Thèse soutenue

FR
Auteur / Autrice : Azzam Haidar
Direction : Luc Giraud
Type : Thèse de doctorat
Discipline(s) : Mathématiques, informatique et télécommunications
Date : Soutenance en 2008
Etablissement(s) : Toulouse, INPT

Résumé

FR  |  
EN

La résolution de très grands systèmes linéaires creux est une composante de base algorithmique fondamentale dans de nombreuses applications scientifiques de calcul intensif. La résolution performante de ces systèmes passe par la conception, le développement et l'utilisation d'algorithmes parallèles performants. Dans nos travaux, nous nous intéressons au développement et l'évaluation d'une méthode hybride (directe/itérative) basée sur des techniques de décomposition de domaine sans recouvrement. La stratégie de développement est axée sur l'utilisation des machines massivement parallèles de plusieurs milliers de processeurs. L'étude systématique de l'extensibilité et l'efficacité parallèle de différents préconditionneurs algébrique est réalisée aussi bien d'un point de vue informatique que numérique. On a comparé leurs performances sur des systèmes de plusieurs millions ou dizaines de millions d'inconnues pour des problèmes réels 3D.