Thèse soutenue

Contribution des modèles statistiques de forme et d'apparence à la segmentation d'images

FR  |  
EN
Auteur / Autrice : Nabil Boukala
Direction : Bernard LagetEric Favier
Type : Thèse de doctorat
Discipline(s) : Informatique. Traitement des images
Date : Soutenance en 2007
Etablissement(s) : Saint-Etienne

Mots clés

FR

Mots clés contrôlés

Résumé

FR  |  
EN

Ce travail de recherche s'inscrit dans le domaine de la segmentation d'images à l'aide de modèles déformables. Nous étudions 2 types de modèles : -les contours actifs ou snakes, -les modèles statistiques, notamment les modèles actifs de forme (ASM) et d'apparence (AAM). Nous proposons d'appliquer ces différentes méthodes au problème de la segmentation d'images radiographiques du bassin. Cette étude comparative révèle la supériorité, en termes de précision et robustesse, des ASM par rapport aux autres approches étudiées. Cependant, notre ensemble de données met clairement en avant une limitation majeure de la méthode à savoir la nécessité d'un ensemble d'entraînement de taille conséquente, contrainte commune aux AAM. En effet, la mise en oeuvre de ces méthodes implique non seulement la possession de nombreuses images-exemples, mais également leur annotation manuelle, soit une lourdeur de la phase d'apprentissage et une limitation du champ d'application. L'approche proposée s'appuie sur des modèles locaux d'apparence très précis. Ces derniers décrivent les variations produites en perturbant aléatoirement le modèle de forme sur une ou plusieurs images d'entraînement. Notre stratégie de recherche fait usage de classificateurs statistiques qui indiquent dans quelles directions chacun des points du modèle doit évoluer. Outre le gain en précision et robustesse apporté, notre approche élargit le domaine d'application au suivi d'objet ou tracking puisqu'elle se satisfait de peu d'exemples d'apprentissage, une unique image pouvant éventuellement remplir cet office. Dans ce cas, un enrichissement du modèle de forme à l'aide d'une méthode par éléments finis est nécessaire