Thèse soutenue

Cohomologie de Gl2(Z[i,1/2]) à coefficients dans F2

FR  |  
EN
Auteur / Autrice : Nicolas Weiss
Direction : Hans-Werner Henn
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance en 2007
Etablissement(s) : Université Louis Pasteur (Strasbourg) (1971-2008)

Résumé

FR  |  
EN

Le but de cette thèse était le calcul de H*(BGL_2(Z[i,1/2]),F_2). Cet anneau de cohomologie apparaît dans une version de la conjecture de Lichtenbaum et Quillen, qui affirme que la cohomologie modulo 2 du classifiant d'un groupe linéaire à coefficients dans Z[1/2] devrait être détectée par la cohomologie de son sous-groupe des matrices diagonales. L'idée originale était de montrer que cette conjecture est fausse dans le cas de GL_4(Z[1/2]) et la cohomologie de BGL_2(Z[i,1/2]) aurait dû être l'argument principal. En calculant H*(BGL_2(Z[i,1/2]),F_2), nous avons prouvé que la conjecture est vraie dans le cas de GL_2(Z[i,1/2]). Le calcul de H*(BGL_2(Z[i,1/2]),F_2) dépend de l'analyse d'un certain espace Z sur lequel agit PSL_2(Z[i]), et du calcul de H*(BPSL_2(Z[i]),F_2) et H*(BGo,F_2) oGo est un sous-groupe de PSL_2(Z[i]) tel que PSL_2(Z[i,1/2]) est isomorphe à la somme amalgamée PSL_2(Z[i])*_Go PSL_2(Z[i]). On obtient le résultat en étudiant plusieurs suites spectrales.