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ABSTRACT

Three-dimensional femtosecond laser structuring has a growing interest because of its
ease of implementation and the numerous possible applications in the domain of photonic
components. Structures such as waveguides, diffraction gratings, optical memories or
photonic crystals can be fabricated thanks to this technique. Its use with oxide glasses is
promising because of several advantages; they are resistant to flux and ageing, their chemical
composition can easily be changed to fit the well-defined requirements of an application.
They can already be found in Raman amplifiers, optical fibers, fiber lasers, and other devices.

This thesis is based on two axes. The first axis consists in characterizing the linear and
nonlinear optical properties of bulk vitreous materials in order to optimize their composition
with a particular application in view. Within this context, the nonlinear optical properties,
their physical origins (electronic and nuclear) as well as their characteristic response times
(from a few femtoseconds to a few hundreds of picoseconds) are described within the Born-
Oppenheimer approximation. Fused silica and several sodium-borophosphate glasses
containing different concentrations in niobium oxide have been studied. Results show that the
nonlinear optical properties of fused silica are mainly from electronic origin, whereas in the
sodium-borophosphate glasses, the contribution from nuclear origin becomes predominant
when the concentration of niobium oxide exceeds 30%.

The second axis is based on the structuring of materials. Three commercially available
fused silica samples presenting different fabrication conditions (therefore distinct impurity
levels) and irradiated with a near infrared femtosecond laser have been studied. The laser
induced defects have been identified by means of several spectroscopic techniques. They
show the formation of color centers as well as a densification inside the irradiated area. Their

linear refractive index and nonlinear third-order susceptibility properties have been measured.



Moreover, the structuring of fused silica at the subwavelength scale into “nanogratings” is
observed and the form of birefringence induced by these structures is discussed.

In addition to the fused silica samples, several oxide glasses presenting very distinct
chemical compositions have been studied. A sodium-borophosphate glass containing niobium
oxide exhibits micro-cracks and nano-crystallites following irradiation. A silicate glass with
or without a silver component reveals fluorescent rings or “nanograting” structures. A zinc
phosphate glass containing silver also presents fluorescent ring structures, with a size of the
order of 80 nm, well below the diffraction limit. Pump-probe microscope techniques have
been performed on this glass to investigate the laser-glass interaction. The absorption
mechanism is determined to be four-photon absorption. The generated free electron density is
~ 10" em™, which suggests the conclusion that an electron gas rather than a plasma is formed

during the laser irradiation.
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CHAPTER ONE: INTRODUCTION

The nonlinear optical properties of materials play a role in many applications, ranging
from telecommunications to laser sources, through laser material processing. For the
conception of all-optical systems in information technology (modulator, detector, amplifier,
switch...), the materials must exhibit high nonlinearities. On the contrary, for the information
transport through optical fibers or the fabrication of fiber laser sources, low nonlinearities are
essential to prevent self-focusing, self-phase modulation, Raman and Brillouin scatterings.
Between both, in laser material processing, materials must present a trade-off between a
sufficient multiphoton absorption and a not too important photosensitivity. From all these
examples, it is clear that the intrinsic properties of the nonlinear materials must be optimized
depending on the application in view.

Transparent optical glasses exhibiting nonlinearity in the visible/near infrared (NIR)
range have been examined far from resonance in order to avoid significant multiphoton
absorption. These glasses are of interest and have been evaluated as possible candidates for
optical switching. Among all vitreous systems, oxide glasses containing a large amount of
heavy atoms (i.e. highly polarizable species) have attracted attention since they exhibit
significant nonlinearity for use in the near infrared telecommunication windows and appear to
be promising candidates as Raman gain media [Mil88] [Ste03] [Riv04] [Riv05].

Within the Born-Oppenheimer approximation, which indicates that optical pulses
shorter than a few hundreds of picoseconds should be considered, the origin of the optical
nonlinearity in glasses, far from resonance, is attributed to electronic and nuclear
contributions. The electronic response is related to the spontaneous nonlinear distortion of the
electronic distribution around the nuclei while the nuclear response is due to a slower optical-

field-induced change arising from the motions of the nuclei [Hel75]. It is known that these



two contributions have distinctly different relaxation times, with the first (electronic) being
less than one femtosecond whereas the second process (nuclear) is on the order of several
hundreds of femtoseconds to a few picoseconds. In 1975, Hellwarth et al. [Hel75] showed
that the nuclear contribution to the nonlinear refractive index of some glasses is not
negligible, being as high as up to 15 - 30% of the total nonlinearity, depending on the glass
composition.

The knowledge of the electronic and nuclear contributions to the nonlinear response as
well as its magnitude is crucial for many telecommunication applications. For fast all-optical
switching and soliton propagation in optical fibers, the instantaneous contribution will be
favored. On the contrary, for these applications, the non-instantaneous contributions are
potential sources of limitation in high bit-rate transmission systems. However, for Raman
amplification, one would tend to favor the nuclear contribution. The nuclear contribution can
also be used to modulate the nonlinear response with varying the pulse duration.

On the other hand, progress in femtosecond laser direct writing permit now to
fabricate devices such as waveguides [Dav96], gratings [Hir98], memories [Gle96], photonic
band gap crystals [Sun99], 3D microstructures [Mas03] and functional crystals [Dai07]. The
application of this technique to glasses containing nanocomposites or nanocrystallites is
promising. Indeed, these glasses present incontrovertible advantages. Their ease of
implementation, their good resistance to flux and ageing and their flexibility of composition
give them a high adaptability. The possibility to dope these vitreous matrices with
photosensitive nano-components elaborated in situ permits the use of a femtosecond laser to
structure and functionalize these materials with a high spatial resolution.

On a fundamental point of view, few is known about femtosecond laser-material
interaction. A lot of work has been performed on glasses, mainly on fused silica, to

investigate the induced structural changes and their relation with the optical properties of the



exposed regions [Zou05] [Zou06]. But the characterization was carried out after irradiation, at
a wavelength scale, ignoring the dynamic of the interaction. Moreover, it has been revealed
recently that the irradiation of glasses could lead to a self-organized sub-wavelength
structuring, so called “nanograting” structures [Shi03], complicating even more the picture of
the phenomenon. Thus, real time measurements still need to be performed to get an overall
view of the laser-material interaction.

This work follows in the footsteps of Arnaud Zoubir who opened the way to
femtosecond laser direct writing [Zou04] in the LPL group and Clara Rivero who investigated
new oxide glasses for Raman amplification [RivO5bis]. It is in the framework of a
collaboration between the University of Central Florida (USA) and the University of
Bordeaux 1 (France). Mastery in femtosecond laser direct writing and plasma
characterizations are centered at CREOL whereas competences in synthesis, metrology and
modeling are gathered at the University of Bordeaux 1 (CPMOH, ICMCB and ISM). This
collaboration is part of a cotutelle degree exchange program between both universities, which
has already supported the two students cited above and is currently integrated by three more
students, Jiyeon Choi, Troy Anderson and myself.

This dissertation discusses results about the nonlinear characterization and structuring
of different oxide glasses. It is organized in two main parts. Part A concerns the investigation
of the nonlinear optical properties of bulk oxide glasses. It deals with the theoretical and
experimental procedures enabling to characterize a glass in terms of its nonlinear optical
properties. Chapter two gives background information about nonlinear optics, necessary for
the understanding of this manuscript. Chapter three describes the different physical
mechanisms involved in the nonlinear response of a material. It will be shown that the laser
properties and the origin of the physical phenomena strongly influence the magnitude and the

dynamics of the nonlinear optical properties. In this thesis, femtosecond lasers have been



used. The nonlinear optical properties can then be described within the framework of the
Born-Oppenheimer approximation. Chapter four presents this approximation, as it was
suggested by Hellwarth in his well-known paper [Hel77], and a very useful relation
permitting to predict the nuclear third-order susceptibility from Raman spectroscopy. Chapter
five describes two degenerate third-order processes, third-harmonic generation and optical
Kerr effect, within the context of this approximation. Two techniques based on these
processes, third-harmonic generation microscopy and pump-probe experiment, have been
used to measure the nonlinear optical properties of two glass families, namely fused silica and
sodium-borophosphate-niobium glass. Chapter six shows the application of Hellwarth’s
model to these glasses, for which the magnitude and the relative strength of the instantaneous
and non-instantaneous contributions to the nonlinear response are investigated. This nonlinear
characterization, presented in Part A, is used as a springboard towards femtosecond-laser-
structuring, discussed in Part B. Chapter seven deals with the mechanisms involved in the
interaction of a femtosecond laser pulse train with a glass as well as the different regimes of
photo-induced modifications. Femtosecond laser exposed fused silica has been investigated at
both micron and submicron scales. Chapter eight gives a complete characterization of three
different fused silica samples presenting different impurity levels for comparison purposes.
The links between the variation in the optical properties, the initial impurity levels and the
photo-induced structures are investigated. To get a larger view about laser-material
interaction, other oxide glasses (sodium-borophosphate-niobium, silicate, silver-doped silicate
and silver zinc phosphate) have been investigated. Chapter nine shows the behavior of these
glasses to femtosecond laser irradiation. In addition, it presents microscopy and pump-probe
techniques applied to a photosensitive glass, in order to investigate the properties of the laser

induced electron gas, more particularly the free electron density, the ionization mechanisms



involved in the structuring and the influence of the cumulative effects. Chapter ten gives a

general conclusion and a summary of all the findings and discusses about future perspectives.



PART ONE: NONLINEAR OPTICAL CHARACTERIZATION



CHAPTER TWO: NONLINEAR OPTICS BACKGROUND

This chapter aims to give the formalism of nonlinear optics. The linear and nonlinear
polarizations and susceptibilities are given in their most general form, as well as their
properties. A reminder of the definition of the Fourier transform as it is used in nonlinear

optics is also supplied because it will appear later in the manuscript.

2.1. The Fourier transform

The Fourier transform is a powerful mathematical tool permitting to pass from the
time domain to the frequency domain, and vice-versa. There are several ways to write the
Fourier transform. In Optics, the Fourier transform and its inverse are defined as following,

for any function f

Flo)= Ij:f(t)exp(ia)t)dt
r=--].

(A.2.1)
F(o)exp(~iot)dew

Thus, the direct and inverse Fourier transforms of the electric field and the polarization

are given by

E ()= I “E (¢)explicr )dt
1‘°° . (A.2.2)

E(t)=—| E.(o)exp(-iot)de

2
Blo)= ] B explioni
) L (A.2.3)
B()===]  B(o)exp(-iot)do

2

However, the Fourier transform of the first-order susceptibility and its inverse, the

first-order response function, are written as



2 (w)= I R,ﬁ”(t)exp(ia)t)dt

R"(¢) J 1 (w)exp(-iat)do

(A.2.4)

, without the 1/27z factor.

This discrepancy is due to the definition of the polarization in the frequency domain,

which is the simple product of the first-order susceptibility with the electric field
@)=z, (@)E () (A.2.5)

where the Einstein notation of the implicit summation has been used (a0, Zay i

2.2. The polarization response of a material

The polarization of a material under the influence of an applied electric field is

described in terms of a power series of the field
B(7;t)= PO(F;t)+ PO (Ft)+ PO (Fst)+ .ot B (Fit) + .. (A.2.6)
where P”(7;t) is independent of the field and would represent the static polarization found

in some crystals, P"(F;¢) is linear in the field, P (¥;¢) is quadratic, and so on.

2.2.1. The linear polarization

The most general expression for the linear polarization, with only the assumptions of

homogeneity of the material and invariance by time translation, is in the form
BO(F H RO (F =751 —1))E, (751, )dt,d°F' (A2.7)
where R;) is a second-rank tensor denoted as the first-order response function of the

material.



If the response is entirely local (R o §(7 —7')), which means that the polarization at
a position 7 depends only on the value of the electric field at the same position 7, then the
linear polarization is written as

é“’(?;t)=gojt RV (Fst—1)E (731, )at, (A.2.8)

The causality principle states that the effect cannot precede the cause; the polarization
at a time ¢ cannot depend on the electric field at future times. This implies that the response

function is strictly null when its argument is negative. The linear polarization becomes

—

P (7:1) ‘90,[ R (Fyt =1, )E,(Ft, )dt, = &,R}" (1) ® E ,(¢) (A.2.9)

Since this last expression is a convolution product, it is natural to pass in the frequency

domain, where the linear polarization is a simple product
P(w)= go;(;l)( a)a;a))-j(a)) (A.2.10)
where ;((1) I R(l) exp(la)t )dt1 is the first-order susceptibility of the material

and a second-rank tensor too. In these equations, @w_ = @. The broader meaning of @, will

become apparent for the nonlinear susceptibilities.

2.2.2. The nonlinear polarization

With the same assumptions as in the previous paragraph (homogeneity, time
invariance, locality and causality), the quadratic, cubic and higher order polarizations are

expressed as

|

70 E, (7t )t dt,

P (F;1)= gOH'R;i’ Fit—t,,t—1,)

(A2.11)

PO (¥31) _[I_[R,E,f,’ Lttt =4 )E (75t )E, (Fst, JE, (Ft, )dt dt dt,



(A.2.12)

B (7;1) 50_[ J' I R (Fyt—t,,t st —1,)E, (731, VE, (Fs1, ). .E, (31, )t dt, ..,
(A2.13)
where R is an (n+1)-rank tensor denoted as the n” -order response function of the
material.

By expressing the response functions and the electric fields with their respective

Fourier transforms, the equations (A.2.11), (A.2.12) and (A.2.13) can be rewritten as

ﬁ(z)(F;t): &y J‘+°0J'+°OZ,§12{)(—COG;C()1,Q)2)Ej(}_’:;(()l).Ek(l_;;a)z)
l 27) =T xexpl-i(o, + o, }dodo,

(A2.14)

15(3) it : 30 J‘ J‘ j+mZykl a)l,a)z,a)3)E.(l7;a)l).Ek(?;wz).E,(F;w3)
x exp|—i(w, + @, + o, )t [do do,do,

(A.2.15)

1 0,:0,0,000,)E (0 ) E, (0, ). E, (7:0,)
“xexpl-i(o, +, +..+ 0, Mo do,..do,

+00

B Fi)= S0 [

' (

(A.2.16)
where " is the n” -order susceptibility defined as the Fourier transform of the

response function of the material
1R, 0,0,) f RO (1,1, Jexpli(wyt, + oy, )t dt,
(A.2.17)
1o, 0,0,0,)= j_ RON(t,,1,.1, Jexpli(pt, + @,t, + oy, )t dt,dt,
(A.2.18)
(o, 0,00 j "R (¢ t,)explilot, + o, +...+ ot dt,dt,..dt,

1177 1’2’ ’n

10



(A.2.19)
Unlike the linear polarization in the Fourier space, which is a simple product, the
quadratic and cubic polarizations are complicated convolution products and they will

therefore not be written in this manuscript.

2.3. The properties of the susceptibility

2.3.1. The reality

The electric field, as well as the polarization, are real measurable quantities. Thus, the
response function is also real. Therefore, it comes from the Fourier relation between the

susceptibility and the response function that the susceptibility is a complex quantity

(n) . _ (n) . . (n) .
Z:jﬂ (_ WOy 5Oy W, ..., D, ) - Re{lij.,.n (a)a T, Wy, — O, )}+ l Im{lij.“n (a)a ST, =Wy~ @, )}

(A.2.20)
obeying the following relation

20 (- 0,;0,0..0,)= 2" (0,00, (A2.21)

where the symbol * denotes the complex conjugate [But90].

2.3.2. The causality

The causality principle states that the effect cannot precede the cause. In the frequency
domain, this is expressed mathematically by the Kramers-Kronig relations, which relate the
real and imaginary parts of the susceptibility one to another. They are given in their well-

known general form for the linear susceptibility by

11



Re{z(o)}= _%@I j%il;(s)}ds (A.2.22)

W) (a,)}:l of +‘”wds

Im{;(ij e s

where g denotes the Cauchy principal part of the integral.

The Kramers-Kronig relations can also be applied to the nonlinear susceptibilities as

follow

Re{;(;ff?ll (0, -0,y .s~@, ..., @, )}z 9], o s ds
wRely" (o —w,,~0,,....~
Im{;(ij(.’f_?” (0,0~ ...~ ...~ )}=l50_[ e{ZU"ﬂ @o-0-0 0, )}ds
o ®, s
(A.2.23)

More details about the Kramers-Kronig relations in nonlinear optics can be found in [She04].

2.3.3. The intrinsic permutation symmetry

The intrinsic permutation symmetry is a completely rigorous property which arises

from the principles of reality and causality, and which applies universally. Here is its

statement. The polarization é“” is defined uniquely by the equation (A.2.13), but the tensor
Rij(.ff?,l is not unique because of the n! possible orders in which the terms £ ; (t1 )E ‘ (t2 )...En (tn)

may be written. To remove the arbitrariness of this tensor, R;”),] (t—t,,t—t,,...t —t,) must be

required to be invariant under all n! permutations of the n pairs (i;t—tl), ( j;t—tz), oo

(7;t—1,). This can be translated mathematically by

R"

ij.m

(t—t,,t—ty,nt—t,)= %S RO (t—t,,t 1yt —t, )] (A.2.24)

where S indicates a summation over all the tensors obtained by making the n! permutations

of the n pairs (i;t—tl), (j;t—tz), - (n;t—tn) [But90].
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2.4. The Maxwell’s equations and the constitutive relations

In the following paragraphs of this chapter, the Einstein notation of the implicit
summation will not be written, for simplification. All the phenomena in classical

electromagnetism are ruled by the four differential Maxwell’s equations

V.D(7;t) = p, (F;t)

7 x E(721) 0B(F:1) (A.2.25)

where D is the electric displacement, E the electric field, B the magnetic induction, H the
magnetic field, J the current density and p, the volume charge density.

The constitutive relations of the material are given by

D(7;t)=e,E(7;t)+ P(F;t)
{B(F;t): s [ﬁ(?;t)+M(F;t)] (A.2.26)

where ¢, is the dielectric permittivity of vacuum, P the polarization, U, the magnetic

permeability of vacuum and M the magnetization.

The current density J is the sum of the conduction current density J ¢ » the magnetism

current density J ., and the polarization current density J »» such that

P(7; A2.27
=UE(?;Z)+§><M(?;;)+ 6P(r,t) ( )

where o is the conductivity.
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2.5. The propagation equation

Throughout this manuscript, isotropic dielectric materials will be examined, which are
non-magnetic (M =6). Moreover, it will be assumed that the materials are charge free
(p, =0) and current free (J = 0). With these assumptions and by combining the Maxwell’s
equations with the constitutive relations, one can obtain the following wave propagation
equation in the time domain

~ 1 0°E(F;t 02 P(F:t
V) s S

(A.2.28)
where c is the speed of light in vacuum.
Depending on the considered problem, one may choose to work in the time domain

with the equation (A.2.28), or in the frequency domain with the following equation, obtained

by expressing E and P in terms of their Fourier transforms

2

VZE(F;a))—CCo—zE(?;a))zyowzﬁ(F;w) (A.2.29)

These wave equations are second-order differential equations with the polarization
acting as a source term. For a linear response, a particular solution to these equations is the
plane wave. For a nonlinear response, these equations have no solution. Nevertheless, by
using the slowly-varying envelope approximation, these equations can be solved in particular

casces.

2.5.1. The nonlinear propagation equation
The polarization is the sum of two components, one linear and one nonlinear with the
electric field. Assuming an instantaneous response (R™"(t)=c"5(¢), where & is the Dirac

delta function), the polarization is given as

14



P(F;t)= P,(F;t)+ Py, (7;t)= ,0 VE(F;t)+ Py, (F3t) (A.2.30)
By substituting the above expression of the polarization in the wave propagation

equation (A.2.28), one can find the nonlinear propagation equation

M) A2 (= 2p (7-
RECAK: E(r,t)zﬂ R G (A.2.31)

V2E(7;
(1) e’ ot? C o

2.5.2. The paraxial propagation equation
By decomposing the Laplacian operator into two components, one transverse and one

o o> o 0° 0’ ) ) .
longitudinal, as V’ = + + =V? +— , the nonlinear propagation equation
s o o ot e propag a

becomes

_.\ O0E(Fit) 1+0V %E(F:t 0P, (F:t
V2E(F;t)+ 82(2 ) . 61(2 )zﬂo g;z( ) (A.2.32)

Let us assume a monochromatic plane wave propagating in the direction of increasing
z (direct wave) is a solution of the nonlinear wave equation (A.2.28). The electric field and

the polarization are written as
EG:o)= %{;1(; Oexplilkz — )|+ 3° (7 1)expl- i(kz - eot)]) (A233)

PNL(?;t)=%{f)m(?;t)exp[i(k'z—a)t)]+ 5o, i t)exploi(kz —wr)]  (A234)

where 4 and p,, are the electric field and nonlinear polarization magnitudes and & and &’

the wave vectors associated to the electric field and the nonlinear polarization, respectively.
By substituting the electric field and the nonlinear polarization expressions and their

derivative in equation (A.2.32), one can get
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O’ A(F;t) ., 0A(F;t) 140" 0°A(Fst) ., 1+0" 04(Fse)

Vi;l(ff';t)+ pae +2ik . = v +2ik - Py
8213NL(’7;Z‘) . aﬁNL(F;t) 2= (= .
= #OT—zﬂole—ﬂow P (Fs1) |expliakz)

(A.2.35)
where Ak =k'-k is the phase mismatch.
The slowly-varying envelope approximation assumes that the magnitudes of the
electric field and the polarization vary slowly on a spatial period (or wavelength) and a

temporal period. This is translated mathematically by the following inequalities

. -
0 124 << ka—A <<k*A4
Oz Oz

04
ot*

<< wZ_A <<w’4 (A.2.36)
t

aszL

ot?

Finally, here comes the paraxial propagation equation

Vi A(F:)+ 2i1{5;1(7;f)+ 1+o? 5;1(7%)}

= —p,0° P, (F:1)expliAkz) (A.2.37)
0z c ot

0A(F;1) N 1+0" 24(F;z)

Oz c Ot

Vi?l(?;t) is the diffraction term, 2ik{ } the propagation term and

— 1@’ D (F;t)exp(iAkz) the source term. The paraxial propagation equation will be applied

later in the manuscript to two particular nonlinear effects: Third-Harmonic Generation (THG)

and Optical Kerr Effect (OKE).
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CHAPTER THREE: ORIGIN OF THE DIFFERENT CONTRIBUTIONS
TO THE NONLINEAR RESPONSE

The magnitude of the nonlinear response of a material depends on the physical
involved processes. These effects have different origins, namely, electronic polarization,
nuclear response, electrostriction and thermal response. The third-order susceptibility can
therefore be decomposed in a sum of terms corresponding to each contribution

X7 = Ko + e + X + 20 (A3.1)

Depending on the duration of the pulse and/or the repetition rate of the laser, these
phenomena contribute more or less to the nonlinear response. They are described in this
chapter and their magnitude is discussed in the femtosecond regime with MHz laser systems.
The electronic and nuclear responses are not discussed at length in this chapter because they

will be described in detail in the subsequent chapters.

3.1. The electronic response

Except near a resonance, the electronic response is quasi-instantaneous, less than one
femtosecond. It is due to the spontaneous nonlinear distortion of the electronic distribution
around the nuclei and it is independent of the temperature.

Far from any resonance, this process involves an important relation between the

different components of the third-order susceptibility tensor for isotropic materials [But90]
X =32 =320 =3, (A.3.2)

Thus, all the components of the ¥ tensor can be defined from the knowledge of only one of

them.
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Whatever the duration of the pulse and the repetition rate of the laser, the electronic

response is always present. The magnitude of the electronic contribution for fused silica is on

3) ~ 10722 m2 V72

elec

the order of y

3.2. The nuclear response

The nuclear response corresponds to the rearrangement of the position of the nuclei in
the new potential created by the electric field of the electrons. These motions are much slower
than the electronic ones and depend on the temperature. There are different types of nuclear
response: molecular reorientation, molecular redistribution, vibrations and librations.

- Molecular reorientation comes from the alignment of the molecules having acquired or
possessing naturally a dipolar moment in the direction of the exciting electric field. This
process is therefore important in polar molecules.

- Molecular redistribution is particularly present in dense polarizable media. The application
of an intense electric field produces interactions between the created dipoles and leads to a
redistribution of the molecules which acquire a new equilibrium state by minimization of the
energy.

- Vibrations are collective motions of molecules, in same or opposite directions.

- Librations are vibrations based on a rotational motion of the molecules on sites that prevent
overall rotation. They are more descriptively called “rotational vibrations”.

The response time of the nuclear processes is on the order of several hundreds of
femtoseconds to a few picoseconds. With a laser presenting a repetition rate in the MHz
regime, there is no accumulation pulse after pulse of the nuclear effect. Moreover, if the laser

pulse is short enough (less than 50 fs), this process is negligible. The magnitude of the Raman

contribution for fused silica is on the order of ') ~ 107 m*.V .
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3.3. The electrostrictive response

Electrostriction is the process in which the material density increases in response to an
applied electric field. The electric field polarizes the molecules which lead to an inter-
molecular attraction and therefore to a compression of the material. The local increase of the
pressure induces an increase of the nonlinear response.

The presence of an electric field within a material produces a pressure given by

[Boy99]

p, =2l g (A3.3)
4n,c

where 7, is the non-disrupted refractive index, ¢ the speed of light in the vacuum and 1(7;¢)

oe

I

op

the irradiance. y, = po( j 1s known as the electrostrictive constant, with p, the non-
P=Po

disrupted density and ¢, the relative dielectric permittivity. This parameter can be evaluated

with the Lorentz-Lorenz formula

(8,,0 - 1)(5r0 + 2) (A3.4)

}/Stl‘ = 3

where ¢, is the non-disrupted relative dielectric permittivity.
In the case of solid, which is both isotropic and elastic, the spatial and temporal
density variation Ap(7;¢) in the material can be described by the acoustic differential

equation

1 o*°Ap T 8Ap] Y
ViAp—— +—V? = V] A35
v R A ( ot 2n,cv? ( )

where v, is the sound velocity in the material and I is a damping factor (which can be

neglected for most optical materials).
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For a Gaussian beam with a beam waist w, , the change in the density will be
established in a time 7, on the order of [O1i04]

Wo
T,~— (A.3.6)
VS
In fused silica, v, ~ 5970 m.s"'. For a beam waist of w, =10pum, the corresponding
characteristic time is 7, ¥2ns.

The maximal density variation on the optical axis is given by the source term of the

acoustic differential equation [O1i04]

(A3.7)

(grO _1)(8r0 + 2) ~ 15

For fused silica, ¢,, ~2.1, 7, = , ny ~1.46 ,v, ~5970m.s”

and a peak irradiance of 7, ~2.4x10'° W.m?, then Ap, ~1.2kgm">.

This density variation corresponds to a third-order susceptibility variation of

2
2O = Zolar (A.3.8)
3p0vs

With p, =~ 2200kg.m™ for fused silica, the electrostrictive contribution can be as high
as ¥ =107 m’.V7>.

The electrostrictive effect has a response time of approximately a tens of nanoseconds,
the typical transit time of an acoustic wave. With MHz systems, there is no cumulative effect
for this process. In the femtosecond regime, electrostriction cannot occur because the rise time
is too long compared to the pulse duration.

Buckland and Boyd have plotted the evolution of the electrostrictive contribution to

the fast nonresonant electronic response as a function of the pulse width for a fused silica

fiber [Buc96]. They found that the electrostrictive contribution is maximal for pulses longer
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than 1 ns and it is as high as 16% of the total nonlinearity (cf. figure 1). For pulses shorter

than 10 ps, this contribution is null.
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Figure 1: Evolution of the electrostrictive contribution relative to the fast non-resonant
electronic response versus the pulse width (FWHM) [Buc96].

3.4. The thermal response

The thermal response is due to the absorption of the electric field by the material,
which is then dissipated in the form of heat. This warming induces a change in the nonlinear
properties. The response time of thermal effects is on the order of a ten of microseconds.

The spatial and temporal repartition of the temperature 7 (17 ;t) in the material obeys to
the differential equation of the heat with a source term coming from the conversion into heat
of part of the power of the pulse

oT

= N T=al A.3.9
P ot ( )

P.C
where p, is the density of the medium, C, the heat capacity at constant pressure, x the

thermal conductivity, & the absorption coefficient and /(7;¢) the irradiance. The term xV>T

represents the thermal diffusion. The source term o/ represents the fraction of power of the

beam converted into heat by unit of volume.
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The relaxation time of thermal diffusion is determined by the thermal diffusivity

D= % c -Fora Gaussian beam with a beam waist w,, the heat will evacuate the point of
0~p

focus by diffusion in a time 7, on the order of [Oli04]

2
Wo
T, R — A.3.10
»*h ( )
In the case of fused silica, the thermal diffusivity is D ~0.85x10° m*.s™". For a

beam waist of w, =10pum, the corresponding diffusion time is 7, 30 us. Thus, with a MHz

laser system, there is accumulation pulse after pulse of the thermal effect.

For a pulse of 100 fs, the thermal diffusion has no influence on the beam itself.

Therefore, the term xV>T in the differential equation of the heat can be neglected. This
equation can therefore be integrated to supply the temporal evolution of the increase of
temperature on the optical axis at the point of focus [O1i104]

AT(f)=T(r)-T(~o0) = p“c [" 100 (A3.11)

The variation of the third-order susceptibility associated with the thermal effect can be

written as

4 2 3)
o _ EC 0N 0 OX ™ \ o (A.3.12)
31, oT or

where 5%T 1s the thermo-optical coefficient and /, the peak irradiance.

To estimate the magnitude of the thermal contribution, the following features for fused
silica have been assumed: & ~10”° m", p, ~2200kg.m>, C, = 703Jkg" K™, n, ~1.46

and 2—;:10'5 K™. The evolution of the thermal contribution is plotted in figure 2 for a
Gaussian pulse with a half-width at 1/e of 7, =120fs and a peak irradiance of

I,~24x10" W.m™.
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Figure 2: Evolution of the irradiance (blue curve) and of the thermal contribution (red curve)
versus time.

From figure 2, one can see that the maximal magnitude of the thermal contribution is
on the order of ¥ ~10” m”>.V~ , well below the other contributions. Thus, this

contribution can be neglected in the femtosecond regime, when only one pulse is considered.
However, if many pulses are involved, typically more than one million, a cumulative effect
pulse after pulse can give rise to a non-negligible thermal contribution if the characteristic
diffusion time of the heat is longer than the period of repetition of the laser. This is typically

true for MHz systems but not for kHz systems.

3.5. Summary

The laser systems considered in the part A of this manuscript deliver pulses of about
100 fs in the visible/near infrared region with an 80 MHz repetition rate, i.e. a period of 12.5
ns. The physical processes with a response time higher than 12.5 ns will experience a
cumulative effect. The only effect which satisfies this condition is the thermal one.

Nevertheless, it has a negligible magnitude in the femtosecond regime if only one pulse is
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considered. Table 1 recapitulates different features of the physical processes involved in the

nonlinear response.

Response Magnitude Negligible in the
Process Cumulative effect
time (mz.V'z) femtosecond regime
Electronic 11fs No 10 No
Nuclear 100 fs No 10 No
Electrostrictive 1 ns No 10 Yes
No in the kHz regime Yes in the kHz regime
Thermal 10 ps 1072

Yes in the MHz regime

No in the MHz regime

Table 1: Recapitulation of the different processes involved in the nonlinear response of a
material. Typical values for fused silica have been assumed.
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CHAPTER FOUR: THE BORN-OPPENHEIMER APPROXIMATION IN
NONLINEAR OPTICS

This chapter is based on Hellwarth’s reference paper discussing third-order nonlinear
optics [Hel77]. This article deals with the application of the Born-Oppenheimer
approximation in order to dissociate, thanks to their different response times, the electronic
and nuclear contributions to the third-order nonlinear optical properties. For a modern

understanding, this chapter is written in SI units rather than in CGS, like in Hellwarth’s paper.

4.1. Outline of the approximation method

The Born-Oppenheimer approximation is valid only when all the electromagnetic
frequencies involved are much lower than the electronic resonances and much higher than the
vibrational ones. In this particular case, the motions of the nuclei and the electrons can be
treated separately. The action of the electric field on the medium is decomposed into two
processes:

- The electronic processes, which appear when the nuclei position are frozen. They are due to
the instantaneous distortion at the scale of the optical cycle (~ 1 fs) of the electronic cloud and
they are temperature independent.

- The nuclear processes, which correspond to the rearrangements of the nuclei position in the
new potential created by the electric field of the electrons. These motions are much slower

and they are temperature dependent.
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4.2. The electronic energy
Let us consider a system with N particles (electrons and nuclei of several species) in a

cubic volume V' = L, the operator electric dipole moment is given by
= N
D, =) e,%, (A.4.1)

where e, is the electric charge of the particle «, X,, the position coordinate of the particle
a,i=x,y,zand a=12,..,N .

Within the context of the electric dipole approximation (the variations of the electric
field in a region which dimension is lower than the wavelength can be neglected), the
Hamiltonian of the system is written as

H(t)=H,+H,(t) (A42)
where

Hy=H, +H, ,+H (A.4.3)

0_e-n
is the non-disrupted Hamiltonian ( E :6) of the system (sum of the electronic H,, ,, the

nuclear H,, , and the electronic-nuclear interaction H non-disrupted Hamiltonians) and

0_e-n
H,(F;t)=-D,.E,(F;t) (A.4.4)
is the Hamiltonian of interaction between the electric field and the particles.

Within the context of the Born-Oppenheimer approximation, the Hamiltonian of

interaction between the electric field and the particles H, can be decomposed into a
Hamiltonian of interaction between the electric field and the electrons A, , and another one
between the electric field and the nuclei H,_,

H,=H, +H,, (A4.5)

with
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H,,=-e Y F,E, (A.4.6)

electrons

and

Hy,,=eY Z,R,.E, (A.4.7)

nuclei

where e is the electric charge of the electron, 7, and R,, the positions of the electron and the
nucleus « , respectively, and Z, the atomic number of the nucleus o .

As the perturbation H, , varies linearly with the electric field, the theory of the time-
independent perturbations (Rayleigh-Schrédinger theory) can be applied and the energy of the
fundamental electronic state be developed in a series of ascending power of the electric field

W, (R,.:E,)

_w, { AR VB, Ly RV B+ R VEE 4 Ly (R )E B B }V

(A.4.8)
where W, is the kinetic energy, x the dipole moment, o the polarizability, B the first-order

hyperpolarizability and y the second-order hyperpolarizability of the electrons.

Within the context of the Born-Oppenheimer approximation, the electrons can be
eliminated from the general perturbation calculus, assuming they are always in the
fundamental state, independently of the nuclear configuration and of the strength of the
external electric field. In the non-disrupted system, their presence is manifested as an effective
potential for the nuclear motion. Thus, the global Hamiltonian of the system is written as

Hy, =H, ,+H,, (A4.9)

with

Hy =Wy +Ty + z

(A.4.10)
e aﬁHR 0
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which is the non-disrupted effective Hamiltonian of the nuclei (kinetic energy of the electrons

+ kinetic energy of the nuclei + Coulomb interaction between the nuclei) and

T T et Ve
H,_ = [— By =y BB = By BB By =y B E, +..}V

6 (A4.11)
—H HY 4 HE - H 4
which is the Hamiltonian of interaction with the electric field where
£ S 7R, +ilR,) (A4.12)

nuclei

is the permanent dipole moment of the medium.

4.3. The effective polarization operator
For a given configuration {ﬁm;Ei} of the nuclei and the electric field, the electrons

will occupy a fundamental state |0; {Rm;Ei }> in which they have an electric dipole moment

M given by

M =(0R B e 37|00, :E, ) (A4.13)

electrons

The electric dipole moment can also be expressed in function of the energy of the
fundamental state

M = - W (A.4.14)
O,

1

The total dipole moment is the sum of the electronic dipole moment M < and the

permanent dipole moment of the nuclei e ZZ u Rm

nuclei

OF,

1

{eZZ GW} (A.4.15)
nuclei
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po=im +a,E, + P, E E +y,E E.E +.

/) i
P40

o (A.4.16)

— 5O 2 4, 53
—pl + Dp; +pl. +p; ..

4.4. The total expected polarization

The total polarization at the instant # in a small volume centered at the position 7 is

the ensemble average of the total dipole moment
B(F1)= (U™ (0)p, () (1)) (A4.17)

where U(t) is the unitary time-evolution operator which satisfies the equation

in dzt(t ) w, (W) (A4.18)

with the initial condition U (t = O) =1 (the electric field is applied at the time 1 =0). & = 2i
T

1s the Planck constant.

The expansion of the operators U(¢) and U™'(¢) in the Heisenberg representation

(O0(0)=5,0)+ @) [ aslp,(0); ,m(] )2 [ as[" aullp,0): B (5): o 0)
+(in) j ds.[ duj dv”Ip H,( ] H,,( ] H,( v)]+...

“AO A0 + AP + 09 +..

QI

N._.

~~—
|

(A.4.19)

where [O,.;Ol;. ] = OI.O('/. - 0/ O, indicates the “commutator” between the arbitrary operators O,

and O/ and the tilde over an operator means that the parameters must be taken in their

unperturbed (without any applied electric field ) Heisenberg representation at the given time,

that is

0,(t)=U,"(1)o.U, () (A.4.20)
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The n -order polarization is therefore written as
PO (F5e)= (11" (A4.21)
For each order of the polarization, one has to insert the equations (A.4.16) for p, and (A.4.11)

for H.

int

in the equation (A.4.19) and group together the terms of the same order in the
macroscopic electric field E/. The first and the second orders will not be discussed here

because we are mainly interested in constructing the third-order polarization 131.(3 ).

4.5. The third-order polarization

At the third order, the polarization is the sum of eight terms corresponding to the
power 3 of the electric field. These terms are expressed below and their contributions to the
third-order polarization are discussed. The tildes in this section have been omitted for
simplicity from the time-dependent operators which are nonetheless assumed to be in their
Heisenberg representations.

The first term contains the essentially instantaneous purely electronic contribution
&(7u ) E, () E, () E, (t) (A.4.22.2)
It exists for all the material symmetries and can contribute to all the third-order nonlinear

effects.

The second term contains the following three contributions

~

—~
=]

~—

(A.4.22.b)

e )] ds<{nz,. Osy» (s)DEj (). (5) B
e (i)' B, (t)jtoods<[al.j e, (S)DEk (), (s) (A422.0)

eV (i) E,(VE O ds(|, (kim,(5))E (5) (A4.22.d)
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The third term contains the following three contributions

e ) [ sk )] du<{[nﬁi i ()t (M)DEk WEW) — (Ad22e)

v [ asE (5)E jdu@ Lo )}ﬁq,(u)DE,(u) (A422.0)

’E (t).[_too dsE, (S)J‘_; du<[[al.j (t);m, (S)]; i, (u )DEZ () (A.4.22.g)
The fourth term contains the following contribution
v3(in)~ j; dSEj (S)J‘; duE, (u ).[; dv<|]1ﬁ1i (t) m, (s)]; m, (u)]; m, (V)DE, (v) (A.4.22.h)

For each equation (A.4.22), we are now going to discuss the approximations we can

make and the terms we can neglect. Using the following representation
(s)]> = z w, expli(w, — @, Nt - s)]<l|0i|n><n‘0}‘l> —-c.c. (A.4.23)
I,n

in which w, is the statistical weight of the state |l> , the commutators in the equations

(A.4.24.b), (A.4.24.c) and (A.4.24.d) are expressed as

<_m,(z)§ D S enpllor o - 1)}

B S)(l>—c‘c. (A.4.24)

<:aij (t);%ak, (S)j|> :%;w, expli(w, -, Nt s Kl‘ > n|a,d Xl> c. (A.4.25)

<-ﬂyk ]> ZW, exp ]<Z

l,n

Bt >n|m, Ji) - ce. (A.4.26)

The equations (A.4.24) and (A.4.26) depend only on the time difference 7 —s and on

the product of the permanent dipole moment m with the hyperpolarizability of the first-order

. Since the resonance frequencies of m for the nuclei are much lower than the resonance

frequencies of 8 for the electrons, then 7 acts like a low-pass filter for the electric field.

Moreover, the third-order nonlinear effects are generally studied at the optical frequencies,
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which are well above the frequencies corresponding to the nuclear motions and well below
the frequencies corresponding to the electronic ones. Therefore, the equations (A.4.22.b) and
(A.4.22.d) do not contribute significantly to the third-order polarization.

Following the same argument, the equations (A.4.22.e) to (A.4.22.h) do not play a role
either in the third-order polarization, even though they are responsible of hybrid resonances
which translate the coupling between a nuclear level and an electronic level.

Consequently, within the context of the Born-Oppenheimer approximation and for

purely optical nonlinear effects, the third-order nonlinear polarization is written as

FO(e)= P2 [(0)+ B (1)

elec i nuc _i

BB (NE (N - o I (A.4.27)

= 500'1/sz ( )E (t)'El (t)"' gOEj (t)j_oO dijkl (t_T) k(T)'El (z')dz'
where o <7/U,d> is the electronic coefficient defined as the average value of the second-
order hyperpolarizability of the electrons and d, k, <[a tha, (O)]>®(t) is the nuclear

response function depending on the polarizability of the electrons, with @(t) the Heaviside
function (or unit step function). The first term is a simple product and it corresponds to the
instantaneous electronic nonlinearity; the second term is a convolution product and it
translates the non-instantaneous nuclear contribution.
To conclude, the response function of the medium can be decomposed into two
components with different response times, one electronic and the other nuclear
R (0)=ojo(e)+d iy (1) (A.4.28)

where o is the Dirac delta function.
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4.6. Symmetry properties of the third-order susceptibility

For isotropic materials, typically glasses, the electronic coefficient and the nuclear

response function are expressed as follow

G;iz) = éoﬁ) (5ij5k1 +0,0,+0,0, ) (A.4.29)

1

I
dy) ()= a(t)5,6, + Eb(t)(5 5, +6,5,) (A.4.30)

lif i = j

where a and b are functions which will be defined later and 54’/ ={ is the

Oifi# j
Kronecker delta function.
The nuclear response function in the frequency domain can be obtained by a Fourier

transform as follow
DY) (@)= [ "d ) (c)explicot )t (A4.31)

Equations (A.4.30) and (A.4.31) imply

1

1
Dzﬁl) (a)) = A(w)§y5kz +EB(a))(§‘15jk + §ik5jl) (A.4.32)

where A(w)= .[ +Ooa(t)exp(ia)t)a’t and B(w)= .[ +Oob(t)exp(icot)dz‘.

The third-order dielectric susceptibility is the Fourier transform of the response
function of the medium
25(@)= [ R (e)explior )t
= Ij:agzﬁ (t)exp(i a)t)dt + jj:d ;,3{,) (t)exp(i a)t)dt (A.4.33)
=5 +Dj) (o)

X ,ﬁl) , O ,5,3(,) and D;z,) are the total, electronic and nuclear dielectric susceptibilities,

respectively, and they are expressed in m*. V2. Let us notice that the electronic coefficient
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0';.2 is independent of the angular frequency because it translates an instantaneous

phenomenon.

4.7. Relation between the third-order susceptibility and the spontaneous Raman

scattering

There is a well-known formula which relates the stimulated Raman gain g, to the

2

spectral differential cross-section of spontaneous Raman scattering [Hel63].

Wy
Similarly, the nuclear susceptibility D,ﬁd) can also be related to this latter, but only when the

Born-Oppenheimer approximation is valid. The energy diagram of the Stokes Raman process

is given in figure 3.

U).'I. (UI\'

Figure 3: Energy diagram of the Stokes Raman process.

Let us consider the Stokes Raman scattered radiation emitted by an oscillating electric

dipole P . with orthogonal polarizations 77 = x, y. The scattered irradiance / s , at a point

nuc _i

situated at a large distance 7 (in the far field) and oriented at 90° from the polarization P"”

nuc _i

1S
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] V2 +o0 4<
S g = I ngWg
1 32rlg

P (g )(2>de (A.4.34)

where V' is the unit cell volume, n; the refractive index at the Stokes angular frequency

2 . . . -
P ‘ the power spectrum of the third-order nuclear polarization (C*.m™.s), such that

nuc i

and
[t

and thermal fluctuations.

2 +00 2
P(3,)7‘(tj >dt = _[ <‘Rf53 ,(a)X >da). The brackets < > denote the average on the quantum
The scattering cross-section o, , defined as the scattered photons flux per unit volume

divided by the laser photons flux per unit area, is expressed as

PS%

gy 1 @y

=——4> A.4.35

o, (n")= 7 (1439)
ho,

where P, is the Stokes power, /, the laser irradiance and @, the laser angular frequency.

By integrating over all the solid angles Q, the scattering cross-section becomes

lo 1

o, =——=—| I, r’dQ A.4.36
TV I, 4T ( )
. ) . . ) do
Let us introduce the differential scattering cross-section, defined as o, = L d(; dQ,

which implies the following

do
U (m’1 .sr’l):l&LIS r
dQ Ve, I, 5

1 1 V? 40
— % 2—.[ nsa);‘<

r 2 3.2
VaogI, 32r¢cr

PS (e )(2>de (A.4.37)

VwL +00 4<
new
I J. SYS

2
— 3
- 2 3 I)mtcii(a)SX >da)S
R2rie,cwgl, T

In the same way, we bring in the spectral differential scattering cross-section defined

do w 070 D . o .
as — :J ’—dw, , which is the fraction of incident photons per unit of length at the
dQ = 0Q0wg
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laser angular frequency @, scattered non-elastically in a solid angle 02 in a spectral window

Owg . It comes then

nuc _i

2
0 g, 41\ Vo, 3
m-.sros)= ——t—ngw;

O PO -(ws)12> (A.4.38)
Q0w R2r e,c’l,

? where E, is the

. . . Ny 1
By inserting the expression of the laser irradiance /, = En chO|E .

laser electric field, in the previous equation, one can obtain

o’o nSa)La);V<Pn(u30)i(a)SX2>
= 5 (A.4.38)
Q0w 1672'285041’1L|EL|

Now, we would like to relate this last equation to the third-order nuclear susceptibility.
To do that, we will use the quantum mechanics fluctuation-dissipation theorem (or Nyquist’s
formula). In a general way, this theorem states that the mean-square fluctuation in some
physical quantity is related to the imaginary part of an appropriately defined susceptibility.

Mathematically, this is expressed for the present case as

(N O (Y I ] ) A (A439)

-1
where 7, (@,;T)= l—exp( kw]V" H is the Bose-Einstein population factor, k, the

B

Boltzmann constant and 7 the temperature. The Bose-Einstein population factor is a
correction for the thermal statistical fluctuations.
By substituting equation (A.4.39) into equation (A.4.38), the following formula is

obtained

626’7 _ hao,ogng
0Qow; 1607 g,c'n,

Ny (a)V T )Im{D;Z,) (a),, )} (A.4.40)
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Since wg = w, , we can assume that ng = n, . Finally, the imaginary part of the nuclear

third-order susceptibility is related to the spectral differential cross-section of spontaneous

Raman scattering by the following relation

1607°,c* 0’0 ho
m{D$) (o, )} = 0 7| | —exp| (A4.41)
ho,0; 0Q0w, k,T

From equation (A.4.41), it is obvious that the imaginary part of the nuclear
susceptibility can be determined from a Raman scattering experiment with absolute spectral
differential cross-section.

By performing the following Kramers-Kronig integral, the real part of the nuclear

susceptibility can also be found

= Im{D) (s)} B

- S—w,

(A.4.42)

Re{DL (o, )}=— ¢

The Kramers-Kronig relation integrates over all the angular frequencies, from —oo to
+ oo . However, Raman spectroscopy of glasses stands on a limited range of frequencies, in
general from 0 to 2000 cm™. Fortunately, above this value, the Raman signal is null and the
integration can be performed as if it was over an infinite range of frequencies. Therefore, in
principle at least, a Raman spectrum uniquely can lead to the determination of both the
imaginary and real parts of the nuclear susceptibility.

As shown before, it is possible to compute directly the imaginary part of the functions
A and B from polarized (// or VV-HH) and depolarized (L or HV-VH) Raman spectra as

follow

3 4 2 2
im{A(w, )} = 1607, : 1 0o, 0o 1—exp _ho,
ho, (w0, -, )\ 20Q00; Q0w k,T

3 4 2
Im{B(a)V)}— 1607 &\C 0 o, |:1_exp(_ h(();jj|

- ho, (0, -0, ) Q0w
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In terms of wave number and wavelength (parameters used in practice), these

expressions become

Im{A(o- )}_ IOEOAL l 620// _ aZGL 1—ex _l’lCO'V
v ( : I 20005, Qoo i

(A.4.44)

where 4, is the laser wavelength, o the Stokes wave number and o, the vibrational wave

number.

From this point, two methods exist to calculate the functions @ and b . The first one,
which is quite laborious, is based on the Kramers-Kronig relations. The second one, more
direct, relies on the cosine and sine Fourier transforms.

First method:
Once the imaginary parts of the functions 4 and B are computed, the Kramers-

Kronig integral permits to determine their real part as follow
Refd(o, )= Lof “Imidlsh g
TV s—w,

Re{Blo, = Lo M0,

- s-w,

(A.4.45)

Once the real and imaginary parts of the functions 4 and B are computed, they can

be written in complex notation as follow

{A(wy )=Re{d(a, )} +ilm{d(o, )

Blo, )= Re{B(o, )+ m{B(o, ) (A446)

Then, the functions a and b are found by using the inverse Fourier transform

38



a(z‘):L MA(a)V Jexp(—iw, t)dw,
2=

| (A.4.47)
b(t)= . +DOB(a)V Jexp(—iw, t)daw,
/i

Second method.:

The second method uses the parity of the functions 4 and B. Since their imaginary

part is an odd function, the functions @ and » can be found by a sine Fourier transform

alt)= % [ 1m{A(w, sin(o,1)do,
(A.4.48)
b(t)=— J . Im{B(w, )}sin(w, t)dw,

The knowledge of the functions a and b gives access to all the different tensor

elements of the nuclear response function, as shown as follow

(A.4.49)

with d, . (t)=d,, (t)+d . (t)+d . ().

oy oy

The challenge is the measurement the Raman differential spectral cross-section.
Absolute measurements are very difficult to perform in spontaneous Raman scattering
spectroscopy. They require knowledge of the exact amount of power scattered in the given
solid angle and this is a hard task to do. That is why spontaneous Raman scattering
measurements are usually carried out relative to a reference sample, whose spectral
differential cross-section is known with accuracy. Nevertheless, this measurement on a
reference sample had to be done in an absolute manner. This was achieved with enough
accuracy by Kato and Takuma [Kat71] who determined the spectral differential cross-section

of liquid benzene with 3% of uncertainty, relative to the radiation of a perfectly calibrated
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blackbody. The very good knowledge of the radiation of a blackbody explains this very low
uncertainty. The same year, the same authors performed wavelength-dependence
measurements of the spectral differential cross-section [Kat71bis], opening the door to
measurements of any sample relative to liquid benzene at many wavelengths.

Hellwarth et al. in 1975 [Hel75] measured first the polarized spectral differential

cross-section % of fused silica at 514.5 nm relative to liquid benzene with 10% of
Oy

uncertainty. In the sequel, other measurements at different wavelengths have been performed
and a recapitulation of these values for the line at 440 cm™ is given in figure 4, in which one
can notice the well known 1/ A% dependence of the cross-section. Thus, rather than
performing measurements relative to liquid benzene, it is possible to directly compare the

Raman cross-section of any glass with respect to fused silica, which is a reference material in

the literature.

350x10 "
e 300 -
o
7
‘7: 250
E
o
S 200+ —8— Experimental values
T —— Theoretical fit
? 150 -
7]
[72]
o
3] 100 -
[
£
© 50+
o
T T T T T —
600 800 1000 1200 1400 1600

Stokes wavelength (nm)

Figure 4: Evolution of the differential spectral Raman cross-section of the 440 cm™ line of
fused silica versus the Stokes wavelength. The experimental values come from the references
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[Sto73], [Hel75], [Hei79] and [Far99]. The fitted curve shows the l/ A% dependence of the
cross-section.

However, to measure the Raman cross-section of glasses with respect to fused silica,
three types of refractive index correction have to be performed besides the @; dependence:
- A correction due to the resonant enhancement of the polarizability for angular frequencies
well below any electronic resonance. The corresponding corrective factor is n’(w;)—1
[RivO5bis].
- A correction due to the losses introduced by the reflection undergone by the laser beam on

one face and by the scattered light on another. The corresponding corrective factor is

1

1= R(@, )1 - R(e )]

normal incidence [Gal78].

n(a))—l
n(a))+1

2
, where R(a))={ } is the Fresnel reflection coefficient under

- A correction due to the refraction of the scattered light which is different from a sample to
another, leading to a change of the collection solid angle. The corresponding corrective factor
is n’(wy ) [Gal78].

The experimental Raman setup is described in figure 5. A 90 degree collection
configuration has been chosen rather than forward-scattering or back-scattering configurations
in order to avoid the use of a Notch filter and thus to be able to have access to low vibrational
frequencies. With a Notch filter, vibrational frequencies below 200 cm™ are not accessible.

That is why a triple monochromator is preferred (to ensure good spectral resolution).
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Figure 5: Spontaneous Raman scattering experimental setup.

4.8. Summary

This chapter showed that the electronic and nuclear contributions to the third-order
susceptibility can be distinguished within the framework of the Born-Oppenheimer
approximation. This achievement is of importance because each contribution can be evaluated
separately. For example, an experiment based on third-harmonic generation, an electronic
process, will measure the electronic contribution. On the other hand, an experiment based on
optical Kerr effect will be sensitive to both electronic and nuclear contributions. Finally, from

expression (A.4.43), the nuclear contribution will be determined from Raman spectroscopy.
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CHAPTER FIVE: TWO DEGENERATE THIRD-ORDER PROCESSES
IN THE BO APPROXIMATION

A monochromatic electric field of the form E(F;¢)= A(F ;t)cos(lgm 7 - a)t) incident
onto a material induces a third-order nonlinear polarization, which is the sum of two different
contributions: one at the angular frequency @, responsible for the Optical Kerr Effect (OKE)
and one at the angular frequency 3w, responsible for the Third-Harmonic Generation (THG)
process.

THG 1is a purely electronic process, since only the electronic polarization is able to
quickly respond to a high-frequency all-optical field excitation. The cubic polarization

associated to the THG process is given by
é?;w(F;t):%go o0 A (F21)4, (7:0)4, (71 )cos(3K, 7 — 3 (A5.1)

where o) = 7.3 (-3w;®,,) is the THG susceptibility.

The OKE is a process which is sensitive both to electronic and nuclear contributions.
As discussed in chapter 3, the nuclear contribution is more or less important, depending on the

pulse duration of the laser. The cubic polarization associated to the OKE is given by
PO (7 3. 7 (A (- (” = )
) t) = ZEOJUHA (r t)Ak (r,t)Al (r,t)cos k,r — ot

(A5.2)
+ (7:2) cos( ) d;,i,) Fit —1)4, (F;7)A (F;7)de

5.1. Third-harmonic generation

5.1.1. Theory
THG is a coherent third-order nonlinear process related to the third-order susceptibility

79 (-30;0,0,0)= ¥ that mixes three photons at the optical angular frequency @ to
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generate a photon at three times the angular frequency of the incident photons, i.e. 3w . It is a
pure electronic process, since only the electronic polarization is able to quickly respond to a

high-frequency all-optical field excitation. The energy diagram for THG is shown in figure 6.

—_——— = - -

w 3w

)

Figure 6: Energy diagram of the THG process. The full lines represent real energy levels
whereas the dashed lines represent virtual energy levels.

5.1.1.1. THG in a bulk material

Let us consider an incident monochromatic linearly polarized beam at the angular
frequency @ propagating in the positive z -direction (direct wave) for which the electric field

1s of the form
E, (7it)= %{zw (7)explilk, z — )]+ 4’ (7 )expl—i(k, z — )]} (A.5.3)

The THG polarization oscillating at the angular frequency 3w is given by

B, (7t)= %{ﬁm (7F)expli(3k,z — 3et)]+ ps, (7 )exp[-i(3k, z - 3t )} (A.5.4)

- o 1 =3 (=
where p3w(l’)2280)((3)14;(7’) and y© = ¥V (Bw;0,0,0).

The scalar paraxial equation for the third-harmonic electric field is derived from the

general paraxial equation (A.2.37) and is given by

11, 30) p, (FJexplinke) (A55)

V2 A, (F)+ 2ik,, 04, (F)
Oz



where Ak =3k, —k,, is the phase mismatch between the fundamental and the third-harmonic

@ 3w .
waves and k, =n,— and k,, =n,, — the wave vectors of the fundamental and third-
c c

harmonic beams, respectively.
In the case of Gaussian beams, the expressions of the fundamental and third-harmonic

electric fields are given by

w? (z ZR(Z) (A5.6)
i) Ay (e el 25 el 1 ol

2
. . z .
where w, is the beam waist of the fundamental wave, w(z)=w,,|1+ (—j the radius of the

ZR

z ZR

2
beam, R(z)= z{l + [Z—R] } the radius of curvature of the wave front, ¢(z)= —arctan(ij the

2

Gouy phase shift of the wave, z, = m;:‘) the Rayleigh length, p = \/x> +y? the radial

coordinate and z the longitudinal coordinate.
For a theoretical work, it is more convenient to represent a Gaussian beam in a more

compact but less intuitive form

o -p’
A (pi2)= 1+ eXp[wé(lH(f)}
Asw(p;Z)=A°3“(Z)GXP[ nt/:A }

1+i& w(1+i¢)

(A.5.7)

where & = Z - % is a longitudinal coordinate (dimensionless) defined in terms of confocal
ZR

2 2
parameter b =2z, = 7;W° =k,w;.

[2]
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Substituting these expressions into the paraxial equation with no transverse

dependence ( p — 0) gives the following differential equation, which translates the evolution

of the amplitude of the third-harmonic electric field with respect to the distance z

dA073w (Z) s 3w (3)A3 CXp(lAkZ)
=1 0o LN (A.5.8)
dz 8n,,C (1+i&)
The solution of this equation is
A073w (Z): l 3a) Agfa)/l/(})‘]&u (Ak,ZO,Z) (A59)
8n,,C

- exp(iAku)

. 2
%0 2iu
+

where J, (Ak;z,;z)= J.
L

du is the third-harmonic interaction length and z, the

position of the entrance of the medium; the position of the beam waist is set to be at z =0 (cf.

figure 7).

n:ZG)
/
Zq 2w, —[z=0 z

Zﬂwg L — 1 242w,

Figure 7: Geometry of the experiment with a Gaussian beam focused inside a bulk material.

This third-harmonic interaction length can be evaluated analytically in two particular

cases. The first case corresponds to a slightly focused beam (plane wave limit), for which
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b >> |zo| and|z|. In this plane wave limit, the usual phase matching behavior is found (cf.

figure 8) since the third-harmonic interaction length is written as

|J3w (Ak;zo;zlz = eXp(ZAku du | (ikz) — exp(ikz, | : (Aij
B iAk | T
(A.5.10)
laaad f
o0 f
E &00 F
o
= ago|
2
N V’\/VWW_\
D - -
-0_03 -0_0Z 0 o_oz n.043

ik (rad.pm™3

Figure 8: Evolution of the modulus the third-harmonic interaction length versus the phase
mismatch (in the plane wave limit) computed for L =z -z, z, =—1mm and z=0.

The second case corresponds to a strongly focused beam inside the medium, for which

Z, :—|zo , z:|z| and b << |zo|and|z| and the third-harmonic interaction length can be

evaluated by a contour integral (cf- figure 9)

('Ak ) 0if Ak <0

+o expliAku

3w( Zo Z) I_w 2iu )’ ! ﬂb—AkeXp(—ﬁjifAk>0 ( )
Yy ’
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Figure 9: Evolution of the modulus of the third-harmonic interaction length versus the phase
mismatch (in the strongly focused beam limit) computed for different numerical apertures
(NA=0.25,0.50and 0.75).

Finally, the third-harmonic irradiance generated in a bulk material and detected in the

far-field is given by

2
L, = 3w2 1 -1\, (Ak; zo;z)(2 (A.5.12)
4g,c n,, n,

From equation (A.5.11), one can notice that the third-harmonic interaction length is
null when Ak <0, which is the case for all the materials that have a normal dispersion in the

wavelength range of interest (4,/3 — A,). As a result, the third-harmonic irradiance is zero

in the far-field when the incident fundamental laser beam is focused inside the medium. This
is known as the Gouy phase shift anomaly, as it is explicitly illustrated in figure 10. For a
positive phase mismatch (a), since the wave vectors of the fundamental beam present an
angular dispersion due to its Gaussian nature (b), THG can occur with high efficiency. This

cannot happen for a negative phase mismatch (c).
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Figure 10: Wave vector diagrams for THG.

5.1.1.2. THG in the vicinity of an interface

Thus, if the fundamental beam is focused in the vicinity of an interface separating two
media of different refractive indices and/or third-order susceptibilities (cf. figure 11), an

appreciable third-harmonic beam can be detected in the far-field even if the media has a

negative or null phase mismatch.

Material 1 Interface Material 2

ma X ny. X5
2W0 — 0 7
/ \
b

Figure 11: Geometry of the experiment with a focused Gaussian beam in the vicinity of an
interface separating two media with different optical properties.
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This is the imaging principle of THG microscopy [Bar97]. If the interface separates
two infinite media with different refractive indices », and different third-order susceptibilities

(3)

X (i =lor 2) with the interface at z =0, the third-harmonic irradiance in the far-field is
2 3/2 3/2 2
n n
J - 1;| 2 DT s (Bl 5=9030) + =22 ¥ T, o (Ak, ;05400 (A5.13)
4e,c "13@,1 ’ N30, ,

Although equation (A.5.13) appears complicated, it can be simplified in two particular
cases [Bro05]. The first case is an interface air/semi-infinite material. The third-order
susceptibility of air (~ 10’ m?.V?) is negligible compared to that of the material. The third-

harmonic irradiance is therefore given by

2 3/2 ?
3 n,
30 = ( > 2 J 103)| 2 /1/53)']3(0,2 (AkZ ’O,+OO (AS 14)
4806’ ‘n3w,2

The second case is an interface separating two media presenting identical refractive indices
and different third-order susceptibilities. This implies the following relations:

=n,,=n, , e P , Ak, = Ak, = Ak and

30 (Ak,3—00;0) = —J 302 (Ak,;0;+00). The third-harmonic irradiance is therefore given by

2
0 ) o 2 2
Ly = (430&} 1, n ‘J3w,1 (Ak;—oo;Oj ‘Zf” —153)‘ (A5.15)

5.1.1.3. THG with circularly polarized beams

Let us now discuss the symmetry properties of the THG process with either a linear

(E,=akE,) or circular ( E, =iE_ ) polarization. Considering an isotropic material, the

Kleinman symmetry conditions show that the third-order susceptibility tensor presents 21

nonzero elements of which only 3 are independent. They are [But90]
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XXXX = YYyy = zzzZ

VYZz = ZZ)Y = ZZXX = XXZZ = XX)) = YYXX =

(A.5.16)

VZyzZ = ZYZY = ZXZX = XZXZ = XYX) = YX)X =

w|Q w|q w|Q

VZZY = ZYYZ = ZXXZ = XZZX = X)YX = YXXy =

XXXX = XXVY + XYXy + XyyX = O

Another way to write the third-order nonlinear polarization induced in the material is

given by [But90]

2O.E (B2 + E?)

y

B (Fiw)="e| 2 E, (B2 + E2) (A5.17)

4 Wy -y

0

From equation (A.5.17), it appears that:
- The third-order nonlinear polarization induced by a linearly polarized electric field is not

null and a THG signal can be generated. In this case, we have y©) =3 ;(ij;y =3 Z)(ci;x =320

- The third-order nonlinear polarization induced by a circularly polarized electric field is null;
no third-harmonic can be generated with such a polarization. Nevertheless, if the material
possesses a crystalline structure, the third-order nonlinear polarization is no longer null and
THG can occur if the beam is focused in the vicinity of an interface. Hence, by changing the
polarization of the incident beam, structural information of the studied material can be

obtained [Oro03] [Oro04].

5.1.2. Experiment

The generic experimental setup is shown in figure 12. The laser source is an optical
parametric oscillator (Spectra-Physics, Tsunami-Opal system) which delivers 130 fs pulses at

the wavelength of 1500 nm at the repetition rate of 80 MHz. The laser beam is focused on the
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sample with a microscope objective (NA = 0.75, working distance = 500 um). The third-
harmonic beam is collected with a condenser (NA = 0.6, working distance = 3 cm), filtered

from the fundamental wavelength using an interference filter (4, =500 nm, A4 =40nm) and

measured with a photomultiplier tube (PMT, Hamamatsu R5700) [Bar(02].

Lock-in Current
amplifier amplifier

Filter

I Computer | Condenser

Sample
Microscope
objective
Afocal
doublet
Laser
source
Scanning
mirrors
Mechanical
chopper

Figure 12: Generic THG microscopy experimental setup.

For measurement purposes, the photocurrent from the PMT is amplified and
synchronously detected with a mechanical chopper via a lock-in amplifier, digitized and sent
to a computer for acquisition. The sample is moved in the x-y-z-directions with piezoelectric
translation stages. For imaging purposes, an x-y-scan of the beam is carried out in the sample
with galvanometric mirrors. The photocurrent from the PMT is amplified and sent to a
computer for acquisition. No lock-in amplifier is used because of its low response time.

The procedure to measure the ¥ value of a material from THG microscopy is the

following. The third-harmonic signals generated by the investigated glass and a reference

glass (fused silica in our case) are measured. When no significant two-photon absorption
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occurs at both the fundamental and third-harmonic wavelengths, the imaginary part of the
electronic susceptibility can be neglected and the calculated modulus of the susceptibility is
set to the real part. Thus, the electronic susceptibility of the investigated glass relative to the

reference glass is given by

1(3) 3w ,Si0, w SIOZ 3(0 l’l3w @ |J3w SiO, (AkStO 70 LS!O )|Z(3)
XXX 3 xxxx,Si0,
T, S30 5i0, \ M30,5i10,1%0 s107 3 (Ak 0; L) ‘

(A.5.18)

T.

3w

where T

w a)’

n,, are the Fresnel transmission coefficients at normal incidence and the

@

refractive indices at @ and 3w , respectively, S, 6 the detected third-harmonic signal,

3w

I (Ak;O;L): I:Mdu the third-harmonic interaction length and L the sample
2iu

b

thickness. The SiO, subscript refers to fused silica and no subscript is assigned to the
investigated glass.

Knowing the refractive indices, the Fresnel transmission coefficients of both the

(3)

xxxx,Si0, ?

investigated and the reference glasses at @ and 3w as well as y one must apply

equation (A.5.18) to determine the absolute ¥ value of the material under investigation. As
a reference, we have chosen the value given by Hellwarth in 1977 for fused silica [Hel77]

(2 =2.65x10"* m*>.V~> £30% at 694 nm). The huge uncertainty of the measurement of

XXXX

this value will be reported on our own measurement. However, if absolute measurements are

(3)

xxxx,Si0,

not necessary, relative measurements (in % of y ) will be preferred, with an uncertainty

of only 10%. This technique is unique because it enables to characterize both bulk and

structured materials.
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5.2. Optical Kerr effect

5.2.1. Theory

Contrary to THG, OKE relies on both electronic and nuclear effects, in the Born-

Oppenheimer approximation. Therefore, it is a non-instantaneous process.

5.2.1.1. Phenomenological description of OKE

Let us consider an incident monochromatic linearly polarized beam at the angular
frequency @ propagating in the positive z -direction (direct wave) which electric field is of

the form
E (Fit)= %{Zm (F)expli(k,z — wrt)|+ A’ (F)exp[-i(k,z — a)t)]} (A.5.19)

The OKE polarization oscillating at the angular frequency @ is given by

PQ(F;t)z%{f?w(F)exp[i(sz—a)t)h 5. (F)exp[- ik, z - ot)]) (A.5.20)

@ ;lw(dzglw(?) and 3 =y (-0 0,~0,0).

where p_(F)= %80}(

The scalar paraxial equation for the electric field is derived from the general paraxial

equation (A.2.37) and is given by

V24, (F)+2ik, aAg (r)

4

=—u,0’p,,(F) (A.5.21)

OKE is responsible for self-focusing, self-phase modulation cross-phase modulation
and two-photon absorption. In general, OKE is, in a phenomenological way, described by the

famous equations

(A.5.22)

{n(]) =ny +n,1

a(l)=a, +a,l
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where n is the total refractive index, n, the linear refractive index, n, the nonlinear
refractive index, o the total absorption coefficient, ¢, the linear absorption coefficient, o,

the nonlinear absorption coefficient and / the irradiance.

The nonlinear refractive index and absorption coefficient are related to the OKE

susceptibility 7@ (- w; ®,~w,®) by the relations

n, = 3 Re{;((3)(— w; a),—a),a))}
4e,cny (A.5.23)
3w o
%= 2e,m5¢’ Im{l (- o0, a))}

However, this description of OKE is true only if the associated physical mechanisms
are instantaneous, that is, purely electronic. The energy diagram for purely electronic OKE is

shown in figure 13.

w )] )] 42

Figure 13: Energy diagram of the purely electronic OKE process. The full lines represent real
energy levels whereas the dashed lines represent virtual energy levels.

5.2.1.2. OKF in an orthogonally-polarized pump-probe configuration

Our experiment to measure the OKE susceptibility is a pump-probe-type experiment
with the pump and the probe pulses orthogonally polarized (cf- figure 14). The coupling

between the pump and the probe pulses through the diagonal tensor elements of the third-

55



(3) 3) 3)
xyxy =X xx =X xxyy

order susceptibility ( y ) yields to nonlinear interferences in the probe

irradiance. A careful analysis of the probe signal gives information on:

- The nonlinear absorption (imaginary part of the third-order susceptibility) through the
average variation of the probe irradiance.

- The nonlinear refraction (real part of the third-order susceptibility) through the fast

variations of the probe irradiance.

Pump field

a

Probe field

Nonlinear
fringes at 20,

Probe
irradiance

/u

Figure 14: Principle of a pump-probe experiment with the pump and the probe pulses
orthogonally polarized.

In this particular experiment, the third-order nonlinear polarization along the probe

axis is developed as

- 9 =5 (=
PO )= 260 A i )
+ ;eo 7 tJ. dS) (¢—7)A2 (F;r)de (A.5.24)

xxyy

+&4, rtj d) (t—7)4,(F7)A4, (77 )dr
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The electric field envelope is assumed to be spatially Gaussian and temporally

arbitrary and is given by

AN -p’
Alp;z;t) = 1ic exp{ N if)}s(t) (A.5.25)

where s is the temporal shape (dimensionless) of the pump or probe pulse.
The paraxial equation has no analytical solution. To be able to solve it, a perturbation
development has to be performed. In this case, the general propagation equation for the probe

beam with a nonlinear coupling with the pump beam is written as [San04]

A A ) (A.5.26)

pr-pu

vid4, ik :——k (ﬁAp,

pM

where k is the wave vector in the medium, k, = — the wave vector in the vacuum and S,
c

and S, two perturbation variables given by [San04]

B =200)s (t)SZ(t—u)—i-%s(t)J‘ dgy)y(t z—)%t—r)dz--y—és(t—u)} dij;y(t o)s(t—7)s(t—7—u)dr
(A.5.27)

,/32:exp(_izm)[a;;;ys(t)sz(t_u)%s(t_u)j 42 (- )S(t_f)s(z_f_u)dr}

(A.5.28)

such as 4, = X, +(B, + B,)X, with X, and X, the unperturbed and perturbed envelopes,

respectively, and u the variable delay between the pump and the probe pulses.

The equation describing the probe irradiance variations is given by

ki P .
1, cAd, A, =1, { " cg‘: F(wy ko L)Au)G(u)sin(2e0u ) (A.5.27)

where 1, is the incident probe irradiance, P,, the average power, R the repetition rate of
the laser, F (wo,k L) a dimensionless numerical factor depending on the spatial properties of

the laser beam, w, the beam waist and L the thickness of the sample.
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Since our experiment utilizes 100 fs pulses, the probe signal is sensitive both to the
electronic and the nuclear contributions. Thus, the global OKE susceptibility A includes both
electronic and nuclear phenomena, and is given by

H(d“’ u)

xyxy 2

e T Gl) (A.5.28)

The first term of the equation (A.5.28) is labeled as the electronic susceptibility and the
second one as the nuclear susceptibility.
The function G(u) is a temporal term, delay dependent, which represent the electronic

contribution to the signal and it is defined as

Glu)= [ ekl (A.5.29)

[ .r:s(t)dtT

At zero delay, this function is equal to the ratio between the second-order momentum of s(t)

and the squared first-order momentum of s(t).

The function H (d i;ﬁy,u) is a more complicated term owing to the non-instantaneous

response of the Raman phenomena which represents the nuclear contribution to the signal. It

1s defined as

Ij:[s(t )S(t —u )I:O d S;} (t -1, )s(t1 )s (t1 —u )dzl }dr
Uj:sz (t)dtT

This function includes the correlation of a classical convolution of the nuclear response

H(d®) su)= (A.5.30)

function of the material with the temporal shape s(t) of the laser pulse.

As shown before, it is possible to calculate the nuclear response function dx(;;y from

Raman spectra. Knowing this last, one can then determine the nuclear susceptibility by

xyxy ?

G(u=0)

| 1 su=0)
computing the ratio ——— =
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5.2.2. Experiment

The experimental setup is shown in figure 15. The light source is a Ti:Sa laser
(Spectra-Physics, Tsunami system) which delivers 150 fs pulses at the wavelength of 810 nm
at the repetition rate of 80 MHz. The laser beam is unevenly balanced in a strong TM-
polarized pump beam and a weak TE-polarized probe beam by using a half-wave plate
combined to a polarizing beam-splitter cube. These two beams are further mixed with another
polarizing cube, precisely adjusted to be exactly collinear, and are focused into the sample.
The pump beam is then ejected by a Glan prism and the irradiance of the probe beam is

recorded as a function of the delay between the pump and the probe pulses [San04].

Pump
Half~wave
plate PBS
Laser I |
source l 1
PBS Delay «<—

> @ Probe

\.:. x .@D

Lens Sample Lens Lens Photodiode

Pump ejection

Figure 15: Generic OKE pump-probe experimental setup.

This technique is appropriate to characterize bulk materials. However, it is difficult to
implement on structured materials for different reasons. First, the polarization of the pump

and the probe pulses must perfectly be maintained after the focusing element, which is rarely
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the case. Second, the nonlinear interaction length makes on the order of a few micrometers

makes the signal too low to be detected.
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CHAPTER SIX: APPLICATION TO DIFFERENT GLASS FAMILIES

Based upon Hellwarth’s model, several measurements of the nuclear contribution in
glasses have been performed in the femtosecond regime, either using time-resolved
techniques [Tho85] [Kan96] [Mon98] [Sm099] [Abe00] [Mon08] or not [Pan95] [San04].
Smolorz et al. have, for instance, demonstrated that the relative nuclear contribution to the
nonlinear refractive index increases upon addition of GeO, in a SiO, optical fiber [Smo099].
However, these results did not include the effect of the duration of the optical pulse, despite
previous work by Stolen ef al. [Sto92] which showed that the nuclear contribution is driven
by the pulse duration. Hence, values of nuclear contributions are subject to change since they
depend strongly on this important parameter.

In this chapter, Hellwarth’s model is applied to two families of oxide glasses, namely
fused silica and sodium-borophosphate-niobium glasses [Roy07]. The application of the
model to fused silica aims to show its validity as a simple reference material. Both the
electronic coefficient and the Raman cross-section used have been taken from the literature
[Hel77]. The evolution of the nuclear contribution to the OKE is given. For the other glass
family, THG and OKE susceptibility measurements have been performed with THG
microscopy and pump-probe techniques, respectively. From these measurements, the nuclear
contribution to the OKE has been deduced. Additionally, Raman scattering experiments have
been carried out to evaluate theoretically the nuclear contribution to the OKE and compared

to that measured by THG. The validity and the limitations of the model are also discussed.

6.1. Fused silica

The polarized (VV) and depolarized (VH) Raman experiments have been carried out

from 90° spontaneous Raman scattering measurements at 514.5 nm (cf. figure 16) using an
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experimental system allowing low frequency measurement. The reported value of silica

2
[Hel75] {ﬂ =2.25.10"" cm™sr'.cm+10 % for the 440 cm™ line at 514.5 nm, where
0Q00
oR .
o, =—>—/} has been considered.
2mc
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Figure 16: Absolute polarized (VV) and depolarized (VH) Raman spectra of fused silica at a
514.5 nm excitation wavelength.
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Figure 17: Relevant tensor elements of the nuclear response function of fused silica versus
time.

Following Hellwarth’s model, the nuclear response functions have been calculated (cf.

figure 17) as well as the functions G(u) and H (d &) u) (cf figure 18).

xyxy 2
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Figure 18: Functions G(u) (dashed curve) and H (d S;y,u) (full curve) versus time delay
between the pump and the probe pulses for a 100 fs pulse at 800 nm for fused silica.

( 3 .= )
xyxy 2
——————— has been computed

The nuclear contribution to the total nonlinearity, G ( 0)

and is shown in figure 19.
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Figure 19: Evolution of the nuclear contribution to the OKE susceptibility in fused silica
versus pulse width (FWHM).

The evolution of the nuclear contribution with the pulse width is similar to the
electrostrictive one previously shown [Buc96], but with shorter pulses. For pulses shorter than
500 fs, the nuclear contribution increases until it reaches its maximal value at 500 fs.
Afterwards, it decreases slightly to reach its long pulse limit. However, the maximum value of
the nuclear contribution for fused silica (about 6%) is less than the reported values in the
literature (21+£3% [Hel75], 26% [Hei79], 18% [St092], 13+4% [Smo099]). This is due to the
configuration of our OKE experiment which deals with cross-polarized pump and probe

pulses. The involved tensor element of the nuclear response function in the OKE signal is

d X‘j’;y , which comes directly from the depolarized Raman spectrum. Our lower value for the

nuclear contribution can be explained by the fact that the depolarized Raman spectrum is

much less intense than the polarized one. To date, all the measurements listed above probed

the d®_ tensor element.

XXXX
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6.2. Sodium-borophosphate niobium glasses

Glasses containing niobium oxide (Nb,Os) have been widely studied and are currently
reported to exhibit high nonlinearity in sodium-borophosphate matrices containing a large
amount of Nb,Os [Car96] [Car97]. In particular, the increase of the third-order nonlinear
optical response has been related to the atomic density of niobium in the glass. In addition, a
nonlinear behavior of the nonlinear refractive index has been shown where a clear
enhancement of the optical response occurs as the niobium ions are introduced in large
quantities [Car96] [Car97]. The optical nonlinear response has been related to the specific
three-dimensional (3D) corner-shared arrangements of NbOg octahedra which enables the
formation of a tungsten bronze-like local structure, at high niobium oxide concentration.
Lipovskii et al. [Lip03] have observed similar behavior of the electro-optical Kerr effect, with
the successive addition of Nb,Os into silicate-based glasses. This work clearly illustrates a
correlation between the increase of both the Raman spectral density and the Kerr response of
the materials with an increase of NbOg tungsten bronze “crystal motifs” within the glass
structure. In this section, a sodium-borophosphate matrix, with varying Nb,Os molar
concentration in the glass system (100-x)(95NaPOs3-5Na,B407)—xNb,Os, has been

investigated. Table 2 lists the optical properties of these glasses.

66



Sodium-borophosphate glass

9.55 19.19 28.93 38.78
(mol% Nb,Os)
A, (nm) 308 322 337 351
n(w) (£0.02) 1.53 1.59 1.73 1.81
n(3w) (+0.02) 1.55 1.63 1.77 1.89
THG susceptibility
a® 6.78x10% | 8.42x107%* | 11.63x10% | 15.31x107
(m*.V?) (+ 30%)
OKE susceptibility
Alu=0) 8.68x107% | 13.15x107% | 17.67x10** | 37.83x107%
(m*.V?) (£ 10%)
Measured nuclear susceptibility
Alu=0)-c®, 1.90x10% | 4.73x10% | 6.04x107* | 22.52x10*
(m*.V?) (+ 35%)
Calculated nuclear susceptibility
11(2%—;:0;0) 1.27x107%% | 3.20x107% | 3.53x10% | 5.20x10*

(m*.V?) (£ 10%)

Table 2: Cutoff wavelength, linear refractive indices at @ and 3w, THG susceptibility, OKE
susceptibility (from [Car97]), measured nuclear susceptibility and calculated nuclear
susceptibility for different Nb,Os concentrations.

The polarized (VV) and depolarized (VH) Raman experiments have been carried out

from 90° spontaneous Raman scattering measurements at 514.5 nm using an experimental

system allowing low frequency measurement. Raman spectra have also been measured with
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longer excitation wavelengths at 632.8 nm, 752 nm and 1064 nm using a notch filter which
does not allow measurement below 145 cm™. To be able to compare the Raman nuclear
contributions with that obtained from THG and pump-probe experiments, the dispersion of
the differential Raman scattering cross section must be taken into account. A similar evolution
to that reported by Rivero et al. [RivO5bisbis] for glasses having an absorption edge around
350 nm, have been observed showing that no significant dispersion in the 750 nm - 1064 nm
range could be measured. Moreover, no distortion of the spectra for different excitation
wavelength has been observed. To obtain the Raman spectra of the studied glasses, the
measured data at 514.5 nm have been rescaled to the spectra obtained at 1064 nm and
compared to the reported value of silica [Hel75] after reflection, refraction and wavelength
corrections [Sto73] by using a fused silica reference sample. The absolute polarized (VV) and

depolarized (VH) Raman spectra are shown in figures 20 and 21, respectively.

12
_140x10 ~ 1 —— 9.55% Nb,O,
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Figure 20: Absolute polarized (VV) Raman spectra of the borophosphate matrix glasses with
different Nb,Os concentrations at a 1064 nm excitation wavelength.
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Figure 21: Absolute depolarized (VH) Raman spectra of the borophosphate matrix glasses
with different Nb,Os concentrations at a 1064 nm excitation wavelength.

The values of ) for all samples, measured with a THG microscopy setup relative to

a fused silica sample, are gathered in table 2 and reported in figure 23.

The values of A for all samples, measured in reference [Car97], are gathered in table
2 and reported in figure 23. Since Nb,Os concentrations of the glasses studied in this previous
paper [Car97] were slightly different from ours, extrapolated values of the OKE susceptibility

have been considered using a linear regression method.

©)

xxxx

Knowing the experimental values of A and o one can deduce the measured

nuclear susceptibility, that is A(u = O)—O'(3) and thus the nuclear contribution to the OKE

xxxx 2

susceptibility. These two quantities are shown in table 2.
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Finally, from the Raman spectra and following Hellwarth’s model, the functions G(u)

and H (d ) u) are computed (cf figure 22) and the calculated nuclear susceptibility

xyxy 2

#(d® =0

xyxy ?

G (u _ O) is determined and shown in table 2.

Nevertheless, one has to consider that THG and pump-probe experiments have been
carried out at different wavelengths (i.e. 1500 nm and 800 nm). In the transparency region of
these glasses, in the visible/near IR range, the THG susceptibility follows a normal dispersion,
and decreases with increasing wavelength, meaning that the susceptibility value is smaller at
800 nm than at 500 nm. A possible resonance effect might occur as the third-harmonic (at 500
nm) which is close to the electronic gap-wavelength of these glasses, leading to an over-

estimation based on this measurement. This effect implies that the measured nuclear

contribution might be slightly larger than shown in table 2.
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Figure 22: Functions G(u) (dashed curve) and H (d ) u) (full curves) versus time delay

xyxy ?
between the pump and the probe pulses for a 100 fs pulse at 800 nm for different Nb,Os
concentrations.
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Figure 23: THG susceptibility { ¢ }, OKE susceptibility { A(x = 0)} and measured nuclear

XXXX

susceptibility { A(u=0)—c) } versus Nb,Os molar concentration.

XXXX

For a 100 fs optical pulse at 800 nm (i.e. 140 cm™ bandwidth), it appears that the mode
at 230 cm™' contributes mostly to the nuclear susceptibility (about 75% of the total nuclear
susceptibility) whereas the modes above 500 cm™ have a negligible influence. To participate
in the nuclear nonlinearity, the vibrational modes must present both a low wave number and a
large bandwidth, i.e. a low oscillation frequency and a high damping in the time domain, so
that the convolution of the nuclear response function with the optical pulse is maximal.

Calculation and experimental results are in agreement to within uncertainties of the
measurements as long as the Nb,Os concentration is less than 28.93 mol%. For the 38.78
mol% Nb,Os concentration, a significant nuclear fraction to the nonlinear refractive index has
been measured (~ 60%). The results (~ 22-36%) obtained for low niobium oxide content are
in accordance with data previously reported for silicate based materials by Hellwarth et al.

[Hel75]. The evolution of the nonlinearity for low niobium oxide content is driven by the
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electronic contribution. The results obtained validate the model proposed for summation of
Nb-O bond electronic contribution to the nonlinearity previously proposed [Car97]. For high
Nb>*ions concentration, the measured nuclear fraction to the nonlinear refractive index is the
highest reported to date in inorganic glasses. Moreover, discrepancies between calculated and
measured nuclear contributions deduced from THG and OKE measurements seem to indicate
that the present Raman measurements do not entirely take into account the true nuclear
contribution.

The evolution of the glass structure with increasing Nb,Os concentration in
borophosphate glasses has been investigated [Car96] [Car97]. The introduction of Nb,Os in
small quantities gives rise to the formation of hyperpolarizable “isolated” distorted NbOg
octahedra with a characteristic Raman signature around 900 cm™'. As the Nb,Os concentration
increases, corner shared NbOg octahedra are formed and progressively, a one-dimensional
Nb-O-Nb framework corresponding to chains of octahedral can be distinguished with a
Raman band around 830 cm™. For high Nb,Os concentration, a two dimensional and finally
three-dimensional framework is created. This local structure has a strong similarity with
crystalline structures such as Ba;NaNbsO;s5, NaNb3;Og or NaNbOj involving NbOg octahedra
sharing a common corner unit.

The formation of the 3D octahedral structure within the glass is correlated to the
Raman band around 250-300 cm™ in the low frequency domain increasing in intensity and a
new sharp vibration at 70 cm™. These vibrations are strongly related to the vibration around
650 cm™'. Recently, Malakho et al. [Mal05] have shown that in this glass system, the first
crystallization phase observed is NaNb3;Og, which can be compared to NaNbO; or
Ba;NaNbsO;s crystalline structures. In these crystalline phases (KNbO;, NaNbO;s; or
Ba;NaNbsO;s), vibrations around 650 em™, 250-300 cm™ and 50-70 ¢cm’! are also present

[Bou80] [She95] [Bou03]. Numerous articles have mentioned correlations between the
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intensity of the low phonon bands and the phase transition observed in niobate crystals
leading to ferroelectricity [Bou80] [She95]. In glasses, such effects cannot occur due to their
disordered structure but nevertheless, the presence of similar vibrations to those observed in
the crystalline phases, and particularly the band around 250 cm™, could be related to
collective motion of 3D associated NbOg octahedra. Significant nuclear contribution to the
nonlinear refractive index appears for Nb,Os molar concentration above 28.93%, which
corresponds to the existence of NbOg tungsten bronze structure (TBS) and to the largest
intensities of the vibrations around 650 cm'l, 250-300 cm™ and 50-70 cm™. The calculation of
the nuclear contribution thus indicates (for a pulse of 100 fs), that the major contribution to
the nonlinear refractive index is associated to the vibration located around 250-300 cm™.
Clear assignment of NbOg collective motion in the glass leading to such vibration would be of
importance to understand how local structure can significantly affect the nonlinear response.
The reason why Hellwarth’s model no longer stands in these glasses for NbyOs
concentrations higher than 28.93% is still under investigation. Further experiments will be
performed to understand why the entire nuclear information is not contained in the Raman

spectra and to identify other eventual vibrational modes unrevealed by Raman spectroscopy.
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PART B: LASER STRUCTURING
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CHAPTER SEVEN: LASER-MATERIAL INTERACTION

Laser-material interaction is a field that has been extensively studied during the past
decade. The understanding of the involved physical phenomena and their associated
characteristic times is of particular importance [SchO1] [Stu96] [Mao04] [Ams08] [Gat08].
Even though the picture is far to be clear, it is admitted in the community that, when a high
irradiance laser pulse is incident onto a material, some of the following events occur (cf-
figure 24):

- After 1 femtosecond, the electrons absorb the laser photons by photo-ionization.

- After 50 femtoseconds, if the generated photoelectrons are sufficient in number and in
energy, avalanche ionization is initiated.

- After 100 femtoseconds, the electrons get thermalized. They reach a Fermi-Dirac energy
distribution after having absorbed the laser energy.

- After 1 picosecond, the electrons cool and they transfer their energy to the surrounding
neutral atoms and ions (lattice).

- After 10 picoseconds, the heat diffuses inside the material. The phonons reach a Bose-
Einstein energy distribution.

- After 100 picoseconds, the material melts if the thermal energy is sufficiently higher than
the bond strength.

- After 1 nanosecond, resolidification and structural changes occur.

The first three processes correspond to the absorption of the laser energy by the
material. The three following effects translate the transformation of the absorbed laser energy
into thermodynamic processes (thermal diffusion, melting) at the macroscopic scale. The last

event involves photo-chemical processes leading to structural changes (explosion,
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resolidification, chemical bond breakings) at the microscopic scale, or even at the nanoscopic

scale, as it will be shown later.

_ Phetoionization (multiphoton absorption or tunneling ionization) (after 1 f&)

_ Avaianche ionization (after 50 f5)

- Thermalization of the electrons (after 100 f5)
- Energy trangfer electrons — lattice (after 1 ps)

L p———
s e 1o
Resolidification and Structural changes (after 1 ng) _

1fs 1ps 1ns 1ps Time

Figure 24: Timescale of the physical phenomena involved in laser-material interaction.

Thus, the picosecond, corresponding to the electrons-network relaxation, gives an
order of magnitude of the limit between the thermal and non-thermal phenomena. For this
particular reason, structuring materials with femtosecond pulses has been preferred to longer
pulse regimes to prevent thermal effects to occur. Moreover, the energy deposited by a
femtosecond pulse is confined inside the focal volume because of nonlinear absorption and
absence of linear absorption and thermal diffusion. This results in high spatial precision for

local modification as illustrated in figure 25.
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three-photon absorption (on the right) of a

Gaussian beam focused with a 0.55-NA microscope objective inside a random material.

Traditionally, the dynamic of laser-material interaction is divided into three steps.

First, photo-ionization generates a population

of free electrons in the conduction band.

Second, these free electrons increase their kinetic energy by absorbing new laser photons (free

carrier absorption). Third, when the electron energy exceeds the band gap energy, it can

promote another electron initially in the valence band into the conduction band by collision

(impact ionization) leading to avalanche ionization. However, for short pulses (less than 50

fs), avalanche ionization does not stand and another process has been proposed to participate

in the laser-material interaction, namely multiphoton “forest fires” ionization. An overview of

each of the ionization phenomena is given in this chapter, as well as the different response

regimes experienced by the material, depending on the irradiation conditions.

7.1. Multiphoton and tunneling ionizations

Multiphoton and tunneling ionizations have been theoretically described by Keldysh in

his well-known paper [Kel65]. Multiphoton ionization of an atom corresponds to the

simultaneous absorption of several photons which cumulated energy exceeds the ionization
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potential of the electron energy level. It is more probable if the number of required photons is
low; consequently, it is favored for the short wavelengths which necessitate less photons to

reach a given energy. The number of generated free electrons is given by

aN _ o g (B.7.1)
dt

where 7 is the number of photons involved in multiphoton absorption, &, the n"” -photon

absorption coefficient and / the laser irradiance.

Tunneling ionization takes place when the incident electric field is sufficiently
important to distort the potential barriers which maintain the electron in the field of the
nucleus of an atom. The electron is then ejected. Because of the high required irradiance,
tunneling ionization can only occur in the femtosecond regime.

The interaction between multiphoton and tunneling ionizations is complex and is

generally quantified through the Keldysh parameter, given by [Kel65]

mcn,& E
y = @ | TeT0%0 s (B.7.2)
e 1

where o is the laser angular frequency, m, and e the mass and the charge of the electron, ¢
the speed of light in vacuum, n, and E, the refractive index and the band gap energy of the
material and g, the dielectric permittivity of vacuum. Figure 26 illustrates the competition
between the two types of photo-ionization. For y < 1.5 (i.e. for high irradiances), tunneling

ionization dominates whereas for y >1.5 (i.e. for low irradiances), multiphoton ionization

dominates.
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Multiphoton ionization Tunneling ionization

o (r>1.5) (y<1.5)

Figure 26: Schematic band diagram of multiphoton and tunneling ionizations of an electron
originally in the valence band. CB and VB stand for conduction band and valence band,
respectively.

7.2. Avalanche ionization

Avalanche ionization is initiated by an electron which kinetic energy is sufficient to
ionize by collision a neighboring atom. By inverse Bremsstrahlung, the new free electron will
consecutively gain kinetic energy and can ionize similarly a neighboring atom (cf. figure 27).
The number of generated free electrons is given by

AN _ N (B.7.3)

dt
where o is the avalanche ionization coefficient, / the irradiance of the laser and N the free

electron density.
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Figure 27: Schematic band diagram of free carrier absorption and impact ionization processes
leading to avalanche ionization. CB and VB stand for conduction band and valence band,
respectively.

The characteristic time for avalanche ionization to occur is on the order of 30-50 fs
[Gai05]. Therefore, for avalanche ionization to participate in laser-induced modifications, the

pulse duration must be longer than 50 fs. A question then comes: what replaces avalanche

ionization when pulses are shorter than 50 fs?

7.3. Multiphoton “forest fires” ionization

Mutiphoton “forest fires” ionization has been proposed as a substitute to avalanche
ionization when short pulses are involved. This process takes place for intermediate values of
the Keldysh parameter ( =~ 1.5). When an electron is localized on a nucleus, the fast removal
of this electron leaves an uncompensated positive charge behind, namely a hole. The creation
of a hole enhances the creation of new holes at the adjacent sites, igniting an avalanche-like

(“forest fires”) ionization in clusters or molecules. These latter are the starting point for the
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creation of nanoscale droplets of singly ionized plasma. These nanostructures expand similar

to forest fires and can have fractal dimension (cf. figure 28) [Gai04] [Gai05] [Ray05].

Direction perpendicular to Taser polarizafion

Direction paraliel to laser polarization

Figure 28: Two-dimensional “forest fire” simulation of Argon cluster surface. Plots from left
to right correspond to times at which ionized regions make up 10%, 25% and 50% of the
lattice area [Gai04].

7.4. Material response mechanisms

In the previous section, it was shown that the absorption of the laser energy by the
electrons and its transfer to the lattice result in modifications of chemical bonds or, if the
energy is high enough, to their breaking. Depending on the irradiation conditions, the material
response to a femtosecond pulse train can be decomposed into three regimes determined by
increasing the pulse energy, namely isotropic refractive index change, anisotropic refractive
index change and void formation. The transition threshold between the isotropic and
anisotropic regimes is difficult to determine since it depends a lot on the irradiation conditions
(pulse energy, repetition rate, numerical aperture, exposure time or translation speed). For
example, Sudrie et al. found the transition threshold for fused silica at an irradiance of about

100 TW.cm™ and 4x10° pulses [Sud01].
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7.4.1. Type 1. Isotropic refractive index change

In this regime, the material response consists in an isotropic refractive index change,
which can be either positive (like in fused silica [Hir98]) or negative (like in phosphate
glasses [Cha03]). The refractive index change increases with the pulse energy. The structural
changes are caused by fusion and non-uniform solidification. This regime is typically used for

waveguides and couplers fabrication.

7.4.2. Type II: Anisotropic refractive index change

In this regime, the material response consists in a “nanograting” structure with a
periodic modulation of the refractive index [Shi03]. The refractive index change alternates
between positive and negative values [Bri04]. The explanation of this phenomenon is not well
established in the community [Shi03] [Bha06]. This regime is typically used for polarization
control devices and microreflectors. More details about this regime will be given in the next

chapter.

7.4.3. Type III: Void formation

In this regime, a void is created close to the focus of the beam, due to the explosive
expansion of the hot electrons and ions. The void presents a low-density with a negative
refractive index change, embedded by a denser shell with a positive refractive index [Gle96].
This regime is typically used for optical data storage devices and photonic crystals

fabrication.
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CHAPTER EIGHT: STRUCTURING OF FUSED SILICA

8.1. At the wavelength scale

In 2005, Zoubir et al. wrote waveguide structures inside fused silica and measured
their linear and nonlinear optical properties [Zou05]. The authors reported an increase in the

linear refractive index An/n on the order of 0.3% (from numerical aperture measurements of

the exiting guided beam) and a decrease in the nonlinear cubic susceptibility Ay® /7 on

the order of 60% [from THG microscopy and self-phase modulation measurements]. This
contradicting evolution of the linear and nonlinear optical properties, i.e. increasing the linear
refractive index while decreasing the nonlinear one, is unexpected and difficult to understand.
The fact that the light is guided inside the waveguide imposes a positive refractive index
change; so the increasing trend of this property is not questionable. On the other hand,
Szameit et al. [Sza05] and Blomer et al. [Blo06] measured the changes in the nonlinear
refractive index by analyzing the self-phase modulation of the propagating beam inside
femtosecond laser-written waveguides. They found too a decrease of the nonlinear refractive
index between 15% and 75%, depending on the irradiation conditions, confirming thus the
decreasing evolution of this property.

In 2006, a comparative study on three commercially available fused silica samples
possessing different levels of initial impurities content, showed a correlation between the
laser-induced structural modifications and the different spectroscopic signatures [Zou06].
Nevertheless, the link between the changes in the refractive index and the third-order
susceptibility and the spectroscopic signatures was not investigated.

In this section, three fused silica samples possessing different impurity levels and

exposed to a femtosecond laser have been studied. The laser-induced defects have been

83



identified from absorption, luminescence and Raman spectroscopy. The changes in the linear
and the nonlinear optical properties have been measured from Kramers-Kronig calculations
and THG microscopy experiments. In parallel, discussions about the link between the
measurements and the structural modifications have been conducted. Several hypotheses are

discussed to explain the contradicting evolution of the linear and nonlinear optical properties.

8.1.1. Sample description and irradiation conditions

One mm-thick fused silica samples commercially available from Heraeus (Herasil 2,
Suprasil 312 and Infrasil 302) were used in this study. Their corresponding absorption spectra
are presented in figure 29. Herasil and Suprasil possess a low concentration in oxygen
vacancies (Al), which confers good transparency in the ultraviolet (UV), but a high OH -
content responsible for the high absorption band around 2700 nm. By contrast, Infrasil shows
no such band in the infrared (IR), but presents high absorption in the UV. Table 3 lists the
linear and nonlinear optical properties and impurity (OH™ and Al) levels of the samples under

investigation, prior irradiation.

Fused silica sample Herasil 2 Suprasil 312 Infrasil 302
Density (g.cm™) 2.203 2.201 2.203
Al impurity level 10 <001 20

__(ppm)
OH’ impurity level 150 200 <3
(ppm)
A, (nm) 211 170 209
n (656.3 nm) 1.45646 1.45637 1.45646
n (587.6 nm) 1.45856 1.45846 1.45856
20 22 (%) 100 98 + 4 96 + 4
Ar® /7@ (%) 23+4 -17+4 24+4

Table 3: Density, Al and OH™ impurity levels, cutoff wavelength, refractive indices at 656.3
and 587.6 nm and third-order susceptibility relative to Herasil for the unexposed samples and
relative change in the third-order susceptibility for the 5 pJ-exposed samples.
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The three bulk glass samples have been exposed to a NIR Ti:Sapphire regenerative
amplifier (Spitfire system from Spectra Physics) which delivers 1 mJ, 1 kHz, 100 fs pulses at
a wavelength of 800 nm. The beam was focused with a 10 cm focal length lens. The
translation speed was 1 mm.s™, the number of pulses in a given spot area was about 25 and
the pulse energies were 5 and 20 pJ. The irradiated areas consist in 1 mm X 1 mm square

structures. They are approximately 400 um below the surface and 200-um-thick.

1.0+
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0.8- —_— Herasn_
0154 — Suprasil
‘7’; £ — Infrasil
3 0 6 | % 0.104
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0.2- /
0.0-
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Figure 29: Absorption spectra and UV region expanded (inset) for the three unexposed fused
silica samples.

8.1.2. Spectroscopic investigations

8.1.2.1. Absorption spectroscopy

The visible-UV change in the absorption coefficient was determined by measuring the

absorption spectrum through the irradiated region and subtracting it from the absorption
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spectrum measured on the unexposed region, using a Cary 500 spectrophotometer (Varian).
The absorption change spectra are shown in figure 30. No significant absorption bands are
observed for Suprasil and Herasil samples. Only for Infrasil, two bands appear at around 200
nm and at 240 nm. These absorption bands are related to impurities such as germanium,
which are present in the raw materials used for fabrication of Infrasil. In all samples, two
absorption bands are observably induced by the irradiation process. The peak centered at
around 215 nm is attributed to Si £’ centers, an unpaired electron spin in a silicon atom bound
to three oxygen atoms £Si °) related to an oxygen vacancy in the fused silica network. The
peak at around 250 nm can be attributed to non-bridging oxygen hole centers (NBOHCs) or
oxygen-deficient centers (ODCs) associated generally to two fold coordinated silicon
diamagnetic centers [Sku98] [Zou06] (=Sie*). The absorption change spectra also show the

presence of peaks below 190 nm, which can be assigned to ODCs [Sku98].
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Figure 30: Absorption change spectra for the three 5 uJ- and 20 pJ-exposed fused silica
samples.

8.1.2.2. Luminescence spectroscopy

Because of the 185 nm detection limit of the Cary 500 spectrophotometer due to air-
contained oxygen absorption, all the color center signatures could not be identified. To
overcome this problem, luminescence spectroscopy has been performed in complement to

absorption spectroscopy. The instrument is from Edinburgh Instruments Ltd. and is equipped
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with a 450 W Xenon lamp, and a double monochromator in both the excitation and detection

arms. The luminescence spectra (cf. figure 31), obtained with a 248 nm excitation, show for

Suprasil and Herasil emission bands at 360 nm and at 460 nm prior laser exposure. The band

at around 360 nm could not be clearly identified. Only few publications have reported such

emission band in Si-SiO; nanoclusters [Mov95]. The band at 460 nm corresponds to well

known ODCs (II) [Sak06] [Sku98]. For Infrasil, the emission band at around 390 nm is

assigned to impurity centers. After laser exposure, modifications are visible for the samples

exposed at 5 uJ and at 20 pJ. For 5 pJ exposure, the band at 650 nm attributed to the presence

of NBOHC:s is visible for Herasil and Suprasil. For 20 pJ exposure, this last emission band is

visible for all the samples and the band at 460 nm, attributed to the ODCs (II), is rising as

compared to the other emission features [Zou06] [Rei06] [Sku98].
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Figure 31: Luminescence spectra for the three unexposed, 5 pnJ- and 20 pJ-exposed fused

silica samples at a 248 nm excitation wavelength.
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8.1.2.3. Raman spectroscopy

The spontaneous Raman spectra of the unexposed and exposed samples (cf. figure 32)
were obtained using a confocal micro-Raman system (LabRAM HR from HORIBA Jobin
Yvon). The incoming 514.5 nm laser excitation was focused inside the bulk of the sample, at
the unexposed and exposed defect areas, respectively, via a 100x microscope objective, with a
spatial resolution of about 2 pum. The backscattered light was collected and spectrally
analyzed with a spectrometer and a CCD detector, with a typical resolution of about 6 cm™".
The Rayleigh line was suppressed with a holographic notch filter. All Raman spectra have

been normalized to the intensity of the band at 440 cm™.
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Figure 32: Raman spectra for the three unexposed, 5 uJ- and 20 pJ-exposed fused silica
samples at a 514.5 nm excitation wavelength.

The main feature of the spectrum of fused silica is the broad band centered at around
440 cm', attributed to the Si-O-Si bond rocking and bending in SiO, tetrahedra [Gal83]. The

two smaller bands at 490 cm ' (D1) and 606 cm ' (D2) have been attributed to three- and
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four-member siloxane rings, respectively, in the silica network [Pas98]. The increase of the
Raman intensity with the wave numbers for the 20 pJ-exposed samples is due to the
fluorescence scattered by the defects, superimposed in the Raman signal. The comparison of
the spectra between pristine and exposed samples reveals two principle trends:

- The amplitude of both defect lines D1 and D2 increases slightly, which is related to the
disruption of the continuous random network of SiO, tetrahedra and to a densification of the
material [Zou06] [Rei06] [Sal06].

- The width of the main band at 440 cm! decreases, which is related to a decrease in the Si-

O-Si1 bond angle and width of their angular dispersion [Zou06] [Rei06] [Sal06].

8.1.3. Calculation of the refractive index change

From the absorption change spectra, the refractive index change can be predicted from

the Kramers-Kronig relation

An(a))zﬁrwAa—(S)ds (B.8.1)
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Figure 33: Refractive index change spectra obtained from the absorption spectra with a
Kramers-Kronig transform for the three 5 pJ- and 20 pJ-exposed fused silica samples.

The numerical calculation shows that the color centers created after irradiation have
very little contribution to the change in the refractive index (cf. figure 33). Indeed, the

maximum computed change in the refractive index is on the order of 10, a value that is
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insufficient to explain the guiding of the light at 633 nm effectively observed by Zoubir et al.
[Zou05]. Nevertheless, these results have to be put into perspective. The absorption spectra
change calculations have been carried out on a narrow spectral range (from 190 to 400 nm).
The numerical computation takes only into account this spectral range so that other probable
absorption bands as well as an eventual red-shift of the cutoff wavelengths are ignored. Thus,
this calculation gives a qualitative but not quantitative idea about the influence of the color
centers generated after irradiation. Other absorption bands due to color centers would appear
deeper in the UV region, at wavelengths lower than 190 nm, and could explain, if they are
sufficiently intense, the increase of the refractive index in the visible region. However,
simulations reveal that the intensity of these bands must be too strong for this too occur. This
finding allows us to conclude that the color centers are not responsible for refractive index
modifications and confirms previous work performed by Will ef al. [Wil02] and Streltsov and
Borrelli [Str02] who showed that the refractive index change remains, even after having
annealed the color centers by a thermal treatment. Hence, it is more likely that the refractive
index change is mainly due to a densification of the material, as revealed by the increasing of

the amplitude of both lines D1 and D2 in the Raman spectra [Zou06] [Rei06] [Sal06].

8.1.4. Measurement of the third-order susceptibility change

The third-order susceptibility change has been measured by THG microscopy. This
technique is based on the analysis of the third-harmonic beam generated at an interface
between two media presenting different optical properties. It is sensitive both to An and
Ay®, but in a much more important manner to the latter quantity. A complete theoretical and
experimental description of this technique is given in [Roy06].

The experiment was carried out with a Yb:KGW laser source (t-Pulse from Amplitude

Systemes) which delivers 20 nJ, 50 MHz, 200 fs pulses at a wavelength of 1030 nm. The laser
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beam was focused with a microscope objective (NA = 0.75, working distance = 500 um). The
third-harmonic beam was collected with a condenser (NA = 0.4, working distance = 3 cm),

filtered from the fundamental wavelength using an interference filter ( 4, =343nm,

AL =40nm ) and measured with a photomultiplier tube (PMT, Hamamatsu R5700). The
photocurrent from the PMT is amplified, digitized and sent to a computer for acquisition. A
typical z-scan of the third-harmonic signal emitted by the samples is shown in figure 34. The
first peak corresponds to the air/bulk interface and the second peak corresponds to the
bulk/defect interface. The other interfaces could not be reached because of the limited
working distance of the microscope objective (500 um). No THG data could be obtained for
the 20 pJ-exposure. This high dose corresponds to the regime of visible optical damage in the
form of scattering centers in the volume of the samples, and hence most of the third-harmonic

light was scattered in all directions.
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Figure 34: Evolution of the normalized third-harmonic signal versus the z-position for the 5
pJ-exposed Herasil sample. The first peak corresponds to the air/ silica interface and the
second peak corresponds to the bulk/defect interface. The other interfaces could not be
reached because of the limited working distance of the microscope objective (500 pm).
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Ay® cannot directly be read from this z-scan. The procedure to obtain the
measurement is the following. The third-harmonic irradiances generated at the interfaces

air/bulk and bulk/defect, respectively, are given by [Roy06]

2 3
3w 3 Mo.sio,
Ls v 1o = > | 1o
4e,c 134,510,

% | g0, (Mg, :0:400)7), +J,, (A :400,600)75) +J g, (A, :60051000)5) |

(B.8.2)
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where the SiO; subscript refers to bulk fused silica and the def subscript alludes to the defect.

I, is the fundamental irradiance and n, and n,,6 the refractive indices at the angular

[0
frequencies @ and 3w.

5 explinku)

~-du 1s the third-harmonic interaction length,
%0 (1+ 2iu/b)

The function J(Ak; Zy; z) = I

Ak =3k, —k,, the phase mismatch between the fundamental and the third-harmonic waves,
b=2mw, /ﬂ the confocal parameter, w, the beam waist of the fundamental wave, 1 the

wavelength in the medium and z, and z, the positions of interfaces.

No absorption loss corrections have been performed. Indeed the bulk samples and the
laser induced defects are transparent at both the fundamental (1030 nm) and third-harmonic
(343 nm) wavelengths (c¢f- figures 29 and 30, respectively). The refractive indices of the
defect at @ and 3w have been set to a value higher of an amount of 107 relative to the
refractive indices of unexposed fused silica. This assumption is based on refractive index

variation measurement of waveguides written in fused silica, at 633 nm. This variation has

92



been measured to be about 10™ [Zou05]. Figure 35 is an abacus showing the theoretical ratio

R=1,, ka0 / L5y aiv o (from equations B.8.2 and B.8.3) versus the ratio of the third-order

susceptibilities a = x5 / Zso, - By reporting in figure 35 the experimental ratio R actually

measured in figure 34, one can deduce the variation of the third-order susceptibility of the
defect relative to the bulk. Nevertheless, by reporting one value of R, two values of a can be
determined, one lower and one higher than unity. A previous experiment on the same defect,
but at the surface of the material, permitted observation of a third-harmonic signal less
important at the interface air/defect than at the interface air/bulk and to conclude to a third-

order susceptibility lower for the defect than for the bulk [Zou05].
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Figure 35: Evolution of the ratio of the third-harmonic irradiances R = 15, ./ a / Lsoair s suik

versus the ratio of the third-order susceptibilities a = () / 7, for the 5 uJ-exposed Herasil

sample.

For a measured ratio R ~ 0.053, two values of a are found: 0.77 and 1.23. The value
lower than 1 is retained, i.e. 0.77, and the variation of the third-order susceptibility of the
defect relative to the bulk is

3) (3)
A}(m _ Xag ~ Xsio,

3 3)
X X sio,

(B.8.4)
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Table 3 recapitulates the third-order susceptibility data for all the samples. Note that

both ¥ and Ay® are the same, within the measurement uncertainties (~20%), for each

® and the intensity of the

sample. Moreover, no correlation was established between Ay
absorption and luminescence bands attributed to the laser-induced color centers.

It is well known that THG is a process due to the electronic part of ¥, since only the
electronic polarization is able to quickly respond to a high-frequency all-optical field
excitation [Hel77]. Thus, the Ay® measured by THG microscopy is uniquely due to

electronic motions. On the other hand, the Raman spectral density is related to the non-

instantaneous nuclear contribution of ¥ [Hel75]. In other words, it is possible to compute

the nuclear contribution of y from the Raman spectra of the exposed samples. However,

calculations show that the increase of the D/ and D2 lines and the decrease of the width of the

main band at 440 cm ™" are clearly insufficient to participate in an additional nuclear Ay .

8.2. At the sub-wavelength scale

At a sub-wavelength scale, it appears that the response of fused silica to femtosecond
laser irradiation consists in a “nanograting” structure with a periodic modulation of the
refractive index. So far, three groups of scientists have observed this phenomenon: one group
gathering people from the University of Kyoto and the University of Southampton [Shi03],
one group from the University of Ottawa [Bha06], and one group from the University of Paris
Sud [Pou08]. With only a few differences in their experimental results, the two first groups
disagree about the mechanisms responsible for the formation of this structure. They have both
a different approach: one based on an interference model and the other based on
nanoplasmonics. In this section, we give an overview of the results obtained by the two

groups as well as a description of the proposed models. Moreover, we present our preliminary
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results in this field and we propose an explanation for the contradicting evolution of the
changes in the linear and nonlinear optical properties by eliminating the one after the others

all the hypotheses, included the form birefringence exhibited by the “nanogratings”.

8.2.1. State of the art

8.2.1.1. Interference approach

The first observation of the “nanograting” structure was achieved by Shimotsuma et
al. [Shi03]. They used the beam from a regenerative amplified mode-locked Ti:Sa laser (4p =
800 nm, 7p = 150 fs, R = 200 kHz) focused with a microscope objective (100%, N4 = 0.95)
100 um below the surface. The point of focus was kept at the same position (stationary focus)
and the beam diameter was estimated to be ~ 1 um. The pulse energy was varied between 1
uJ and 3 uJ and the number of pulses between 50x10° and 80x10°. The sample was then
polished to the depth of the beam waist location. The surface of the polished sample was
analyzed by scanning electron microscopy (SEM) and Auger electron spectroscopy.

Scanning electron microscopy was performed in two configurations, secondary and
backscattering, which are sensitive to the surface morphology and the atomic weight of the
elements constituting the observation surface, respectively. Figure 36 shows the pictures

obtained by SEM.
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Figure 36: Secondary (on the left) and backscattering (on the right) electron images obtained
with 10000x and 30000 magnifications [Shi03].
The observed structures in the backscattering configuration are periodic self-organized
stripes, looking like ‘“nanogratings”. The stripes are aligned perpendicular to the laser

polarization direction. The period of the structure is about 250 nm (roughly A,/2n, with

n =1.46 for fused silica) and the width of the stripes is about 20 nm. The period has been
found to increase with the pulse energy and to decrease with the number of pulses.

In addition, Auger electron spectroscopy, which is sensitive to the molecular weight of
atoms, has been performed, examining the sample for oxygen and silicon. Auger analysis
revealed that the oxygen distribution is modulated whereas the silicon distribution remains
constant. The stripes present a lower oxygen concentration than their neighboring, which
show a higher oxygen concentration. This periodic modulation of the oxygen distribution
leads to a modulation of the refractive index. The refractive index change in the high oxygen

concentration regions is positive and on the order of 0.03 whereas in the low oxygen
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concentration regions, it is negative and on the order of -0.3 [Bri04]. All the features of these

“nanograting” structures are gathered in figure 37.
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Figure 37: Recapitulation of the “nanograting” features. A is the period of the “nanograting”
and w the width of the stripes.

The following model has been proposed to explain this phenomenon [Shi03] [Shi05].

Since the photons energy of the laser is much lower than the band gap energy of fused silica,

multiphoton ionization takes place, leading to the production of a high free electron density.

Therefore, the material has the properties of a plasma. The produced free electrons oscillate in

the laser electric field, according to the following equation of motion

ov e
v+ fyv =—=_—F B.8.5
8t f&’lvﬁ ( )

where v, is the electron velocity, f,. the electron-ion collision frequency, e the electron

charge, m, the electron mass and E the electric field.

The kinetic energy of the free electrons is converted into thermal energy through

electron-ion collisions (inverse Bremsstrahlung heating). The temperature of the plasma
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increases, enabling the plasma to absorb the photons energy by one-photon absorption. This
absorption in the electron plasma will excite electron plasma density waves, which are
actually longitudinal acoustic waves (or Langmuir waves). The light can propagate through

the plasma only at angular frequencies @ > @, , where @ is the laser angular frequency and

@, the plasma angular frequency defined as

N 2
0, = |Nee (B.8.6)
gOme

The electron plasma density wave can couple via a Cherenkov-type phase-matching

(cf- figure 38) with the laser wave only if it propagates in the plane of the laser polarization. In

this type of phase matching, the plasma propagation constant is given by

2 2
k, =7k +k. = \/(%j J{%j (B.8.7)

A and A are the propagation constants and the wavelengths in the medium

where &, , k.,

of the photon and the grating, respectively.
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Figure 38: Coupling between the electron plasma density wave and the laser wave via a
Cherenkov-type phase-matching.
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The initial coupling is produced by inhomogeneities induced by electrons moving in
the plane of the laser polarization. The interference of these two waves results in a periodic
modulation of the electron plasma concentration and structural changes in the glass. The
breaking of Si-O-Si bonds via multiphoton absorption is accompanied by the generation of
color centers.

For a grating period of A =150 nm, the properties of the plasma have been evaluated
[Shi03]:

- The electron plasma density, N, ~1.5x10* em™, which has to be compared to the critical

2
_ & @

electron density, N =1.75x10*" cm™.

cr

e

2

- The electron plasma temperature, 7, = 3”;"’6; —~1x 10" K .

B™ pl

8.2.1.2. Nanoplasmonics approach

These “nanograting” structures have also been observed by Bhardwaj ef al. [Bha06]. A
complete review paper about this research group’s findings is given in [Tay08]. In this work,
the authors used the fundamental and the frequency-doubled beams from a Ti:Sa laser (19 =
800 and 400 nm, zp = 50 fs, R = 100 kHz) focused with two different microscope objectives
(NA = 0.45 and 0.65) 100 um below the surface while translating the sample perpendicular to
the direction of propagation of the laser beam at a speed of 30 pm.s™'. The beam diameter was
estimated to be ~ 2 um. The pulse energy was varied between 1 pJ and 3 pJ and the exposed
regions were exposed to a few thousand of pulses. The sample was then cut, polished to the
depth of the beam waist location and chemically etched (4 minutes in 1% HF). The surface of
the polished and etched sample was analyzed by atomic force microscopy (AFM) and

scanning electron microscopy (SEM).
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The same “nanograting” structures seen by Shimotsuma et al. have been observed by
the Bhardwaj team with a few differences. The first main difference is that the stripes are not
simple lines but projections of planes (c¢f. figure 39), revealed by images of the cross-section
of the stripes (K-E plane) and along the stripes (E-S plane). K is the direction of propagation
of the laser beam, E the polarization direction and S the scan direction. The width of the
arrays are about 10 nm and the grating spacing is about 240 nm (to be compared to
Ay/2n =276 nm). By turning the linear polarization of the laser, the “nanogratings” have
been found to be always perpendicular to the polarization direction. However, no such
structures have been observed with circular polarization. Moreover, the “nanogratings” can be
erased and simultaneously be replaced with new ones. Here, the orientation of the resulting

structure is determined by the polarization of the rewriting beam [Raj06].
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Figure 39: Atomic force microscope images of chemically etched laser-modified regions in
the K-E plane (on the left) and in the E-S plane (in the middle) [Bha06]. Three-dimensional
organization of the “nanogratings” (on the right) [Tay07]. o is the optical axis.

The second difference in the Bhardwaj study is that, unlike in the previous
observations, the grating spacing does not depend on the pulse energy. This discrepancy has
been explained by the fact that the Shimotsuma’s 2D images were obtained mainly in the top
of the laser-modified regions where non-systematic variation of the grating spacing with the
pulse energy was observed by Bhardwaj et al. [Bha06]. This result is in contradiction with the
interference model. Additionally, it was found that the grating spacing also does not depend
on the pulse duration [Hna05].

In the interference approach, the grating spacing A depends on the electron plasma

temperature 7, and density N ; for A=150nm, 7, ~1x10’ K and N, ~1.5x10* cm™.

However, to achieve these values, Bhardwaj ef al. claim that a pulse energy of 11 pJ is
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required, whereas the structures are formed with energies as low as 200 nJ [Bha0O6].
Moreover, the memory effect from one pulse to another which is implied by the nanoplanes
formation, is not explained by this model. Because of these discrepancies, another model has
been suggested, based on local field enhancement occurring during inhomogeneous
breakdown (from the nanoplasmonics field) [Bha06].

Natural inhomogeneities in the dielectric (color centers or defects) can form nucleation

centers for the creation of spherical nanoplasmas (cf. figure 40), following multiphoton

2 plasma

ionization (“forest-fire” ionization and/or avalanche ionization). When &'= <1 (ie

€ diclectric
when N. <N, ), field enhancement occurs around the equator and the nanoplasmas expand
to form oblate ellipsoids that evolve into a nanoplanes. These nanoplasmas naturally grow
into nanoplanes when formed by linearly polarized electric fields. Since the plasmas are

unconstrained, the growth will continue at the edges without limit.
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Figure 40: Schematic showing the local field enhancement of a spherical nanoplasma as the
electron plasma density increases. £, and E, are the local fields found at the equator and
poles of the sphere, respectively, for an overall field E .

The following statement has been proposed to explain the memory effect and the

A,/2n periodicity. First, it seems safe to assume that the critical density is exceeded. In this

case, the sheets must affect light propagation; for a single sheet, surface plasmons will be
excited and for multiple sheets, the light must adopt modes similar to those established in
planar metallic waveguides. The order naturally evolves from a random distribution of
nanoplasmas over many shots due to the memory mechanism and mode selection. Planes will
be favored only if they support modes whose field distribution reinforces their own growth.

Although a great deal of work is required to understand this in detail, the A,/2n plane

spacing is reminiscent of the minimum spacing required in a planar metal waveguide to

support such modes having field maxima at the metal-dielectric interface. It is likely that
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transient plasma based planar waveguides have similar properties favoring their development

from an initially random nanoplasma distribution [Bha06].

8.2.2. “Nanogratings” observation

In order to get the know-how to observe the “nanograting” structures, we reproduced
the irradiation conditions reported in the literature [Kaz07] on a fused silica sample (Infrasil).
The beam from an Yb-doped glass fiber laser (u-Jewel from IMRA, 4y = 1045 nm, zp = 350
fs, R = 200 kHz) was focused with a reflective microscope objective (NA = 0.5, working
distance = 10 mm). A set of lines were written from one face of the material to the opposite
one in a longitudinal configuration (cf. figure 41) at a speed of 200 um.s. The beam diameter

was estimated to be ~ 2.6 um. The pulse energy was 0.7 puJ and the number of pulses in a

Figure 41: Longitudinal irradiation configuration.

given spot area was about 3x10°.
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The fused silica sample was then polished to remove the surface debris and chemically
etched (20 minutes in 1% HF). The surface of the polished and etched sample was analyzed
by SEM. The resulting SEM micrographs are given in figure 42. The grating period

corresponds to the observations reported in the literature and is about A,/2n =360 nm .

CREMEM S 5.0K ¥20,000 Tum WD 3.2mm CREMEM SEI S50V X000 100nm WD 32mm

Figure 42: Secondary electron images of exposed fused silica obtained with 20000x (on the
left) and 60000x (on the right) magnification.

8.2.3. Form birefringence

Since all the previous investigations did not give a conclusive correlation between the
change in the optical properties, the initial impurity levels and the photo-induced structures,
we must look for the explanation of the contradicting evolution somewhere else. It is now
well known that fused silica does not respond in a homogeneous way to femtosecond laser
irradiation. Indeed, submicron “nanograting” structures, consisting of a periodic modulation
of the oxygen concentration and therefore of the refractive index, are created [Shi03]. It is
important to note that the resolution of all the instruments used so far in this study is
diffraction-limited and is not below 1 um. Thus, all the performed characterizations are
averaged, ignoring the “nanograting” behavior of the irradiated area.

These “nanogratings” were observed with lasers possessing intermediate repetition

rates (200 kHz [Shi03] or 100 kHz [Bha06]) and relatively low energies (~ 1 pJ). Pulse after
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pulse memory effects and pulse energy both play a role in their formation [Raj06]. Our
irradiation conditions are different, i.e. low repetition rate (1 kHz) and high pulse energies (5
and 20 pJ), and we have not checked if the “nanogratings” are present in our case. However,

we can discuss if these “nanogratings” are responsible for the contradicting evolution between
An and Ay®.

The “nanogratings” can be viewed as alternating layers of refractive index n,, third-
order susceptibility 7> and thickness ¢, =10 nm [Bha06] separated by layers of refractive

index 7, , third-order susceptibility y'” and thickness ¢, = 240 nm [Bha06] (cf. figure 43).

L}

L I, E| E,
* > klaser
A=t+1, /

r

Figure 43: Schematic representation of a form birefringent “nanograting” with a period of
A=t +t,. k E, and E are the laser wave vector and the electric fields parallel and

laser >

perpendicular to the plates, respectively.

Since ¢, and ¢, are small compared to the laser wavelength, these “nanogratings”

exhibit form birefringence [Bri04]. They are optically homogeneous and behave like a
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negative uniaxial crystal with the optical axis perpendicular to the plane of the plates [Bor99].
In such structures, the effective relative dielectric constants, with the electric field parallel or

perpendicular to the plates, are respectively given by [Bor99]

& = NEat ré,
E.E,, (B.8.8)

grj_ =
Ji&2+ 26,
where f, =¢,/(t, +t,) and f, =t,/(t, +1,) are the fractions of the total volume occupied by

the layers and by the plates, respectively.

The effective relative dielectric constant can be developed in terms of linear refractive
index and third-order susceptibility, such as &, =n} + " E* where j=//orL, i=1lor2

and E the electric field. By grouping and identifying the terms without or with a quadratic
dependence with the electric field, one can obtain the effective refractive index and third-

order susceptibility for the “nanogratings”

n = fini + fin;

) nlznzz (B.8.9)
- flnz2 +f2n12

n

4= s 1

o _ Sima + fom' xy (B.8.10)
XL = 5 e
(flnz + fom; )

Bricchi ef al. measured the changes in the refractive index at 633 nm [Bri04]. Among

various possibilities, they chose to retain negative values of the refractive index for the
oxygen-deficient region, An, =n, —ng, =(-4to-2)x10™", and positive values of the
refractive index for the oxygen-abundant region, An, =n, —ng, :(2 to 5)><10*2 [Bri04].

However, from a physical-chemical point of view, it is more than probable that the oxygen-
deficient region, even if it is less dense than the bulk material, presents a positive An since its

composition has become closer to silicon, which has a higher refractive index than fused
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silica. Based on the same reasoning, the oxygen-abundant region should present a negative
An.

For z!” and y!”, no measurement is available in the literature. However, they can be
estimated according to the semi-empirical Wang’s rule, y —A(nf —1)4 [Boy07], with

A= 3 / M50, = —1.66><10‘22 m’ V7> gy =265x107m’.V?  [Hel77] and
Ngo, =1.457 at 633 nm.

For each electric field polarization (parallel or perpendicular to the plates), the changes
in the refractive index (n 7 Mo, )/ ngo, and in the third-order susceptibility
( &) ,gsgz) XS0, are computed, relative to the bulk material. Figure 44 shows the iso-
curves for 0.1% < An/n <0.5% and —30% <Ay /y® <-10% versus An, and An,, for
both parallel and perpendicular electric field configurations. It demonstrates that An/n and

Ay®/x® can never follow contradicting evolutions, because their respective iso-curves

never cross each other. Thus, the “nanogratings” form birefringence cannot explain the

contradicting evolution of the linear and nonlinear optical properties of exposed fused silica.

An2
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“0.5

o
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Figure 44: Iso-curves of 0.1% < An/n <0.5% (inred) and —30% < Ay® /@ <-10% (in
blue) versus An, and An, for the electric field parallel (on the left) and perpendicular (on the
right) to the plates.
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Thus, in our assessment, the only possibility that remains to explain this discrepancy is
due to a failure in the experimental data acquisition since, in our measurements, we did not
take into account the scattering losses in the exposed fused silica samples. Within the context
of Rayleigh’s theory, the “nanograting” structures are ideal scattering centers since their
characteristic size is much smaller than the wavelength [Hul81]. In THG microscopy
measurements, the photo-induced defects, even at low energies, scatter the third-harmonic
light. As a result, its collect by the PMT is less important and the third-harmonic signal is
artificially decreased. In self-phase modulation measurements, guided photons are scattered.
The irradiance decreases during the propagation inside the waveguide. As a consequence, the

phase-shift is under-estimated, so is the nonlinear refractive index.

8.3. Summary

Three different femtosecond laser exposed fused silica samples were examined to
tentatively correlate the changes in the linear and nonlinear optical properties with the photo-
induced structures and to explain their contradicting evolution. The study gave the following
results:

- Color centers (£’ centers, ODCs (II) and NBOHCs) are created following exposure. No
relation was established with the initial impurity levels of the samples.

- The initial impurity levels as well as the laser induced color centers play no significant role
in the changes of the refractive index and the third-order susceptibility.

- The densification of the laser exposed regions, revealed by Raman spectroscopy, is probably
the mechanism for the observed positive refractive index change.

- Form birefringence due to self-organized “nanograting” structures is not responsible for the

contradicting evolution of the linear and nonlinear optical properties.
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- An experimental artifact in the measurements of the nonlinear optical properties due to
scattering centers is, according to us, the only possible explanation for this contradicting
evolution.

- In addition, for photonic device applications based on either the linear or the nonlinear
optical properties of the photo-induced structures, the choice of the fused silica basic material

1s not critical.
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CHAPTER NINE: STRUCTURING OF OTHER OXIDE GLASSES

Fused silica has been, from far, the most studied of the glasses. Indeed, its relatively
simple chemical composition makes easier the elaboration of theoretical models. It was shown
in the previous chapter that formation of color centers, densification, refractive index and
third-order susceptibility changes and creation of “nanogratings” can result from femtosecond
laser irradiation. A question then comes to mind: Do all the oxide glasses respond the same
way? To answer this interrogation, other oxide glasses, presenting different chemical
compositions, are investigated in this chapter to get a global picture.

Post-exposure characterization of photo-induced structures does not supply
information about the underlying processes occurring during the irradiation. To fully
understand what happens from the early stages to the end of laser-material interaction, real
time studies have to be performed. The problem can be summarized into one interrogation:
What are the mechanisms responsible for the absorption and the dissipation of the pulse
energy? A corollary is: is there formation of a plasma, i.e. an ionized gas, or an electron gas?
The measurement of the free electron density is of importance since all the models rely on this
parameter (see for example the proposed models for the “nanogratings” formation inside
fused silica in section 8.2.1). The knowledge of both the magnitude and the temporal dynamic
of this property is crucial for a model proposition.

In this chapter, three different oxide glass families (sodium-borophosphate niobium
containing, silicate without and with silver and zinc phosphate silver containing) exposed to
femtosecond pulses are investigated. For each family, SEM and/or confocal fluorescence
microscopy have been performed to characterize the photo-induced structures. The case of the
zinc phosphate silver containing glass is studied more in detail. To understand and identify the

interaction processes, real time spectral interferometry, transient absorption and THG
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microscopy experiments have been carried out on this glass. The free electron density has
been measured from spectral interferometry and transient absorption experiments and the

cumulative effects have been studied by THG microscopy.

9.1. Sodium-borophosphate-niobium

The sample under investigation is a sodium-borophosphate glass containing 9.55% of
niobium oxide (cf. section 6.2). The optical properties of this glass can be found in table 2.
The beam from a Ti:Sa regenerative amplifier (Spitfire system from Spectra Physics, 49 = 800
nm, 7p = 100 fs, R = 1 kHz) was focused with a microscope objective (NA = 0.25, working
distance = 5 mm). A set of 300 um long lines was written 200 um blow the surface in a
transverse configuration (cf. figure 45) at a 5 pm.s” speed. The beam diameter was estimated
to be ~ 4 um. The pulse energy was 2 uJ and the number of pulses in a given spot area was

about 10°.

Figure 45: Transverse irradiation configuration.
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The sample was polished to remove the surface debris and analyzed by secondary and
backscattering SEM. The SEM pictures are given in figure 46. Both images show micro-
cracks, also observed in fluoro-aluminate glasses [Ehr04]. These cracks could be due to a
shock wave induced by the laser, followed by a compression of the material, leading to a
breakdown. In addition, crystallites with sizes on the order of 200 nm can be observed in both
images, with a best contrast on the backscattering electron picture, because of the different

chemical composition of the nanocrystallites from the glass.

CREMEM 50KV X15 Lm CREMEM

Figure 46: Secondary and backscattering electron microscopy images of exposed 9.55%
Nb,Os sodium-borophosphate glass.

9.2. Silicate

The sample under investigation is a silicate glass. Its chemical composition is 75S10,-
10Ca0-15Na,0 (mol. %) and its cutoff wavelength is about 300 nm. The linear and nonlinear
refractive indices are n, =1.52 and n, =3x10""°cm”.W ™', respectively. The beam from an
Yb-doped glass fiber laser (u-Jewel from IMRA, 4y = 1045 nm, 7p = 350 fs, R = 100 kHz) was
focused with a reflective microscope objective (N4 = 0.5, working distance = 15 mm). A set
of lines was written from one face of the material to the opposite one in a longitudinal

configuration (cf. figure 41) at a 100 pum.s™ speed. The beam diameter was estimated to be ~
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2.6 um. The pulse energy was 0.7 uJ and the number of pulses in a given spot area was about
3x10°.

The silicate sample was then polished to remove the surface debris and chemically
etched (20 minutes in 1% HF). The surface of the polished and etched sample was analyzed
by SEM. The SEM pictures are given in figure 47. Like in fused silica, “nanograting”

structures are observed with a period on the order of 4,/2n =345nm.

CREMEM 50KV X20000 Tum

Figure 47: Secondary electron microscopy image of exposed silicate glass.

9.3. Silver silicate

A similar silicate glass containing 1.27% of silver has been studied. Its chemical
composition is 69.98510,-12.38Ca0-16.37Na,0-1.27Ag,0 (mol. %) and its cutoff
wavelength is about 280 nm. This blue shift of the cutoff wavelength is due to the absorption
band of the dopant silver ions Ag'. The addition of silver is relevant because it can be used as
a post-irradiation fluorescent probe for investigation of the silver photo-diffusion. The
irradiation conditions were the same as for the silicate glass, but with different repetition rates
R =100 kHz and 1 MHz. The writing speeds were 0.1 and 1 mm.s”, so that the number of
pulses in a given spot area was kept the same for each repetition rate, about 3x10°. A set of

lines was written from one face of the material to the opposite one in a longitudinal
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configuration (cf. figure 41). The pulse energies were 100, 400, 700 and 1000 nJ at 100 kHz
and 70, 100 and 140 nJ at 1 MHz.

Figures 48 and 49 show confocal fluorescence microscopy images of the photo-
induced structures at 100 kHz and 1 MHz, respectively. At 100 kHz, fluorescent structures
with no specific geometry have been created. The fluorescence intensity seems not to depend
on the pulse energy. At 1 MHz, fluorescent ring structures are observed, with the fluorescence

intensity increasing with the pulse energy.

4 =] Hm 42 =] 20

g
g

1z pm
1z pm

16
16

20
20

g
g

1z pm

1z pm

16
16

20
20

Figure 48: Fluorescence microscopy images of exposed silver silicate glass with 100, 400,
700 and 1000 nJ pulse energies at 100 kHz repetition rate. The excitation wavelength is 405
nm.
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Figure 49: Fluorescence microscopy images of exposed silver silicate glass with 70, 100 and
140 nJ pulse energies at 1 MHz repetition rate. The excitation wavelength is 405 nm.
Clearly, from the confocal fluorescence microscopy images, the repetition rate of the
laser plays a role in the formation of these ring structures, letting think that thermal effects are
involved in this process. More details will be given in the next section with a zinc phosphate

glass silver containing.
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9.4. Silver zinc phosphate

The sample under investigation is a zinc phosphate glass containing 4% of silver. Its
chemical composition is 55Zn0-40P,05-4Ag,0-1Ga03 (mol. %) and its cutoff wavelength is

about 270 nm. The linear refractive index is n, =1.58. The beam from an Yb:KGW diode

pumped oscillator (t-Pulse 500 from Amplitude Systemes, 4o = 1030 nm, zp =470 fs, R = 9.45
MHz) was focused with a reflective microscope objective (NA = 0.52, working distance = 15
mm). A set of lines was written from one face of the material to the opposite one in a
longitudinal configuration (cf. figure 41) at a 1 mm.s” speed. The beam diameter was
estimated to be ~ 2.4 um. The pulse energy was 60 nJ and the number of pulses in a given
spot area was about 11x10°. The refractive index modification threshold of this glass was
previously determined and is about 9 TW.cm™ [Can08].

Figure 50 shows a confocal fluorescence microscopy image of the photo-induced
structures. Like for the silver silicate glass, a fluorescent ring in 2D is observed, a pipe in 3D.
The thickness of the ring structure measured by fluorescence confocal microscopy is limited
by the resolution at 350 nm. Thus, even if the thickness of the ring structure is lower than this

value, this technique cannot reveal the real size.

I um

Figure 50: 2D (on the left) and 3D reconstruction (on the right) confocal fluorescence
microscopy images of exposed silver zinc phosphate glass. The excitation wavelength is 405
nm.
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To overcome this problem, SEM was used. The silver zinc phosphate sample was
polished to remove the surface debris and chemically etched (20 seconds in 0.5% HNOs3). The
surface of the polished and etched sample was analyzed by SEM. The SEM picture is given in

figure 51; it reveals an 80 nm-thick ring structure.

CREMEM

Figure 51: Backscattering SEM image of exposed silver zinc phosphate glass.

Previous work showed that the photo-induced fluorescent species are silver clusters
Agn (Ag', Agi®', Agg™', etc...), where m is the number of atoms (m<10) and x the
ionization degree [Can08]. They are formed according to the following steps:
- Photo-ionization releases electrons from the valence band to the conduction band.
- Released photoelectrons are trapped by Ag” ions to form silver atoms Ag’.
- Pulse after pulse cumulative effects increase locally the temperature, enabling thermal
diffusion to occur. Ag” and Ag” interact then to give rise to silver clusters Ag,*".
- Subsequent laser pulses photo-dissociate the newly formed Ag,,*" except on the edges of the
interaction area (where the threshold to photo-dissociate the clusters is not reached), leaving a

ring structure composed of silver clusters.
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In summary, confocal fluorescence microscopy, SEM and previous work [Can0§],
reveal that, even below the refractive index modification threshold (9 TW.cm™), fluorescent

silver clusters, arranged in an 80 nm-thick ring structure, are created following exposure.

9.5. Free electron density measurement

When a femtosecond pulse is focused into a material, a gas of electrons in the
conduction band of the glass is generated. This free electron density can be measured with
pump-probe experiments. The change in the optical properties (the complex refractive index)
associated to this electron gas and induced by the pump pulse is measured by the probe pulse.

Several measurements of free electron densities have been performed by different
research groups. Most of them were carried out on fused silica with intense amplified

femtosecond lasers and all the measured values were about 10" cm?

, even though the
irradiance on the sample was very different, from 10 TW.cm™ [Tem06] to 100 PW.cm™
[Pap07], passing through 30 TW.cm™ [Aud94].

The electron gas behaves like a metal, and then its optical properties can be described
by the Drude model. In order to measure this free electron density, two pump-probe
experiments have been carried out: spectral interferometry and transient absorption
experiments. In this section, the Drude model is first described. Then, for both experiments,
the experimental setups, the results and the analysis are given. It will be seen that the transient
absorption experiment is much more sensitive than the spectral interferometry one. This latter

will allow us to give a superior limit to the free electron density whereas the first one will

supply a precise measurement.

119



9.5.1. Drude model of the optical properties of an electron gas

An electron gas behaves like a metal. It is then appropriate to apply the Drude model
to describe its optical properties. The band diagram of this electron gas is described in figure
52. The reasonable following assumptions will be done to simplify the theory:

- The sample is transparent in the absence of the pump, so that the refractive index of the glass
without the pump is real.

- The mass of the electrons in the conduction band is the same as the one of the electrons in
the valence band (no effective mass).

- Only the electrons absorb the light and not the color centers or other defects appearing in the

band gap.

Conduction band
Ne

/Valence banm

Ny

Figure 52: Band diagram of the electron gas. N¢ is the electron density in the conduction
band, Ny the electron density in the valence band and E, the band gap energy.

The real refractive index in the absence of the pump pulse is given by the following

well known expression

120



e
nwithoutpump = nO = 1+ 2 2 (Bgl)
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where @,is the band gap resonance angular frequency and N, the electron density in the

valence band.
In the presence of the pump pulse, two contributions have to be taken into account:

Kerr self-focusing and free electron defocusing. The complex refractive index is then given

by
(N, =N_)e? N.e’z] . Ne e’r,
. = I, =1 - ‘ 1
77w1thpump 77+n2 pump \/ + gome(wg _a)Z) me(1+a)22_3)+ gom (0(1“!‘0)2 2) +n2 pump
(B.9.2)

where N, is the electron density in the conduction band (or free electron density), 7, the

electron collision time, 7, the nonlinear refractive index and / the pump irradiance.

pump

By performing a Taylor expansion of equation (B.9.2)
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a=1+ W, ]2Vc)e2 and x = Nee TCZ i Nee Tcz .
& (a)o - ) me(1+a) z'c) gomea)(l+a) rc)
(B.9.3)

the complex refractive index in the presence of the pump becomes
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: N.e’
with N.<<N, =(N, -N.)=N, and o, = < the plasma angular frequency. The
EOme

complex refractive index contains a positive contribution due to Kerr self-focusing and a
negative one due to free electron defocusing.
The real and imaginary parts of the complex refractive index in the presence of the

pump become

nwith pump = nwith pump leith pump

2.2
1 wpr;

2.2

n —
2n, 1+ o7t

~n,+n,l (B.9.6)
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9.5.2. Spectral interferometry experiment

This experiment is based on the real part of the complex refractive index given by
equation (B.9.6). It consists in mixing in a spectrometer two pulses (a reference and a probe)
separated by a fixed delay 7, and a pump pulse focused inside the sample at some time
between the two probe pulses (cf. figure 53). The probe pulse experiences therefore a different

phase than the reference one [Mar97].
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Figure 53: Time sequence of the reference, pump and probe pulses sent into the sample.

In the absence of the pump pulse, the spectral intensity is given by
(@)= 21,(w)[l +cos(ar, )] (B.9.7)
The spectrum exhibits fringes with a period inversely proportional to the time delay 7, (cf-
figure 54).
In the presence of the pump pulse, the spectral intensity becomes
I(w)=1, (w)[l +T+23T cos(wr, + A¢)J= I, (a))ll +T+23T cos(wr, )J (B.9.8)
where T is the Fresnel transmission and A¢ the phase shift. The fringes of the spectrum shift

because of the laser-induced phase shift (cf. figure 54). Everything occurs like if the delay

Ag

between the reference and the probe pulses has changed, being 7, =7, + —.
10
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Figure 54: Simulation of the spectral interferences without and with the pump pulse. The

simulation was performed with the following parameters: A9 = 1030 nm, 7; = 6.8 ps, T= 0.5,
Ap =-2.7 rad.

The refractive index change and the laser-induced phase shift are respectively given by

1 w7
An = nwith pump nwithout pump ~ n21pump _2_’10 1 N 2)21'3 (B99)
2 27l 1 o
A= pn 2 g, T (B.9.10)

where L is the interaction length.
Thus, by measuring the laser-induced phase shift, one can extract the free electron

density as follow

A
N, = 2n0Na,(n2]pump - 27ZL A¢j (B.9.11)

The phase shift is measured from a channeled spectrum with the following formula
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0T, =0T, + AP
—-—2
2 _
T, ~—2 = Ap~ 27, LI (B.9.12)
cAL, AL, AL,
2/—2
T, —
cAA,

where /1_0 is the central wavelength of the spectrum, AA, the period of the spectral fringes

(without pump) and A4, the period of the spectral fringes (with pump). Since A4, and A4,

have too close values to be measured, the fringe shift A4 will be measured instead

AL, = 2 rad AAL
AL =—""L B.9.13
Aﬂ—>A¢:2”AA = A1 e (B.9.13)
AL,

The spectral interferometry experimental setup is described in figure 55. The t-Pulse
500 laser is used in this experiment. The energy and the repetition rate are adjusted with an
acousto-optic modulator at 0.1 pJ and 200 Hz, respectively. A pump pulse and a probe pulse
orthogonally polarized are generated via an interferometer containing two polarizing beam
splitter cubes. A KDP crystal is inserted in the probe arm, with its slow and fast axes oriented

at 45° from the probe polarization. Thus, two pulses are generated with a fixed delay
T, ="E "0/ where [ is the length of the crystal, n, and n, the ordinary and

extraordinary refractive indices, respectively. At the output of the interferometer, the
sequence of the three pulses is focused into the sample 200 um below the surface with a
reflection microscope objective (NA = 0.52, working distance = 1.5 mm) and recollimated
with another identical objective. The pump pulse is then ejected with a Glan polarizer and the
reference and probe pulses are analyzed via a spectrometer (Triax 550 from HORIBA Jobin
Yvon). The pump energy is about 0.1 pJ and the reference and probe energy is about 10 nJ.

The sample is moved at 1 mm.s™ during the irradiation to present a new spot for each laser
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shot. Thus, it is a real time measurement, as opposed to a post-mortem measurement. The

time separation 7, between the reference and the probe pulses is about 6.8 ps and the pump

delay 7 is changed from 0 to 1.2 ps by 100 fs steps.
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%\ Spectrometer [—| PC
4701fs, 9.45 MHz,
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Figure 55: Spectral interferometry experimental setup. AOM: Acousto-optic modulator, PBS:
Polarizing beam splitter, PC: Personal computer.

For each delay, the channeled spectrum has been acquired and the fringe shift
compared to the reference spectrum has been measured. Figure 56 shows the reference
(without pump) and the zero delay (with pump) channeled spectra and figure 57 the measured
fringe shift for each delay. The fringe shift is between 0.027 and 0.110 nm, from which a free
electron density of about 10" cm™ has been estimated, two orders of magnitude below the

critical electron density N, =1.05x10”' cm™. The evolution of the fringe shift versus the

pump-probe delay looks constant (within the uncertainty of the measurements), contrasting
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with similar works reported in the literature [Aud94] [Mar97], in which the phase shift is

positive at zero delay, decreases to become negative at about 200 fs, and finally increases to

be null at about 600 fs.
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Figure 56: Channeled spectra without and with at zero delay the pump pulse.

127



0.12 1

0.10+

0084 ] - S

Ax (nm)

0.064

0.04 -

0.02

0.00 .

I I I I I I
0 200 400 600 800 1000 1200
Delay (fs)

Figure 57: Evolution of the fringe shift versus the delay between the pump and the probe
pulses.

This experiment allows us to get an estimated rather than accurate value of the free
electron density for different reasons. Indeed, the high uncertainty related to the number of
pixels of the CCD camera and the resolution of the spectrometer limits the sensitivity of the

measurement to A,/18. The small interaction length (~ 10 um) leads to a small phase shift

and then to a small fringe shift, comparable to the uncertainty of the measurement.

9.5.3. Transient absorption experiment

Another way to measure the free electron density is by exploiting the imaginary part of
the complex refractive index given by equation (B.9.6). The change in the absorption

coefficient is given by
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2
~ Ot (B.9.14)

200(
2.2
cny\l+ o7,

Ao =—-I\k K

with pump — ™ without pump )

From the previous equation, one can deduce the Fresnel transmission coefficient,

given by

2
0,7,

1(L)
T=—=+= —Aal)= - L B.9.15
I, xpl ) exp( eny(\l+o’t? j ( )

Thus, by measuring the Fresnel transmission coefficient, one can extract the free

electron density as follow

4’ (1
N = Lot | 2T C T ln(—j (B.9.16)
et L A T

The transient absorption experimental setup is described in figure 58. The t-Pulse 500
laser is used in this experiment. An acousto-optic modulator is used to adjust the number
and/or the energy of the pulses. A pump pulse and a probe pulse orthogonally polarized are
generated via an interferometer containing two polarizing beam splitters. A mechanical
chopper modulates the pump beam at 1.5 kHz. A BBO crystal is inserted in the probe arm to
generate the second harmonic of the laser (i.e. 515 nm). At the output of the interferometer,
the sequence of the two pulses is focused into a fixed sample, 200 pm below the surface, with
a reflection microscope objective (NA = 0.52, working distance = 15 mm) and recollimated
with another identical objective. The beam waist is estimated to be 1 pm. The pump pulse is
blocked with a pinhole combined to a prism and a green colored filter. The probe pulse is
analyzed via a photodiode and a lock-in amplifier connected to the chopper. The data are
collected with a computer. The delay line was moved over a distance corresponding to a 14 ps
pump-probe delay during 1 s. Thus, the number of pulses on the sample for each acquisition
was about 5x10°. The pump irradiance was varied from 2 to 11 TW.cm™ and the probe

irradiance was about 10 GW.cm™. The temporal resolution of our experiment, defined as the
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cross-correlation of the pump and probe pulses, is about 700 fs. The irradiance is computed

assuming a Gaussian spatial profile and a rectangular temporal profile of the laser beam.
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Figure 58: Transient absorption experimental setup. AOM: Acousto-optic modulator, PBS:
Polarizing beam splitter, BBO: f-barium borate doubling crystal, PC: Personal computer.

A typical temporal dynamic of the induced absorption for a pump irradiance of 7.3
TW.cm™ is shown in figure 59. No absorption is present after 1.8 ps. Nevertheless, the
temporal resolution of our experiment does not permit to reveal details below 700 fs. The
absorption offset, which is about 0.05% at 7.3 TW.cm?, is probably due to thermal

cumulative effects associated to the high repetition rate of the laser.
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Figure 59: Evolution of the induced absorption versus the pump-probe delay for a pump
irradiance of 7.3 TW.cm™. The curve is an average of 30 acquisitions. The standard deviation
of these acquisitions gives an uncertainty of the measurements of 40%.

The maximum absorption measured at zero delay as a function of the pump irradiance

is given in figure 60. In a multiphoton absorption regime, the absorption should scale as
Abs(I)oc I*, where k is the order of the multiphoton process and / the irradiance. A fit with

k =4 gives a good agreement with the experimental data and provides a clear evidence of
four-photon absorption as the photo-ionization mechanism involved in the nanostructuring of

the silver zinc phosphate glass.
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Figure 60: Evolution of the induced absorption versus the pump irradiance at the sample. The
error bars are 40% of the experimental values.

Using equation (B.9.16) with n, =158 , 7, =04fs [Tem06], L=10pum ,
A, =1030nm and T =1- Abs, the free electron density has been computed (cf figure 61). It

ranges from 0.2 to 3 x 10'7 cm™, and is four orders of magnitude below the critical electron
density, which is about 10*' cm™ at the laser wavelength. It is also two orders of magnitude
below the free electron density reported in the literature for fused silica, i.e. 10" ecm™, for

almost the same irradiance [TemO06].
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Figure 61: Evolution of the free electron density versus the pump irradiance at the sample.
The error bars are 40% of the experimental values.

Even if we expected a free electron density lower for our glass than for fused silica, it
is surprising to observe such a big difference between the two measurements. Two reasons
can explain this discrepancy. First, although the irradiances are comparable, the pulse energies
used in both experiments are very different, as low as 80 nJ for our glass, and about 400 nJ for
fused silica [Tem06]. Second, the number of pulses hitting the sample due to the high

repetition rate of our laser significantly plays a role in the formation of the silver clusters.

9.6. Cumulative effect investigation by THG microscopy

We have seen that the formation of silver clusters in the silver zinc phosphate glass is
strongly correlated to the thermal diffusion and therefore to pulse after pulse cumulative

effects. In order to investigate these cumulative effects, we propose to use THG microscopy.
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This technique is appropriate for this kind of study because the third-harmonic is generated at
the vicinity of interfaces. As the clusters are formed, an interface is created. By analyzing the
third-harmonic signal emitted with respect to the number of pulses hitting the glass,
information about the dynamic of the formation of silver clusters can be obtained.

The t-Pulse 500 laser is used in this experiment. The pulses are focused into a fixed
sample, 200 um below the surface, with a reflection microscope objective (NA = 0.52,
working distance = 15 mm). The fundamental and third-harmonic beams are collected with
another identical objective. The fundamental beam is filtered and the third-harmonic beam is
analyzed with a PM tube linked to a digital oscilloscope. The beam waist is estimated to be 1
um. A lock-in amplifier at the laser repetition rate is used to increase the signal/noise ratio.
The pump irradiance was varied from 2 to 12 TW.cm™. The irradiance is computed assuming
a Gaussian spatial profile and a rectangular temporal profile of the laser beam.

Figure 62 presents the evolution of the THG signal versus the number of pulses (from
0 to 1.2x10” pulses) hitting the sample for different irradiances, from 1.55 to 12.21 TW.cm™.
Figure 63 is a zoom of figure 62, for pulses ranging from 0 to 8<10°. Results show a THG
threshold at about 7 TW.cm™, below the refractive index change threshold at 9 TW.cm™.

For irradiances up to 8.86 TW.cm™, two tendencies of the evolution of the THG signal
are observed: first an increase until 10° pulses, and then a slight decrease. The first part of this
evolution can easily be explained. As the number of pulses increases, the number of photo-
induced clusters increases, leading to a larger change in its optical properties with respect to
the bulk and therefore to an enhancement of the THG signal. The second part of the evolution
is more difficult to explain. It can be due to several reasons. After 10° pulses, the glass starts
to be damaged and the third-harmonic is scattered. As a result, less third-harmonic is collected

by the PMT, and the THG signal is artificially reduced. Another cause would be that, the
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combination of the change in the refractive index/change in the third-order susceptibility after
10° pulses is such that the THG signal decreases.

For irradiances at 8.86 TW.cm™, the THG signal increases until 10° pulses and then
saturates. The irradiance is not high enough to induce damage in the glass, and therefore, once
all the available Ag" ions are consumed after 10° pulses and the clusters are formed, the THG
signal remains constant.

For irradiances at 7.31 TW.cm™, the THG signal increases with the number of pulses.
The irradiance is not high enough to consume all the available Ag" ions within our pulse
range. Therefore, silver clusters are created but their concentration and the change in their
optical properties are not optimal.

For irradiances down to 7.31 TW.cm?, the THG signal is within the measurement

noise. The silver cluster formation threshold is not reached.
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Figure 62: Evolution of the THG signal (in log scale) versus the number of pulses (from 0 to
1.2x10") hitting the glass.
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Figure 63: Evolution of the THG signal (in log scale) versus the number of pulses (from 0 to
8x10°) hitting the glass.

The same experiment was performed with circular polarization using a quarter wave
plate before the focusing element. Let remind us that THG with circularly polarized beams
gives information about the symmetry properties of the material. In our case, no significant
third-harmonic is detected when the incident laser beam is circularly polarized. Therefore, the
photo-induced clusters are isotropic.

To conclude about the influence of the cumulative effects in this glass with this laser,
10° pulses seems to be the limit value for the consumption of all the available Ag" ions in the
exposed area for irradiances higher than 7.31 TW.cm™. After 10° pulses and for irradiances up
to 8.86 TW.cm?, the glass becomes damaged. Thus, to get the maximal amount of non-

damaged silver clusters, one would work below 8.86 TW.cm™ and 10° pulses.
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9.7. Summary

In summary, in this chapter, several oxide glasses have been exposed to femtosecond
pulses. Following exposure, each glass responds in a different way:
- The sodium-borophosphate glass containing 9.55% of niobium oxide presents micro-cracks
and nanocrystallites.
- The silicate glass reveals nanogratings, like in fused silica, with a period on the order of

magnitude of A,/2n.

- The same silicate glass, but containing 1.27% of silver, behaves differently; it exhibits
fluorescent ring structures when the repetition rate of the laser is high enough (1 MHz) to
enable cumulative thermal effects to take place. On the contrary, when the repetition rate of
the laser is too low (100 kHz) for thermal effects to occur, fluorescent arbitrary shape
structures are created.

- The zinc phosphate glass containing 4% of silver has been studied more in detail. This glass
presents, as in the case of the silver-doped silicate, fluorescent ring structures. This ring is
composed of photo-induced silver clusters and has a thickness on the order of 80 nm, well
below the diffraction limit usually achieved in 3D laser direct writing. The free electron
density has been measured; it is on the order of 10'" cm™ and is four orders of magnitude
below the critical density 10*' cm™. This measurement can be compared to values reported in
the literature for fused silica [Aud94] [TemO06] [Pap07]. In these studies, values of free
electron density are on the order of 10" cm™ and our measurement is still two orders of
magnitude below this level. Thus, we can conclude that, during the irradiation, we do not
create a plasma but an electron gas. Four-photon absorption has been found to the ionization
mechanism in this glass. The influence of thermal cumulative effects has also been studied for

this glass. The results show that these effects are of large importance in the structuring of this
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glass; the laser repetition rate must be higher than 1 MHz and the number of pulses hitting the

sample less than 10° for irradiances below 8.86 TW.cm™.
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CHAPTER TEN: CONCLUSION AND PERSPECTIVES

In conclusion, this dissertation summarizes findings on nonlinear optical
characterization and femtosecond laser structuring of different oxide glasses. Within the
context of the Born-Oppenheimer approximation, the electronic and nuclear nonlinear optical
properties of two glass families, fused silica and sodium-borophosphate niobium oxide
containing, have been measured. Their relative weight to the total nonlinearity has been
determined. Fused silica exhibits a maximal nuclear contribution on the order of 6% in our
particular experimental conditions. In parallel, the maximal nuclear contribution in the
sodium-borophosphate glass containing 38.78% of niobium oxide is ten times higher, on the
order of 60%. This latter glass confirms to be a good candidate as a Raman amplifier.
Moreover, since the nuclear contribution strongly depends on the laser pulse duration, the
total nonlinearity of this glass can be modulated by adjusting this parameter.

In this dissertation, we bring our contribution to the understanding on femtosecond
laser structuring in glasses. In particular, three commercially available fused silica samples
presenting different fabrication conditions (therefore distinct impurity levels) have been
irradiated with a near infrared femtosecond laser. The photo-induced structures have been
identified by means of several spectroscopic techniques, which have revealed the formation of
color centers and a densification. Their linear (refractive index) and nonlinear (third-order
susceptibility) properties have been measured and the “nanogratings” behavior at a
subwavelength scale has been observed.

In addition to fused silica, several oxide glasses presenting very distinct chemical
compositions have been studied. Each of these glasses has responded in a different way to
femtosecond laser exposure. The sodium-borophosphate glass containing niobium oxide

exhibited micro-cracks and nano-crystallites. The silicate glass revealed ‘“nanograting”
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structures. The same glass but silver containing showed fluorescent ring structures. The zinc
phosphate glass containing silver presented too fluorescent ring structures, with a size on the
order of 80 nm, well below the diffraction limit. This latter glass was chosen to study in
details the involved effects in laser-glass interaction. It was found that the absorption
mechanism of the laser energy for this glass is four-photon absorption. The generated free
electron density was measured, on the order of 10'” cm™. This permitted to conclude that an
electron gas rather than a plasma was formed during the laser irradiation.

The zinc phosphate silver containing glass is of particular interest. Various properties
of the photo-induced structures in this glass could be exploited in the photonics and
plasmonics fields. As an example, the silver clusters exhibit strong nonlinearities without
modifying the linear refractive index. Thus, efficient 3D optical data storage can be realized
in the glass [Can08]. The silver clusters, distributed in an area below the diffraction limit, are
local fluorescent emitters. Moreover, silver clusters can agglomerate into nanoparticles
following thermal treatment. The latter exhibit many properties, such as plasmon resonance
absorption, local field enhancement, local refractive index modification, etc... Designing 3D
nanostructures containing nanoparticles offers a new alternative for the fabrication of 3D

photonics crystals, metamaterials and plasmonic devices.
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APPENDIX B: RESUME

La structuration laser femtoseconde en trois dimensions rencontre un intérét
grandissant du fait de sa facilité de mise en ceuvre et des nombreuses applications qu’elle peut
couvrir dans le domaine des composants photoniques. Des structures telles que des guides
d’onde, des réseaux de diffraction, des mémoires optiques ou des cristaux photoniques
peuvent étre fabriquées grace a cette technique. Son emploi sur des verres oxydes est
prometteur car ces derniers présentent des avantages certains ; ils sont tres résistants au flux et
au vieillissement, leur composition chimique peut étre changée facilement afin de s’adapter a
un cahier des charges précis. On les retrouve déja dans les amplificateurs Raman, les fibres
optiques, les lasers a fibres, etc...

Le travail de cette these s’articule autour de deux grands axes. Le premier axe consiste
a caractériser les propriétés optiques linéaires et non-linéaires de matériaux vitreux massifs
afin d’optimiser leur composition en vue d’une application particuliere. Dans ce contexte, les
propriétés optiques non-linéaires, leurs origines physiques (électronique et nucléaire) ainsi
que leurs temps de réponse caractéristiques (de quelques femtosecondes a quelques centaines
de picosecondes) sont décrits dans le cadre de 1’approximation de Born-Oppenheimer. Ainsi,
la silice fondue et plusieurs verres sodo-borophosphates contenant différentes concentrations
en oxyde de niobium ont été étudiés. Les résultats montrent que les propriétés optiques non-
linéaires dans la silice fondue sont majoritairement d’origine €lectronique, alors que dans les
verres sodo-borophosphates, la contribution d’origine nucléaire peut devenir prépondérante
lorsque la concentration en oxyde de niobium dépasse 30%.

Le second axe s’articule autour de la structuration des matériaux. Trois échantillons
commerciaux de silice fondue présentant des conditions de fabrication différentes (donc des

taux d’impuretés distincts) et irradiés avec un laser femtoseconde proche infrarouge ont été
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¢tudiés. Les défauts induits par laser ont été identifiés au moyen de plusieurs techniques de
spectroscopie. Elles ont montré la formation de centres colorés ainsi qu’une densification au
niveau de la zone irradiée. Leurs propriétés optiques linéaire (indice de réfraction) et non-
linéaire (susceptibilité du troisieme ordre) ont été mesurées. De plus, la structuration de la
silice fondue a I’échelle sub-micrométrique sous forme de « nano-réseaux » est observée et la
biréfringence de forme induite par ces structures est discutée.

En plus des échantillons de silice fondue, plusieurs verres oxydes présentant des
compositions chimiques tres distinctes ont été étudiés. Un verre sodo-borophosphate
contenant de I’oxyde de niobium exhibe des micro-craquelures et des nano-crystallites apres
irradiation. Un verre silicate contenant ou non de 1’argent dévoile des structures en anneau
fluorescentes ou en « nano-réseaux ». Un verre zinc phosphate contenant de 1’argent présente
lui aussi des structures en anneau fluorescentes, d’une taille de I’ordre de 80 nm, bien
inférieure a la limite de diffraction. Des techniques pompe-sonde sous microscope ont été
mises en ceuvre sur ce dernier verre pour étudier ’interaction laser-verre. Le mécanisme
d’absorption de I’énergie lumineuse pour ce verre est 1’absorption a quatre photons. La
densité d’électrons libres générée est de I’ordre de 10'7 cm™, ce qui permet de conclure qu’un

gaz d’électrons plutdt qu’un plasma se forme pendant I’irradiation laser.
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