = (>(s2)) has twoextensions s1, s2, i.e. ∅ ⊢ s1 and ∅ ⊢ s2, that satisfy that L(s1) = L(s2) and s1#s2. Itmeans that the synhronized produt is redundant by De�nition 3.2.14 on page 32. Oneagain, s2 is a opy of s1 so that the suessors of s2 are just redundant dupliation of theones of s1. All on�gurations ontaining s2 as well as suessors of s2 may be removedin the global labeled event struture without loss of information up to isomorphism.Let us use the same notation of isomorphism in De�nition 3.2.7 on page 29 foron�gurations and events. We say that two on�gurations C and C ′ of a labeled eventstruture E are isomorphi and write C ≈ C ′ if the two pre�xes E|C and E|C′ areisomorphi, i.e. E|C ≈ E|C′ . By a same manner, two events e, e′ are isomorphi, denotedby e ≈ e′ if their loal on�gurations are isomorphi, i.e. ≥(e) ≈ ≥(e′). In the pre�x
ESP|S , we have 5 pairs of isomorphi events: s1 ≈ s2, s3 ≈ s4, s5 ≈ s6, s7 ≈ s8, and
s′5 ≈ s′6. As disussed above, s2 may be intuitively removed from the pre�x ESP|S as wellas the whole labeled event struture ESP and all on�gurations are still preserved, dueto isomorphism, in E′

SP
= ESP|E\(≤(s2)). Formally, for all on�gurations C of ESP, there141

Chapter 6. Experimental results
c

ba

• •

p1 p2 p3

+

−
e4

−

+
e3

+

−

+

−

−

+
g2

p1 p2 p3

g1e1
e2

f1

f3

f2

f4

s1

s2
s3

s4

s′5, s
′
6

s5

s6

(a) (b)

a
s1

c
s5

c

a
s2

c c

b
s3

c

b
s4

c
s8

s′5
s6 s′6

s7

()
Figure 6.8: Redundany illustration: (a) a bounded Petri net, (b) bounded proessesmodeling its three plaes, and () a pre�x of the synhronized produt of these boundedproesses w.r.t. the Petri net's transitions.exits a on�guration C ′ of E′

SP
suh that C ≈ C ′. Therefore, in order to verify deidableproblems given in Setion 4.3, one intuitively prefers the ompat pre�x ESP|S′ where

S′ = {s1, s3, s5, s
′
5, s7} than the pre�x ESP|S .Moreover, the pre�x ESP|S′ still ontains redundany beause of the extensions s5and s′5 of the on�guration {s1, s3}. Reall that the linearisations of events' labels in ESPorrespond to �ring sequenes of the indued labeled transition system of ESP. Considernow the two on�gurations {s1, s3, s5} and {s1, s3, s

′
5}. The �rst one give rise to labellinearisations LW({s1.s3.s5, s1.s5.s3, s3.s1.s5}) = {abc, acb, bac} while the seond oneorresponds only to label linearisations LW({s1.s3.s

′
5, s3.s1.s

′
5}) = {abc, bac}. Therefore,in order to redue redundany, one would rather keep s5 than s′5 beause one will loosethe label linearisation acb when removing s5. The pre�x ESP|{s1,s3,s5} is intuitively moreompat than the one ESP|{s1,s3,s′5}

. These pre�xes di�er only on whether the ausalitybetween events labeled a and c exists. We say that ESP|{s1,s3,s′5}
is a sub-linearisation of

ESP|{s1,s3,s5}.De�nition 6.2.1. Let E = (E,≤,#,L,M) and E′ = (E′,≤′,#′,L′,M′) be two labeledevent strutures. We say that E is a sub-linearisation of E′ and write E . E′ if E isisomorphi with some labeled event struture (E′,≤′′,#′,L′,M′) where the relation ≤′′is an extension of the ausality ≤′, i.e. (≤′) ⊆ (≤′′).A on�guration C is a sub-linearisation of another one C ′, denoted by C . C ′, if the
C-pre�x E|C is a sub-linearisation of the C ′-pre�x E|C′ .Let us return to the idea of our tehnique for reduing redundany. That is, givena labeled event struture E = (E,≤,#,L,M), trying to remove some event as well as142

6.2. The tool Esuits suessors while preserving label linearisations of E. Suh an event r is alled anuseless event w.r.t. E. Then, one may ontinue by removing another useless event r′w.r.t. E|E\≤(r), and so on. The �nal labeled event struture as well as all intermediateones, denoted by E′, must satisfy that, for all on�gurations C ∈ CE, there exists aon�guration C ′ ∈ CE′ suh that C . C ′. The obtained labeled event struture E′is muh more ompat than E, and has possibly no redundany. In pratie, when Eis onstruted using the unfolding tehnique, suessors of an useless r event may beavoided by not extending r.Notie that CE|E\≤(r)
= CE \ {C ∈ CE / r ∈ C}, hene an event r is useless if for all

C ∈ CE satisfying r ∈ C, there exists a on�guration C ′ ∈ CE suh that r 6∈ C ′ and
C . C ′. This ondition is usually guaranteed by the existene of another event e ∈ Ethat is, for instane, isomorphi and in on�it with r. In the pre�x ESP|S above, onean take r = s1, e = s2 as an example. Formally,

CE = {C ∈ CE / e, r 6∈ C} ∪ {C ∈ CE / e ∈ C} ∪ {C ∈ CE / r ∈ C}It follows from the on�it between e and r that they an not be found in any givenon�guration. As a onsequene, the three subsets above are pairwise disjoint. In order todetermine whether r is useless, one needs to verify if on�gurations in {C ∈ CE / r ∈ C}are sub-linearisations of on�gurations in {C ∈ CE / e ∈ C}. We will show that thisondition is guaranteed in oherent labeled event strutures and one does not have toompute the set of the on�gurations ontaining r as well as the ones ontaining e thatare usually in�nite.However, when r is useless due to e, in general, e is also useless due to r. The di�ultpoint here is to de�ne whih event to remove. In order to integrate our tehnique forreduing redundany into the unfolding tehnique, we naturally use the total order E inwhih events are inserted into or extended in the onstruting pre�x. This order E isa linear extension of the ausality ≤ and is useful to break the symmetry of the notion'useless'. Let us return bak to the example in Figure 6.8. Suppose that s2 is omputedafter s1, i.e. s1 ⊳ s2, one an simply notie that s2 is redundant and will not extend s2.And as a onsequene, the obtained pre�x does not ontain suessors of s2. However,it is worth notiing that useless events an not be independently removed. Beause, anaive solution suh as removing both s2 and s3 due the existene of s1 and s4 satisfying,for instane s1 ⊳ s2 and s4 ⊳ s3, may result in losing some label linearisations. In suh aase, the pre�x E|{s1,s4} as well as E|E\(≤({s2,s3})) ontains no on�guration C suh thateither the on�guration {s1, s3} or the on�guration {s2, s4} is its sub-linearisation. Asa onsequene, the label linearisations ab and ba that are �ring sequenes of the induedlabeled transition system are not preserved. The reason for this 'ounter-example' isthat, after removing s2, in the pre�x E|E\(≤(s2)), s4 is useless due to s3 but not in thereverse sense. Therefore, as stated in the following de�nition, the determination of auseless event not only depends on another event e, but is also based on some E′-pre�xontaining e. As we will see later, this E′-pre�x is the onstruting pre�x manipulatedby the unfolding algorithm and does not ontain any other useless event.De�nition 6.2.2 (E-redundane). Let E = (E,≤,#,L,M) be a deterministi labeledevent struture E = (E,≤,#,L,M), and let E be a linear extension of the ausality ≤.Given a downward-losed set of events E′ ⊆ E, let us denote E′ the E′-pre�x of E. Anevent r ∈ E is E-redundant w.r.t. E′ if there exists another event e ∈ E′ suh that1. e ⊳ r,2. L(e) = L(r), 143

Chapter 6. Experimental results3. e#r,4. (>(e)) ⊆ (>(r)) ⊆ E′, and5. for all f ∈ (⊲(r) ∩ E′), f#e implies f#r.For simpliity, De�nition 6.2.2 onerns only deterministi labeled event struturessuh that their indued labeled transition systems are also deterministi (see Lemma 3.2.5on page 29). For non-deterministi and well-preordered ones, onditions for the markingfuntionM are needed. This is a subjet of future work.The advantages of applying E-redundane de�nition in pratie ome from its sim-pliity. As mentioned above, sine E is the insertion order or extending order of eventsin the onstruted pre�x, one has to look for r only on the part of the labeled eventstruture that has already been built, formally represented by the E′-pre�x. The seondondition is easy to verify while the third and the �fth onditions take only the on-�it relation into aount. So there is no need to ompute global on�gurations. Thisis in line with the partial-order idea of the unfolding tehnique. The fourth onditionof E-redundant event does not mean that e and r are isomorphi. This restrition re-dues somehow the number of useless events that may be de�ned as E-redundant inour tehnique (see Setion 6.3.2). We restrit to two partiular ases that are when
(>(r)) = (>(e)) and when (>(r)) ⊃ (>(e)). These two disjoint ases ould be found inthe example in Figure 6.8. For instane, e = s1, r = s2 and (>(s1)) = (>(s2)) = ∅; or
e = s5, r = s′5 and (>(s5)) = {s1} ⊂ {s1, s3} = (>(s′5)).The main idea of E-redundant events is that they are useless. As in the trunationtehnique (see Chapter 4), they form somehow a frontier between their suessors and theother events, alled non-E-redundant events. By keeping only non-E-redundant events,one obtains a ompat pre�x that preserves needed information for veri�ation and maybe formally de�ned as follows:De�nition 6.2.3. Let E = (E,≤,#,L,M) be a deterministi labeled event strutureand let E be a linear extension of the ausality ≤. An E′-pre�x E′ of E, where E′ is adownward-losed subset of E w.r.t. ≤, is alled a pre�x without E-redundant event if

• for all e ∈ E′, e is not E-redundant w.r.t. E′, and
• for all e ∈ Min≤(E \E′), e is E-redundant w.r.t. E′.Lemma 6.2.4. Let E = (E,≤,#,L,M) be a deterministi labeled event struture andlet E be a linear extension of the ausality ≤. E has an unique pre�x without E-redundantevent.Proof. We �rst prove by ontradition the uniqueness of the pre�x without E-redundantevent. Suppose that there exists two di�erent pre�xes without E-redundant event E′and E′′. Let E′ and E′′ respetively denote their sets of events. Observe that E′ and

E′′ are downward losed w.r.t. ≤, moreover, sine these sets are not the same, the set
X = (E′ \E′′)∪ (E′′ \E′) is not empty. Let r be the minimal event of X w.r.t. the totalorder E. Without loss of generality, assume that r ∈ E′, and onsequently, r 6∈ E′′. Itfollows from the hoie of minimal event r that (>(r)) is a subset of both E′ and E′′,and at the same time, (⊲(r)) ∩ E′ = (⊲(r)) ∩ E′′. Hene, r is E-redundant w.r.t. E′′beause r ∈ Min≤(E \ E′′), and more preisely, it is due to some event e ∈ (⊲(r) ∩E′′).Event r is therefore also E-redundant w.r.t. E′ beause e ∈ E′. This ontradits to thefat that r ∈ E′. Therefore, we have E′ = E′′ and the two pre�xes E′ and E′′ are thesame.Now, we will prove the existene of a pre�x of E without E-redundant event. Let P bethe set of E′-pre�xes of E, here E′ ⊆ E, satisfying that for all events e ∈ Min≤(E \E′):144

6.2. The tool Esu
• e is E-redundant w.r.t. the E′-pre�x of E 1, and
• for every E-redundant event f ∈ E′ w.r.t. the E′-pre�x of E, e ⊳ f .

P is not empty beause it ontains, of ourse, E. Notie that the set of all pre�xes of Eis partially ordered w.r.t. the inlusion order over their event sets, and moreover, everytotally ordered subset of them admits a greatest lower bound. It is straightforward that
P is too. Let us de�ne a funtion F from P to the set of pre�xes of E as follows: forevery pre�x E′ ∈ P, let E′ denote its event set,

F(E′) =

E′ if E′ ontains no E -redundant event w.r.t. E′the (E′ \ (≤(f)))-pre�x of E′, where
f = MinE{r ∈ E′ / r is E -redundant w.r.t. E′}, otherwise.It diretly follows from the seond property of pre�xes in P and the hoie of the minimal

E-redundant event f in the de�nition of F that F(E′) ∈ P for all E′ ∈ P, i.e. F : P→ P.Moreover, F(E′) is a pre�x of E′ and hene is always smaller than or equal to E′ w.r.t.the inlusion order over event sets. Therefore, F has a �xed point. It means thatthere exists a pre�x E′ ∈ P satisfying F(E′) = E′. One again, by de�nition of F andthe set P, one an dedue that this pre�x E′ is a pre�x without E-redundant eventby De�nition 6.2.3.Let NR(E,E) denote the event set of the pre�x without E-redundant event of E. Thisset is downward-losed w.r.t. the ausality order ≤. The NR(E,E)-pre�x of E may begenerated by an algorithm that is slightly di�erent from the unfolding one (Algorithm 5.1on page 89) as below.Algorithm 6.1: Unfolding algorithm with redundany redution1 begin2 (Ê,PE) := Init()3 while PE 6= ∅ do4 take an event e in PE5 i f isRedundant(Ê,PE, e) then6 PE := PE \ {e}7 Ê := RemoveEvent(Ê, e)8 else9 (Ê,PE) := Extend(Ê,PE, e)10 end if11 end while12 endIn Algorithm 6.1, there are two additional funtions: isRedundant and RemoveEvent.The �rst one is an implementation of De�nition 6.2.2 while the seond one simply removesa E-redundant event e from both extension set PE and the onstruted pre�x Ê. In thisway, E-redundant events are removed and will not be extended. As a onsequene, thepre�x Ê at the end of the main loop (lines 3-11) is exatly the NR(E,E)-pre�x of E. Inthe implementation of this algorithm, we simply de�ne E as the extending order thatdepends on the hoie of event in line 4. Hene, it is worth notiing that when alling1This orresponds to the seond item in De�nition 6.2.3. 145

Chapter 6. Experimental results
isRedundant(Ê,PE, e), e is the maximal event, w.r.t. E, in (Ê \ PE) ∪ {e}, and at thesame time, is the minimal event, w.r.t. E, in PE. So that, for the �fth property of
E-redundant event in De�nition 6.2.2, we have (⊲(e) ∩ E) = (Ê \ PE).Let us give some more details on the funtion isRedundant in Algorithm 6.2. The set
X in line 2 ontains all events satisfying the �rst and fourth properties in De�nition 6.2.2.The loop's ondition at lines 4 restrits to events e′ in X that has a same label as e. Itrespets the seond property. The third and the last ones are handled by the test inline 5. The funtion terminates and returns true whenever an event e′ satis�es this test.Otherwise, it �nally returns false (line 9).Algorithm 6.2: Funtion isRedundant determines whether e is E-redundant by De�ni-tion 6.2.2 where E is the order of extending events in the unfolding algorithm by default.1 funtion isRedundant(Ê,PE, e)2 begin3 X := {e′ ∈ (Ê \ PE) / (>̂(e)) ⊆ (>̂(e′))}4 for eah e′ ∈ {e′ ∈ X / L̂(e′) = L̂(e)} do5 i f e′ #̂ e and (#̂(e′) \ PE) ⊆ (#̂(e) \ PE) then6 return true7 end if8 end for9 return false10 endProposition 6.2.5. Let E = (E,≤,#,L,M) be a deterministi, oherent, and �nitely-branhing labeled event struture and let E be a linear extension of the ausality ≤.For every on�guration C ∈ CE, there exists a on�guration C ′ ∈ CE that ontains no
E-redundant event, i.e. C ′ ⊆ NR(E,E), andM(C) =M(C ′).Proof. Let us de�ne an order EC on CE by: for all on�guration C,C ′ ∈ CE, let land l′ be respetively the linearisations of C and C ′ w.r.t. the total order E, C EC

C ′ if l is lexiographially smaller than or equal to l′ w.r.t. E. It follows from theimportant property of lexiographial orders that the well-foundedness and totality of Eare preserved. It means that EC is also a well-founded and total order over CE.Therefore, for every on�guration C ∈ CE, the set {C ′ ∈ CE /M(C ′) = M(C)} iswell-founded and admits a minimal on�guration w.r.t. EC. We will prove that theminimal on�guration Cm w.r.t. EC of the set {C ′ ∈ C(E) /M(C ′) =M(C)} ontainsno E-redundant event, so that Cm ⊆ NR(E,E).Let us prove this by ontradition, i.e. assume that Cm 6⊆ NR(E,E), and let r =
MinE(Cm\NR(E,E)). Beause E is a linear extension of the ausality≤, for all e ∈ (>(r)),we have that e ⊳ r, and onsequently, (>(r)) ⊆ NR(E,E). Hene r ∈ Min≤(E \NR(E,E))and we get from De�nition 6.2.3 that r is a E-redundant event w.r.t. the NR(E,E)-pre�x of E and to some event e ∈ NR(E,E). Let us denote C− = (⊲(r) ∩ Cm) and
C+ = (⊳(r) ∩ Cm). We have thus C− and C+ are disjoint and Cm = C− ∪ C+ ∪ {r}.Moreover, it holds that C− ⊆ NR(E,E).It follows from the de�nition of E-redundant event (De�nition 6.2.2) that:1. e ⊳ r,146

6.2. The tool Esu2. L(e) = L(r).3. e#r. That implies e 6∈ Cm and hene e 6∈ C−.4. (>(e)) ⊆ (>(r)), and onsequently, (>(e)) ⊆ C−. Beause, on the one hand, ofthe downward-losed property, w.r.t. the ausality ≤, of Cm that (>(r)) ⊆ Cm,and on the other hand, of the linear extension E of ≤ that (>(r)) ⊆ (⊲(r)).5. for all f ∈ (⊲(r) ∩ NR(E,E)), f#e implies f#r. Observe that C− ⊆ (⊲(r) ∩
NR(E,E)). Sine (C−∪{r}) ⊆ Cm, we get that r is in on�it with no event in C−.Therefore, e is in on�it with no event f ∈ C−.By ombining the last three properties above, one obtains that e is an extension eventof C−, i.e. C− ⊢ e. More preisely, (C− ∪{r}) . (C− ∪ {e}). Due to the restrition thatthe indued labeled transition system is deterministi, M(C− ∪ {r}) = M(C− ∪ {e}).Thanks to Lemma 3.2.10 on page 30, it follows from the ohereny of E that the twosu�xes of E based on the on�gurations (C− ∪ {r}) and (C− ∪ {e}) give rise to thesame set of markings. In other words, there exists a on�guration C ′

m ∈ CE suh that
(C− ∪ {e}) ⊆ C ′

m andM(Cm) =M(C ′
m).Sine f ⊲r⊲e for all f ∈ C+, we have thus C ′

m ⊳CCm by de�nition. This ontraditsto the minimality of Cm. Therefore, the assumption above is not true, and onsequently
Cm ontains no E-redundant event.A onsequene of Proposition 6.2.5 is that the NR(E,E)-pre�x of E preserves informa-tion for verifying problems based on overability (see Setion 4.3.2) on E. This tehniquefor reduing redundany is well adapted to the trunating tehnique (see Chapter 4) when
EC is a linear extension of the adequate order over on�gurations. One only needs toompute the pre�x E|NR(E,E)) of E that ontains no E-redundant event and trunate itafterward. The �nal pre�x preserves all markings of E. Intuitively, as shown in the proofof Theorem 4.2.14 as well as of Proposition 6.2.5, the key here is that marking of a on-�guration C is preserved by another on�guration C ′ ⊳CC whenever C ontains a uto�event or a E-redundant event. Thanks to the well-foundedness of EC and the adequateorder, it gives rise to a on�guration in the pre�x that ontains neither a E-redundantevent nor a uto� event.Reall that the adequate order used in de�nition of ut-o� events fores that sues-sors of a ut-o� event are also ut-o� ones. Hene, ut-o� events form an upward-losedset w.r.t. the ausality. We also aim at giving another de�nition of E-redundany basedon some improved order E satisfying the adequate property. In suh a ase, suessorsof E-redundant events are also E-redundant events, and that may make our tehniquefor reduing redundany more e�ient. However, the existene of suh a total order
E, said total adequate order, is still an open problem for trunating tehnique as statedin [ERV96℄.It is worth notiing that our tehnique for reduing redundany improves substan-tially the trunating tehnique. Beause in many ases, E-redundant events may notbe seen as ut-o� events whatever adequate order is used (see Setion 4.2.3). However,they may be safely removed when onsidering the on�it relation in addition as in Def-inition 6.2.2. For example, as illustrated in Figure 6.8, two isomorphi events s1 and
s2 an not be ut-o� events, but one of these events may be removed beause of the
E-redundany. Experimental results may be found in Setion 6.3.2.Let us return to De�nition 6.2.2. If one modi�es it so that an event r is E-redundantevent w.r.t. a on�guration C ⊆ (⊲(r) ∩NR(E,E)) in the plae of another event e, then147

Chapter 6. Experimental resultsProposition 6.2.5 still holds. Notie that the loal on�guration ≥(r) must be a sub-linearisation of suh a on�guration C (see De�nition 6.2.1) and r must be in on�it withsome event in C. This idea oinides with the one of trunating tehnique used in Pep.In other words, like utting ontexts for uto� events, E-redundant property of eventsmay based on the purely loal utting ontext or some arbitrary one (see Setion 4.2).However, in De�nition 6.2.2, we restrit to a simple ase where C = ((>(r)) ⊢ e) forsome event e satisfying L(e) = L(r) and e#r. This avoids to ompute the on�gurationsin E|⊲(r)∩NR(E,E)
when determining whether an event r is E-redundant, and respets wellthe partial-order idea.Last but not least, there is a hallenge to go further by giving some redundant rite-rion based on the global utting ontext. That means a on�guration is somehow uselessdue to another one so that we an remove redundant events while keeping all on�gu-rations by means of isomorphism or the sub-linearisation relation (De�nition 6.2.1). Asseen in the proof of Proposition 6.2.5, when a on�guration C ontains a E-redundantevent r w.r.t. another event e, the on�guration (C− ∪ {r}) = (⊲(r) ∩ NR(E,E)) ∪ {r}is a sub-linearisation of the on�guration (C− ∪ {e}). One may hope that C is a sub-linearisation of another on�guration C ′ suh that (C−∪{e}) ⊆ C ′ afterward. Formally,if C . D then for every on�guration C ′ extended from C, i.e. C C ′, there exists aon�guration D′ extended from D, i.e. D D′ suh that C ′ . D′ (*). However, it is nottrue. The reason is that the sub-linearisation relation in De�nition 6.2.1 is not preservedin general w.r.t. the extension relation (see Setion 3.1.2).

−

+

+

−
f3

−
f2

+

−

+
g2

(1, 1)-BP (2, 1)-BP (1, 1)-BP

e1

e2

f1

f4

g1

s1

s2

s6, s7

s3

s4

s5

(a)
a

s1

b
s6

b
s2

a
s3

c
s5

c

b

s4

s7

(b)

Figure 6.9: Sub-linearisation relation over on�gurations is not preserved by the exten-sion relation: (a) the three omponents, and (b) a pre�x of the synhronized produtw.r.t. the synhronization Σ = {a, b, c} where a = 〈−,+, ε〉, b = 〈ε,−, ε〉, c = 〈ε,+,−〉.Figure 6.9 gives an ounter-example of the statement (*) above as a ase study forour future work. In the pre�x of the synhronization produt of the three omponents
(1, 1)-BP, (2, 1)-BP, and (1, 1)-BP, the on�guration C = {s2, s3} is a sub-linearisationof the on�guration D = {s1, s2}, i.e. C . D. Beause there is no ausality between s1and s2. Intuitively, the �rst on�guration orresponds only to the label linearisation bawhile the seond one orresponds to both the label linearisations ab and ba. Considernow the on�guration C ′ = {s2, s3, s4} that is extended from the on�guration C, i.e.
C C ′. This on�guration C ′ gives two label linearisations that are bac and cba.However, one an not �nd any on�guration that ontains both s1 and s2, and gives atleast the same label linearisations as the on�guration C ′ at the same time. Formally,there is no on�guration D′ suh that D D′, i.e. {s1, s2} ⊆ D′, and C ′ . D′.148

6.3. Experiment results on Petri netsThis ounter-example intuitively shows the reason that the NR(E,E)-pre�x of E onlypreserves markings of E as stated in Proposition 6.2.5, and not its label linearisations, orin other words, not the �ring sequenes of the indued labeled transitions system LTS
Eof E. Suppose here that s1 ⊳ s2 ⊳ s3 ⊳ s4 ⊳ s5 ⊳ s6 ⊳ s7. When applying our tehnique,the obtained pre�x will not ontain the E-redundant event s3 due to the existene of s1.In other words, the label linearisation cba will not be generated from suh a pre�x. Butthis is not a problem for veri�ation of reahability-based properties.Our tehnique for reduing redundany disussed above is implemented in Esu andsome experimental results will be shown in Setion 6.3.2.6.3 Experiment results on Petri netsIn order to evaluate the bene�ts of our approah we have experimented Esu on somewell-known examples and ompared with two tools for Petri nets: the Pep environmentwhih provides an unfolding tool for bounded Petri nets [GB96, pep℄, and Tina whihanalyzes arbitrary Petri nets using strutural analysis tehniques and forward Karp-Miller reahability analysis [BRV04, tin℄. The exeution times in our experimental resultsare obtained on an Intel(R) Pentium(TM) 1.2GHz, with 1GB memory.6.3.1 1-safe Petri netsTable 6.3 shows our experimental results as well as the one obtained by using PEPtools [GB96, pep℄ on various one-safe Petri nets. These benhmark examples are olletedby Corbett, MMillan, Melzer, Merkel and Römer, and detailed desription an be foundin [Kho03, Cor96, MR97℄. In the table, the olumns S and T respetively refer to thenumber of plaes and the number of transitions of the Petri nets; while the olumns E and

Ecf represent the numbers of events and of uto�-events of the trunation, respetively.The last olumn named T(s) gives the exeution time in seonds. When the trunationmay not be omputed within 1 minute, we mark the exeution time by −.Table 6.3: Experimental results on one-safe Petri nets.Pep EsuProblem (size) S T E Ecf T(s) E Ecf T(s)Cyli (3) 23 17 23 4 0.00 23 4 0.00Cyli (6) 47 35 50 7 0.00 50 7 0.02Cyli (9) 71 53 77 10 0.00 77 10 0.06Cyli (12) 95 71 104 13 0.00 104 13 0.11DAC (6) 42 34 53 0 0.00 53 0 0.00DAC (9) 63 52 95 0 0.00 95 0 0.02DAC (12) 84 70 146 0 0.00 146 0 0.06DAC (15) 105 88 205 0 0.01 206 0 0.12DME (2) 135 98 122 4 0.01 122 4 0.15DME (3) 202 147 321 9 0.06 321 9 0.62DME (4) 269 196 652 16 0.18 652 16 2.17DME (5) 336 245 1145 25 0.51 � � �DP (6) 36 24 96 30 0.00 96 30 0.02DP (8) 48 32 176 56 0.01 176 56 0.05DP (10) 60 40 280 90 0.01 280 90 0.12DP (12) 72 48 408 132 0.02 408 132 0.22 149

Chapter 6. Experimental results Pep EsuProblem (size) S T E Ecf T(s) E Ecf T(s)DPD (4) 36 36 296 81 0.01 296 81 0.11DPD (5) 45 45 790 211 0.06 790 211 0.58DPD (6) 54 54 1892 499 0.34 1892 499 3.32DPD (7) 63 63 4314 1129 3.14 � � �DPFM (2) 7 5 5 2 0.00 5 2 0.00DPFM (5) 27 41 31 20 0.00 31 20 0.00DPFM (8) 87 321 209 162 0.00 209 162 0.06DPH (4) 39 46 336 117 0.01 533 207 0.25DPH (5) 48 67 1351 547 0.13 2949 1389 5.83DPH (6) 57 92 7231 3377 6.90 � � �Elevator (1) 63 99 157 59 0.00 157 59 0.07Elevator (2) 146 299 15 0 0.00 827 331 1.19Elevator (3) 327 783 3895 1629 1.21 3895 1629 36.79Furnae (1) 27 37 326 189 0.21 394 235 0.09Furnae (2) 40 65 3110 1989 1.21 4980 3331 7.83Furnae (3) 53 99 20759 13826 28.19 � � �GasNQ (2) 71 85 164 45 0.01 169 46 0.08GasNQ (3) 143 223 1191 399 0.10 1301 437 3.29GasQ (1) 28 21 15 2 0.00 21 4 0.00GasQ (2) 78 97 164 53 0.00 173 54 0.08GasQ (3) 284 475 1262 486 0.10 1297 490 5.58GasQ (4) 1428 2705 9853 3986 15.05 � � �Hartstone (25) 127 77 102 1 0.00 102 1 0.07Hartstone (50) 252 152 202 1 0.01 202 1 0.42Hartstone (75) 377 227 302 1 0.04 302 1 1.36Hartstone (100) 502 302 402 1 0.08 402 1 3.09MMGT (1) 50 58 58 20 0.00 58 20 0.01MMGT (2) 86 114 643 259 0.03 1178 493 2.00Over (2) 33 32 35 8 0.00 41 10 0.01Over (3) 52 53 187 53 0.00 296 81 0.18Over (4) 71 74 807 243 0.05 1556 495 3.17Over (5) 90 95 3846 1288 1.89 � � �Ring (3) 39 33 47 11 0.00 47 11 0.01Ring (5) 65 55 166 36 0.00 167 37 0.08Ring (7) 91 77 403 79 0.02 403 79 0.32Ring (9) 117 99 795 137 0.08 795 137 1.31RW (6) 33 85 397 327 0.00 397 327 0.06RW (9) 48 181 4627 4106 0.02 4627 4106 2.24Sentest (25) 104 55 216 40 0.02 223 39 1.23Sentest (50) 179 80 241 40 0.02 248 39 1.23Sentest (75) 254 105 266 40 0.02 273 39 1.23Sentest (100) 329 130 291 40 0.03 298 39 2.15Sine these Petri nets are all one-safe, we model most of them by synhronizedproduts of 1-bounded proesses. However, ertain examples may not be presentedbased on bounded proesses, and we simply hoose the appropriate labeled event treeas disussed in Setion 6.2.1. The examples' name are shown in itali in Table 6.3. For150

6.3. Experiment results on Petri netsthis �rst implementation, our Esu tool has not muh amelioration yet, the omputationtime is little slow when omparing with Pep. Observe that Pep has integrated someadvaned tehniques for the unfolding proess, for instane, an improved struture ofthe queue of possible extension as well as an optimized routine for generating possibleextensions in the unfolding algorithm. Hene, Pep an ahieve signi�ant speed up.We use the Esparza and Römer's adequate order [ERV96℄ for determining the trun-ation. In many ases, Pep and Esu give trunations of the same size and the samenumber of uto� events. However, it is worth notiing that the utting ontext used inPep di�ers from the loal utting ontext used in Esu. In Pep, a ut-o� event is de�nedbased on a on�guration that may not be a loal one. As a onsequene, one an �ndout more ut-o� events and the generated pre�x is more ompat. Experimental resultsindiates well this fat. For instane, Esu gives a trunation twie bigger than the oneobtained by Pep on example 'Over (3)', and explodes on example 'Over (4)'. We havealso observed that the version of Pep used in these experiments does not always produeorret results, for example, in the ase of 'Elevator (2)'.6.3.2 General bounded Petri netsWe have then tested Esu on some parameterized, onurrent and prodution systemsthat are modeled by Petri nets. Our ase studies onsist of
• Central Server Model (CSM) [MBC+95℄,
• Continuous Transportation (CTS) [MBC+95℄,
• Flexible Manufaturing System (FMS) [CM97℄,
• Kanban [CM97℄,
• Mutual Exlusion
• Multi poll [MC99℄, and
• Mesh 2x2 [MBC+95℄.In Table 6.4, K de�nes the initial number of resoures, i.e. number of tokens inparameterized plaes of these Petri nets, representing the systems; E (resp. Ecf , N , M)denotes the number of events in the trunation (resp. uto� events, nodes in Tina'sreahability tree, markings omputed by Tina), and a `�' means that the analysis didnot �nish within 10 minutes.As explained in Setion 6.2.2, when unfolding Petri nets whih are not one-safe, i.e.

K > 1, the trunation may ontains many redundant events due to the auto-onurrenyproblem. This redundany does not have too muh in�uene on CSM and Multi Pollbeause tokens obtained by redundant events will be separately unfolded. In otherexamples, e.g. FMS, Kanban or Mesh 2x2, sine there are ombinations of these tokensafterward, the size of onstruted unfolding explodes very quikly.Thanks to the tehnique for reduing redundany implemented in Esu, one an ob-serve that trunations omputed by Esu are smaller than or equal to the ones omputedby Pep, w.r.t. the number of events E. This redundany is entirely eliminated on theMutual Exlusion and the Swimming Pool. However, redundany in the unfolding annot be avoided in other ases, e.g. Mesh and Kanban. It is worth notiing that the resultsin Table 6.4 are obtained while using the MMillan trunation tehnique. The Esparza,Römer and Vogler's one is more advantageous only on Mesh 2x2. By ombining withour tehnique for reduing redundany, for K = 2 in Mesh 2x2, Esu gives a trunationontaining 2481 events of whih 1280 events are ut-o�, i.e. |E| = 2481, |Ecf | = 1280,after 4.58 seonds. 151

Chapter6.E
xperimentalr

esults

Pep Tina EsuExample K E Ecf T(s) M N T(s) E Ecf T(s)CSM 2 75 23 0.00 76 208 0.00 29 9 0.00CSM 5 180 66 0.00 584 2264 0.00 64 20 0.02CSM 10 605 231 0.02 3564 16224 0.06 121 37 0.08CSM 40 8405 3321 5.33 183844 961684 12.13 456 132 5.61FMS 1 81 19 0.00 120 345 0.00 32 7 0.00FMS 2 26668 10204 84.35 3444 16311 0.06 585 124 0.54FMS 3 � � � 48590 297382 2.84 � � �Kanban 1 31 9 0.00 160 616 0.00 31 9 0.00Kanban 2 58824 22946 575.47 4600 28120 0.10 8827 2127 44.83Mutual Exlusion 5 120 100 0.00 3 4 0.00 4 2 0.00Mutual Exlusion 10 440 400 0.00 3 4 0.00 4 2 0.00Mutual Exlusion 40 6560 6400 0.10 3 4 0.00 4 2 0.00Mesh 2x2 1 48 16 0.00 1881 7776 0.02 48 16 0.01Mesh 2x2 2 � � � 200544 1325472 17.62 18968 11296 132.30Multi Poll 2 123 48 0.00 11328 75241 0.56 155 48 0.04Multi Poll 5 354 147 0.00 230664 1728412 30.06 191 48 0.10Multi Poll 10 1019 432 0.02 � � � 211 48 0.22Multi Poll 40 12359 5292 1.90 � � � 331 48 1.32Swimming Pool 2 388 168 0.00 21 36 0.00 12 2 0.00Swimming Pool 3 37593 18009 162.61 56 126 0.00 18 3 0.01Swimming Pool 5 � � � 252 756 0.00 30 5 0.02Swimming Pool 10 � � � 3003 12012 0.04 60 10 0.18Swimming Pool 40 � � � 1221759 6516048 189.96 240 40 96.38Table 6.4: Experimental results on some parameterized Petri nets. 152

6.3. Experiment results on Petri netsWithout the tehnique for reduing redundany, the di�erene between the results ofPep, Tina and Esu omes from the hoie of modeling Petri nets' plaes. Intuitively,when using Tina there is no onurrene between tokens of a same plaes, or in otherwords, a plae is represented by an event tree. While using Pep, eah plae orrespondsmore or less to a K-bounded proess. The unfolding of synhronized produts of thesebounded proess, in examples of parameterized Petri nets here, do not really make useof the onurreny in bounded proesses, but reversely, ommits the auto-onurrenyproblem. For instane, on the Mutual Exlusion orresponding to a simple Petri net with4 transitions and 5 plaes, Pep generates trunations that are approximately K2 timesbigger than neessary. Notie here that Esu uses 1-ausality proesses, i.e. (1, v)-CPwhere v is the initial number of tokens, in order to model these parameterized Petri nets.
2-CP 1-CP M -CP like M -CP like (*)

K E Ecf T(s) E Ecf T(s) E Ecf T(s) E Ecf T(s)2 12 2 0.00 12 2 0.00 21 4 0.00 21 4 0.003 4136 2855 7.19 18 3 0.00 67 14 0.02 71 14 0.024 � � � 24 4 0.01 205 43 0.10 214 44 0.105 � � � 30 5 0.02 616 120 0.71 637 121 0.766 � � � 36 6 0.02 1872 324 5.90 1932 325 6.467 � � � 42 7 0.05 5858 892 61.34 6045 901 61.848 � � � 48 8 0.07 � � � � � �Table 6.5: Experimental results on the Swimming Pool with di�erent hoies of ompo-nents' labeled event strutures. Results in the last olumns are obtained without usingour tehnique for reduing redundany, i.e. the trunation may ontain E-redundantevent(s).Let us give some details on how the hoie of modeling a plae is related to theauto-onurreny problem. Table 6.5 shows results on the Swimming Pool while plaesare represented by the following labeled event strutures:
• 2-ausality proesses (2-CP): eah inrement event has two diret suessors thatare inrement ones and onurrent; derement events are pairwise onurrent (seeSetion 3.3.2).
• 1-ausality proesses (2-CP): it di�ers from 2-CP only on the fat that all inrementevents are pairwise ausal.
• M -CP like: it is derived from the M -ausality proess for FIFO-hannels wherethe alphabet M is a singleton (see Setion 3.3.3). We have not only that inrementevents are pairwise ausal but also that derement events are too.When modeling a plae like M -CP, there are few events that are onurrent andlabeled by the same label. These events onerns the derement ation that removesinitial tokens of suh a plae. Hene, the unfolding have not muh useless events. Byomparing the 6 last olumns in Table 6.5, one an see that the results obtained with orwithout our tehnique for reduing redundany do not really di�er. When using 2-CP,the onurreny between derement events as well as between inrement ones makes theunfolding explode quikly. Our tehnique for reduing redundany does not work well inthis ase.However, when using 1-CP, redundant events may be ompletely avoided. The gen-erated trunation has 6 ∗K events where 6 is the number of transition in the Swimming153

Chapter 6. Experimental resultsPool and K is the number of tokens initially in parameterized plaes. Although it isnot shown in Table 6.5, it is worth notiing that the trunation obtained while using
K-bounded proess (K-BP in Setion 3.3.2) has the same size 6∗K. Moreover, this trun-ation intuitively onsists of K disjoint sub-strutures of whih eah is the trunationobtained on the Swimming Pool 1, i.e. K = 1.6.3.3 Unbounded Petri netsWe are motivated by a model-heker for in�nite systems, but almost all benhmarkexamples of Petri net are unfortunately bounded. The few unbounded ones are notvery suitable due to some advaned type of transitions, e.g. Petri nets with inhibitorars or with transfer ars. Therefore, for experimental purpose, we've reated a simpleunbounded Petri net whih represents a onurrent Produer/Consumer system with nindependent prodution lines and m mahines on eah line. This example is derivedfrom the one of MMillan [MM95a℄. Figure 6.10 illustrates the orresponding Petri netwhere n = m = 3.

ts

• • •

ps

n lines

Figure 6.10: A onurrent Produer/Consumer Petri net with m = 3 and n = 3.Intuitively, this Petri net onsists of an n×m matrix of plaes, and another partiularplae ps for storing the �nal produt that is ombined from the produts in n lines. Eahplae among the n plaes at the top of n olumns (lines), has initially a token on itself.Transitions representing mahines allow to move a token either from a plae down to theplae just below it in the same olumn, or from a plae at the bottom of a olumn up tothe plae at the top of the same olumn. And lastly, there is a transition ts whih allowsto, if every plaes at the bottom of n olumns has a token on it, add a new token on theplae ps, and move all tokens at the bottom plaes of n olumns to its top plaes.The lassial tehnique for deiding boundedness problem of Petri nets is to omputea Karp-Miller graph. On the example above, the orresponding graph ontains manyuseless interleavings of ations from di�erent prodution lines. The size of this graphis thus exponential in the size of the example. As shown in Table 6.6, Tina gives154

6.3. Experiment results on Petri netsreahability trees that represents mn markings and have a size of O(mn). Notie that inthe last three ases, veri�ation using Tina an not �nish within 10 minutes.Tina Esu
m×n T T(s) E Ecf T(s)
5×5 4636 0.02 25 5 0.00
7×5 21396 0.12 35 5 0.01

10×5 115911 1.22 50 5 0.02
5×7 125552 1.16 36 8 0.01
7×7 1094241 14.87 50 8 0.01

10×7 � � 71 8 0.02
5×10 � � 46 6 0.01
7×10 � � 66 6 0.02

10×10 � � 96 6 0.04Table 6.6: Experimental results on the Produer/Consumer.However, Esu resolves the boundedness problem on this Produer/Consumer systemwhile exploiting well its intrinsi onurreny. The pre�x generated by Esu is intuitivelysmaller than or equal to the Petri net representing this system in whih there are exatly
|E| = (m− 1) ∗ n + 1 transitions.

155

Chapter 7ConlusionsThe veri�ation of in�nite-state onurrent systems presents two di�ult hallenges:�rst dediated tehniques (suh as symboli model heking, abstration or trunations)must be used to deal with the in�nite state spae, and then redution tehniques (suh aspartial-order methods) must exploit the onurreny in the models to �ght state-spaeexplosion. In this thesis, we have shown how to ombine the unfolding tehnique, apartial-order method, with analysis tehniques for well-strutured (in�nite-state) sys-tems.We have presented a general framework for partial-order modeling and analysis ofheterogeneous systems. In this approah, systems are modeled as labeled event stru-tures [Win86℄. The modelization is no more on the system level (that does not aptureonurreny), but rather on a behavioral, branhing and non-interleaving level [SNW96℄.In labeled event strutures, atomi omputation steps of the orresponding system arerepresented by events, and onurreny as well as ausality between suh events, if ex-ists, are expliitly desribed. Our labeled event strutures for standard systems suh asounters and FIFO hannels demonstrate that the onurreny may be well aptured inthis approah.A reative system generally onsists of several omponents. Classi models suh assynhronized produts of labeled transition systems turn out not to be satisfatory whenomponents are onurrent systems. Our solution is modeling them by synhronizedproduts of labeled event strutures. The main advantage is that we model not only theonurreny between omponents but also the intrinsi onurreny inside eah of them.Moreover, it permits hierarhial modeling of systems.On the one hand, at the behavior level, labeled event strutures preserve all infor-mation about systems in terms of Mazurkiewiz's trae semantis [Maz86℄, and may bediretly used for reasoning about system's properties. On the other hand, sine there isno interleaving of onurrent events, their ompat size admits e�ient veri�ation algo-rithms. The model-heking onerns �rst in algorithmially onstruting suh labeledevent strutures. We have adapted the unfolding tehnique [MM95a℄, initially developedfor Petri nets, to labeled event strutures. Our algorithms are proved to be orret whenonstruting omponent labeled event strutures, suh as ounters and FIFO hannels,and allow to e�iently build their synhronized produts.Most of veri�ation problems for in�nite-state systems are undeidable. Fortunately,the deidability of interesting properties, for instane termination and boundedness,holds on a sublass of in�nite systems having some weak-simulations that are well-preorders. We have introdued well-preordered labeled event strutures and shown thatdeidable results [FS01℄ may be obtained in this model. In other words, by giving157

Chapter 7. Conlusionsa de�nition of a general utting-ontext, we have shown that well-preordered labeledevent strutures admit some �nite pre�xes that preserve reahability-based properties.Hene, suh pre�xes may be algorithmially omputable, and more interestingly, theyare more ompat than interleaving ones [Fin91℄ due to the partial-order approah. Wealso explain how to obtain standard bakward analysis results by using our forwardpartial-order analysis.Finally, a prototype implementation, the Esu tool, of our method has been devel-oped. Boundedness, termination, and state overing problems may be heked usingEsu. In addition, it has an advaned tehnique allowing to redue the auto-onurrenyproblem that is well-known for Petri nets' unfolding. By using this tehnique and thetrunation tehnique together, one generally obtains a more ompat pre�x, and it some-times produes an "optimal" pre�x with just enough events to preserve reahability-basedinformation. The �rst pratial evaluations are very enouraging.7.1 Future workThe work presented in this thesis an be extended in several ways. We give here a nonexhaustive enumeration of possible objetives that, of ourse, are not really disjoint.
• The �rst possible extensions should onern the modelization. As disussed in Se-tion 3.3.2 on page 37 and shown in experimental results in Setion 6.3.2 on page 151,one needs to hoose a value for the parameter k when modeling ounters by ausal-ity proesses. The unfolding algorithm then reates k inreasing events when itis neessary. This fat may give rise to harmful auto-onurreny [KK01, KK03℄and is di�erent from the original idea of the unfolding tehnique [MM95a℄. Onepossible solution onsists of not only improving our unfolding algorithm but alsoof making use of our 0-ausality proess. It ertainly demands adapting the trun-ation tehnique for synhronized produts of labeled event strutures so that itdoes not stritly rely on the �nitely-branhing property of the omponents.Moreover, we also aim at giving appropriate labeled event strutures for standardomponents other than ounters and FIFO hannels in order to apply our methodson a larger body of realisti heterogeneous systems.
• De�ning the semantis of given systems as labeled event strutures and/or design-ing dediated unfolding algorithms for those systems is sometimes hard. It requiressome prior study on the system's onurreny beause the independene betweenevents should be expliitly given. In fat, it is not always possible nor desiredto have spei� algorithms. Although one may use our event trees ontaining noonurreny for any omponent system, it is preferable to give a general algorithmapable of determining independenes between events while e�iently onstrutingthe orresponding labeled event struture. Suh an algorithm is given in [HST07℄allowing to onstrut a (omponent) labeled event struture from its indued la-beled transition system. The on�its between events are omputed on-the-�y byomparing the markings of their interleavings if they exist. As a result, by applyingthis algorithm, one obtains orresponding M -ausality proesses from labeled tran-sition systems modeling FIFO hannels over M . However, this algorithm requiresmodi�ation in order to be appliable to algorithmi onstrution of synhronizedproduts of labeled event strutures.158

7.1. Future work
• Almost all results in this thesis are stated for nondeterministi labeled event stru-tures in whih a on�guration orresponds to some set of system's states. Althoughsymboli methods [BCM+92, BW94℄ are not disussed in this work, we intend touse them in onjuntion with our methods. We also plan to onsider aelerationtehniques [BW94, Sut00℄, as a tool for trunating (in�nite) labeled event stru-tures, hene enforing the termination of our algorithms while preserving reaha-bility properties.
• Finding abstration algorithms is a good solution in order to build more om-pat and onurrent event strutures. Strutural properties may be used to stati-ally ompute over-approximations of the reahability set of a Petri net as shownin [EM00℄, adapting suh results to our framework may be possible. Another bighallenge for us is to avoid abstration algorithms that manipulate system's statesas standard abstration tehniques, but rather giving algorithms that omputeappropriate over-approximations of system's onurreny. In other words, suh al-gorithms would abstrat away ausality and on�it information that is irrelevantw.r.t. to a desired property.
• We plan to work on improvement of our unfolding algorithm, and in partiular,to deal with the auto-onurreny problem on synhronized produts of labeledevent strutures. Even though our �rst attempt is enouraging for reahability-based veri�ations (see Setion 6.2.2 on page 141), it turns out not to be entirelysatisfatory sine the trunation does not preserve Mazurkiewiz's trae semantis.

159

Bibliography[AAB99℄ P. A. Abdulla, A. Annihini, and A. Bouajjani. Symboli veri�ation oflossy hannel systems: Appliation to the bounded retransmission protool.In Tools and Algorithms for Constrution and Analysis of Systems (TACAS),volume 1579 of LNCS, pages 208�222. Springer, 1999.[ABC94℄ A. Arnold, D. Bégay, and P. Crubillé. Constrution and analysis of transitionsystems with MEC. World Sienti� Publishing, 1994.[A�J00℄ P. A. Abdulla, K. �er	ans, and B. Jonsson. Algorithmi analysis of programswith well quasi-ordered domains. Information and Computation, 160(1-2):109�127, 2000.[ACJT96℄ P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General deidabilitytheorems for in�nite-state systems. In Symposium on Logi in ComputerSiene (LICS), pages 313�321, 1996.[ACJT00℄ P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. Algorithmi analysisof programs with well quasi-ordered domains. Information and Computation,160(1-2):109�127, 2000.[AD94℄ R. Alur and D. L. Dill. A theory of timed automata. Theoretial ComputerSiene, 126(2):183�235, 1994.[AIN00℄ P. A. Abdulla, S. P. Iyer, and A. Nylén. Unfoldings of unbounded Petrinets. In Computer Aided Veri�ation (CAV), volume 1855 of LNCS, pages495�507. Springer, 2000.[AJ93℄ P. A. Abdulla and B. Jonsson. Verifying programs with unreliable hannels.In Symposium on Logi in Computer Siene (LICS), pages 160�170. IEEEComputer Soiety, 1993.[AJ94℄ P. A. Abdulla and B. Jonsson. Undeidable veri�ation problems for pro-grams with unreliable hannels. In International Colloquium on Automata,Languages and Programming (ICALP), volume 820 of LNCS, pages 316�327.Springer, 1994.[AJ96℄ P. A. Abdulla and B. Jonsson. Verifying programs with unreliable hannels.Information and Computation, 127(2):91�101, 1996.[AN82℄ A. Arnold and M. Nivat. Comportements de proessus. In Colloque AFCET"Les mathématiques de l'Informatique", pages 35�68, 1982.[Arn92℄ A. Arnold. Systèmes de transitions �nis et sémantique des proessus ommu-niants. Masson, 1992. 161

Bibliography[BBF+01℄ B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrui,P. MKenzie, and P. Shnoebelen. Systems and Software Veri�ation: model-heking tehniques and tools. Springer, 2001.[BCK04℄ P. Baldan, A. Corradini, and B. König. Verifying �nite-state graph grammars:An unfolding-based approah. In International Conferene on ConurrenyTheory, volume 3170 of LNCS, pages 83�98. Springer, 2004.[BCM+92℄ J. R. Burh, E. M. Clarke, K. L. MMillan, D. L. Dill, and L. J. Hwang. Sym-boli model heking: 1020 states and beyond. Information and Computation,98(2):142�170, 1992.[BHFJ03℄ A. Benveniste, S. Haar, E. Fabre, and C. Jard. Distributed monitoring ofonurrent and asynhronous systems. In International Conferene on Con-urreny Theory, volume 2761 of LNCS, pages 1�26. Springer, 2003.[BHK06℄ P. Baldan, S. Haar, and B. König. Distributed unfolding of Petri nets. InFoundations of Software Siene and Computation Strutures (FoSSaCS),volume 3921 of LNCS, pages 126�141. Springer, 2006.[BHR06℄ P. Bouyer, S. Haddad, and P.-A. Reynier. Timed unfoldings for networksof timed automata. In Automated Tehnology for Veri�ation and Analysis(ATVA), volume 4218 of LNCS, pages 292�306. Springer, 2006.[BM99℄ A. Bouajjani and R. Mayr. Model heking lossy vetor addition systems.In Symposium on Theoretial Aspets of Computer Siene (STACS), volume1563 of LNCS, pages 323�333. Springer, 1999.[Bo78℄ G. V. Bohmann. Finite state desription of ommuniation protools. Com-puter Networks (and ISDN Systems), 2:361�372, 1978.[BRV04℄ B. Berthomieu, P.O. Ribet, and F. Vernadat. The tool Tina � onstrutionof abstrat state spaes for Petri nets and time Petri nets. InternationalJournal of Prodution Researh, 42(14), 2004.[Bry86℄ R. E. Bryant. Graph-based algorithms for boolean funtion manipulation.IEEE Transations on Computers, 35(8):677�691, 1986.[BSW69℄ K.A. Bartlett, R.A. Santlebury, and P.T. Wilkinson. A note on reliable full-duplex transmission over half-duplex links. Communiations of the ACM,12(5):260�261, 1969.[BW94℄ B. Boigelot and P. Wolper. Symboli veri�ation with periodi sets. In Com-puter Aided Veri�ation (CAV), volume 818 of LNCS, pages 55�67. Springer,1994.[BZ83℄ D. Brand and P. Za�ropulo. On ommuniating �nite-state mahines. Jour-nal of the ACM, 30(2):323�342, 1983.[CCJ06℄ F. Cassez, T. Chatain, and C. Jard. Symboli unfoldings for networks oftimed automata. In Automated Tehnology for Veri�ation and Analysis(ATVA), volume 4218 of LNCS, pages 307�321. Springer, 2006.162

Bibliography[CE81℄ E. M. Clark and E. A. Emerson. Design and synthesis of synhronizationskeletons using branhing-time temporal logi. In Logi of Programs, volume131 of LNCS, pages 52�71. Springer, 1981.[CES86℄ E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automati veri�ation of�nite-state onurrent systems using temporal logi spei�ations. ACMTrans. Program. Lang. Syst., 8(2):244�263, 1986.[CF97℄ G. Céé and A. Finkel. Programs with quasi-stable hannels are e�etivelyreognizable (extended abstrat). In Computer Aided Veri�ation (CAV),volume 1254 of LNCS, pages 304�315. Springer, 1997.[CGL94℄ E. M. Clarke, O. Grumberg, and D. E. Long. Model heking and abstration.ACM Transations on Programming Languages and Systems (TOPLAS),16(5):1512�1542, 1994.[CGP00℄ J.-M. Couvreur, S. Grivet, and D. Poitrenaud. Designing a LTL model-heker based on unfolding graphs. In International Conferene on Applia-tions and Theory of Petri Nets (ICATPN), pages 123�145, 2000.[CGP01℄ J.-M. Couvreur, S. Grivet, and D. Poitrenaud. Unfolding of produts of sym-metrial Petri nets. In International Conferene on Appliations and Theoryof Petri Nets (ICATPN), volume 2075 of LNCS, pages 121�143. Springer,2001.[CJ99℄ H. Comon and Y. Jurski. Timed automata and the theory of real numbers.In International Conferene on Conurreny Theory, volume 1664 of LNCS,pages 242�257. Springer, 1999.[CJ04℄ T. Chatain and C. Jard. Symboli diagnosis of partially observable onur-rent systems. In Formal Desription Tehniques for Distributed Systems andCommuniation Protools (FORTE), volume 3235 of LNCS, pages 326�342.Springer, 2004.[CJ06℄ T. Chatain and C. Jard. Complete �nite pre�xes of symboli unfoldings ofsafe time Petri nets. In International Conferene on Appliations and Theoryof Petri Nets (ICATPN), volume 4024 of LNCS, pages 125�145. Springer,2006.[CJEF96℄ E. M. Clarke, S. Jha, R. Enders, and T. Filkorn. Exploiting symmetry intemporal logi model heking. Formal Methods in System Design, 9(1/2):77�104, 1996.[CLM89℄ E. M. Clarke, D. E. Long, and K. L. MMillan. Compositional model hek-ing. In Symposium on Logi in Computer Siene (LICS), pages 353�362,1989.[CM97℄ G. Ciardo and A. S. Miner. Storage alternatives for large strutured statespaes. In Computer Performane Evaluation, volume 1245 of LNCS, pages44�57. Springer, 1997.[Cor96℄ J.C. Corbett. Evaluating deadlok detetion methods for onurrent software.IEEE Transations on Software Engineering, 22(3), 1996. 163

Bibliography[DJN04℄ J. Desel, G. Juhás, and C. Neumair. Finite unfoldings of unbounded Petrinets. In International Conferene on Appliations and Theory of Petri Nets(ICATPN), volume 3099 of LNCS, pages 157�174. Springer, 2004.[DJS99℄ C. Dufourd, P. Jan£ar, and Ph. Shnoebelen. Boundedness of reset P/Tnets. In International Colloquium on Automata, Languages and Programming(ICALP), volume 1644 of LNCS, pages 301�310. Springer, 1999.[EC82℄ E. A. Emerson and E. M. Clark. Using branhing time temporal logi tosynthesize synhronization skeletons. Siene of Computer Programming,2(3):241�266, 1982.[EFM99℄ J. Esparza, A. Finkel, and R. Mayr. On the veri�ation of broadast proto-ols. In Symposium on Logi in Computer Siene (LICS), pages 352�359,1999.[EH00℄ J. Esparza and K. Heljanko. A new unfolding approah to LTL model hek-ing. In International Colloquium on Automata, Languages and Programming(ICALP), volume 1853 of LNCS, pages 475�486. Springer, 2000.[EH01℄ J. Esparza and K. Heljanko. Implementing LTL model heking with netunfoldings. In International SPIN Workshop, volume 2057 of LNCS, pages37�56. Springer, 2001.[EM00℄ J. Esparza and S. Melzer. Veri�ation of safety properties using integerprogramming: Beyond the state equation. Formal Methods in System Design,16(2), 2000.[ER99℄ J. Esparza and S. Römer. An unfolding algorithm for synhronous produtsof transition systems. In International Conferene on Conurreny Theory,volume 1664 of LNCS, pages 2�20. Springer, 1999.[ERV96℄ J. Esparza, S. Römer, and W. Vogler. An improvement of MMillan's un-folding algorithm. In Tools and Algorithms for Constrution and Analysis ofSystems (TACAS), volume 1055 of LNCS, pages 87�106. Springer, 1996.[ERV02℄ J. Esparza, S. Römer, and W. Vogler. An improvement of mmillan's unfold-ing algorithm. Formal Methods in System Design, 20(3):285�310, 2002.[ES96℄ E. A. Emerson and A. P. Sistla. Symmetry and model heking. FormalMethods in System Design, 9(1/2):105�131, 1996.[esu℄ Esu. http://www.labri.fr/~tran/esu/.[FGM+92℄ J. C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez, andJ. Sifakis. A toolbox for the veri�ation of LOTOS programs. In Inter-national Conferene on Software Engineering (ICSE), pages 246�259, 1992.[Fin87℄ A. Finkel. A generalization of the proedure of Karp and Miller to wellstrutured transition systems. In International Colloquium on Automata,Languages and Programming (ICALP), volume 267 of LNCS, pages 499�508.Springer, 1987.[Fin90℄ A. Finkel. Redution and overing of in�nite reahability trees. Informationand Computation, 89(2):144�179, 1990.164

http://www.labri.fr/~tran/esu/

Bibliography[Fin91℄ A. Finkel. The minimal overability graph for Petri nets. In Appliations andTheory of Petri Nets, volume 674 of LNCS, pages 210�243. Springer, 1991.[Fin94℄ A. Finkel. Deidability of the termination problem for ompletely spei�edprotools. Distributed Computing, 7(3):129�135, 1994.[FS00a℄ A. Finkel and G. Sutre. An algorithm onstruting the semilinear Post*for 2-Dim Reset/Transfer VASS. In Mathematial Foundations of ComputerSiene (MFCS), volume 1893 of LNCS, pages 353�362. Springer, 2000.[FS00b℄ A. Finkel and G. Sutre. Deidability of reahability problems for lasses oftwo ounters automata. In Symposium on Theoretial Aspets of ComputerSiene (STACS), volume 1770 of LNCS, pages 346�357. Springer, 2000.[FS01℄ A. Finkel and Ph. Shnoebelen. Well-strutured transition systems every-where! Theoretial Computer Siene, 256(1-2):63�92, 2001.[FS02℄ H. Fleishhak and C. Stehno. Computing a �nite pre�x of a time Petrinet. In International Conferene on Appliations and Theory of Petri Nets(ICATPN), volume 2360 of LNCS, pages 163�181. Springer, 2002.[GB96℄ B. Grahlmann and E. Best. Pep - more than a Petri net tool. In Tools andAlgorithms for Constrution and Analysis of Systems (TACAS), volume 1055of LNCS, pages 397�401. Springer, 1996.[GHP92℄ P. Godefroid, G. J. Holzmann, and D. Pirottin. State-spae ahing revisited.In Computer Aided Veri�ation (CAV), volume 663 of LNCS, pages 178�191.Springer, 1992.[God90℄ P. Godefroid. Using partial orders to improve automati veri�ation methods.In Computer Aided Veri�ation (CAV), pages 176�185, 1990.[gra℄ Graphviz - A graph visualization software. http://www.graphviz.org/.[GS97℄ S. Graf and H. Saïdi. Constrution of abstrat state graphs with PVS. InComputer Aided Veri�ation (CAV), volume 1254 of LNCS, pages 72�83.Springer, 1997.[GW91℄ P. Godefroid and P. Wolper. Using partial orders for the e�ient veri�ationof deadlok freedom and safety properties. In Computer Aided Veri�ation(CAV), volume 575 of LNCS, pages 332�342. Springer, 1991.[Haa99℄ S. Haar. On ourrene net semantis of Petri nets. Researh Report 3718,INRIA Lorraine, 1999.[HCF+02℄ F. Herbreteau, F. Cassez, A. Finkel, O. Roux, and G. Sutre. Veri�ation ofembedded reative ��o systems. In Latin Amerian Theoretial INformatis(LATIN), volume 2286 of LNCS, pages 400�414. Springer, 2002.[Hel99℄ K. Heljanko. Deadlok and reahability heking with �nite omplete pre-�xes. Tehnial Report A56, Laboratory for Theoretial Computer Siene,HUT, Espoo, Finland, 1999. 165

http://www.graphviz.org/

Bibliography[HKK02℄ K. Heljanko, V. Khomenko, and M. Koutny. Parallelization of the Petri netunfolding algorithm. In Tools and Algorithms for Constrution and Analysisof Systems (TACAS), volume 2280 of LNCS, pages 371�385. Springer, 2002.[HKT96℄ P. Hoogers, H. Kleijn, and P. Thiagarajan. An event struture semantis forgeneral Petri nets. Theoretial Computer Siene, 153(1-2):129�170, 1996.[Hol97℄ G. J. Holzmann. The model heker Spin. IEEE Transations on SoftwareEngineering, 23(5):279�295, 1997.[HST07℄ F. Herbreteau, G. Sutre, and T-Q. Tran. Unfolding onurrent well-strutured transition systems. In Tools and Algorithms for Construtionand Analysis of Systems (TACAS), volume 4424 of LNCS, pages 706�720.Springer, 2007.[Iba78℄ O. H. Ibarra. Reversal-bounded multiounter mahines and their deisionproblems. Journal of the ACM, 25(1):116�133, 1978.[ISD+02℄ O. H. Ibarra, J. Su, Z. Dang, T. Bultan, and R. A. Kemmerer. Counter ma-hines and veri�ation problems. Theoretial Computer Siene, 289(1):165�189, 2002.[JP93℄ B. Jonsson and J. Parrow. Deiding bisimulation equivalenes for a lassof non-�nite-state programs. Information and Computation, 107(2):272�302,1993.[Kho03℄ V. Khomenko. Model Cheking based on Pre�xes of Petri Net Unfoldings.PhD thesis, University of Newastle upon Tyne, 2003.[KK01℄ V. Khomenko and M. Koutny. Towards an e�ient algorithm for unfoldingPetri nets. In International Conferene on Conurreny Theory, volume 2154of LNCS, pages 366�380. Springer, 2001.[KK03℄ V. Khomenko and M. Koutny. Branhing proesses of high-level Petri nets.In Tools and Algorithms for Constrution and Analysis of Systems (TACAS),volume 2619 of LNCS, pages 458�472. Springer, 2003.[KK05℄ B. König and V. Kozioura. Augur - a tool for the analysis of graph trans-formation systems. Bulletin of the EATCS, 87:126�137, 2005.[KKV03℄ V. Khomenko, M. Koutny, and W. Vogler. Canonial pre�xes of Petri netunfoldings. Ata Informatia, 40(2):95�118, 2003.[KKY04℄ V. Khomenko, M. Koutny, and A. Yakovlev. Logi synthesis for asynhronousiruits based on Petri net unfoldings and inremental SAT. In InternationalConferene on Appliation of Conurreny to System Design (ACSD), pages16�25. IEEE Computer Soiety, 2004.[KM69℄ R. M. Karp and R. E. Miller. Parallel program shemata. Journal of Com-puter and System Sienes, 3(2):147�195, 1969.[Kos82℄ S. R. Kosaraju. Deidability of reahability in vetor addition systems. InACM Symposium on Theory of Computing, pages 267�281, 1982.166

Bibliography[Lam78℄ L. Lamport. Time, loks, and the ordering of events in a distributed system.Communiations of the ACM, 21(7):558�565, 1978.[LB99℄ R. Langerak and E. Brinksma. A omplete �nite pre�x for proess algebra. InComputer Aided Veri�ation (CAV), volume 1633 of LNCS, pages 184�195.Springer, 1999.[LI05℄ Y. Lei and S. P. Iyer. An approah to unfolding asynhronous ommunia-tion protools. In Formal Methods, volume 3582 of LNCS, pages 334�349.Springer, 2005.[LS02℄ D. Lugiez and Ph. Shnoebelen. The regular viewpoint on PA-proesses.Theoretial Computer Siene, 274(1-2):89�115, 2002.[May84℄ E. W. Mayr. An algorithm for the general Petri net reahability problem.SIAM Journal on Computing, 13(3):441�460, 1984.[Maz86℄ A. W. Mazurkiewiz. Trae theory. In Advanes in Petri Nets, volume 255of LNCS, pages 279�324. Springer, 1986.[MBC+95℄ M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franeshinis. Mod-elling with Generalized Stohasti Petri Nets. John Wiley & Sons Ltd (Im-port), 1995.[MC99℄ A. S. Miner and G. Ciardo. E�ient reahability set generation and storageusing deision diagrams. In International Conferene on Appliations andTheory of Petri Nets (ICATPN), volume 1639 of LNCS, pages 6�25. Springer,1999.[MM95a℄ K. L. MMillan. A tehnique of state spae searh based on unfolding. FormalMethods in System Design, 6(1):45�65, 1995.[MM95b℄ K. L. MMillan. Trae theoreti veri�ation of asynhronous iruits usingunfoldings. In Computer Aided Veri�ation (CAV), volume 939 of LNCS,pages 180�195. Springer, 1995.[Mil71℄ R. Milner. An algebrai de�nition of simulation between programs. In Inter-national Joint Conferene on Arti�ial Intelligene (IJCAI), pages 481�489,1971.[MR97℄ S. Melzer and S. Römer. Deadlok heking using net unfoldings. InComputer Aided Veri�ation (CAV), volume 1254 of LNCS, pages 352�363.Springer, 1997.[MRE96℄ S. Melzer, S. Römer, and J. Esparza. Veri�ation using Pep. In Alge-brai Methodology and Software Tehnology (AMAST), volume 1101 of LNCS,pages 591�594. Springer, 1996.[NPW80℄ M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event strutures anddomains. Theoretial Computer Siene, 13(1):85�108, 1980.[Pel94℄ D. Peled. Combining partial order redutions with on-the-�y model-heking.In Computer Aided Veri�ation (CAV), volume 818 of LNCS, pages 377�390.Springer, 1994. 167

Bibliography[pep℄ Pep. http://theoretia.informatik.uni-oldenburg.de/~pep/.[Pet62℄ C. A. Petri. Kommunikation mit Automaten. PhD thesis, Univ. Bonn, 1962.Shriften des Instituts für Instrumentelle Mathematik.[Pnu77℄ A. Pnueli. The temporal logi of programs. In Foundations of ComputerSiene (FOCS), pages 46�57, 1977.[Pra86℄ V. R. Pratt. Modelling onurreny with partial orders. International Journalof Parallel Programming, 15(1):33�71, 1986.[QS82℄ J. P. Queille and J. Sifakis. Spei�ation and veri�ation of onurrent sys-tems in CESAR. In Symposium on Programming, volume 137 of LNCS, pages337�351. Springer, 1982.[Rei85℄ W. Reisig. Petri nets with individual tokens. Theoretial Computer Siene,41:185�213, 1985.[San04℄ D. Sangiorgi. Bisimulation: From the origins to today. In Symposium onLogi in Computer Siene (LICS), pages 298�302, 2004.[San07℄ D. Sangiorgi. On the origins of bisimulation, oindution, and �xed points.Researh Report 24, University of Bologna, 2007.[SG90℄ G. Shurek and O. Grumberg. The modular framework of omputer-aidedveri�ation. In Computer Aided Veri�ation (CAV), volume 531 of LNCS,pages 214�223. Springer, 1990.[SK04℄ C. Shröter and V. Khomenko. Parallel LTL-X model heking of high-level Petri nets based on unfoldings. In Computer Aided Veri�ation (CAV),volume 3114 of LNCS, pages 109�121. Springer, 2004.[SNW96℄ V. Sassone, M. Nielsen, and G. Winskel. Models for onurreny: Towardsa lassi�ation. Theoretial Computer Siene, 170(1-2):297�348, 1996.[SSE03℄ C. Shröter, S. Shwoon, and J. Esparza. The model-heking kit. In Inter-national Conferene on Appliations and Theory of Petri Nets (ICATPN),volume 2679 of LNCS, pages 463�472. Springer, 2003.[Sta89℄ E. W. Stark. Connetions between a onrete and an abstrat model of on-urrent systems. In Mathematial Foundations of Programming Semantis,volume 442 of LNCS, pages 53�79. Springer, 1989.[Sut00℄ G. Sutre. Abstration et aélération de systèmes in�nis. PhD thesis, ENSde Cahan, 2000.[SY96℄ A. Semenov and A. Yakovlev. Veri�ation of asynhronous iruits using timePetri net unfolding. In ACM/IEEE Design Automation Conferene, pages59�62, 1996.[tin℄ Tina. http://www.laas.fr/tina/.[Val89℄ A. Valmari. Stubborn sets for redued state spae generation. In Appliationsand Theory of Petri Nets, volume 483 of LNCS, pages 491�515. Springer,1989.168

http://theoretica.informatik.uni-oldenburg.de/~pep/
http://www.laas.fr/tina/

Bibliography[Val90℄ A. Valmari. A stubborn attak on state explosion. In Computer Aided Veri-�ation (CAV), volume 531 of LNCS, pages 156�165. Springer, 1990.[VSY98℄ W. Vogler, A. L. Semenov, and A. Yakovlev. Unfolding and �nite pre�x fornets with read ars. In International Conferene on Conurreny Theory,volume 1466 of LNCS, pages 501�516. Springer, 1998.[VW86℄ M. Y. Vardi and P. Wolper. An automata-theoreti approah to automatiprogram veri�ation. In Symposium on Logi in Computer Siene (LICS),pages 332�344, 1986.[WG93℄ P. Wolper and P. Godefroid. Partial-order methods for temporal veri�ation.In International Conferene on Conurreny Theory, volume 715 of LNCS,pages 233�246. Springer, 1993.[Win82℄ G. Winskel. Event struture semantis for CCS and related languages. In In-ternational Colloquium on Automata, Languages and Programming (ICALP),volume 140 of LNCS, pages 561�576. Springer, 1982.[Win86℄ G. Winskel. Event strutures. In Advanes in Petri Nets, volume 255 ofLNCS, pages 325�392. Springer, 1986.

169

Indexation, 14adequate order, 77, 122algorithmi uto� event, 123alphabet, 12behavior, 18, 21bijetion, 12, 25boundedness, 7, 84bounded, 84branhing, 21ausal, 22ausality, 22ausality proess
M -ausality proess, 46
k-ausality proess, 35oherent, 30, 70, 84ompatible, 64ompatibility, 7, 62, 132onurrent, 22onurrent relation, 22onurrent system, 1on�guration, 24loal on�guration, 24on�it, 22on�it-inheritane, 22minimal on�it, 45self-on�it, 22ounter, 34bounded ounter, 38overabilityoverability problem, 81overingsub-overing, 7, 82uto�uto� on�guration, 74uto� event, 122utting ontext, 73, 122loal utting ontext, 77DAG, 13deteministi

deterministi labeled event struture,27, 33, 143deterministi, 16nondeterministi, 72downward losure, 13duality, 7dual, 66, 135dupliation, 58, 89, 118, 141event struture, 4, 27prime event struture, 22extension, 24, 70, 89FIFO hannel, 43�nitely-branhing, 24�ring sequene, 16global ation, 17, 82identity, 12indued labeled transition system, 28, 69initial state, 15interleaving, 2internal ation, 63isomorphi, 25label funtion, 27labeled event struture, 27labeled event tree, 33labeled transition system, 14, 63letter-morphism, 43lexiographi labeling order, 78linear extension, 13linearisation, 13, 46, 78liveness, 3marking, 27marking preorder, 69message, 43noninterleaving, 2, 21partial order, 13partial-order 171

Indexpartial-order method, 157poset, 13possible extensions, 88power set, 11pred-basis, 67, 134predeessordiret predeessor, 22pre�x, 25�nite pre�x, 5, 25, 72, 89, 122word, see subwordpreorder, 13preordered system, 62produt preorder, 65well-preorder, see well-preorderquasi-liveness, 7quasi-live, 82reahability, 3, 68reahability set, 16reahability-based property, 3reahable, see state, reahablereative system, 1, 157reeiving ation, 43redundant, 32
E-redundant, 143re�exive, 12re�exive and transitive losure, 12relation, 11binary relation, 12onverse relation, 11identity relation, see identitypredeessor relation, 23restrition, 11restritionomponent restrition, 17, 55, 65relation, see relation,restritionsub-struture, 24sending ation, 43simulation, 18singleton, 11, 27, 53state, 14overed, see overingreahable, 16struture variables, 88subword, 12, 62subword order, 12, 63, 64suessordiret suessor, 22

su�x, 25, 42symmetri, 12synhronization onstraint, 17, 58, 110synhronized produt of labeled event stru-tures, 57, 73, 109synhronized produt of labeled transitionsystems, 6, 17, 54synhronization onstraints, 17termination, 7, 83total order, 13, 126, 143transition, 15transitive, 12transitive losure, 12trunation, 74, 76�nite pre�x, 76trunating algorithm, 122unfolding algorithm, 87, 88upward losure, 13well-founded, 13, 64well-preorder, 13well-preordered labeled event struture,62, 69well-preordered labeled transition sys-tem, 64

172

	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	1 Introduction
	1.1 Model checking
	1.2 Approaches to the state-space explosion: the unfolding technique
	1.3 Verification of infinite state systems
	1.4 Contributions
	1.5 Organization of the thesis

	2 Preliminaries
	2.1 Relations and functions
	2.2 Alphabet and words
	2.3 Orders
	2.4 Labeled transition systems
	2.4.1 Behaviors and properties
	2.4.2 Synchronized products of labeled transition systems
	2.4.3 Simulation

	2.5 Petri nets

	3 Modeling concurrent systems by labeled event structures
	3.1 Prime event structures
	3.1.1 Example and graphical representation
	3.1.2 Configurations and extensions
	3.1.3 Sub-structures
	3.1.4 Prime vs general event structures

	3.2 Labeled event structures
	3.2.1 Semantics of labeled event structures
	3.2.2 Properties of labeled event structures

	3.3 Modeling concurrent systems
	3.3.1 Labeled event trees
	3.3.2 Counters
	Parameter k in causality processes
	Bounded counters
	Counters initialized by positive values

	3.3.3 FIFO channels
	FIFO channels initialized with non-empty word
	Bounded FIFO channels

	3.3.4 Synchronized Products of Labeled Event Structures
	Graphical representation of a product of event structures

	4 Truncation for well-preordered labeled event structures
	4.1 Well-preordered systems
	4.1.1 Adapting preordered compatibility to labeled transitions
	An example: Lossy FIFO channels
	Internal actions Acti

	4.1.2 Well-preordered labeled transition systems
	A class of infinite systems with decidability results
	Synchronized products of well-preordered labeled transition systems

	4.1.3 From forward analysis to backward analysis in well-preordered transition systems

	4.2 Truncation of well-preordered labeled event structures
	4.2.1 Well-preordered labeled event structures
	Preordered labeled transition systems vs preordered labeled event structure
	Products of preordered labeled event structures

	4.2.2 Truncation techniques
	Cutting context
	Truncation's properties

	4.2.3 Well-preorders on configurations

	4.3 Partial-order verification for well-preordered labeled event structures
	4.3.1 Local cutting contexts
	4.3.2 Coverability and quasi-liveness
	4.3.3 Termination and boundedness

	5 Compositional unfolding techniques
	5.1 Unfolding algorithm
	5.2 Causality processes' unfolding
	5.2.1 k-causality processes
	5.2.2 M-causality processes
	5.2.3 Generalization
	(M, v)-causality processes
	(M, v, b)-causality processes
	Estimation of time complexity

	5.3 Synchronized products' unfolding
	5.3.1 Function ConfigVectorSet_i
	5.3.2 Function ConfigVectorSet
	5.3.3 Functions Initsp and ExtendSP

	5.4 Truncating
	5.4.1 Algorithmic cutoff events
	5.4.2 Complete prefixes

	6 Experimental results
	6.1 Modeling and verification of heterogeneous systems
	6.1.1 Alternating Bit Protocol
	6.1.2 Modeling the ABP as a synchronized product
	6.1.3 Verification of counter's boundedness
	6.1.4 Verification of lossy FIFOs' coverability

	6.2 The tool Esu
	6.2.1 Modeling Petri nets
	6.2.2 Redundancy reduction

	6.3 Experiment results on Petri nets
	6.3.1 1-safe Petri nets
	6.3.2 General bounded Petri nets
	6.3.3 Unbounded Petri nets

	7 Conclusions
	7.1 Future work

	Bibliography
	Index

