Thèse soutenue

Détection, caractérisation d'objets 3D et simulation d'évolution morphologique appliquée à l'infiltrabilité de préformes fibreuses

FR
Auteur / Autrice : Christianne Mulat
Direction : Gérard Louis VignolesChristian Germain
Type : Thèse de doctorat
Discipline(s) : Sciences physiques et de l'ingénieur. Automatique, Productique, Signal et Image
Date : Soutenance le 25/11/2008
Etablissement(s) : Bordeaux 1
Ecole(s) doctorale(s) : École doctorale des sciences physiques et de l’ingénieur (Talence, Gironde ; 1995-....)

Résumé

FR  |  
EN

Cette thèse associe analyse d’image et modélisation physico-chimique afin de caractériser l’infiltrabilité d’un milieu poreux. Infiltrabilité signifie : « propension d’un milieu poreux à se laisser pénétrer par un fluide apportant un dépôt solide ». Une application est la fabrication de composites à matrice céramique par dépôt chimique en phase gazeuse (CVI). Des études ont montré que l’agencement des fibres d’un matériau composite a un impact sur sa densité finale. Nous proposons d’étudier l’évolution du milieu poreux au cours de l’infiltration pour des architectures complexes. La première étape consiste en la segmentation et la caractérisation de composites déjà densifiés obtenus par micro-tomographie. Les objets à segmenter sont des fibres quasi-cylindriques. Deux outils ont été développés : un estimateur optimal de l’orientation vers l’axe de cylindres, et un algorithme de détection et de caractérisation d’objets quasi-cylindriques. Appliquée aux composites fibreux, cette étape fournit un bloc contenant les fibres. Il constitue le milieu poreux complexe dont on cherche à caractériser l’infiltrabilité. La seconde étape est la modélisation à l’échelle des fibres du procédé CVI. Elle utilise des marcheurs aléatoires, avec une gestion de l’interface du solide par « marching cube simplifié». L’algorithme proposé est novateur car il prend en compte simultanément les réactions chimiques, le transport de gaz en régime raréfié ou continu et l’évolution temporelle de la morphologie d’un milieu poreux. Le couplage des deux étapes permet de comparer le dépôt issu de la segmentation à celui résultant de la simulation dans divers régimes physiques. Il est alors possible d’effectuer une analyse inverse des conditions d’élaboration à partir de la morphologie du dépôt. Les outils proposés permettent aussi de comparer l’infiltrabilité de différentes architectures fibreuses.