Minoration de la hauteur de Néron-Tate sur les variétés abéliennes : sur la conjecture de Lang et Silverman

par Fabien Mehdi Pazuki

Thèse de doctorat en Mathématiques et informatique. Mathématiques pures

Sous la direction de Henri Cohen et de Marc Hindry.

Soutenue en 2008

à Bordeaux 1 .


  • Résumé

    Cette thèse est consacrée à l'étude d'une conjecture de Lang et Silverman de minoration de la hauteur de Néron-Tate sur les variétés abéliennes sur les corps de nombres. Le premier chapitre décrit le matériel nécessaire à l'étude des chapitres suivants et fixe les notations et normalisations. On montre dans le second chapitre que la conjecture est vraie pour certaines classes de variétés abéliennes de dimension 2, en particulier pour les jacobiennes ayant potentiellement bonne réduction et restant loin des produits de courbes elliptiques dans l'espace de modules. Le second chapitre renferme aussi des corollaires allant dans la direction de la conjecture de borne uniforme sur la torsion et de majoration uniforme du nombre de points rationnels d'une courbe de genre 2. Le troisième chapitre généralise les résultats de minoration du second chapitre aux jacobiennes de courbes huperelliptiques de genre g ≥ 2. Le quatrième chapitre contient une étude de la restriction des scalaires à la Weil et une étude asymptotique de la hauteur des points de Heegner sur les jacobiennes de courbes modulaires. Le cinquième chapitre est une annexe contenant des formules explicites utiles pour la dimension 2 et un paragraphe sur un raisonnement par isogénies.

  • Titre traduit

    On a conjecture by Lang and Silverman about a uniform lower bound for the Néron-Tate height on abelian varieties


  • Pas de résumé disponible.

Autre version

Cette thèse a donné lieu à une publication en 2009 par [CCSD] à Villeurbanne

Minoration de la hauteur de Néron-Tate sur les variétés abéliennes : sur la conjecture de Lang et Silverman

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (194 p.)
  • Annexes : Bibliogr. p. 189-194. Annexes

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Bordeaux. Direction de la Documentation. Bibliothèque Sciences et Techniques.
  • Disponible pour le PEB
  • Cote : FTA 3610
  • Bibliothèque : Université de Bordeaux. Direction de la documentation. Bibliothèque de recherche Mathématiques et Informatique.
  • PEB soumis à condition
  • Cote : 21332

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université de Lille. Service commun de la documentation. Bibliothèque universitaire de Sciences Humaines et Sociales.
  • Non disponible pour le PEB
  • Cote : 2008BOR13610
  • Bibliothèque : Université Paris-Est Créteil Val de Marne. Service commun de la documentation. Section multidisciplinaire.
  • PEB soumis à condition
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.