Thèse soutenue

Gestion, analyse et intégration des données transcriptomiques

FR  |  
EN
Auteur / Autrice : Antony Le Béchec
Direction : Nathalie Théret
Type : Thèse de doctorat
Discipline(s) : Biologie. Bioinformatique
Date : Soutenance en 2007
Etablissement(s) : Rennes 1

Résumé

FR  |  
EN

Dans le cadre de l'étude des mécanismes moléculaires impliqués dans les processus biologiques liés aux pathologies, la transcriptomique permet d’étudier l’expression de plusieurs milliers de gènes en une seule expérience. Les standards internationaux permettent actuellement de gérer la grande quantité de données générées par cette technologie et de nombreux algorithmes permettent le traitement et l’analyse des données d’expression. Le grand défi d’aujourd’hui réside dans l’interprétation des données, notamment par l’intégration de connaissances biologiques supplémentaires permettant la création d’un contexte d’étude aidant à la compréhension des mécanismes biologiques. Afin de répondre aux besoins liés à l’exploitation de ces données transcriptomiques, un environnement complet et évolutif a été développé, M@IA (Micro@rray Integrated Application), permettant de gérer les expériences de puces à ADN mais également traiter et analyser les données d’expression. Une méthode de biologie intégrative combinant de multiples sources de données a été conçue pour exploiter des listes de gènes différentiellement exprimés par l’interprétation de réseaux de gènes représentés sous forme de graphes d’interaction. Egalement, une méthode de méta-analyse de données d’expression de gènes issues de la bibliographie a permis de sélectionner et combiner des études similaires associées à la progression tumorale du foie. En conclusion, ces travaux s’intègrent totalement à l’actuel développement de la biologie intégrative, indispensable à la résolution des mécanismes physiopathologiques.