Thèse soutenue

Systèmes de particules et collisions discrètes dans les automates cellulaires

FR  |  
EN
Auteur / Autrice : Gaétan Richard
Direction : Nicolas Ollinger
Type : Thèse de doctorat
Discipline(s) : Informatique et mathématiques
Date : Soutenance en 2008
Etablissement(s) : Aix-Marseille 1
Partenaire(s) de recherche : Autre partenaire : Université de Provence. Section sciences

Mots clés

FR

Résumé

FR

Cette thèse a pour objet l’étude des systèmes de particules et collisions dans les automates cellulaires. En se basant sur des observations expérimentales, nous proposons des définitions formelles de ces objets et montrons qu’ils peuvent être mis en relation avec des coloriages réguliers du plan. A l’aide d’une représentation sous forme syntaxique de ces objets, nous introduisons une opération syntaxique d’assemblage : les schémas de ligature. Cette opération peut être interprétée en termes de coloriage et correspond à une opération intuitive utilisée dans l’étude algorithmique des automates cellulaires. Nous prouvons que, dans le cas d’assemblages finis, le lien entre l’opération syntaxique et l’interprétation peut être complètement caractérisé de façon algorithmique. Nous explorons ensuite des pistes d’extension de ces systèmes facilitant l’encodage et permettant de dépasser le cas fini. Enfin, nous étudions les applications de tels systèmes en lien avec l’universalité dans les automates cellulaires. En particulier, nous donnons une nouvelle preuve de l’universalité de l’automate cellulaire 110 et présentons la construction d’un automate cellulaire intrinsèquement universel de rayon 1 et à 4 états.