Transport électronique dans les détecteurs à cascade quantique
Auteur / Autrice : | Cédric Koeniguer |
Direction : | Vincent Berger |
Type : | Thèse de doctorat |
Discipline(s) : | Champs, particules, matière |
Date : | Soutenance en 2008 |
Etablissement(s) : | Paris 7 |
Mots clés
Résumé
Les détecteurs infrarouge à puits quantiques photovoltaïques sont des capteurs intéressant pour des applications où les flux de photons à détecter sont faibles, car ils permettent de s'affranchir du courant d'obscurité. Le premier chapitre de cette thèse présente l'évolution des ces détecteurs au travers d'un comparatif des caractéristiques, permettant de comprendre pourquoi le détecteur à cascade quantique (QCD) est un dispositif intéressant pour la détection infrarouge. Le second chapitre propose un modèle de transport électronique valable proche de l'équilibre thermodynamique, dans lequel nous considérons que seules les interactions électrons/phonons peuvent transférer les électrons d'une sous-bande d'énergie vers une autre. L'introduction de quasi-niveaux de Fermi, associés à chaque période du dispositif permet de donner une approche globale plus simple de ces transferts. On montre ainsi que la densité de courant, qui se déduit de manière générale en comptabilisant les échanges électroniques entre les sous-bandes, est analogue à celle d'une diode Schottky, permettant de donner une expression simple de la résistivité, qui est alors interprétée comme une relation d'Einstein. Le modèle est ensuite confronté aux résultats expérimentaux. Enfin, un dernier chapitre présente un échantillon QCD détectant à 5. 7 μm, qui est dans un premier temps caractérise optiquement et électriquement. Le modèle précédent lui est appliqué afin donner une première approche de l'influence des différents paramètres. Cette comparaison permet de mettre en évidence quelques limites liées aux hypothèses simplificatrices du modèle.