Autour des surpartitions et des identités de type Rogers-Ramanujan
Auteur / Autrice : | Olivier Mallet |
Direction : | Jeremy Lovejoy |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance en 2008 |
Etablissement(s) : | Paris 7 |
Mots clés
Résumé
Une partition d'un entier positif est une façon d'écrire ce nombre comme une somme d'entiers strictement positifs où l'ordre des termes ne compte pas. Plusieurs généralisations des partitions ont été étudiées, parmi lesquelles les surpartitions, qui sont des partitions où l'on peut surligner la dernière occurrence d'un nombre, les paires de surpartitions ou encore les partitions n-colorées, qui sont liées à un modèle de physique statistique. Dans cette thèse, on généralise aux paires de surpartitions les identités d'Andrews-Gordon, qui sont un extension d'un résultat classique de la théorie des partitions : les identités de Rogers-Ramanujan. Pour cela, on définit deux classes de séries hypergéométriques basiques et on montre que ce sont les séries génératrices des paires de surpartitions vérifiant différents type; de conditions (multiplicités, rangs successifs, dissection de Durfee) et de certains chemins du plan. On montre également que pour certaines valeurs des paramètres, ces séries peuvent s'écrire comme des produits infinis, ce qui conduit à plusieurs identités de type Rogers-Ramanujan. La démonstration utilise diverses méthodes combinatoires et analytiques. On définit enfin une généralisation des partitions n-colorées, les surpartitions n-colorées, et on les utilise pour interpréter combinatoirement certaines séries multiples et démontrer d'autres identités de type Rogers-Ramanujan.