Minoration de la hauteur de Néron-Tate sur les variétés abéliennes : sur la conjecture de Lang et Silverman
Auteur / Autrice : | Fabien Mehdi Pazuki |
Direction : | Henri Cohen, Marc Hindry |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques et informatique. Mathématiques pures |
Date : | Soutenance en 2008 |
Etablissement(s) : | Bordeaux 1 |
Résumé
Cette thèse est consacrée à l'étude d'une conjecture de Lang et Silverman de minoration de la hauteur de Néron-Tate sur les variétés abéliennes sur les corps de nombres. Le premier chapitre décrit le matériel nécessaire à l'étude des chapitres suivants et fixe les notations et normalisations. On montre dans le second chapitre que la conjecture est vraie pour certaines classes de variétés abéliennes de dimension 2, en particulier pour les jacobiennes ayant potentiellement bonne réduction et restant loin des produits de courbes elliptiques dans l'espace de modules. Le second chapitre renferme aussi des corollaires allant dans la direction de la conjecture de borne uniforme sur la torsion et de majoration uniforme du nombre de points rationnels d'une courbe de genre 2. Le troisième chapitre généralise les résultats de minoration du second chapitre aux jacobiennes de courbes huperelliptiques de genre g ≥ 2. Le quatrième chapitre contient une étude de la restriction des scalaires à la Weil et une étude asymptotique de la hauteur des points de Heegner sur les jacobiennes de courbes modulaires. Le cinquième chapitre est une annexe contenant des formules explicites utiles pour la dimension 2 et un paragraphe sur un raisonnement par isogénies.