Auteur / Autrice : | Daniel Weinland |
Direction : | Radu Horaud, Edmond Boyer, Rémi Ronfard |
Type : | Thèse de doctorat |
Discipline(s) : | Imagerie, vision, robotique |
Date : | Soutenance en 2008 |
Etablissement(s) : | Grenoble INPG |
Mots clés
Mots clés contrôlés
Résumé
La reconnaissance d'actions et d'activités humaines est un thème de recherche ambitieux en vision par ordinateur, avec d'importantes et nombreuses applications, notamment pour la vidéo surveillance et les environnements interactifs et intelligents. D'un point de vue computationel une action peut être définie comme une entité de dimension 4 dans le l'espace et le temps. Plusieurs représentations peuvent alors être envisagées qui diffèrent par les informations considérées, par exemple : la forme ou l'apparence, la représentation explicite ou implicite du déroulement d'une action - la dynamique, l'invariance du modèle au genre, taille et corpulence et l'invariance au point de vue qui permet d'apprendre et de reconnaître une action avec des configurations de caméras différentes. Dans cette thèse, nous étudions ces représentations et leurs impacts sur la reconnaissance d'actions. Nous nous intéressons en particulier à l'invariance des représentations, à la modélisation de la dynamique d'une action et à la manière de segmenter une action. Nos resultats démontrent que la reconnaissance d'actions simples, par exemple se lever ou courir, peut s'effectuer independamment de point de vue, des caractéristiques propres du corps observé et de la dynamique de l'action.