Thèse soutenue

FR
Auteur / Autrice : Sarah Cochez-Dhondt
Direction : Serge Nicaise
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance en 2007
Etablissement(s) : Valenciennes

Résumé

FR  |  
EN

Dans cette thèse, on développe des estimateurs d'erreur a posteriori, pour l'approximation par éléments finis des équations de Maxwell en régime harmonique et des équations de réaction-diffusion. Introduisant d'abord, pour le système de Maxwell, des estimateurs de type résiduel, on étudie la dépendance des constantes intervenant dans les bornes inférieures et supérieures en fonction de la variation des coefficients de l'équation, en les considérant d'abord constants puis constants par morceaux. On construit ensuite un autre type d'estimateur, basé sur des flux équilibrés et la résolution de problèmes locaux, que l'on étudie dans le cadre des équations de réaction-diffusion et du système de Maxwell. Ayant introduit plusieurs estimateurs pour l'équation de Maxwell, on en propose une étude comparative, au travers de tests numériques présentant le comportement de ces estimateurs pour des solutions particulières sur des maillages uniformes ainsi que les maillages obtenus par des procédures de raffinement de maillages adaptatifs. Enfin, dans le cadre des équations de diffusion, on étend la construction des estimateurs équilibrés aux méthodes éléments finis de type Galerkin discontinues