Auteur / Autrice : | Aurélien Garivier |
Direction : | Elisabeth Gassiat |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance en 2006 |
Etablissement(s) : | Paris 11 |
Partenaire(s) de recherche : | Autre partenaire : Université de Paris-Sud. Faculté des sciences d'Orsay (Essonne) |
Résumé
Ce travail de thèse explore quelques aspects contemporains de la théorie de l'information allant de la théorie du codage à certains problèmes de choix de modèles. Nous y considérons d'abord le problème du codage de sources sans mémoire émettant dans un alphabet infini dénombrable. Comme il est impossible d' y apporter une solution générale, deux approches sont utilisées : nous établissons d'abord des conditions sous lesquelles le taux entropique peut être approché, et proposons alors un algorihme. Dans un second temps, il n'est posé aucune restriction sur la source, il est possible de fournir une solution partielle en codant seulement une partie de l'information (le motif) qui capture les répétitions contenues dans le message. Pour arriver à l'étude de processus plus complexes, nous revenons sur le cas de sources à mémoire finie sur un alphabet fini, qui a donné lieu a beaucoup de travaux, ainsi qu'à des algorithmes efficaces comme la Context Tree Weighting (CTW) Method. Nous prouvons ici que cet algorithme est également efficace sur une classe non paramétrique de sources à mémoire infinie : les sources de renouvellement. Nous montrons ensuite que les idées sous-jacentes à la méthode CTW permettent de construire un estimateur consistant de la structure de mémoire d'un processus quand celle-ci est finie : nous complètons l'étude de l'estimateur BIC pour les chaînes de Markov à longueur variable. Dans une dernière partie, il est montré qu'une telle approche est généralisable dans un cadre plus large de sources émettant dans un alphabet infini. On obtient ainsi des estimateurs consitants de l'ordre de chaînes de Markov cachées à émission poissonienne et gaussienne.